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Abstract 31 

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink 32 

during the past several decades. However, both annual net ecosystem productivity (NEP) and 33 

its inter-annual variation (IAVNEP) keep varying over space. Thus, identifying local indicators 34 

for the spatially varying NEP and IAVNEP is critical for locating the major and sustainable C 35 

sinks on the land. Here, based on daily NEP observations from FLUXNET sites and the 36 

atmospheric inversion product, we found a robust logarithmic correlation between annual NEP 37 

and ratio of total CO2 exchanges during net uptake (U) and release (R) periods (i.e., U/R). The 38 

cross-site variation of mean annual NEP could be linearly indicated by ln(U/R), while the spatial 39 

distribution of IAVNEP was well indicated by the slope (i.e., β) of the demonstrated logarithmic 40 

correlation. Among biomes, for example, forests and croplands had the largest U/R ratio (1.06 41 

± 0.83) and β (473 ± 112 g C m-2 yr-1), indicating the highest NEP and IAVNEP in forests and 42 

croplands, respectively. We further showed that these two simple indicators could directly infer 43 

the spatial variations in NEP and IAVNEP in global gridded products. Overall, this study provides 44 

two simple local indicators for the intricate spatial variations in the strength and stability of land 45 

C sinks. These indicators could be helpful for locating the persistent terrestrial C sinks and 46 

provides valuable constraints for improving the simulation of land-atmospheric C exchanges.  47 

  48 
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1. Introduction 49 

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO2 emission (Ciais et 50 

al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured 51 

atmospheric CO2 growth rate (Randerson, 2013; Le Quéré et al., 2018). In addition, evidence 52 

based on eddy-flux measurements (Baldocchi et al., 2018; Rödenbeck et al., 2018), aircraft 53 

atmospheric budgets (Peylin et al., 2013), and process-based model simulations (Poulter et al., 54 

2014; Ahlstrom et al., 2015) has shown a large spatial variability in net ecosystem productivity 55 

(NEP) on the land. The elusive variation of terrestrial NEP over space refers to both of the 56 

substantial varying mean annual NEP and the divergent inter-annual variability (IAV) in NEP 57 

(i.e., IAVNEP; usually quantified as the standard deviation of annual NEP) across space 58 

(Baldocchi et al., 2018; Marcolla et al., 2017). The mean annual NEP is related to the strength 59 

of carbon exchange of a specific ecosystem (Randerson et al., 2002; Luo and Weng, 2011; Jung 60 

et al., 2017), while IAVNEP characterizes the stability of such carbon exchange (Musavi et al., 61 

2017). Thus, whether and how NEP and IAVNEP change over the space is important for 62 

predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017). 63 

Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 64 

model outputs and atmospheric inversion products. In addition, the global average IAV of NEP 65 

was large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the 66 

spatial variations of NEP and IAVNEP were typically underestimated by the compiled global 67 

product and the process-based global models (Jung et al., 2020; Fu et al., 2019). These 68 

discrepancies further revealed the necessary to identify local indicators for the spatially varying 69 

NEP and IAVNEP, separately. The NEP in terrestrial ecosystems is determined by two 70 

components, including vegetation photosynthesis and ecosystem respiration (Reichstein et al., 71 

2005). Because photosynthesis and respiration are strongly correlated over space (Baldocchi et 72 

al., 2015; Biederman et al., 2016), their relative difference could determine the spatial variation 73 

of NEP. Many previous analyses have attributed the IAVNEP at the site level to the different 74 

sensitivities of ecosystem photosynthesis and respiration to environmental drivers (Gilmanov et 75 

al., 2005; Reichstein et al., 2005) and biotic controls (Besnard et al., 2018; Musavi et al., 2017). 76 

For example, some studies have reported that IAVNEP is more associated with variations in 77 
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photosynthesis than carbon release (Ahlstrom et al., 2015; Novick et al., 2015; Li et al., 2017), 78 

whereas others have indicated that respiration is more sensitive to anomalous climate variability 79 

(Valentini et al., 2000; von Buttlar et al., 2017). However, despite the previous efforts in a 80 

predictive understanding of the land-atmospheric C exchanges, the multi-model spread has not 81 

reduced over time (Arora et al., 2019). Therefore, it is imperative to explore the potential 82 

indicators for the spatially varying NEP, which could help attribute the spatial variation of NEP 83 

and IAVNEP into different processes and provide valuable constraints for the global C cycle. 84 

