
Response to Editorial Review 

Dear editor: 

Thank you very much for handling our manuscript. We really appreciate the insightful 

comments and suggestions from you and the reviewer. Below, we address the comments 

point-by-point, and the comments are italicized and our response follow in blue. 

Major points 

Comment 1: As has been raised before, I think some discussion is necessary as to 

whether it is not to be expected that there is such a correlation as U and R are derived 

from NEP. 

Response: Thanks for this suggestion. As shown in Figure 2, this method was applied 

on the atmospheric inversion product. However, some ecosystems seem to defy such 

correlation. Therefore, we think the robustness in relationship between annual NEP and 

U/R depend on the stability of carbon uptake sensitivity for an ecosystem. We have 

added discussions as (Lines 297-303): “In this study, the atmospheric inversion product 

shows low correlation between NEP and ln(
𝑈

𝑅
)  in some boreal ecosystems, which 

might due to that the atmospheric inversion product is failed to capture the carbon 

uptake sensitivity in these boreal ecosystems or these boreal ecosystems are 

experiencing serious disturbances. Therefore, the robustness in relationship between 

annual NEP and ln(
𝑈

𝑅
) depends on the temporal stability of carbon uptake sensitivity 

for an ecosystem. In addition, the spatial variation in β reveals the differences of carbon 

uptake sensitivity across ecosystems”. 

Comment 2: Please provide a derivation of Eq 4. This does not logically follow from 

Eq. 1 

Response: Thanks for this suggestion. To avoid logic misleading, we have deleted Eq.1. 

In addition, we have added some sentences to illustrate the motivation of testing the 

relationship between annual NEP and the ratio U/R (Lines 159-167): “Many studies 

have reported that the vegetation net CO2 uptake during the growing season and the 

non-growing season soil net CO2 release are tightly correlated (Luo et al., 2014; Zhao 

et al., 2016). Therefore, we further tested the relationship between annual NEP and 
𝑈

𝑅
 

(i.e., 𝑁𝐸𝑃 ∝ 
𝑈

𝑅
), which reflects the seasonal carbon uptake-release ratio. Consequently, 

NEP in any given ecosystem can be expressed as (Fig. S2): 

                𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                         (3) 



where the parameter 𝛽 represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
), 

indicating the site-level carbon uptake sensitivity”. 

Minor points 

L41 rephrase to “large-scale estimates from an atmospheric inversion product” 

Response: Thanks, done as suggested. 

L44: linearily related to ln (X) is equivalent to logarithmically related to X? 

Response: Thanks, and we have rephrased this sentence as “NEP could be 

logarithmically indicated by U/R”. 

L45: beta has not been defined (the slope of what?). Explain “well indicated” 

Response: Thanks, and we have rephrased this sentence as “while the spatial 

distribution of IAVNEP was associated with the slope (i.e., β) of the logarithmic 

correlation between annual NEP and U/R”. 

L49: gridded products of what? 

Response: Thanks, and we have revised it as “gridded NEP products”. 

L77: unclear what “the compiled” refers to here 

Response: Thanks, and we have revised it as “the global flux tower-based product”. 

L82: Isn’t this a contradiction? If they are strongly correlated in space, then how would 

they determine the spatial variation in NEP? 

Response: We have rephrased this sentence as (Lines 72-75): “The NEP in terrestrial 

ecosystems is determined by two components, including vegetation photosynthesis and 

ecosystem respiration (Reichstein et al., 2005), and their relative difference could 

determine the spatial variation of NEP (Baldocchi et al., 2015; Biederman et al., 2016)”. 

L107: here and in the following: the total NET uptake. Also this isn’t entirely correct 

because as you note later also the strength of the source/sink within each period can 

vary. 

Response: Thanks for this suggestion. We have rephrased the description as “the total 

net CO2 uptake flux (U)” and “the total net CO2 release flux (R)” in the whole paper. 

L110: I don’t understand the use of the word “innovatively attributed” here. Please 

clarify 

Response: We have rephrased it as “The variations of NEP thus could be attributed to 

these decomposed components”. 

L146: Add “to infer the net CO2 exchanges between land, ocean and atmosphere at 

large scales 

Response: Done as suggested. 



L165ff: Is this correct? Are the effects of land cover changes not implicitly included by 

the use of satelite derived fAPAR? 

Response: Thanks. We have revised the description of FLUXCOM product as ( Lines 

140-144): “It should be noted that the inter-annual variability of FLUXCOM product is 

driven by meteorological measurements and satellite data, which partially includes 

information on vegetation state and other land surface properties”. 

L168: Please provide correct link to the data portal 

Response: Thanks. We have revised the link of FLUXCOM product. 

L190: A quantitative definition of CUP and CRP is missing here. 

