

1 **Research article**

2 **Title**

3 Spatial variations in terrestrial net ecosystem productivity and its local indicators

4 **Running title**

5 Spatial variability in terrestrial NEP

6 **Authors**

7 Erqian Cui^{1,2} (eqcui@stu.ecnu.edu.cn)

8 Chenyu Bian^{1,2} (cybian@stu.ecnu.edu.cn)

9 Yiqi Luo³ (yiqi.luo@nau.edu)

10 Shuli Niu^{4,5} (sniu@igsnrr.ac.cn)

11 Yingping Wang⁶ (Yingping.Wang@csiro.au)

12 Jianyang Xia^{1,2,*} (jyxia@des.ecnu.edu.cn)

13 **Affiliations**

14 ¹Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai
15 Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and
16 Environmental Sciences, East China Normal University, Shanghai 200241, China;

17 ²Research Center for Global Change and Ecological Forecasting, East China Normal University,
18 Shanghai 200241, China;

19 ³Center for ecosystem science and society, Northern Arizona University, Arizona, Flagstaff, AZ
20 86011, USA.

21 ⁴Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
22 Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China;

23 ⁵University of Chinese Academy of Sciences, Beijing, China;

24 ⁶CSIRO Oceans and Atmosphere, PMB 1, Aspendale, Victoria 3195, Australia.

25 **Correspondence**

26 Jianyang Xia, School of Ecological and Environmental Sciences, East China Normal University,
27 Shanghai 200241, China.

28 Email: jyxia@des.ecnu.edu.cn

29 **Key words**

30 Net ecosystem productivity, spatial variation, CO₂ uptake and release, local indicators, model

31 **Abstract**

32 Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink
33 during the past several decades. However, both annual net ecosystem productivity (NEP) and
34 its inter-annual variation (IAV_{NEP}) keep varying over space. Thus, identifying local indicators
35 for the spatially varying NEP and IAV_{NEP} is critical for locating the major and sustainable C
36 sinks on the land. Here, based on daily NEP observations from FLUXNET sites and the
37 atmospheric inversion product, we found a robust logarithmic correlation between annual NEP
38 and ratio of total CO_2 exchanges during net uptake (U) and release (R) periods (i.e., U/R). The
39 cross-site variation of mean annual NEP could be linearly indicated by $\ln(U/R)$, while the spatial
40 distribution of IAV_{NEP} was well indicated by the slope (i.e., β) of the demonstrated logarithmic
41 correlation. Among biomes, for example, forests and croplands had the largest U/R ratio (1.06
42 ± 0.83) and β ($473 \pm 112 \text{ g C m}^{-2} \text{ yr}^{-1}$), indicating the highest NEP and IAV_{NEP} in forests and
43 croplands, respectively. We further showed that these two simple indicators could directly infer
44 the spatial variations in NEP and IAV_{NEP} in global gridded products. Overall, this study provides
45 two simple local indicators for the intricate spatial variations in the strength and stability of land
46 C sinks. These indicators could be helpful for locating the persistent terrestrial C sinks and
47 provides valuable constraints for improving the simulation of land-atmospheric C exchanges.

48

49 **1. Introduction**

50 Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO₂ emission (Ciais et
51 al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured
52 atmospheric CO₂ growth rate (Randerson, 2013; Le Quéré et al., 2018). In addition, evidence
53 based on eddy-flux measurements (Baldocchi et al., 2018; Rödenbeck et al., 2018), aircraft
54 atmospheric budgets (Peylin et al., 2013), and process-based model simulations (Poulter et al.,
55 2014; Ahlstrom et al., 2015) has shown a large spatial variability in net ecosystem productivity
56 (NEP) on the land. The elusive variation of terrestrial NEP over space refers to both of the
57 substantial varying mean annual NEP and the divergent inter-annual variability (IAV) in NEP
58 (i.e., IAV_{NEP}; usually quantified as the standard deviation of annual NEP) across space
59 (Baldocchi et al., 2018; Marcolla et al., 2017). The mean annual NEP is related to the strength
60 of carbon exchange of a specific ecosystem (Randerson et al., 2002; Luo and Weng, 2011; Jung
61 et al., 2017), while IAV_{NEP} characterizes the stability of such carbon exchange (Musavi et al.,
62 2017). Thus, whether and how NEP and IAV_{NEP} change over the space is important for
63 predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017).

64 Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements,
65 model outputs and atmospheric inversion products. In addition, the global average IAV of NEP
66 was large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the
67 spatial variations of NEP and IAV_{NEP} were typically underestimated by the compiled global
68 product and the process-based global models (Jung et al., 2020; Fu et al., 2019). These
69 discrepancies further revealed the necessary to identify local indicators for the spatially varying
70 NEP and IAV_{NEP}, separately. The NEP in terrestrial ecosystems is determined by two
71 components, including vegetation photosynthesis and ecosystem respiration (Reichstein et al.,
72 2005). Because photosynthesis and respiration are strongly correlated over space (Baldocchi et
73 al., 2015; Biederman et al., 2016), their relative difference could determine the spatial variation
74 of NEP. Many previous analyses have attributed the IAV_{NEP} at the site level to the different
75 sensitivities of ecosystem photosynthesis and respiration to environmental drivers (Gilmanov et
76 al., 2005; Reichstein et al., 2005) and biotic controls (Besnard et al., 2018; Musavi et al., 2017).
77 For example, some studies have reported that IAV_{NEP} is more associated with variations in