Alternatively, the annual NEP of a given ecosystem can be also directly decomposed into CO2 85 

uptake flux and CO2 release flux (Gray et al., 2014), which are more direct components for NEP 86 

(Fu et al., 2019). Many studies have reported that the vegetation CO2 uptake during the growing 87 

season and the non-growing season soil respiration are tightly correlated (Luo et al., 2014; Zhao 88 

et al., 2016). It is still unclear how the ecosystem CO2 uptake and release fluxes would control 89 

the spatially varying NEP. 90 

Conceptually, the total CO2 uptake flux (U) is determined by the length of CO2 uptake 91 

period (CUP) and the CO2 uptake rate, while the total CO2 release flux (R) depends on the length 92 

of CO2 release period (CRP) and the CO2 release rate (Fig. 1b). The variations of NEP thus 93 

should be innovatively attributed to these decomposed components. A strong spatial correlation 94 

between mean annual NEP and length of CO2 uptake period has been reported in evergreen 95 

needle- and broad-leaved forests (Churkina et al., 2005; Richardson et al., 2013; Keenan et al., 96 

2014), whereas atmospheric inversion data and vegetation photosynthesis model indicated a 97 

dominant role of the maximal carbon uptake rate (Fu et al., 2017; Zhou et al., 2017). However, 98 

the relative importance of these phenological and physiological indicators for the spatially 99 

varying NEP remains unclear. 100 

In this study, we decomposed annual NEP into U and R, and explored the local indicators 101 

for spatially varying NEP. Based on the eddy-covariance fluxes from FLUXNET2015 Dataset 102 

(Pastorello et al., 2017) and the atmospheric inversion product (Rödenbeck et al., 2018), we 103 

examined the relationship between NEP and its direct components. In addition, we used the 104 

observations to evaluate the spatial variations of NEP and IAVNEP in the FLUXCOM product 105 

and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of this study is to 106 
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explore whether there are useful local indicators for the spatially varying NEP and IAVNEP in 107 

terrestrial ecosystems. 108 

2. Materials and Methods 109 

2.1 Datasets 110 

Daily NEP observations of eddy covariance sites are obtained from the FLUXNET2015 Tier 1 111 

dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The FLUXNET2015 dataset 112 

provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are 113 

standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still 114 

too short for the analysis of inter-annual variation in NEP. So only the sites that provided the 115 

availability of eddy covariance flux measurements for at least 5 years are selected. This leads to 116 

a global dataset of 72 sites with different biomes across different climatic regions. Based on the 117 

biome classification from the International Geosphere-Biosphere Programme (IGBP) provided 118 

for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 grasslands (GRA), 119 

11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 savannas (SAV) (Fig. S1 120 

and Table S1). 121 

The Jena CarboScope Inversion product compiles from high precision measurements of 122 

atmospheric CO2 concentration with simulated atmospheric transport (Rödenbeck et al., 2018). 123 

Here, we used the daily land-atmosphere CO2 fluxes from the s85_v4.1 version at a spatial 124 

resolution of 5°× 3.75°. Considering the relatively low spatial resolution of the Jena Inversion 125 

product, the daily fluxes were only used to calculate the local indicators for the spatially varying 126 

NEP at the global scale. 127 

Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used 128 

to calculate the local indicators for the spatially varying NEP at the corresponding flux tower 129 

sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP 130 

meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and 131 

TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily 132 

outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP 133 

both at the global scale and at the FLUXNET site level. 134 
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The FLUXCOM product presents an upscaling of carbon flux estimates from 224 flux 135 

tower sites based on multiple machine learning algorithms and meteorological drivers (Jung et 136 

al., 2017). To be consistent with the meteorological forcing of Jena Inversion product and the 137 

CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In addition, in order to reduce 138 

the uncertainty caused by machine-learning methods, we averaged all the FLUXCOM 139 