Response: Thanks. We have added the definition of CUP and CRP as “where CUP (d 

yr-1) is the length of CO2 uptake period and CRP (d yr-1) is the length of CO2 release 

period”. 

L254: Verified is the wrong word here 

Response: We have revised it as “confirmed”.  

L272: use “across-site variation” instead to spatial change? 

Response: Done as suggested. 

L283: The use of “mostly” is inappropriate here, because CUP/CRP explains less than 

60% of the variance. 

Response: We have rephrased it as “Therefore, the spatial distribution of mean annual 

NEP was more strongly driven by the phenological changes”. 

L317: But what if most of this crop IAV is related to changes in the local crop from year 

to year and are therefore not representative of regional scale cropland IAV? 

Response: Sorry for the confusion. We have rephrased this sentence as (Lines 247-249): 

“The highest β implies that the land covered by cropland with the largest IAVNEP. 

Therefore, the reported rapid global expansion of cropland may enlarge the fluctuations 

in Land-atmosphere CO2 exchange”. 

L325/L326: These statements need to be adjusted to reflect that the difference in 

explanatory power is “only” 58 to 42%. 

Response: Thanks for this suggestion.  

First, we have rephrased the subtitle as “Joint control of plant phenology and 

physiology on mean annual NEP”. 

Second, we have revised these sentences to emphasize the equal importance of plant 

phenology and physiology in driving the spatial difference of mean annual NEP as 

(Lines 255-257): “Here we demonstrated that the spatial difference of mean annual NEP 

was determined by both the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
  (58%) and the physiological 



indicator 
�̅�

�̅�
 (42%). In addition, the lower contribution of the physiological indicator 

could partly be attributed to the convergence of 
�̅�

�̅�
 across FLUXNET sites (Fig. S4)”. 



Response to comments from reviewer #1 

Comment 1: The manuscript proposed to study the relationship between ln(U/R) and 

NEP. Since we know that NEP = U – R and ln(U/R) = ln(U) – ln(R), therefore it is 

expected to see a strong r2 between ln(U/R) and NEP (Figure 1-3). I am more curious 

about why some ecosystems (i.e. boreal ecosystems in Figure 2) seems to defy such 

correlation, and why the slope of this correlation (i.e. beta) changes spatially? Further 

discussions on these would be appreciated. 

Response: Thanks for this valuable suggestion. 

For any year of each site, the indicator β was equivalent to the quotient between annual 

NEP and ln(U/R). Generally, the indicator β was convergent within-site and represents 

the site-level carbon uptake sensitivity. However, the indicator β would shift when an 

ecosystem experiences the serious disturbance, such as extreme heat waves and drought 

(Figure R1).  

Therefore, the atmospheric inversion product presents low correlation between NEP 

and ln(U/R) in some ecosystems because of the following two reasons: 1) the 

atmospheric inversion product was failed to capture the carbon uptake sensitivity in 

these boreal ecosystems; 2) these boreal ecosystems were experiencing serious 

disturbance that affect their carbon sink stability. In addition, the spatial variation in β 

reveals the differences of carbon uptake sensitivity across ecosystems.  

We have added these discussions in the revised manuscript (Lines 296-303): “Thus, a 

sudden shift of the β-value may be an important early-warning signal for the critical 

transition of carbon uptake sensitivity of an ecosystem. In this study, the atmospheric 

inversion product shows low correlation between NEP and ln(U/R) in some boreal 

ecosystems, which might due to that the atmospheric inversion product is failed to 

capture the carbon uptake sensitivity in these boreal ecosystems or these boreal 

ecosystems are experiencing serious disturbances. In addition, the spatial variation in β 

reveals the differences of carbon uptake sensitivity across ecosystems”. 



 

Figure R1. (a) The relationship between annual NEP and ln(U/R) at a specific site. (b, 

c) Shift of indicator β in some specific sites along soil moisture and temperature. 

Comment 2: For latter, the variation in beta is suggested to be related to IAV_NEP, 

which is regarded as an indicator of the carbon sink stability. Wouldn’t IAV_NEP 

normalized by mean NEP make more sense here? I would be curious to see if there is a 

relationship between normalized IAV_NEP and beta, as sites with larger NEP seem 

more likely to have larger beta. 

Response: Thanks for this suggestion. 

First, the site-level mean annual NEP includes both negative and positive values, and 

therefore the IAV_NEP was quantified as the standard deviation of annual NEP rather 

than the normalized value. This approach have been widely used in the previous studies 

(Baldocchi et al., 2018; Marcolla et al., 2017). 

Second, as suggested by the reviewer, we have tested the relationship between mean 

annual NEP and β, and found low correlation between mean annual NEP and β (Figure 

R2).  