78 photosynthesis than carbon release (Ahlstrom et al., 2015; Novick et al., 2015; Li et al., 2017),
79 whereas others have indicated that respiration is more sensitive to anomalous climate variability
80 (Valentini et al., 2000; von Buttlar et al., 2017). However, despite the previous efforts in a
81 predictive understanding of the land-atmospheric C exchanges, the multi-model spread has not
82 reduced over time (Arora et al., 2019). Therefore, it is imperative to explore the potential
83 indicators for the spatially varying NEP, which could help attribute the spatial variation of NEP
84 and IAV_{NEP} into different processes and provide valuable constraints for the global C cycle.
85 Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into CO_2
86 uptake flux and CO_2 release flux (Gray et al., 2014), which are more direct components for NEP
87 (Fu et al., 2019). Many studies have reported that the vegetation CO_2 uptake during the growing
88 season and the non-growing season soil respiration are tightly correlated (Luo et al., 2014; Zhao
89 et al., 2016). It is still unclear how the ecosystem CO_2 uptake and release fluxes would control
90 the spatially varying NEP.

91 Conceptually, the total CO_2 uptake flux (U) is determined by the length of CO_2 uptake
92 period (CUP) and the CO_2 uptake rate, while the total CO_2 release flux (R) depends on the length
93 of CO_2 release period (CRP) and the CO_2 release rate (Fig. 1b). The variations of NEP thus
94 should be innovatively attributed to these decomposed components. A strong spatial correlation
95 between mean annual NEP and length of CO_2 uptake period has been reported in evergreen
96 needle- and broad-leaved forests (Churkina et al., 2005; Richardson et al., 2013; Keenan et al.,
97 2014), whereas atmospheric inversion data and vegetation photosynthesis model indicated a
98 dominant role of the maximal carbon uptake rate (Fu et al., 2017; Zhou et al., 2017). However,
99 the relative importance of these phenological and physiological indicators for the spatially
100 varying NEP remains unclear.

101 In this study, we decomposed annual NEP into U and R , and explored the local indicators
102 for spatially varying NEP. Based on the eddy-covariance fluxes from FLUXNET2015 Dataset
103 (Pastorello et al., 2017) and the atmospheric inversion product (Rödenbeck et al., 2018), we
104 examined the relationship between NEP and its direct components. In addition, we used the
105 observations to evaluate the spatial variations of NEP and IAV_{NEP} in the FLUXCOM product
106 and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of this study is to

107 explore whether there are useful local indicators for the spatially varying NEP and IAV_{NEP} in
108 terrestrial ecosystems.

109 **2. Materials and Methods**

110 **2.1 Datasets**

111 Daily NEP observations of eddy covariance sites are obtained from the FLUXNET2015 Tier 1
112 dataset (<http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/>). The FLUXNET2015 dataset
113 provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are
114 standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still
115 too short for the analysis of inter-annual variation in NEP. So only the sites that provided the
116 availability of eddy covariance flux measurements for at least 5 years are selected. This leads to
117 a global dataset of 72 sites with different biomes across different climatic regions. Based on the
118 biome classification from the International Geosphere-Biosphere Programme (IGBP) provided
119 for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 grasslands (GRA),
120 11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 savannas (SAV) (Fig. S1
121 and Table S1).

122 The Jena CarboScope Inversion product compiles from high precision measurements of
123 atmospheric CO_2 concentration with simulated atmospheric transport (Rödenbeck et al., 2018).
124 Here, we used the daily land-atmosphere CO_2 fluxes from the s85_v4.1 version at a spatial
125 resolution of $5^\circ \times 3.75^\circ$. Considering the relatively low spatial resolution of the Jena Inversion
126 product, the daily fluxes were only used to calculate the local indicators for the spatially varying
127 NEP at the global scale.

128 Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used
129 to calculate the local indicators for the spatially varying NEP at the corresponding flux tower
130 sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP
131 meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and
132 TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily
133 outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP
134 both at the global scale and at the FLUXNET site level.

135 The FLUXCOM product presents an upscaling of carbon flux estimates from 224 flux
136 tower sites based on multiple machine learning algorithms and meteorological drivers (Jung et
137 al., 2017). To be consistent with the meteorological forcing of Jena Inversion product and the
138 CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In addition, in order to reduce
139 the uncertainty caused by machine-learning methods, we averaged all the FLUXCOM
140 CRUNCEPv6 products with different machine-learning methods. It should be noted that the
141 inter-annual variability of FLUXCOM product is only driven by climatic conditions, the effects
142 of land use and land cover change are not represented. The FLUXCOM NEP product is
143 downloaded from the Data Portal of the Max Planck Institute for Biochemistry
144 (<https://www.bgc-jena.mpg.de>). Daily outputs from FLUXCOM for the period 1985-2010 at 0.5°
145 spatial resolution were used to calculate the local indicators for the spatially varying NEP both
146 at the global scale and at the FLUXNET site level.

147 **2.2 Decomposition of NEP and the calculations for its local indicators**

148 The annual NEP of a given ecosystem can be defined numerically as the difference between the
149 CO₂ uptake and release. As illustrated in Figure 2b:

150
$$NEP = U - R \quad (1)$$

151 These components of NEP contain both photosynthesis and respiration flux, which directly
152 indicate the net CO₂ exchange of an ecosystem. The total CO₂ uptake flux (U) and the total CO₂
153 release flux (R) can be further decomposed as:

154
$$U = \bar{U} \times CUP \quad (2)$$

155
$$R = \bar{R} \times CRP \quad (3)$$

156 where the \bar{U} (g C m⁻² d⁻¹) is the mean daily CO₂ uptake over CUP (d yr⁻¹) and \bar{R} (g C m⁻² d⁻¹)
157 represents the mean daily CO₂ release over CRP (d yr⁻¹). In addition, we further tested the
158 relationship between annual NEP and the ratio of $\frac{U}{R}$ (i.e., $NEP \propto \frac{U}{R}$). Ecologically, the ratio of
159 $\frac{U}{R}$ reflects the relative strength of the ecosystem CO₂ uptake. Therefore, NEP in any year of any
160 given ecosystem can be expressed as:

161 $NEP = \beta \cdot \ln \left(\frac{U}{R} \right)$ (4)

162 where the parameter β represents the slope of the linear relationship of $NEP \propto \ln \left(\frac{U}{R} \right)$. Based
 163 on the definitions of U and R , the ratio $\frac{U}{R}$ can be further written as:

164 $\frac{U}{R} = \frac{\bar{U}}{\bar{R}} \cdot \frac{CUP}{CRP}$ (5)

165 Ecologically, the ratio of $\frac{\bar{U}}{\bar{R}}$ reflects the relative physiological difference between
 166 ecosystem CO₂ uptake and release strength, while the ratio of $\frac{CUP}{CRP}$ is an indicator of net
 167 ecosystem CO₂ exchange phenology. Environmental changes may regulate these ecological
 168 processes and ultimately affect the ecosystem NEP. The slope β indicates the response sensitivity
 169 of NEP to the changes in phenology and physiological processes. All of β , $\frac{CUP}{CRP}$ and $\frac{\bar{U}}{\bar{R}}$ were
 170 then calculated from the selected eddy covariance sites and the corresponding pixels of these
 171 sites in models. These derived indicators from eddy covariance sites were then used to
 172 benchmark the results extracted from the same locations in models.

173 **2.4 Calculation of the relative contributions**

174 We further quantified the relative contributions of $\frac{\bar{U}}{\bar{R}}$ and $\frac{CUP}{CRP}$ in driving the spatial variations
 175 in NEP:

176 $NEP = \int \left(\frac{\bar{U}}{\bar{R}}, \frac{CUP}{CRP} \right)$ (6)

177 We used a relative importance analysis method to quantify the relative contributions of
 178 each ratio to the spatial variations in NEP. The algorithm was performed with the “ralaimpo”
 179 package in R (R Development Core Team, 2011). The “relaimpo” package is based on variance
 180 decomposition for multiple linear regression models. We chose the most commonly used method
 181 named “Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from the methods provided by
 182 the “ralaimpo” package. This method allows us to quantify the contributions of explanatory
 183 variables in a multiple linear regression model. Across the 72 FLUXNET sites, we quantified
 184 the relative importance of $\frac{\bar{U}}{\bar{R}}$ and $\frac{CUP}{CRP}$ to cross-site changes in NEP.

185 **3. Results**

186 **3.1 The relationship between NEP and its direct components**

187 To find local indicators for the spatially varying NEP in terrestrial ecosystems, we tested the
188 relationship between NEP and its direct components (U and R) across the 72 flux-tower sites.
189 The results showed that annual NEP was closely related with the ratio of $\frac{U}{R}$ (Fig. S2). The
190 logarithmic correlations between annual NEP and $\frac{U}{R}$ were significant at all sites (Fig. 1a), and
191 ~90% of R^2 falling within a range from 0.7 to 1 (Fig. 1c).

192 In addition, the relationship between NEP and $\frac{U}{R}$ was also verified by the atmospheric
193 inversion product (i.e., Jena CarboScope Inversion). The control of $\frac{U}{R}$ on annual NEP was
194 robust in most global grid cells (i.e. $0.6 < R^2 < 1$). The explanation of $\frac{U}{R}$ was higher in 80% of
195 the regions, but lower in North American (Fig. 2). These two datasets both showed that the
196 indicator $\frac{U}{R}$ could successfully capture the variability in annual NEP.

197 **3.2 Local indicators for spatially varying NEP**

198 Across the 72 flux-tower sites, the spatial changes in mean annual NEP were significantly
199 correlated to $\ln(\frac{U}{R})$ ($R^2 = 0.65, P < 0.01$) (Fig. 3a). This finding suggested that the mean annual
200 ratio $\ln(\frac{U}{R})$ is a good indicator for cross-site variation in NEP. By contrast, the spatial variation
201 of IAV_{NEP} was moderately explained by the slope (i.e., β) of the temporal correlation between
202 NEP and $\ln(\frac{U}{R})$ at each site ($R^2 = 0.39, P < 0.01$; Fig. 3b) rather than $\ln(\frac{U}{R})$ (Fig. S3). The
203 wide range of ratio β reveals a large divergence of NEP sensitivity across biomes, ranging from
204 $121 \pm 118 \text{ g C m}^{-2} \text{ yr}^{-1}$ in shrubland to $473 \pm 112 \text{ g C m}^{-2} \text{ yr}^{-1}$ in cropland.

205 The decomposition of indicator $\frac{U}{R}$ into $\frac{\bar{U}}{\bar{R}}$ and $\frac{CUP}{CRP}$ allowed us to quantify the relative
206 importance of these two ratios in driving NEP variability. The linear regression and relative
207 importance analysis showed a more important role of $\frac{CUP}{CRP}$ (58%) than $\frac{\bar{U}}{\bar{R}}$ (42%) in explaining
208 the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP

209 was mostly driven by the phenological rather than physiological changes.

210 **3.3 Simulated spatial variations in NEP by models**

211 We further used these two simple indicators (i.e., $\frac{U}{R}$ and β) to evaluate the simulated spatial
212 variations of NEP by the compiled global product (i.e., FLUXCOM) and a widely-used process-
213 based model at the FLUXNET site level (i.e., CLM4.5). We found that the low spatial variation
214 of mean annual NEP in FLUXCOM and CLM4.5 could be inferred from their more converging
215 $\ln(\frac{U}{R})$ than flux-tower measurements (Fig. 5). The underestimated variation of IAV_{NEP} in these
216 modeling results was also clearly shown by the smaller β values (268.22, 126.00 and 145.08 for
217 FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b).

