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Abstract

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink
during the past several decades. However, both annual net ecosystem productivity (NEP) and
its inter-annual variation (IAV~ep) keep varying over space. Thus, identifying local indicators
for the spatially varying NEP and IAVngp is critical for locating the major and sustainable C
sinks on the land. Here, based on daily NEP observations from FLUXNET sites and the
atmospheric inversion product, we found a robust logarithmic correlation between annual NEP
and ratio of total CO; exchanges during net uptake (U) and release (R) periods (i.e., U/R). The
cross-site variation of mean annual NEP could be linearly indicated by In(U/R), while the spatial
distribution of IAVnep was well indicated by the slope (i.e., f) of the demonstrated logarithmic
correlation. Among biomes, for example, forests and croplands had the largest U/R ratio (1.06
+0.83) and B (473 + 112 g C m? yr!), indicating the highest NEP and IAVxgp in forests and
croplands, respectively. We further showed that these two simple indicators could directly infer
the spatial variations in NEP and IAV~gp in global gridded products. Overall, this study provides
two simple local indicators for the intricate spatial variations in the strength and stability of land
C sinks. These indicators could be helpful for locating the persistent terrestrial C sinks and

provides valuable constraints for improving the simulation of land-atmospheric C exchanges.
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1. Introduction

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO> emission (Ciais et
al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured
atmospheric CO; growth rate (Randerson, 2013; Le Quéré et al., 2018). In addition, evidence
based on eddy-flux measurements (Baldocchi et al., 2018; Rdédenbeck et al., 2018), aircraft
atmospheric budgets (Peylin et al., 2013), and process-based model simulations (Poulter et al.,
2014; Ahlstrom et al., 2015) has shown a large spatial variability in net ecosystem productivity
(NEP) on the land. The elusive variation of terrestrial NEP over space refers to both of the
substantial varying mean annual NEP and the divergent inter-annual variability (IAV) in NEP
(i.e., IAVnep; usually quantified as the standard deviation of annual NEP) across space
(Baldocchi et al., 2018; Marcolla et al., 2017). The mean annual NEP is related to the strength
of carbon exchange of a specific ecosystem (Randerson et al., 2002; Luo and Weng, 2011; Jung
et al., 2017), while IAVnEgp characterizes the stability of such carbon exchange (Musavi et al.,
2017). Thus, whether and how NEP and IAVnep change over the space is important for

predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017).

Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements,
model outputs and atmospheric inversion products. In addition, the global average IAV of NEP
was large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the
spatial variations of NEP and IAVnepr were typically underestimated by the compiled global
product and the process-based global models (Jung et al., 2020; Fu et al., 2019). These
discrepancies further revealed the necessary to identify local indicators for the spatially varying
NEP and IAVnep, separately. The NEP in terrestrial ecosystems is determined by two
components, including vegetation photosynthesis and ecosystem respiration (Reichstein et al.,
2005). Because photosynthesis and respiration are strongly correlated over space (Baldocchi et
al., 2015; Biederman et al., 2016), their relative difference could determine the spatial variation
of NEP. Many previous analyses have attributed the IAVnep at the site level to the different
sensitivities of ecosystem photosynthesis and respiration to environmental drivers (Gilmanov et
al., 2005; Reichstein et al., 2005) and biotic controls (Besnard et al., 2018; Musavi et al., 2017).

For example, some studies have reported that [AVnep is more associated with variations in

3
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photosynthesis than carbon release (Ahlstrom et al., 2015; Novick et al., 2015; Li et al., 2017),
whereas others have indicated that respiration is more sensitive to anomalous climate variability
(Valentini et al., 2000; von Buttlar et al., 2017). However, despite the previous efforts in a
predictive understanding of the land-atmospheric C exchanges, the multi-model spread has not
reduced over time (Arora et al., 2019). Therefore, it is imperative to explore the potential
indicators for the spatially varying NEP, which could help attribute the spatial variation of NEP
and TAVnep into different processes and provide valuable constraints for the global C cycle.
Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into CO»
uptake flux and CO; release flux (Gray et al., 2014), which are more direct components for NEP
(Fuetal., 2019). Many studies have reported that the vegetation CO» uptake during the growing
season and the non-growing season soil respiration are tightly correlated (Luo et al., 2014; Zhao
et al., 2016). It is still unclear how the ecosystem CO; uptake and release fluxes would control

the spatially varying NEP.