Third, the IAV_NEP in this study represents both the intensity and amplitude of 

variation in terrestrial carbon sink. Therefore, we prefer to use standard deviation of 

annual NEP to represent its inter-annual variation. 



 

Figure R2. The relationship between mean annual NEP and the indicator β. 

Marcolla, B., Rödenbeck, C., & Cescatti, A. (2017). Patterns and controls of inter-annual variability 

in the terrestrial carbon budget. Biogeosciences, 14(16), 3815-3829. 

Baldocchi, D., Chu, H., & Reichstein, M. (2018). Inter-annual variability of net and gross ecosystem 

carbon fluxes: A review. Agricultural and Forest Meteorology, 249, 520-533.  

Comment 3: Figure 3a presents the correlation between annual mean NEP and ln(U/R) 

across sites. I think there is a need to clarify the calculation of ln(U/R) here as this 

indicator changes year-to-year for each site (did you use the mean ln(U/R) of each 

site?). 

Response: Yes, Figure 3a shows the spatial correlation between annual mean NEP and 

mean ln(U/R) of each site. We have added this information in Lines 204-205 as “Across 

the 72 flux-tower sites, the across-site variation in mean annual NEP were significantly 

correlated to mean annual ln (
𝑈

𝑅
) of each site (R2 = 0.65, P < 0.01) (Fig. 3a)”. 

Comment 4: It would be helpful to give more details on Equation (6). I could not 

understand how to decompose ln(U/R) into the two components from what is presented 

here, but the method seems critical to Figure 4. Is equation (6) a multivariate linear 

function? 

Response: Thanks for this suggestion. 

First, we have revised the expression of equation (6) as (Lines 161-167): “We further 

quantified the relative contributions of 
�̅�

�̅�
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatial variations in 

NEP: 

   NEP = 𝛽 ∙ [ln (
�̅�

�̅�
) + ln (

𝐶𝑈𝑃

𝐶𝑅𝑃
)]                (5) 

For a specific ecosystem, the parameter 𝛽  was constant. Then, we used a relative 

importance analysis method to quantify the relative contributions of these two ratios to 



the spatial variations in NEP”. 

Second, the reviewer was right that we quantified the contributions of explanatory 

variables with a multiple linear regression model. The method was illustrated in Lines 

186-189. 
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Abstract 32 

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink 33 

during the past several decades. However, both annual net ecosystem productivity (NEP) and 34 

its inter-annual variation (IAVNEP) keep varying over space. Thus, identifying local indicators 35 

for the spatially varying NEP and IAVNEP is critical for locating the major and sustainable C 36 

sinks on the land. Here, based on daily NEP observations from FLUXNET sites and large-scale 37 

estimates from anthe atmospheric inversion product, we found a robust logarithmic correlation 38 

between annual NEP and seasonal carbon uptake-release ratioratio of total CO2 exchanges 39 

during net uptake (U) and release (R) periods (i.e., U/R). The cross-site variation of mean annual 40 

NEP could be logarithmically linearly indicated by ln(U/R), while the spatial distribution of 41 

IAVNEP was well indicated byassociated with the slope (i.e., β) of the demonstrated logarithmic 42 

correlation between annual NEP and U/R. Among biomes, for example, forests and croplands 43 

had the largest U/R ratio (1.06 ± 0.83) and β (473 ± 112 g C m-2 yr-1), indicating the highest NEP 44 

and IAVNEP in forests and croplands, respectively. We further showed that these two simple 45 

indicators could directly infer the spatial variations in of NEP and IAVNEP in global gridded NEP 46 

products. Overall, this study provides two simple local indicators for the intricate spatial 47 

variations in the strength and stability of land C sinks. These indicators could be helpful for 48 

locating the persistent terrestrial C sinks and provides valuable constraints for improving the 49 

simulation of land-atmospheric C exchanges.  50 

  51 
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1. Introduction 52 

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO2 emission (Ciais et 53 

al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured 54 

atmospheric CO2 growth rate (Randerson, 2013; Le Quéré et al., 2018). In addition, evidence 55 

based on eddy-flux measurements (Baldocchi et al., 2018; Rödenbeck et al., 2018), aircraft 56 

atmospheric budgets (Peylin et al., 2013), and process-based model simulations (Poulter et al., 57 

2014; Ahlstrom et al., 2015) has shown a large spatial variability in net ecosystem productivity 58 

(NEP) on the land. The elusive variation of terrestrial NEP over space refers to both of the 59 

substantial varying mean annual NEP and the divergent inter-annual variability (IAV) in NEP 60 

(i.e., IAVNEP; usually quantified as the standard deviation of annual NEP) across space 61 