CRUNCEPv6 products with different machine-learning methods. It should be noted that the 140 

inter-annual variability of FLUXCOM product is only driven by climatic conditions, the effects 141 

of land use and land cover change are not represented. The FLUXCOM NEP product is 142 

downloaded from the Data Portal of the Max Planck Institute for Biochemistry 143 

(https://www.bgc-jena.mpg.de). Daily outputs from FLUXCOM for the period 1985-2010 at 0.5° 144 

spatial resolution were used to calculate the local indicators for the spatially varying NEP both 145 

at the global scale and at the FLUXNET site level. 146 

2.2 Decomposition of NEP and the calculations for its local indicators 147 

The annual NEP of a given ecosystem can be defined numerically as the difference between the 148 

CO2 uptake and release. As illustrated in Figure 2b: 149 

                          𝑁𝐸𝑃 = 𝑈 − 𝑅                               (1) 150 

These components of NEP contain both photosynthesis and respiration flux, which directly 151 

indicate the net CO2 exchange of an ecosystem. The total CO2 uptake flux (U) and the total CO2 152 

release flux (R) can be further decomposed as: 153 

                          𝑈 = 𝑈̅ × 𝐶𝑈𝑃                                (2) 154 

                          𝑅 = 𝑅̅ × 𝐶𝑅𝑃                                (3) 155 

where the 𝑈̅ (g C m-2 d-1) is the mean daily CO2 uptake over CUP (d yr-1) and 𝑅̅ (g C m-2 d-1) 156 

represents the mean daily CO2 release over CRP (d yr-1). In addition, we further tested the 157 

relationship between annual NEP and the ratio of 
𝑈

𝑅
 (i.e., 𝑁𝐸𝑃 ∝  

𝑈

𝑅
). Ecologically, the ratio of 158 

𝑈

𝑅
 reflects the relative strength of the ecosystem CO2 uptake. Therefore, NEP in any year of any 159 

given ecosystem can be expressed as: 160 
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                𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                               (4) 161 

where the parameter 𝛽 represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
). Based 162 

on the definitions of U and R, the ratio 
𝑈

𝑅
 can be further written as: 163 

                   
𝑈

𝑅
=

𝑈̅

𝑅̅
∙

𝐶𝑈𝑃

𝐶𝑅𝑃
                                   (5) 164 

Ecologically, the ratio of 
𝑈̅

𝑅̅
  reflects the relative physiological difference between 165 

ecosystem CO2 uptake and release strength, while the ratio of 
𝐶𝑈𝑃

𝐶𝑅𝑃
  is an indicator of net 166 

ecosystem CO2 exchange phenology. Environmental changes may regulate these ecological 167 

processes and ultimately affect the ecosystem NEP. The slope β indicates the response sensitivity 168 

of NEP to the changes in phenology and physiological processes. All of β, 
𝐶𝑈𝑃

𝐶𝑅𝑃
 and 

𝑈̅

𝑅̅
 were 169 

then calculated from the selected eddy covariance sites and the corresponding pixels of these 170 

sites in models. These derived indicators from eddy covariance sites were then used to 171 

benchmark the results extracted from the same locations in models. 172 

2.4 Calculation of the relative contributions 173 

We further quantified the relative contributions of 
𝑈

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatial variations 174 

in NEP: 175 

   NEP = ∫(
𝑈̅

𝑅̅
,

𝐶𝑈𝑃

𝐶𝑅𝑃
)                                 (6) 176 

We used a relative importance analysis method to quantify the relative contributions of 177 

each ratio to the spatial variations in NEP. The algorithm was performed with the “ralaimpo” 178 

package in R (R Development Core Team, 2011). The “relaimpo” package is based on variance 179 

decomposition for multiple linear regression models. We chose the most commonly used method 180 

named “Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from the methods provided by 181 

the “ralaimpo” package. This method allows us to quantify the contributions of explanatory 182 

variables in a multiple linear regression model. Across the 72 FLUXNET sites, we quantified 183 

the relative importance of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 to cross-site changes in NEP. 184 
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3. Results 185 

3.1 The relationship between NEP and its direct components 186 

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we tested the 187 

relationship between NEP and its direct components (𝑈 and 𝑅) across the 72 flux-tower sites. 188 