218 In addition, the spatial variations of NEP and IAV_{NEP} were associated with the spatial
219 resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between
220 FLUXNET sites and the gridded product, we run the same analysis at the global scale based on
221 Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also
222 well indicated by $\ln(\frac{U}{R})$ (Fig. 6). The larger C uptake in FLUXCOM resulted from its higher
223 simulations for $\ln(\frac{U}{R})$. Furthermore, the larger spatial variation of IAV_{NEP} in CLM4.5 could be
224 inferred from the indicator β .

225 **4. Discussion**

226 **4.1 New perspective for locating the major and sustainable land C sinks**

227 Large spatial differences of mean annual NEP and IAV_{NEP} have been well-documented in
228 previous studies (Jung et al., 2017; Marcolla et al., 2017; Fu et al., 2019). Here we provide a
229 new perspective for quantifying the spatially varying NEP by tracing annual NEP into several
230 local indicators. Therefore, these traceable indicators could provide useful constraints for
231 predicting annual NEP, especially in areas without eddy-covariance towers.

232 Typically, the C sink capacity and its stability of a specific ecosystem are characterized
233 separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated
234 NEP into two simple indicators that could directly locate the major and sustainable land C sink.

235 Among biomes, forests and croplands had the largest $\ln(\frac{U}{R})$ and β , indicating the strongest and
236 the most unstable C sink in forests and croplands, respectively. However, the relatively lower β
237 in shrublands and savannas should be interpreted cautiously. There are very few semi-arid
238 ecosystems in the FLUXNET sites, while they represent a large portion of land at the global
239 scale and have been shown to substantially control the interannual variability of NEP (Ahlström
240 et al., 2015). The highest β in croplands implies that the rapid global expansion of cropland may
241 enlarge the IAV_{NEP} on the land. In fact, the cropland expansion has been confirmed as one
242 important driver of the recent increasing global vegetation growth peak (Huang et al., 2018) and
243 atmospheric CO_2 seasonal amplitude (Gary et al., 2014; Zeng et al., 2014).

244 **4.2 Phenology-dominant spatial distribution of mean annual NEP**

245 Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary
246 productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et
247 al., 2016). Here we demonstrated the dominant role of the phenology indicator $\frac{CUP}{CRP}$ in driving
248 the spatial difference of mean annual NEP. The reported low correlation between mean annual
249 NEP and the physiological indicator $\frac{U}{R}$ could partly be attributed to the convergence of $\frac{U}{R}$
250 across FLUXNET sites (Fig. S4).

251 The convergent $\frac{U}{R}$ across sites was first discovered by Churkina *et al.* (2005) as 2.73 ± 1.08
252 across 28 sites, which included DBF, EBF and crop/grass. In this study, we found the $\frac{U}{R}$ across
253 the 72 sites is 2.71 ± 1.61 , which validates the discovery by Churkina *et al.* However, the $\frac{U}{R}$
254 varied among biomes (2.86 ± 1.56 for forest, 2.16 ± 1.14 for grassland, 3.47 ± 1.98 for cropland,
255 2.89 ± 1.47 for wetland, 1.89 ± 1.10 for shrub, 1.83 ± 0.88 for savanna). This spatial convergence
256 of $\frac{U}{R}$ at the ecosystem level provides important constraints for global models that simulate
257 various physiological processes (Peng et al., 2015; Xia et al., 2017). These findings imply that
258 the phenology changes will greatly affect the locations of the terrestrial carbon sink by
259 modifying the length of carbon uptake period (Richardson et al., 2013; Keenan et al., 2014).

260 **4.3 The simulated local indicators from gridded products**

261 This study showed that the considerable spatial variations in mean annual NEP and IAV_{NEP} from
262 global gridded products could also be inferred from their local indicators. The low variations of
263 $\frac{U}{R}$ ratio in CLM4.5 could be largely due to their simple representations of the diverse terrestrial
264 plant communities into a few plant functional types with parameterized properties (Cui et al.,
265 2019; Sakschewski et al., 2015). In addition, the higher $\frac{U}{R}$ ratio from FLUXCOM product
266 indicated its widely reported larger C uptake (Fig. 6) (Jung et al., 2020). Meanwhile, the
267 ignorance of fire, land-use change and other disturbances could lead to the smaller β by allowing
268 for only limited variations of phenological and physiological dynamics (Reichstein et al., 2014;
269 Kunstler et al., 2016). Although the magnitude of IAV_{NEP} depends on the spatial resolution
270 (Marcolla et al., 2017), we recommend future model benchmarking analyses to use not only the
271 global product compiled from machine-learning method (Bonan et al., 2018) but also the site-
272 level measurements or indicators (i.e., $\ln(\frac{U}{R})$ and β).

273 **4.4 Conclusions and further implications**

274 In summary, this study highlights the changes in NEP and IAV_{NEP} over space on the land, and
275 provides the $\frac{U}{R}$ ratio and β as two simple local indicators for their spatial variations. These
276 indicators could be helpful for locating the persistent terrestrial C sinks in where the $\ln(\frac{U}{R})$
277 ratio is high but the β is low. Their estimates based on observations are also valuable for
278 benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system
279 models.