(Baldocchi et al., 2018; Marcolla et al., 2017). The mean annual NEP is related to the strength 62 

of carbon exchange of a specific ecosystem (Randerson et al., 2002; Luo and Weng, 2011; Jung 63 

et al., 2017), while IAVNEP characterizes the stability of such carbon exchange (Musavi et al., 64 

2017). Thus, whether and how NEP and IAVNEP change over the space is important for 65 

predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017). 66 

Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 67 

model outputs and atmospheric inversion products. In addition, the global average IAV of NEP 68 

was large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the 69 

spatial variations of NEP and IAVNEP were typically underestimated by the global flux tower-70 

based productcompiled global product and the process-based global models (Jung et al., 2020; 71 

Fu et al., 2019). These discrepancies further revealed the necessary to identify local indicators 72 

for the spatially varying NEP and IAVNEP, separately. The NEP in terrestrial ecosystems is 73 

determined by two components, including vegetation photosynthesis and ecosystem respiration 74 

(Reichstein et al., 2005). ), and their relative difference Because photosynthesis and respiration 75 

are strongly correlated over space (Baldocchi et al., 2015; Biederman et al., 2016), their relative 76 

difference could determine the spatial variation of NEP (Baldocchi et al., 2015; Biederman et 77 

al., 2016). Many previous analyses have attributed the IAVNEP at the site level to the different 78 

sensitivities of ecosystem photosynthesis and respiration to environmental drivers (Gilmanov et 79 

al., 2005; Reichstein et al., 2005) and biotic controls (Besnard et al., 2018; Musavi et al., 2017). 80 
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For example, some studies have reported that IAVNEP is more associated with variations in 81 

photosynthesis than carbon release (Ahlstrom et al., 2015; Novick et al., 2015; Li et al., 2017), 82 

whereas others have indicated that respiration is more sensitive to anomalous climate variability 83 

(Valentini et al., 2000; von Buttlar et al., 2017). However, despite the previous efforts in a 84 

predictive understanding of the land-atmospheric C exchanges, the multi-model spread has not 85 

reduced over time (Arora et al., 2019). Therefore, it is imperative to explore the potential 86 

indicators for the spatially varying NEP, which could help attribute the spatial variation of NEP 87 

and IAVNEP into different processes and provide valuable constraints for the global C cycle. 88 

Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into net 89 

CO2 uptake flux and CO2 release flux (Gray et al., 2014), which are more direct components for 90 

NEP (Fu et al., 2019). Many studies have reported that the vegetation CO2 uptake during the 91 

growing season and the non-growing season soil respiration are tightly correlated (Luo et al., 92 

2014; Zhao et al., 2016). It is still unclear how the ecosystem net CO2 uptake and release fluxes 93 

would control the spatially varying NEP. 94 

Conceptually, the total net CO2 uptake flux (U) is determined by the length of CO2 uptake 95 

period (CUP) and the CO2 uptake rate, while the total net CO2 release flux (R) depends on the 96 

length of CO2 release period (CRP) and the CO2 release rate (Fig. 1b). The variations of NEP 97 

thus should could be innovatively attributed to these decomposed components. A strong spatial 98 

correlation between mean annual NEP and length of CO2 uptake period has been reported in 99 

evergreen needle- and broad-leaved forests (Churkina et al., 2005; Richardson et al., 2013; 100 

Keenan et al., 2014), whereas atmospheric inversion data and vegetation photosynthesis model 101 

indicated a dominant role of the maximal carbon uptake rate (Fu et al., 2017; Zhou et al., 2017). 102 

However, the relative importance of these phenological and physiological indicators for the 103 

spatially varying NEP remains unclear. 104 

In this study, we decomposed annual NEP into U and R, and explored the local indicators 105 

for spatially varying NEP. Based on the eddy-covariance fluxes from FLUXNET2015 Dataset 106 

(Pastorello et al., 2017) and the atmospheric inversion product (Rödenbeck et al., 2018), we 107 

examined the relationship between NEP and its direct components. In addition, we used the 108 

observations to evaluate the spatial variations of NEP and IAVNEP in the FLUXCOM product 109 
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and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of this study is to 110 

explore whether there are useful local indicators for the spatially varying NEP and IAVNEP in 111 

terrestrial ecosystems. 112 

2. Materials and Methods 113 

2.1 Datasets 114 

Daily NEP observations of eddy covariance sites are obtained from the FLUXNET2015 Tier 1 115 

dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The FLUXNET2015 dataset 116 

provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are 117 

standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still 118 

too short for the analysis of inter-annual variation in NEP. So only the sites that provided the 119 

availability of eddy covariance flux measurements for at least 5 years are selected. This leads to 120 

a global dataset of 72 sites with different biomes across different climatic regions. Based on the 121 