The results showed that annual NEP was closely related with the ratio of 
𝑈

𝑅
  (Fig. S2). The 189 

logarithmic correlations between annual NEP and 
𝑈

𝑅
 were significant at all sites (Fig. 1a), and 190 

~90% of R2 falling within a range from 0.7 to 1 (Fig. 1c). 191 

In addition, the relationship between NEP and 
𝑈

𝑅
  was also verified by the atmospheric 192 

inversion product (i.e., Jena CarboScope Inversion). The control of 
𝑈

𝑅
  on annual NEP was 193 

robust in most global grid cells (i.e. 0.6 < R2 < 1). The explanation of 
𝑈

𝑅
 was higher in 80% of 194 

the regions, but lower in North American (Fig. 2). These two datasets both showed that the 195 

indicator 
𝑈

𝑅
 could successfully capture the variability in annual NEP. 196 

3.2 Local indicators for spatially varying NEP 197 

Across the 72 flux-tower sites, the spatial changes in mean annual NEP were significantly 198 

correlated to ln (
𝑈

𝑅
) (R2 = 0.65, P < 0.01) (Fig. 3a). This finding suggested that the mean annual 199 

ratio ln (
𝑈

𝑅
) is a good indicator for cross-site variation in NEP. By contrast, the spatial variation 200 

of IAVNEP was moderately explained by the slope (i.e., β) of the temporal correlation between 201 

NEP and ln (
𝑈

𝑅
) at each site (R2 = 0.39, P < 0.01; Fig. 3b) rather than ln (

𝑈

𝑅
) (Fig. S3). The 202 

wide range of ratio β reveals a large divergence of NEP sensitivity across biomes, ranging from 203 

121 ± 118 g C m-2 yr-1 in shrubland to 473 ± 112 g C m-2 yr-1 in cropland.  204 

The decomposition of indicator 
𝑈

𝑅
  into 

𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the relative 205 

importance of these two ratios in driving NEP variability. The linear regression and relative 206 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (58%) than 

𝑈̅

𝑅̅
 (42%) in explaining 207 

the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP 208 
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was mostly driven by the phenological rather than physiological changes. 209 

3.3 Simulated spatial variations in NEP by models  210 

We further used these two simple indicators (i.e., 
𝑈

𝑅
 and β) to evaluate the simulated spatial 211 

variations of NEP by the compiled global product (i.e., FLUXCOM) and a widely-used process-212 

based model at the FLUXNET site level (i.e., CLM4.5). We found that the low spatial variation 213 

of mean annual NEP in FLUXCOM and CLM4.5 could be inferred from their more converging 214 

ln (
𝑈

𝑅
) than flux-tower measurements (Fig. 5). The underestimated variation of IAVNEP in these 215 

modeling results was also clearly shown by the smaller β values (268.22, 126.00 and 145.08 for 216 

FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b).  217 

In addition, the spatial variations of NEP and IAVNEP were associated with the spatial 218 

resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between 219 

FLUXNET sites and the gridded product, we run the same analysis at the global scale based on 220 

Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also 221 

well indicated by ln (
𝑈

𝑅
) (Fig. 6). The larger C uptake in FLUXCOM resulted from its higher 222 

simulations for ln (
𝑈

𝑅
). Furthermore, the larger spatial variation of IAVNEP in CLM4.5 could be 223 

inferred from the indicator β. 224 

4. Discussion 225 

4.1 New perspective for locating the major and sustainable land C sinks 226 

Large spatial differences of mean annual NEP and IAVNEP have been well-documented in 227 

previous studies (Jung et al., 2017; Marcolla et al., 2017; Fu et al., 2019). Here we provide a 228 

new perspective for quantifying the spatially varying NEP by tracing annual NEP into several 229 

local indicators. Therefore, these traceable indicators could provide useful constraints for 230 

predicting annual NEP, especially in areas without eddy-covariance towers. 231 

Typically, the C sink capacity and its stability of a specific ecosystem are characterized 232 

separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated 233 

NEP into two simple indicators that could directly locate the major and sustainable land C sink. 234 
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Among biomes, forests and croplands had the largest ln (
𝑈