280 In addition, the findings in this study have some important implications for understanding
281 the variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the
282 largest $\ln(\frac{U}{R})$ while croplands show the highest IAV_{NEP} because of the highest β . Second, the
283 spatial convergence of $\frac{\bar{U}}{\bar{R}}$ suggests a tight linkage between plant growth and the non-growing
284 season soil microbial activities (Xia et al., 2014; Zhao et al., 2016). However, it remains unclear
285 whether the inter-biome variation in $\frac{\bar{U}}{\bar{R}}$ is due to different plant-microbe interactions between
286 biomes. Third, the within-site convergent but spatially varying β needs better understanding.

287 Previous studies have shown that a rising standard deviation of ecosystem functions could
288 indicate an impending ecological state transition (Carpenter and Brock, 2006; Scheffer et al.,
289 2009). Thus, a sudden shift of the β -value may be an important early-warning signal for the
290 critical transition of IAV_{NEP} of an ecosystem. Furthermore, considering the limited eddy-
291 covariance sites with long-term observations, these findings need further validation once the
292 longer time-series of measurements from more sites and vegetation types become available.

293 **Acknowledgements**

294 This work was financially supported by the National Key R&D Program of China
295 (2017YFA0604600), National Natural Science Foundation of China (31722009, 41630528) and
296 National 1000 Young Talents Program of China. This work used eddy covariance dataset
297 acquired and shared by the FLUXNET community, including these networks: AmeriFlux,
298 AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-
299 Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC.
300 The ERA-Interim reanalysis data are provided by ECMWF and processed by LSCE. The
301 FLUXNET eddy covariance data processing and harmonization was carried out by the European
302 Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET,
303 with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux
304 and AsiaFlux offices.

305 *Data availability statement.* Eddy flux data are available at
306 <http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/>; the data supporting the findings of this
307 study are available within the article and the Supplementary Information.

308 *Author contribution.* E. Cui and J. Xia devised and conducted the analysis. Y. Luo, S. Niu, Y.
309 Wang and C. Bian provided critical feedback on the method and results. All authors contributed
310 to discussion of results and writing the paper.

311 *Competing interests.* The authors declare that there is no conflict of interest.

312 **FIGURES**

313 **Figure 1** Relationship between annual NEP and $\frac{U}{R}$ for 72 FLUXNET sites (of the form $NEP =$
314 $\beta \cdot \ln(\frac{U}{R})$). a, Dependence of annual NEP on the ratio between total CO₂ exchanges during net
315 uptake (U) and release (R) periods (i.e., $\frac{U}{R}$). Each line represents one flux site with at least 5
316 years of observations. b, Conceptual figure for the decomposition framework introduced in this
317 study. Annual NEP can be quantitatively decomposed into the following indicators: $NEP =$
318 $U - R$. c, Distribution of the explanation of $\frac{U}{R}$ on temporal variability of NEP (R^2) for
319 FLUXNET sites.

320 **Figure 2** Relationship between annual NEP and $\frac{U}{R}$ for Jena Inversion product (of the form
321 $NEP = \beta \cdot \ln(\frac{U}{R})$). The black box indicates the location of the sample.

322 **Figure 3** Contributions of the two indicators in explaining the spatial patterns of mean annual
323 NEP and IAV_{NEP}. a, The relationship between annual mean NEP and $\ln(\frac{U}{R})$ across FLUXNET
324 sites ($R^2 = 0.65, P < 0.01$). The insets show the variation of $\ln(\frac{U}{R})$ for different terrestrial
325 biomes. b, The explanation of β on IAV_{NEP} ($R^2 = 0.39, P < 0.01$). The insets show the distribution
326 of parameter β for different terrestrial biomes. The number of site-years at each site is indicated
327 with the size of the point.

328 **Figure 4** The linear regression between $\frac{U}{R}$ with $\frac{CUP}{CRP}$ ($R^2 = 0.71, P < 0.01$) and $\frac{\bar{U}}{\bar{R}}$ ($R^2 = 0.09,$
329 $P < 0.01$) across sites. The insets show the relative contributions of each indicator to the spatial
330 variation of $\frac{U}{R}$. The number of site-years at each site is indicated with the size of the point.

331 **Figure 5** Representations of the spatially varying NEP and its local indicators in FLUXCOM
332 product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation
333 of mean annual NEP and IAV_{NEP} derives from FLUXNET, FLUXCOM and CLM4.5. Variation
334 in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in
335 IAV_{NEP}: the standard deviation of IAV_{NEP} across sites. b, Representations of the local indicators
336 for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of $\ln(\frac{U}{R})$
337 and β are shown at the top and right. Significance of the relationship between annual NEP and

338 $\ln\left(\frac{U}{R}\right)$ for each site is indicated by the circle: closed circles: $P<0.05$; open circles: $P>0.05$. Note
339 that the modeled results are from the pixels extracted from the same locations of the flux tower
340 sites.

341 **Figure 6** Representations of the spatially varying NEP and its local indicators in FLUXCOM
342 product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean
343 annual NEP and IAV_{NEP} derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in
344 mean annual NEP: the spatial variation of mean annual NEP; Variation in IAV_{NEP} : the spatial
345 variation of standard deviation in IAV_{NEP} . b, Representations of the local indicators for NEP in
346 Jena Inversion, FLUXCOM and CLM4.5.

347

348

349 **Figure 1** Relationship between annual NEP and $\frac{U}{R}$ for 72 FLUXNET sites (of the form $\text{NEP} =$
 350 $\beta \cdot \ln\left(\frac{U}{R}\right)$). **a**, Dependence of annual NEP on the ratio between total CO_2 exchanges during net
 351 uptake (U) and release (R) periods (i.e., $\frac{U}{R}$). Each line represents one flux site with at least 5
 352 years of data. **b**, Conceptual figure for the decomposition framework introduced in this study.
 353 Annual NEP can be quantitatively decomposed into the following indicators: $\text{NEP} = U - R$. **c**,
 354 Distribution of the explanation of $\frac{U}{R}$ on temporal variability of FLUXNET NEP (R^2) for
 355 FLUXNET sites.