biome classification from the International Geosphere-Biosphere Programme (IGBP) provided 122 

for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 grasslands (GRA), 123 

11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 savannas (SAV) (Fig. S1 124 

and Table S1). 125 

The Jena CarboScope Inversion product compiles from high precision measurements of 126 

atmospheric CO2 concentration with simulated atmospheric transport to infer the net CO2 127 

exchanges between land, ocean and atmosphere at large scales (Rödenbeck et al., 2018). Here, 128 

we used the daily land-atmosphere CO2 fluxes from the s85_v4.1 version at a spatial resolution 129 

of 5°× 3.75°. Considering the relatively low spatial resolution of the Jena Inversion product, the 130 

daily fluxes were only used to calculate the local indicators for the spatially varying NEP at the 131 

global scale. 132 

Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used 133 

to calculate the local indicators for the spatially varying NEP at the corresponding flux tower 134 

sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP 135 

meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and 136 

TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily 137 
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outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP 138 

both at the global scale and at the FLUXNET site level. 139 

The FLUXCOM product presents an upscaling of carbon flux estimates from 224 flux 140 

tower sites based on multiple machine learning algorithms and meteorological drivers (Jung et 141 

al., 2017). To be consistent with the meteorological forcing of Jena Inversion product and the 142 

CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In addition, in order to reduce 143 

the uncertainty caused by machine-learning methods, we averaged all the FLUXCOM 144 

CRUNCEPv6 products with different machine-learning methods. It should be noted that the 145 

inter-annual variability of FLUXCOM product is only driven by climatic 146 

conditionsmeteorological measurements and satellite data, which partially includes information 147 

on vegetation state and other land surface propertiesthe effects of land use and land cover change 148 

are not represented. The FLUXCOM NEP product is downloaded from the Data Portal of the 149 

Max Planck Institute for Biochemistry (https://www.bgc-150 

jena.mpg.de/geodb/projects/Home.phphttps://www.bgc-jena.mpg.de). Daily outputs from 151 

FLUXCOM for the period 1985-2010 at 0.5° spatial resolution were used to calculate the local 152 

indicators for the spatially varying NEP both at the global scale and at the FLUXNET site level. 153 

2.2 Decomposition of NEP and the calculations for its local indicators 154 

The annual NEP of a given ecosystem can be defined numerically as the difference between the 155 

net CO2 uptake and release (Figure 2b). These. As illustrated in Figure 2b: 156 

                          𝑁𝐸𝑃 = 𝑈 − 𝑅                               (1) 157 

These components of NEP contain both photosynthesis and respiration flux, which directly 158 

indicate the net CO2 exchange of an ecosystem. The total net CO2 uptake flux (U) and the total 159 

net CO2 release flux (R) can be further decomposed as: 160 

                          𝑈 = �̅� × 𝐶𝑈𝑃                                161 

(21) 162 
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                          𝑅 = �̅� × 𝐶𝑅𝑃                                163 

(32) 164 

where CUP (d yr-1) is the length of CO2 uptake period and CRP (d yr-1) is the length of CO2 165 

release period; the �̅� (g C m-2 d-1) is the mean daily net CO2 uptake over CUP (d yr-1) and �̅� 166 

(g C m-2 d-1) represents the mean daily net CO2 release over CRP (d yr-1). Many studies have 167 

reported that the vegetation net CO2 uptake during the growing season and the non-growing 168 

season soil net CO2 release are tightly correlated (Luo et al., 2014; Zhao et al., 2016). In 169 

additionTherefore, we further tested the relationship between annual NEP and the ratio of 
𝑈

𝑅
 170 

(i.e., 𝑁𝐸𝑃 ∝  
𝑈

𝑅
 ), which reflects . Ecologically, the ratio of 

𝑈

𝑅
  reflects the seasonal carbon 171 

uptake-release ratiorelative strength of the ecosystem CO2 uptake. ThereforeConsequently, NEP 172 

in any year of any given ecosystem can be expressed as (Fig. S2): 173 

                𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                               (43) 174 

where the parameter 𝛽  represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
) , 175 

indicating the site-level carbon uptake sensitivity. Based on the definitions of U and R, the ratio 176 