𝑅
) and β, indicating the strongest and 235 

the most unstable C sink in forests and croplands, respectively. However, the relatively lower β 236 

in shrublands and savannas should be interpreted cautiously. There are very few semi-arid 237 

ecosystems in the FLUXNET sites, while they represent a large portion of land at the global 238 

scale and have been shown to substantially control the interannual variability of NEP (Ahlström 239 

et al., 2015). The highest β in croplands implies that the rapid global expansion of cropland may 240 

enlarge the IAVNEP on the land. In fact, the cropland expansion has been confirmed as one 241 

important driver of the recent increasing global vegetation growth peak (Huang et al., 2018) and 242 

atmospheric CO2 seasonal amplitude (Gary et al., 2014; Zeng et al., 2014). 243 

4.2 Phenology-dominant spatial distribution of mean annual NEP 244 

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary 245 

productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et 246 

al., 2016). Here we demonstrated the dominant role of the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving 247 

the spatial difference of mean annual NEP. The reported low correlation between mean annual 248 

NEP and the physiological indicator 
𝑈̅

𝑅̅
  could partly be attributed to the convergence of 

𝑈̅

𝑅̅
 249 

across FLUXNET sites (Fig. S4).  250 

The convergent 
𝑈̅

𝑅̅
 across sites was first discovered by Churkina et al. (2005) as 2.73 ± 1.08 251 

across 28 sites, which included DBF, EBF and crop/grass. In this study, we found the 
𝑈̅

𝑅̅
 across 252 

the 72 sites is 2.71 ± 1.61, which validates the discovery by Churkina et al. However, the 
𝑈̅

𝑅̅
 253 

varied among biomes (2.86 ± 1.56 for forest, 2.16 ± 1.14 for grassland, 3.47 ± 1.98 for cropland, 254 

2.89 ± 1.47 for wetland, 1.89 ± 1.10 for shrub, 1.83 ± 0.88 for savanna). This spatial convergence 255 

of 
𝑈̅

𝑅̅
  at the ecosystem level provides important constraints for global models that simulate 256 

various physiological processes (Peng et al., 2015; Xia et al., 2017). These findings imply that 257 

the phenology changes will greatly affect the locations of the terrestrial carbon sink by 258 

modifying the length of carbon uptake period (Richardson et al., 2013; Keenan et al., 2014). 259 

4.3 The simulated local indicators from gridded products 260 
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This study showed that the considerable spatial variations in mean annual NEP and IAVNEP from 261 

global gridded products could also be inferred from their local indicators. The low variations of 262 

𝑈

𝑅
 ratio in CLM4.5 could be largely due to their simple representations of the diverse terrestrial 263 

plant communities into a few plant functional types with parameterized properties (Cui et al., 264 

2019; Sakschewski et al., 2015). In addition, the higher 
𝑈

𝑅
  ratio from FLUXCOM product 265 

indicated its widely reported larger C uptake (Fig. 6) (Jung et al., 2020). Meanwhile, the 266 

ignorance of fire, land-use change and other disturbances could lead to the smaller β by allowing 267 

for only limited variations of phenological and physiological dynamics (Reichstein et al., 2014; 268 

Kunstler et al., 2016). Although the magnitude of IAVNEP depends on the spatial resolution 269 

(Marcolla et al., 2017), we recommend future model benchmarking analyses to use not only the 270 

global product compiled from machine-learning method (Bonan et al., 2018) but also the site-271 

level measurements or indicators (i.e., ln (
𝑈

𝑅
) and β). 272 

4.4 Conclusions and further implications 273 

In summary, this study highlights the changes in NEP and IAVNEP over space on the land, and 274 

provides the 
𝑈

𝑅
  ratio and β as two simple local indicators for their spatial variations. These 275 

indicators could be helpful for locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) 276 

ratio is high but the β is low. Their estimates based on observations are also valuable for 277 

benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system 278 

models.  279 

In addition, the findings in this study have some important implications for understanding 280 

the variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the 281 

largest ln (
𝑈

𝑅
) while croplands show the highest IAVNEP because of the highest β. Second, the 282 

spatial convergence of 
𝑈̅

𝑅̅
 suggests a tight linkage between plant growth and the non-growing 283 

season soil microbial activities (Xia et al., 2014; Zhao et al., 2016). However, it remains unclear 284 

whether the inter-biome variation in 
𝑈̅

𝑅̅
 is due to different plant-microbe interactions between 285 

biomes. Third, the within-site convergent but spatially varying β needs better understanding. 286 
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Previous studies have shown that a rising standard deviation of ecosystem functions could 287 

indicate an impending ecological state transition (Carpenter and Brock, 2006; Scheffer et al., 288 