356

357

358 **Figure 2** Relationship between annual NEP and $\frac{U}{R}$ for Jena Inversion product (of the form
 359 $\text{NEP} = \beta \cdot \ln\left(\frac{U}{R}\right)$). The black box indicates the location of the sample.

360

361

362 **Figure 3** Contributions of the two indicators in explaining the spatial patterns of mean annual
 363 NEP and IAV_{NEP}. **a**, The relationship between annual mean NEP and $\ln\left(\frac{U}{R}\right)$ across FLUXNET
 364 sites ($R^2 = 0.65$, $P < 0.01$). The insets show the variation of $\ln\left(\frac{U}{R}\right)$ for different terrestrial
 365 biomes. **b**, The explanation of β on IAV_{NEP} ($R^2 = 0.39$, $P < 0.01$). The insets show the distribution
 366 of parameter β for different terrestrial biomes. The number of site-years at each site is indicated
 367 with the size of the point.

368

370 **Figure 4** The relative contributions of the local indicators in explaining the spatial patterns of
 371 mean annual NEP. **a**, The linear regression between mean annual NEP with $\frac{\text{CUP}}{\text{CRP}}$ ($R^2 = 0.33, P$
 372 < 0.01) and $\frac{\bar{U}}{\bar{R}}$ ($R^2 = 0.25, P < 0.01$) across sites. **b**, The relative contributions of each indicator
 373 to the spatial variation of NEP. The number of site-years at each site is indicated with the size
 374 of the point.

375

377 **Figure 5** Representations of the spatially varying NEP and its local indicators in FLUXCOM
378 product and the Community Land Model (CLM4.5) at the FLUXNET site level. **a**, The variation
379 of mean annual NEP and IAV_{NEP} derives from FLUXNET, FLUXCOM and CLM4.5. Variation
380 in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in
381 IAV_{NEP}: the standard deviation of IAV_{NEP} across sites. **b**, Representations of the local indicators
382 for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of $\ln\left(\frac{U}{R}\right)$
383 and β are shown at the top and right. Significance of the relationship between annual NEP and
384 $\ln\left(\frac{U}{R}\right)$ for each site is indicated by the circle: closed circles: $P < 0.05$; open circles: $P > 0.05$.
385 Note that the modeled results are from the pixels extracted from the same locations of the flux
386 tower sites.

387

388

389 **Figure 6** Representations of the spatially varying NEP and its local indicators in FLUXCOM
 390 product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean
 391 annual NEP and IAV_{NEP} derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in
 392 mean annual NEP: the spatial variation of mean annual NEP; Variation in IAV_{NEP}: the spatial
 393 variation of standard deviation in IAV_{NEP}. b, Representations of the local indicators for NEP in
 394 Jena Inversion, FLUXCOM and CLM4.5.

395

396 **References**

397 Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M.,
398 Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B.
399 D., Viovy, N., Wang, Y., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-
400 arid ecosystems in the trend and variability of the land CO₂ sink. *Science*, 348, 895-899,
401 2015.

402 Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P.,
403 Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R.,
404 Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C.,
405 Krasting, J., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz,
406 T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-
407 concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to
408 CMIP5 models, *Biogeosciences Discuss.*, <https://doi.org/10.5194/bg-2019-473>, in review,
409 2019.

410 Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net and gross ecosystem
411 carbon fluxes: A review. *Agric. For. Meteorol.*, 249, 520-533, 2018.

412 Baldocchi, D., Sturtevant, C., and Contributors, F.: Does day and night sampling reduce spurious
413 correlation between canopy photosynthesis and ecosystem respiration? *Agric. For. Meteorol.*, 207, 117-126, 2015.

415 Besnard, S., Carvalhais, N., Arain, A., Black, A., de Bruin, S., Buchmann, N., Cescatti, A., Chen,
416 J., JClevers, J.G.P.W., Desai, A.R., Gough, C.M., Havrankova, K., Herold, M., Hörtnagl,
417 L., Jung, M., Knohl, A., Kruijt, B., Krupkova, L., Law, B.E., Lindroth, A., Noormets, A.,
418 Roupsard, O., Steinbrecher, R., Varlagin, A., Vincke, C. and Reichstein, M.: Quantifying
419 the effect of forest age in annual net forest carbon balance. *Environ. Res. Lett.*, 13, 124018,
420 2018.

421 Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E.
422 A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, . E., Dore, S.,
423 and Burns, S. P.: Terrestrial carbon balance in a drier world: the effects of water availability
424 in southwestern North America. *Glob. Change Biol.*, 22, 1867-1879, 2016.

425 Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski,
426 E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization
427 of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0).
428 *Geosci. Model Dev.*, 11, 1467-1496, 2018.

429 Carpenter, S. R., and Brock, W. A.: Rising variance: a leading indicator of ecological transition.
430 *Ecol. Lett.*, 9, 311-318, 2006.

431 Churkina, G., Schimel, D., Braswell, B. H., and Xiao, X.: Spatial analysis of growing season
432 length control over net ecosystem exchange. *Glob. Change Biol.*, 11, 1777-1787, 2005.

433 Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S. L., Moriarty, R., Broquet,
434 G., Le Quéré, C., Canadell, J. G., Peng, S., Poulter, B., Liu Z., and Tans, P.: Five decades
435 of northern land carbon uptake revealed by the interhemispheric CO₂ gradient. *Nature*, 568,
436 221-225, 2019.