Conceptually, the total CO, uptake flux (U) is determined by the length of CO; uptake
period (CUP) and the CO; uptake rate, while the total CO; release flux (R) depends on the length
of COz release period (CRP) and the CO; release rate (Fig. 1b). The variations of NEP thus
should be innovatively attributed to these decomposed components. A strong spatial correlation
between mean annual NEP and length of CO, uptake period has been reported in evergreen
needle- and broad-leaved forests (Churkina et al., 2005; Richardson et al., 2013; Keenan et al.,
2014), whereas atmospheric inversion data and vegetation photosynthesis model indicated a
dominant role of the maximal carbon uptake rate (Fu et al., 2017; Zhou et al., 2017). However,
the relative importance of these phenological and physiological indicators for the spatially

varying NEP remains unclear.

In this study, we decomposed annual NEP into U and R, and explored the local indicators
for spatially varying NEP. Based on the eddy-covariance fluxes from FLUXNET2015 Dataset
(Pastorello et al., 2017) and the atmospheric inversion product (Rodenbeck et al., 2018), we
examined the relationship between NEP and its direct components. In addition, we used the
observations to evaluate the spatial variations of NEP and IAVnep in the FLUXCOM product
and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of this study is to

4
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explore whether there are useful local indicators for the spatially varying NEP and IAVnEgp in

terrestrial ecosystems.

2. Materials and Methods

2.1 Datasets

Daily NEP observations of eddy covariance sites are obtained from the FLUXNET2015 Tier 1
dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The FLUXNET2015 dataset
provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are
standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still
too short for the analysis of inter-annual variation in NEP. So only the sites that provided the
availability of eddy covariance flux measurements for at least 5 years are selected. This leads to
a global dataset of 72 sites with different biomes across different climatic regions. Based on the
biome classification from the International Geosphere-Biosphere Programme (IGBP) provided
for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 grasslands (GRA),
11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 savannas (SAV) (Fig. S1
and Table S1).

The Jena CarboScope Inversion product compiles from high precision measurements of
atmospheric CO> concentration with simulated atmospheric transport (Rédenbeck et al., 2018).
Here, we used the daily land-atmosphere CO; fluxes from the s85 v4.1 version at a spatial
resolution of 5°x 3.75°. Considering the relatively low spatial resolution of the Jena Inversion
product, the daily fluxes were only used to calculate the local indicators for the spatially varying

NEP at the global scale.

Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used
to calculate the local indicators for the spatially varying NEP at the corresponding flux tower
sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP
meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and
TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily
outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP
both at the global scale and at the FLUXNET site level.

5
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The FLUXCOM product presents an upscaling of carbon flux estimates from 224 flux
tower sites based on multiple machine learning algorithms and meteorological drivers (Jung et
al., 2017). To be consistent with the meteorological forcing of Jena Inversion product and the
CLM4.5 model, we used the FLUXCOM CRUNCEPvV6 products. In addition, in order to reduce
the uncertainty caused by machine-learning methods, we averaged all the FLUXCOM
CRUNCEPv6 products with different machine-learning methods. It should be noted that the
inter-annual variability of FLUXCOM product is only driven by climatic conditions, the effects
of land use and land cover change are not represented. The FLUXCOM NEP product is
downloaded from the Data Portal of the Max Planck Institute for Biochemistry
(https://www.bgc-jena.mpg.de). Daily outputs from FLUXCOM for the period 1985-2010 at 0.5°
spatial resolution were used to calculate the local indicators for the spatially varying NEP both

at the global scale and at the FLUXNET site level.