𝑈

𝑅
 can be further written as: 177 

                   
𝑈

𝑅
=

�̅�

�̅�
∙

𝐶𝑈𝑃

𝐶𝑅𝑃
                                   (54) 178 

Ecologically, the ratio of 
�̅�

�̅�
  reflects the relative physiological difference between 179 

ecosystem CO2 uptake and release strength, while the ratio of 
𝐶𝑈𝑃

𝐶𝑅𝑃
  is an indicator of net 180 

ecosystem CO2 exchange phenology. Environmental changes may regulate these ecological 181 

processes and ultimately affect the ecosystem NEP. The slope β indicates the response sensitivity 182 

of NEP to the changes in phenology and physiological processes. All of β, 
𝐶𝑈𝑃

𝐶𝑅𝑃
 and 

�̅�

�̅�
 were 183 

then calculated from the selected eddy covariance sites and the corresponding pixels of these 184 

sites in models. These derived indicators from eddy covariance sites were then used to 185 

benchmark the results extracted from the same locations in models. 186 

2.4 Calculation of the relative contributions 187 
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We further quantified the relative contributions of 
�̅�

�̅�
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatial variations 188 

in NEP: 189 

   NEP = 𝛽 ∙ [ln (
�̅�

�̅�
) + ln (

𝐶𝑈𝑃

𝐶𝑅𝑃
)] ∫(

�̅�

�̅�
,

𝐶𝑈𝑃

𝐶𝑅𝑃
)                                 190 

(65) 191 

For a specific ecosystem, the parameter 𝛽  was constant. Then, We we used a relative 192 

importance analysis method to quantify the relative contributions of each these two ratios to the 193 

spatial variations in NEP. The algorithm was performed with the “ralaimpo” package in R (R 194 

Development Core Team, 2011). The “relaimpo” package is based on variance decomposition 195 

for multiple linear regression models. We chose the most commonly used method named 196 

“Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from the methods provided by the 197 

“ralaimpo” package. This method allows us to quantify the contributions of explanatory 198 

variables in a multiple linear regression model. Across the 72 FLUXNET sites, we quantified 199 

the relative importance of 
�̅�

�̅�
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 to cross-site changes in NEP. 200 

3. Results 201 

3.1 The relationship between NEP and its direct components 202 

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we tested the 203 

relationship between NEP and its direct components (𝑈 and 𝑅) across the 72 flux-tower sites. 204 

The results showed that annual NEP was closely related with the ratio of 
𝑈

𝑅
  (Fig. S2). The 205 

logarithmic correlations between annual NEP and 
𝑈

𝑅
 were significant at all sites (Fig. 1a), and 206 

~90% of R2 falling within a range from 0.7 to 1 (Fig. 1c). 207 

In addition, the relationship between NEP and 
𝑈

𝑅
  was also verified confirmed by the 208 

atmospheric inversion product (i.e., Jena CarboScope Inversion). The control of 
𝑈

𝑅
 on annual 209 

NEP was robust in most global grid cells (i.e. 0.6 < R2 < 1). The explanation of 
𝑈

𝑅
 was higher 210 

in 80% of the regions, but lower in North American (Fig. 2). These two datasets both showed 211 

that the indicator 
𝑈

𝑅
 could successfully capture the variability in annual NEP. 212 
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3.2 Local indicators for spatially varying NEP 213 

Across the 72 flux-tower sites, the across-site variationspatial changes in mean annual NEP were 214 

significantly correlated to mean annual ln (
𝑈

𝑅
) of each site (R2 = 0.65, P < 0.01) (Fig. 3a). This 215 

finding suggested that the mean annual ratio ln (
𝑈

𝑅
) is a good indicator for cross-site variation 216 

in NEP. By contrast, the spatial variation of IAVNEP was moderately explained by the slope (i.e., 217 

β) of the temporal correlation between NEP and ln (
𝑈

𝑅
) at each site (R2 = 0.39, P < 0.01; Fig. 218 

3b) rather than ln (
𝑈

𝑅
) (Fig. S3). The wide range of ratio β reveals a large divergence of NEP 219 

sensitivity across biomes, ranging from 121 ± 118 g C m-2 yr-1 in shrubland to 473 ± 112 g C m-220 

2 yr-1 in cropland.  221 

The decomposition of indicator 
𝑈

𝑅
  into 

�̅�

�̅�
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the relative 222 

importance of these two ratios in driving NEP variability. The linear regression and relative 223 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (58%) than 

�̅�

�̅�
 (42%) in explaining 224 

the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP 225 

was more stronglymostly driven by the phenological rather than physiological changes. 226 

3.3 Simulated spatial variations in NEP by models  227 

We further used these two simple indicators (i.e., 
𝑈

𝑅
 and β) to evaluate the simulated spatial 228 

variations of NEP by the global flux tower-based compiled global product (i.e., FLUXCOM) 229 

and a widely-used process-based model at the FLUXNET site level (i.e., CLM4.5). We found 230 

that the low spatial variation of mean annual NEP in FLUXCOM and CLM4.5 could be inferred 231 

from their more converging ln (
𝑈

𝑅
) than flux-tower measurements (Fig. 5). The underestimated 232 

variation of IAVNEP in these modeling results was also clearly shown by the smaller β values 233 