2009). Thus, a sudden shift of the β-value may be an important early-warning signal for the 289 

critical transition of IAVNEP of an ecosystem. Furthermore, considering the limited eddy-290 

covariance sites with long-term observations, these findings need further validation once the 291 

longer time-series of measurements from more sites and vegetation types become available.  292 
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FIGURES 312 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =313 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 314 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 315 

years of observations. b, Conceptual figure for the decomposition framework introduced in this 316 

study. Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 =317 

𝑈 − 𝑅 . c, Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of NEP (R2) for 318 

FLUXNET sites. 319 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 320 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 321 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 322 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 323 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 324 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 325 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 326 

with the size of the point.  327 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 328 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial 329 

variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the point. 330 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 331 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 332 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 333 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 334 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 335 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 336 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 337 
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ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note 338 

that the modeled results are from the pixels extracted from the same locations of the flux tower 339 

sites. 340 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 341 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 342 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 343 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 344 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 345 

Jena Inversion, FLUXCOM and CLM4.5. 346 

347 
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 348 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =349 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 350 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 351 

years of data. b, Conceptual figure for the decomposition framework introduced in this study. 352 

Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 = 𝑈 − 𝑅. c, 353 

Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of FLUXNET NEP (R2) for 354 

FLUXNET sites. 355 

  356 
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 357 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 358 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 359 

  360 
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 361 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 362 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 363 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 364 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 365 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 366 

with the size of the point.  367 

  368 
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  369 

Figure 4 The relative contributions of the local indicators in explaining the spatial patterns of 370 

mean annual NEP. a, The linear regression between mean annual NEP with 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.33, P 371 

< 0.01) and 
𝑈̅

𝑅̅
 (R2 = 0.25, P < 0.01) across sites. b, The relative contributions of each indicator 372 

to the spatial variation of NEP. The number of site-years at each site is indicated with the size 373 

of the point. 374 

  375 
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 376 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 377 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 378 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 379 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 380 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 381 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 382 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 383 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P < 0.05; open circles: P > 0.05. 384 

Note that the modeled results are from the pixels extracted from the same locations of the flux 385 

tower sites. 386 

 387 
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 388 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 389 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 390 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 391 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 392 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 393 

Jena Inversion, FLUXCOM and CLM4.5. 394 

  395 



21 
 

References 396 

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., 397 

Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. 398 

D., Viovy, N., Wang, Y., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-399 

arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899, 400 

2015. 401 

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., 402 

Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., 403 

Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C., 404 

Krasting, J., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, 405 

T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-406 

concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to 407 

CMIP5 models, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-473, in review, 408 

2019. 409 

Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net and gross ecosystem 410 

carbon fluxes: A review. Agric. For. Meteorol., 249, 520-533, 2018. 411 

Baldocchi, D., Sturtevant, C., and Contributors, F.: Does day and night sampling reduce spurious 412 

correlation between canopy photosynthesis and ecosystem respiration? Agric. For. 413 

Meteorol., 207, 117-126, 2015. 414 

Besnard, S., Carvalhais, N., Arain, A., Black, A., de Bruin, S., Buchmann, N., Cescatti, A., Chen, 415 

J., JClevers, J.G.P.W., Desai, A.R., Gough, C.M., Havrankova, K., Herold, M., Hörtnagl, 416 

L., Jung, M., Knohl, A., Kruijt, B., Krupkova, L., Law, B.E., Lindroth, A., Noormets, A., 417 

Roupsard, O., Steinbrecher, R., Varlagin, A., Vincke, C. and Reichstein, M.: Quantifying 418 

the effect of forest age in annual net forest carbon balance. Environ. Res. Lett., 13, 124018, 419 

2018. 420 

Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E. 421 

A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, . E., Dore, S., 422 

and Burns, S. P.: Terrestrial carbon balance in a drier world: the effects of water availability 423 

in southwestern North America. Glob. Change Biol., 22, 1867-1879, 2016. 424 

Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, 425 

E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization 426 

of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). 427 

Geosci. Model Dev., 11, 1467-1496, 2018. 428 

Carpenter, S. R., and Brock, W. A.: Rising variance: a leading indicator of ecological transition. 429 