2.2 Decomposition of NEP and the calculations for its local indicators

The annual NEP of a given ecosystem can be defined numerically as the difference between the

CO; uptake and release. As illustrated in Figure 2b:
NEP =U—R (1)

These components of NEP contain both photosynthesis and respiration flux, which directly
indicate the net CO> exchange of an ecosystem. The total CO, uptake flux (U) and the total CO»

release flux (R) can be further decomposed as:
U=UXCUP (2)
R =R x CRP 3)

where the U (g C m™? d!)is the mean daily CO, uptake over CUP (dyr')and R (gCm2d")

represents the mean daily CO, release over CRP (d yr'). In addition, we further tested the

relationship between annual NEP and the ratio of % (i.e., NEP x %). Ecologically, the ratio of

% reflects the relative strength of the ecosystem COz uptake. Therefore, NEP in any year of any

given ecosystem can be expressed as:
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NEP = -In(3) (4)

where the parameter [ represents the slope of the linear relationship of NEP & In (%) Based

on the definitions of U and R, the ratio — can be further written as:

CcUP
CRP

U
R

RS

)

Ecologically, the ratio of reflects the relative physiological difference between

] =]

. . CcUpP . . .
ecosystem CO> uptake and release strength, while the ratio of ~pp IS an indicator of net

ecosystem CO: exchange phenology. Environmental changes may regulate these ecological
processes and ultimately affect the ecosystem NEP. The slope £ indicates the response sensitivity
U

of NEP to the changes in phenology and physiological processes. All of £, % and — were

then calculated from the selected eddy covariance sites and the corresponding pixels of these
sites in models. These derived indicators from eddy covariance sites were then used to

benchmark the results extracted from the same locations in models.

2.4 Calculation of the relative contributions

We further quantified the relative contributions of % and g%z in driving the spatial variations
in NEP:
g cup
NEP = [(z, o) (6)

We used a relative importance analysis method to quantify the relative contributions of
each ratio to the spatial variations in NEP. The algorithm was performed with the “ralaimpo”
package in R (R Development Core Team, 2011). The “relaimpo” package is based on variance
decomposition for multiple linear regression models. We chose the most commonly used method
named “Lindeman-Merenda-Gold (LMG)” (Gromping, 2007) from the methods provided by
the “ralaimpo” package. This method allows us to quantify the contributions of explanatory

variables in a multiple linear regression model. Across the 72 FLUXNET sites, we quantified

. U cupP . .
the relative importance of 7 and ~pp L0 cross-site changes in NEP.
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3. Results
3.1 The relationship between NEP and its direct components

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we tested the

relationship between NEP and its direct components (U and R) across the 72 flux-tower sites.
The results showed that annual NEP was closely related with the ratio of % (Fig. S2). The

logarithmic correlations between annual NEP and % were significant at all sites (Fig. 1a), and

~90% of R? falling within a range from 0.7 to 1 (Fig. 1c).

In addition, the relationship between NEP and % was also verified by the atmospheric
inversion product (i.e., Jena CarboScope Inversion). The control of % on annual NEP was

robust in most global grid cells (i.e. 0.6 < R*> < 1). The explanation of % was higher in 80% of
the regions, but lower in North American (Fig. 2). These two datasets both showed that the

indicator % could successfully capture the variability in annual NEP.

3.2 Local indicators for spatially varying NEP

Across the 72 flux-tower sites, the spatial changes in mean annual NEP were significantly

correlated to In (%) (R*=0.65, P<0.01) (Fig. 3a). This finding suggested that the mean annual

ratio In (%) 1s a good indicator for cross-site variation in NEP. By contrast, the spatial variation
of [AVnep was moderately explained by the slope (i.e., f) of the temporal correlation between
NEP and In () at each site (R? = 0.39, P < 0.01; Fig. 3b) rather than In (2) (Fig. S3). The

wide range of ratio f reveals a large divergence of NEP sensitivity across biomes, ranging from

121 + 118 g C m™ yr'! in shrubland to 473 + 112 g C m™ yr'! in cropland.

x| <

. L U . CUP . :
The decomposition of indicator — into and s allowed us to quantify the relative
importance of these two ratios in driving NEP variability. The linear regression and relative

importance analysis showed a more important role of % (58%) than g (42%) in explaining

the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP
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was mostly driven by the phenological rather than physiological changes.