(268.22, 126.00 and 145.08 for FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b).  234 

In addition, the spatial variations of NEP and IAVNEP were associated with the spatial 235 

resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between 236 

FLUXNET sites and the gridded product, we run the same analysis at the global scale based on 237 

Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also 238 
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well indicated by ln (
𝑈

𝑅
)  (Fig. 6). The larger net C uptake in FLUXCOM resulted from its 239 

higher simulations for ln (
𝑈

𝑅
). Furthermore, the larger spatial variation of IAVNEP in CLM4.5 240 

could be inferred from the indicator β. 241 

4. Discussion 242 

4.1 New perspective for locating the major and sustainable land C sinks 243 

Large spatial differences of mean annual NEP and IAVNEP have been well-documented in 244 

previous studies (Jung et al., 2017; Marcolla et al., 2017; Fu et al., 2019). Here we provide a 245 

new perspective for quantifying the spatially varying NEP by tracing annual NEP into several 246 

local indicators. Therefore, these traceable indicators could provide useful constraints for 247 

predicting annual NEP, especially in areas without eddy-covariance towers. 248 

Typically, the C sink capacity and its stability of a specific ecosystem are characterized 249 

separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated 250 

NEP into two simple indicators that could directly locate the major and sustainable land C sink. 251 

Among biomes, forests and croplands had the largest ln (
𝑈

𝑅
) and β, indicating the strongest and 252 

the most unstable C sink in forests and croplands, respectively. However, the relatively lower β 253 

in shrublands and savannas should be interpreted cautiously. There are very few semi-arid 254 

ecosystems in the FLUXNET sites, while they represent a large portion of land at the global 255 

scale and have been shown to substantially control the interannual variability of NEP (Ahlström 256 

et al., 2015). The highest β  in croplands implies that the land covered by cropland with the 257 

largest IAVNEP. Therefore, implies that the reported rapid global expansion of cropland may 258 

enlarge the fluctuations in Land-atmosphere CO2 exchangeIAVNEP on the land. In fact, the 259 

cropland expansion has been confirmed as one important driver of the recent increasing global 260 

vegetation growth peak (Huang et al., 2018) and atmospheric CO2 seasonal amplitude (Gary et 261 

al., 2014; Zeng et al., 2014). 262 

4.2 Joint control of plant phenology and physiology on mean annual NEPPhenology-263 

dominant spatial distribution of mean annual NEP 264 

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary 265 
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productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et 266 

al., 2016). Here we demonstrated that the spatial difference of mean annual NEP the dominant 267 

role of was determined by both the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
  (58%) in drivingand the 268 

physiological indicator 
�̅�

�̅�
 (42%) the spatial difference of mean annual NEP. In addition, The 269 

the reported lowlower correlation between mean annual NEP andcontribution of the 270 

physiological indicator couldor 
�̅�

�̅�
 could partly be attributed to the convergence of 

�̅�

�̅�
 across 271 

FLUXNET sites (Fig. S4).  272 

The convergent 
�̅�

�̅�
 across sites was first discovered by Churkina et al. (2005) as 2.73 ± 1.08 273 

across 28 sites, which included DBF, EBF and crop/grass. In this study, we found the 
�̅�

�̅�
 across 274 

the 72 sites is 2.71 ± 1.61, which validates the discovery by Churkina et al. However, the 
�̅�

�̅�
 275 

varied among biomes (2.86 ± 1.56 for forest, 2.16 ± 1.14 for grassland, 3.47 ± 1.98 for cropland, 276 

2.89 ± 1.47 for wetland, 1.89 ± 1.10 for shrub, 1.83 ± 0.88 for savanna). This spatial convergence 277 

of 
�̅�

�̅�
  at the ecosystem level provides important constraints for global models that simulate 278 

various physiological processes (Peng et al., 2015; Xia et al., 2017). These findings imply that 279 

the phenology changes will greatly affect the locations of the terrestrial carbon sink by 280 

modifying the length of carbon uptake period (Richardson et al., 2013; Keenan et al., 2014). 281 

4.3 The simulated local indicators from gridded products 282 

This study showed that the considerable spatial variations in mean annual NEP and IAVNEP from 283 

global gridded products could also be inferred from their local indicators. The low variations of 284 

𝑈

𝑅
 ratio in CLM4.5 could be largely due to their simple representations of the diverse terrestrial 285 

plant communities into a few plant functional types with parameterized properties (Cui et al., 286 

2019; Sakschewski et al., 2015). In addition, the higher 
𝑈

𝑅
  ratio from FLUXCOM product 287 

indicated its widely reported larger net C uptake (Fig. 6) (Jung et al., 2020). Meanwhile, the 288 

ignorance of fire, land-use change and other disturbances could lead to the smaller β by allowing 289 

for only limited variations of phenological and physiological dynamics (Reichstein et al., 2014; 290 