Ecol. Lett., 9, 311-318, 2006. 430 

Churkina, G., Schimel, D., Braswell, B. H., and Xiao, X.: Spatial analysis of growing season 431 

length control over net ecosystem exchange. Glob. Change Biol., 11, 1777-1787, 2005. 432 



22 
 

Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S. L., Moriarty, R., Broquet, 433 

G., Le Quéré, C., Canadell, J. G., Peng, S., Poulter, B., Liu Z., and Tans, P.: Five decades 434 

of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 568, 435 

221-225, 2019. 436 

Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N., Ito, A., Luo, Y., Jain, A. K., 437 

Mao, J., Michalak, A. M., Niu, S., Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto, 438 

D. M., Schaefer, K. M., Schwalm, C. R., Shi, X., Tian, H., Wang, W., Wang, J., Wei, Y., 439 

Yan, E., Yan, L., Zeng, N., Zhu, Q., & Xia, J.: Vegetation functional properties determine 440 

uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian 441 

monsoon region. Global Biogeochem. Cy., 33, 668-689, 2019. 442 

Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., and Niu, S.: Long term trend and interannual variability 443 

of land carbon uptake-the attribution and processes. Environ. Res. Lett., 12, 014018, 2017. 444 

Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and Niu, S.: Maximum 445 

carbon uptake rate dominates the interannual variability of global net ecosystem exchange. 446 

Glob. Change Biol., 25, 3381-3394, 2019. 447 

Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A. B., Haferkamp, M. R., 448 

Meyers, T. P., and Morgan, J. A.: Integration of CO2 flux and remotely-sensed data for 449 

primary production and ecosystem respiration analyses in the Northern Great Plains: 450 

Potential for quantitative spatial extrapolation. Global Ecol. Biogeogr., 14, 271-292, 2005. 451 

Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J., Ramankutty, N., and Friedl, 452 

M. A.: Direct human influence on atmospheric CO2 seasonality from increased cropland 453 

productivity. Nature, 515, 398-401, 2014. 454 

Grömping, U.: Estimators of relative importance in linear regression based on variance 455 

decomposition. Am. Stat., 61, 139-147, 2007. 456 

Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui, E., Fang, Y., Fisher, J. B., 457 

Huntzinger, D. N., Li, Z., Michalak, A. M., Qiao, Y., Schaefer, K., Schwalm, C., Wang, J., 458 

Wei, Y., Xu, X., Yan, L., Bian C., and Luo, Y.: Enhanced peak growth of global vegetation 459 

and its key mechanisms. Nat. Ecol. Evol., 2, 1897-1905, 2018. 460 

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., 461 

Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, 462 

D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y., Weber, 463 

U., Zaehle S., and Zeng, N.: Compensatory water effects link yearly global land CO2 sink 464 

changes to temperature. Nature, 541, 516-520, 2017. 465 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., 466 

Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., 467 

Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., 468 

O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., 469 

Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from 470 

eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, 471 



23 
 

Biogeosciences, 17, 1343-1365, 2020. 472 

Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., Munger, J. W., 473 

O’Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and Richardson, A. D.: Net carbon uptake 474 

has increased through warming-induced changes in temperate forest phenology. Nat. Clim. 475 

Change, 4, 598-604, 2014. 476 

Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., 477 

Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., 478 

Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., 479 

Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-480 

Benito, P., Sun, I., Ståhl, G., Swenson, N. G., Thompson, J., Westerlund, B., Wirth, C., 481 

Zavala, M. A., Zeng, H., Zimmerman, J. K., Zimmermann N. E., and Westoby, M.: Plant 482 

functional traits have globally consistent effects on competition. Nature, 529, 204-207, 483 

2016. 484 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., 485 

Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, 486 

A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., 487 

Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, 488 

T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., 489 

Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. 490 

R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., 491 

Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., 492 

Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., 493 

Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van 494 

der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, 495 

R., Zaehle, S., and Zheng, B.: Global carbon budget 2018. Earth Syst. Sci. Data, 10, 405, 496 