437 Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N., Ito, A., Luo, Y., Jain, A. K.,
438 Mao, J., Michalak, A. M., Niu, S., Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto,
439 D. M., Schaefer, K. M., Schwalm, C. R., Shi, X., Tian, H., Wang, W., Wang, J., Wei, Y.,
440 Yan, E., Yan, L., Zeng, N., Zhu, Q., & Xia, J.: Vegetation functional properties determine
441 uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian
442 monsoon region. *Global Biogeochem. Cy.*, 33, 668-689, 2019.

443 Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., and Niu, S.: Long term trend and interannual variability
444 of land carbon uptake-the attribution and processes. *Environ. Res. Lett.*, 12, 014018, 2017.

445 Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and Niu, S.: Maximum
446 carbon uptake rate dominates the interannual variability of global net ecosystem exchange.
447 *Glob. Change Biol.*, 25, 3381-3394, 2019.

448 Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A. B., Haferkamp, M. R.,
449 Meyers, T. P., and Morgan, J. A.: Integration of CO₂ flux and remotely-sensed data for
450 primary production and ecosystem respiration analyses in the Northern Great Plains:
451 Potential for quantitative spatial extrapolation. *Global Ecol. Biogeogr.*, 14, 271-292, 2005.

452 Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J., Ramankutty, N., and Friedl,
453 M. A.: Direct human influence on atmospheric CO₂ seasonality from increased cropland
454 productivity. *Nature*, 515, 398-401, 2014.

455 Grömping, U.: Estimators of relative importance in linear regression based on variance
456 decomposition. *Am. Stat.*, 61, 139-147, 2007.

457 Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui, E., Fang, Y., Fisher, J. B.,
458 Huntzinger, D. N., Li, Z., Michalak, A. M., Qiao, Y., Schaefer, K., Schwalm, C., Wang, J.,
459 Wei, Y., Xu, X., Yan, L., Bian C., and Luo, Y.: Enhanced peak growth of global vegetation
460 and its key mechanisms. *Nat. Ecol. Evol.*, 2, 1897-1905, 2018.

461 Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A.,
462 Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale,
463 D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y., Weber,
464 U., Zaehle S., and Zeng, N.: Compensatory water effects link yearly global land CO₂ sink
465 changes to temperature. *Nature*, 541, 516-520, 2017.

466 Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koitala, S., Anthoni, P.,
467 Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V.,
468 Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A.,
469 O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S.,
470 Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from
471 eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach,

472 Biogeosciences, 17, 1343-1365, 2020.

473 Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., Munger, J. W.,
474 O'Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and Richardson, A. D.: Net carbon uptake
475 has increased through warming-induced changes in temperate forest phenology. *Nat. Clim.*
476 *Change*, 4, 598-604, 2014.

477 Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L.,
478 Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J.,
479 Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J.,
480 Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-
481 Benito, P., Sun, I., Ståhl, G., Swenson, N. G., Thompson, J., Westerlund, B., Wirth, C.,
482 Zavala, M. A., Zeng, H., Zimmerman, J. K., Zimmermann N. E., and Westoby, M.: Plant
483 functional traits have globally consistent effects on competition. *Nature*, 529, 204-207,
484 2016.

485 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A.,
486 Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos,
487 A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkrizalis, T., Goll, D. S.,
488 Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina,
489 T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K.,
490 Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D.
491 R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregón, A.,
492 Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L.,
493 Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R.,
494 Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van
495 der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright,
496 R., Zehle, S., and Zheng, B.: Global carbon budget 2018. *Earth Syst. Sci. Data*, 10, 405,
497 2018.

498 Li, G., Han, H., Du, Y., Hui, D., Xia, J., Niu, S., Li, X., and Wan, S.: Effects of warming and
499 increased precipitation on net ecosystem productivity: a long-term manipulative
500 experiment in a semiarid grassland. *Agric. For. Meteorol.*, 232, 359-366, 2017.

501 Luo, Y., and Weng, E.: Dynamic disequilibrium of the terrestrial carbon cycle under global
502 change. *Trends Ecol. Evol.*, 26, 96-104, 2011.

503 Luo, Y., and Zhou, X.: Soil respiration and the environment. Elsevier, 2006.

504 Marcolla, B., Rödenbeck, C., and Cescatti, A.: Patterns and controls of inter-annual variability
505 in the terrestrial carbon budget. *Biogeosciences*, 14, 3815-3829, 2017.

506 Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., Janssens, I.,
507 Knohl, A., Loustau, D., Roupsard, O., Varlagin, A., Rambal, S., Cescatti, A., Ganelle, D.,
508 Kondo, H., Tamrakar, R., and Mahecha, M. D.: Stand age and species richness dampen
509 interannual variation of ecosystem-level photosynthetic capacity. *Nat. Ecol. Evol.*, 1, 0048,
510 2017.

511 Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., Zhang, L., Piao, S., Zhou, X.,
512 Zheng, H., Han, J., Wang, Q., and Yu, G.: Interannual variability of ecosystem carbon
513 exchange: From observation to prediction. *Global Ecol. Biogeogr.*, 26, 1225-1237, 2017.

514 Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B., Juang, J. Y., and Stoy, P. C.: On the
515 difference in the net ecosystem exchange of CO₂ between deciduous and evergreen forests
516 in the southeastern United States. *Glob. Change Biol.*, 21, 827-842, 2015.

517 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis,
518 S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbayik, A., Fisher,
519 R., Heald, C. L., Kluzeck, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W.,
520 Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical
521 description of version 4.5 of the Community Land Model (CLM), NCAR Earth System
522 Laboratory-Climate and Global Dynamics Division, Boulder, Colorado, USA, Tech. Rep.
523 TN-503+STR, http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf
524 (last access: 27 September 2017), 2013.