3.3 Simulated spatial variations in NEP by models

. . . . U . .
We further used these two simple indicators (i.e., = and f) to evaluate the simulated spatial

variations of NEP by the compiled global product (i.e., FLUXCOM) and a widely-used process-
based model at the FLUXNET site level (i.e., CLM4.5). We found that the low spatial variation

of mean annual NEP in FLUXCOM and CLM4.5 could be inferred from their more converging
In (%) than flux-tower measurements (Fig. 5). The underestimated variation of IAVngp in these

modeling results was also clearly shown by the smaller f values (268.22, 126.00 and 145.08 for
FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b).

In addition, the spatial variations of NEP and [AVnep were associated with the spatial
resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between
FLUXNET sites and the gridded product, we run the same analysis at the global scale based on

Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also

well indicated by In (%) (Fig. 6). The larger C uptake in FLUXCOM resulted from its higher

simulations for In (%). Furthermore, the larger spatial variation of IAVNgp in CLM4.5 could be

inferred from the indicator £.
4. Discussion
4.1 New perspective for locating the major and sustainable land C sinks

Large spatial differences of mean annual NEP and IAVnNep have been well-documented in
previous studies (Jung et al., 2017; Marcolla et al., 2017; Fu et al., 2019). Here we provide a
new perspective for quantifying the spatially varying NEP by tracing annual NEP into several
local indicators. Therefore, these traceable indicators could provide useful constraints for

predicting annual NEP, especially in areas without eddy-covariance towers.

Typically, the C sink capacity and its stability of a specific ecosystem are characterized
separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated

NEP into two simple indicators that could directly locate the major and sustainable land C sink.
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Among biomes, forests and croplands had the largest In (%) and f, indicating the strongest and

the most unstable C sink in forests and croplands, respectively. However, the relatively lower S
in shrublands and savannas should be interpreted cautiously. There are very few semi-arid
ecosystems in the FLUXNET sites, while they represent a large portion of land at the global
scale and have been shown to substantially control the interannual variability of NEP (Ahlstrom
etal., 2015). The highest £ in croplands implies that the rapid global expansion of cropland may
enlarge the TAVnep on the land. In fact, the cropland expansion has been confirmed as one
important driver of the recent increasing global vegetation growth peak (Huang et al., 2018) and

atmospheric CO> seasonal amplitude (Gary et al., 2014; Zeng et al., 2014).
4.2 Phenology-dominant spatial distribution of mean annual NEP

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary

productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et
al., 2016). Here we demonstrated the dominant role of the phenology indicator % in driving

the spatial difference of mean annual NEP. The reported low correlation between mean annual

| Q)
| Q)

NEP and the physiological indicator = could partly be attributed to the convergence of

across FLUXNET sites (Fig. S4).

| <

The convergent — across sites was first discovered by Churkina et al. (2005) as 2.73 £ 1.08

across 28 sites, which included DBF, EBF and crop/grass. In this study, we found the % across

the 72 sites is 2.71 + 1.61, which validates the discovery by Churkina et al. However, the

varied among biomes (2.86 = 1.56 for forest, 2.16 & 1.14 for grassland, 3.47 + 1.98 for cropland,
2.89+ 1.47 for wetland, 1.89 + 1.10 for shrub, 1.83 + 0.88 for savanna). This spatial convergence

of

| <

at the ecosystem level provides important constraints for global models that simulate

various physiological processes (Peng et al., 2015; Xia et al., 2017). These findings imply that
the phenology changes will greatly affect the locations of the terrestrial carbon sink by

modifying the length of carbon uptake period (Richardson et al., 2013; Keenan et al., 2014).

4.3 The simulated local indicators from gridded products

10
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This study showed that the considerable spatial variations in mean annual NEP and IAVngp from

global gridded products could also be inferred from their local indicators. The low variations of
% ratio in CLM4.5 could be largely due to their simple representations of the diverse terrestrial
plant communities into a few plant functional types with parameterized properties (Cui et al.,
2019; Sakschewski et al., 2015). In addition, the higher % ratio from FLUXCOM product

indicated its widely reported larger C uptake (Fig. 6) (Jung et al., 2020). Meanwhile, the
ignorance of fire, land-use change and other disturbances could lead to the smaller by allowing
for only limited variations of phenological and physiological dynamics (Reichstein et al., 2014;
Kunstler et al., 2016). Although the magnitude of IAVnep depends on the spatial resolution
(Marcolla et al., 2017), we recommend future model benchmarking analyses to use not only the

global product compiled from machine-learning method (Bonan et al., 2018) but also the site-

level measurements or indicators (i.e., In (%) and f).