Kunstler et al., 2016). Although the magnitude of IAVNEP depends on the spatial resolution 291 



12 
 

(Marcolla et al., 2017), we recommend future model benchmarking analyses to use not only the 292 

global product compiled from machine-learning method (Bonan et al., 2018) but also the site-293 

level measurements or indicators (Xia et al., 2020i.e., ln (
𝑈

𝑅
) and β). 294 

4.4 Conclusions and further implications 295 

In summary, this study highlights the changes in NEP and IAVNEP over space on the land, and 296 

provides the 
𝑈

𝑅
  ratio and β as two simple local indicators for their spatial variations. These 297 

indicators could be helpful for locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) 298 

ratio is high but the β is low. Their estimates based on observations are also valuable for 299 

benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system 300 

models.  301 

In addition, tThe findings in this study have some important implications for understanding the 302 

variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the 303 

largest ln (
𝑈

𝑅
) while croplands show the highest IAVNEP because of the highest β. Second, the 304 

spatial convergence of 
�̅�

�̅�
 suggests a tight linkage between plant growth and the non-growing 305 

season soil microbial activities (Xia et al., 2014; Zhao et al., 2016). However, it remains unclear 306 

whether the inter-biome variation in 
�̅�

�̅�
 is due to different plant-microbe interactions between 307 

biomes.  ThirdThird, the within-site convergent but spatially varying β needs better 308 

understanding. Previous studies have shown that a rising standard deviation of ecosystem 309 

functions could indicate an impending ecological state transition (Carpenter and Brock, 2006; 310 

Scheffer et al., 2009). Thus, a sudden shift of the β-value may be an important early-warning 311 

signal for the critical transition of carbon uptake sensitivity ofIAVNEP of an ecosystem. In this 312 

study, the atmospheric inversion product shows low correlation between NEP and ln (
𝑈

𝑅
) in 313 

some boreal ecosystems, which might due to that the atmospheric inversion product is failed to 314 

capture the carbon uptake sensitivity in these boreal ecosystems or these boreal ecosystems are 315 

experiencing serious disturbances. Therefore, the robustness in relationship between annual 316 

NEP and ln (
𝑈

𝑅
) depends on the temporal stability of carbon uptake sensitivity for an ecosystem. 317 
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In addition, the spatial variation in β reveals the differences of carbon uptake sensitivity across 318 

ecosystems. Furthermore, considering the limited eddy-covariance sites with long-term 319 

observations, these findings need further validation once the longer time-series of measurements 320 

from more sites and vegetation types become available.  321 
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FIGURES 341 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =342 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 343 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 344 

years of observations. b, Conceptual figure for the decomposition framework introduced in this 345 

study. Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 =346 

𝑈 − 𝑅 . c, Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of NEP (R2) for 347 

FLUXNET sites. 348 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 349 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 350 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 351 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 352 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 353 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 354 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 355 

with the size of the point.  356 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

�̅�

�̅�
 (R2 = 0.09, 357 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial 358 

variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the point. 359 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 360 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 361 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 362 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 363 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 364 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 365 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 366 
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ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note 367 

that the modeled results are from the pixels extracted from the same locations of the flux tower 368 

sites. 369 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 370 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 371 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 372 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 373 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 374 

Jena Inversion, FLUXCOM and CLM4.5. 375 

376 
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 377 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =378 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 379 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 380 

years of data. b, Conceptual figure for the decomposition framework introduced in this study. 381 

Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 = 𝑈 − 𝑅. c, 382 

Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of FLUXNET NEP (R2) for 383 

FLUXNET sites. 384 

  385 
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 386 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 387 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 388 

  389 
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 390 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 391 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 392 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 393 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 394 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 395 

with the size of the point.  396 

  397 
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  398 

Figure 4 The relative contributions of the local indicators in explaining the spatial patterns of 399 

mean annual NEP. a, The linear regression between mean annual NEP with 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.33, P 400 

< 0.01) and 
�̅�

�̅�
 (R2 = 0.25, P < 0.01) across sites. b, The relative contributions of each indicator 401 

to the spatial variation of NEP. The number of site-years at each site is indicated with the size 402 

of the point. 403 

  404 
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 405 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 406 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 407 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 408 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 409 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 410 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 411 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 412 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P < 0.05; open circles: P > 0.05. 413 

Note that the modeled results are from the pixels extracted from the same locations of the flux 414 

tower sites. 415 

 416 
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 417 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 418 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 419 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 420 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 421 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 422 

Jena Inversion, FLUXCOM and CLM4.5. 423 

  424 
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