525 Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., Baldocchi, D., and Torn,
526 M.: A new data set to keep a sharper eye on land-air exchanges. *Eos*, 98, 2017.

527 Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S., Piao, S., Ahlström, A.,
528 Huntingford, C., Levy, P., Li, X., Liu, Y., Lomas, M., Poulter, B., Viovy, N., Wang, T.,
529 Wang, X., Zaehle, S., Zeng, N., Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle
530 of CO₂ fluxes simulated by terrestrial ecosystem models. *Global Biogeochem. Cy.*, 29, 46-
531 64, 2015.

532 Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra,
533 P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.:
534 Global atmospheric carbon budget: results from an ensemble of atmospheric CO₂
535 inversions. *Biogeosciences*, 10, 6699-6720, 2013.

536 Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G.,
537 Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution
538 of semi-arid ecosystems to interannual variability of the global carbon cycle. *Nature*, 509,
539 600-603, 2014.

540 Randerson, J. T.: Climate science: Global warming and tropical carbon. *Nature*, 494, 319-320,
541 2013.

542 Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C., and Harmon, M. E.: Net ecosystem
543 production: a comprehensive measure of net carbon accumulation by ecosystems. *Ecol.*
544 *Appl.*, 12, 937-947, 2002.

545 R Development Core Team.: R: A Language and Environment for Statistical Computing 3-
546 900051-07-0, R Foundation for Statistical Computing, Vienna, Austria, 2011.

547 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and
548 ecosystem functional biogeography. *Proc. Natl Acad. Sci. USA*, 111, 13697-13702, 2014.

549 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,

550 Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,
551 Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
552 Miglietta, F., Ourcival, J., Pumpanen J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen,
553 J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net
554 ecosystem exchange into assimilation and ecosystem respiration: review and improved
555 algorithm. *Glob. Change Biol.*, 11, 1424-1439, 2005.

556 Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.:
557 Climate change, phenology, and phenological control of vegetation feedbacks to the
558 climate system. *Agric. For. Meteorol.*, 169, 156-173, 2013.

559 Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon
560 exchange respond to inter-annual climatic variations? *Biogeosciences*, 15, 2481-2498,
561 2018.

562 Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Peñuelas, J., and
563 Thonicke, K.: Leaf and stem economics spectra drive diversity of functional plant traits in
564 a dynamic global vegetation model. *Glob. Change Biol.*, 21, 2711-2725, 2015.

565 Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H.,
566 van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions.
567 *Nature*, 461, 53-59, 2009.

568 Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C. J. M. E. A. G., Moors,
569 E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer,
570 C., Grünwald, T., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, Ü.,
571 Berbigier, P., Loustau, D., Guðmundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K.,
572 Clement, R., Moncrieff, J., Montagnani, L., Minerbi S., and Jarvis, P. G.: Respiration as
573 the main determinant of carbon balance in European forests. *Nature*, 404, 861-865, 2000.

574 Von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M.,
575 Menzer, O., Arain, M., Buchmann, N., Cescatti, A., Geinelle, D., Kiely, G., Law, B.,
576 Magliudo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani,
577 L., Oechel, W., Pavelka, M., Pelchl, M., Rambal, S., Raschi, A., Scott, R.L., Vaccari, F.,
578 Van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M.: Impacts of droughts and
579 extreme temperature events on gross primary production and ecosystem respiration: a
580 systematic assessment across ecosystems and climate zones. *Biogeosciences*, 15, 1293-
581 1318, 2017.

582 Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S.: Terrestrial carbon cycle affected by
583 non-uniform climate warming. *Nat. Geosci.*, 7, 173-180, 2014.

584 Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X., Delire, C., Koven, C.,
585 MacDougall, A., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Ciais,
586 P., Decharme, B., Gouttevin, I., Hajima, T., Hayes, D. J., Huang, K., Ji, D., Krinner, G.,
587 Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., Sueyoshi, T., Shi, Z., Yan, L.,
588 Liang, J., Jiang, L., Zhang, Q., and Luo, Y.: Terrestrial ecosystem model performance in

589 simulating productivity and its vulnerability to climate change in the northern permafrost
590 region. *J. Geophys. Res-Biogeosci.*, 122, 430-446, 2017.

591 Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A., Blanken, P. D.,
592 Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen, S., Dong, J., Flanagan, L. B.,
593 Frankenberg, C., Georgiadis, T., Gough, C. M., Hui, D., Kiely, G., Li, J., Lund, M.,
594 Magliulo, V., Marcolla, B., Merbold, L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao,
595 S., Raschi, A., Rouspard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A.,
596 Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.: Joint control of
597 terrestrial gross primary productivity by plant phenology and physiology. *Proc. Natl Acad.*
598 *Sci. USA*, 112, 2788-2793, 2015.

599 Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu, X.: High carbon dioxide
600 uptake by subtropical forest ecosystems in the East Asian monsoon region. *Proc. Natl Acad.*
601 *Sci. USA*, 111, 4910-4915, 2014.

602 Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., and Guanter, L.:
603 Agricultural Green Revolution as a driver of increasing atmospheric CO₂ seasonal
604 amplitude. *Nature*, 515, 394-397, 2014.

605 Zhao, J., Peichl, M., Öquist, M., and Nilsson, M. B.: Gross primary production controls the
606 subsequent winter CO₂ exchange in a boreal peatland. *Glob. Change Biol.*, 22, 4028-4037,
607 2016.

608 Zhou, S., Zhang, Y., Ciais, P., Xiao, X., Luo, Y., Caylor, K. K., Huang, Y., and Wang, G.:
609 Dominant role of plant physiology in trend and variability of gross primary productivity in
610 North America. *Sci. Rep.*, 7, 41366, 2017.