4.4 Conclusions and further implications

In summary, this study highlights the changes in NEP and IAVnep over space on the land, and

provides the % ratio and S as two simple local indicators for their spatial variations. These

indicators could be helpful for locating the persistent terrestrial C sinks in where the In (%)

ratio is high but the f is low. Their estimates based on observations are also valuable for
benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system

models.

In addition, the findings in this study have some important implications for understanding

the variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the

largest In (%) while croplands show the highest IAVnep because of the highest f. Second, the

. U . . .
spatial convergence of = suggests a tight linkage between plant growth and the non-growing
season soil microbial activities (Xia et al., 2014; Zhao et al., 2016). However, it remains unclear
whether the inter-biome variation in % is due to different plant-microbe interactions between

biomes. Third, the within-site convergent but spatially varying £ needs better understanding.
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Previous studies have shown that a rising standard deviation of ecosystem functions could
indicate an impending ecological state transition (Carpenter and Brock, 2006; Scheffer et al.,
2009). Thus, a sudden shift of the f-value may be an important early-warning signal for the
critical transition of IAVnep of an ecosystem. Furthermore, considering the limited eddy-
covariance sites with long-term observations, these findings need further validation once the
longer time-series of measurements from more sites and vegetation types become available.
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FIGURES
Figure 1 Relationship between annual NEP and % for 72 FLUXNET sites (of the form NEP =
B ln (%)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net

uptake (U) and release (R) periods (i.e., %). Each line represents one flux site with at least 5

years of observations. b, Conceptual figure for the decomposition framework introduced in this

study. Annual NEP can be quantitatively decomposed into the following indicators: NEP =
U —R. c, Distribution of the explanation of % on temporal variability of NEP (R?) for

FLUXNET sites.

Figure 2 Relationship between annual NEP and % for Jena Inversion product (of the form
NEP=f"-1n (%)). The black box indicates the location of the sample.

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual

NEP and IAVnep. a, The relationship between annual mean NEP and In (%) across FLUXNET

sites (R? = 0.65, P < 0.01). The insets show the variation of In (%) for different terrestrial
biomes. b, The explanation of 5 on IAVngp (R? = 0.39, P <0.01). The insets show the distribution
of parameter S for different terrestrial biomes. The number of site-years at each site is indicated
with the size of the point.

cUupP
CRP

(R?=0.71, P < 0.01) and 2 (R? = 0.09,

| <)

Figure 4 The linear regression between % with
P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial

variation of %. The number of site-years at each site is indicated with the size of the point.

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM
product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation
of mean annual NEP and IAVngp derives from FLUXNET, FLUXCOM and CLM4.5. Variation
in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in

IAVnep: the standard deviation of IAVnEep across sites. b, Representations of the local indicators
for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of In (%)
and f are shown at the top and right. Significance of the relationship between annual NEP and
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In (%) for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note

that the modeled results are from the pixels extracted from the same locations of the flux tower

sites.

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM
product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean
annual NEP and IAVngp derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in
mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVngp: the spatial
variation of standard deviation in IAVnep. b, Representations of the local indicators for NEP in

Jena Inversion, FLUXCOM and CLM4.5.
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Figure 1 Relationship between annual NEP and % for 72 FLUXNET sites (of the form NEP =
f-1ln (%)). a, Dependence of annual NEP on the ratio between total CO; exchanges during net

uptake (U) and release (R) periods (i.e., %). Each line represents one flux site with at least 5

years of data. b, Conceptual figure for the decomposition framework introduced in this study.

Annual NEP can be quantitatively decomposed into the following indicators: NEP = U — R. c,
Distribution of the explanation of % on temporal variability of FLUXNET NEP (R?) for

FLUXNET sites.
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with the size of the point.
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Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM
product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean
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mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVngp: the spatial
variation of standard deviation in IAVnep. b, Representations of the local indicators for NEP in

Jena Inversion, FLUXCOM and CLM4.5.
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