2018. 497 

Li, G., Han, H., Du, Y., Hui, D., Xia, J., Niu, S., Li, X., and Wan, S.: Effects of warming and 498 

increased precipitation on net ecosystem productivity: a long-term manipulative 499 

experiment in a semiarid grassland. Agric. For. Meteorol., 232, 359-366, 2017. 500 

Luo, Y., and Weng, E.: Dynamic disequilibrium of the terrestrial carbon cycle under global 501 

change. Trends Ecol. Evol., 26, 96-104, 2011. 502 

Luo, Y., and Zhou, X.: Soil respiration and the environment. Elsevier, 2006. 503 

Marcolla, B., Rödenbeck, C., and Cescatti, A.: Patterns and controls of inter-annual variability 504 

in the terrestrial carbon budget. Biogeosciences, 14, 3815-3829, 2017. 505 

Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., Janssens, I., 506 

Knohl, A., Loustau, D., Roupsard, O., Varlagin, A., Rambal, S., Cescatti, A., Gianelle, D., 507 

Kondo, H., Tamrakar, R., and Mahecha, M. D.: Stand age and species richness dampen 508 

interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol., 1, 0048, 509 

2017. 510 



24 
 

Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., Zhang, L., Piao, S., Zhou, X., 511 

Zheng, H., Han, J., Wang, Q., and Yu, G.: Interannual variability of ecosystem carbon 512 

exchange: From observation to prediction. Global Ecol. Biogeogr., 26, 1225-1237, 2017. 513 

Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B., Juang, J. Y., and Stoy, P. C.: On the 514 

difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests 515 

in the southeastern United States. Glob. Change Biol., 21, 827-842, 2015. 516 

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, 517 

S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, 518 

R., Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., 519 

Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical 520 

description of version 4.5 of the Community Land Model (CLM), NCAR Earth System 521 

Laboratory-Climate and Global Dynamics Division, Boulder, Colorado, USA, Tech. Rep. 522 

TN-503+STR, http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf 523 

(last access: 27 September 2017), 2013. 524 

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., Baldocchi, D., and Torn, 525 

M.: A new data set to keep a sharper eye on land-air exchanges. Eos, 98, 2017. 526 

Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S., Piao, S., Ahlström, A.,   527 

Huntingford, C., Levy, P., Li, X., Liu, Y., Lomas, M., Poulter, B., Viovy, N., Wang, T.,  528 

Wang, X., Zaehle, S., Zeng, N., Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle 529 

of CO2 fluxes simulated by terrestrial ecosystem models. Global Biogeochem. Cy., 29, 46-530 

64, 2015. 531 

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, 532 

P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: 533 

Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 534 

inversions. Biogeosciences, 10, 6699-6720, 2013. 535 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., 536 

Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution 537 

of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 538 

600-603, 2014. 539 

Randerson, J. T.: Climate science: Global warming and tropical carbon. Nature, 494, 319-320, 540 

2013. 541 

Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C., and Harmon, M. E.: Net ecosystem 542 

production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol. 543 

Appl., 12, 937-947, 2002. 544 

R Development Core Team.: R: A Language and Environment for Statistical Computing 3-545 

900051-07-0, R Foundation for Statistical Computing, Vienna, Austria, 2011. 546 

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and 547 

ecosystem functional biogeography. Proc. Natl Acad. Sci. USA, 111, 13697-13702, 2014. 548 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,   549 



25 
 

Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,  550 

Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,  551 

Miglietta, F., Ourcival, J., Pumpanen J., Rambal, S., Rotenberg, E., Sanz, M.,  Tenhunen, 552 

J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net 553 

ecosystem exchange into assimilation and ecosystem respiration: review and improved 554 

algorithm. Glob. Change Biol., 11, 1424-1439, 2005. 555 

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.: 556 

Climate change, phenology, and phenological control of vegetation feedbacks to the 557 

climate system. Agric. For. Meteorol., 169, 156-173, 2013. 558 

Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon 559 

exchange respond to inter-annual climatic variations? Biogeosciences, 15, 2481-2498, 560 

2018. 561 

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Peñuelas, J., and 562 

Thonicke, K.: Leaf and stem economics spectra drive diversity of functional plant traits in 563 

a dynamic global vegetation model. Glob. Change Biol., 21, 2711-2725, 2015. 564 

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., 565 

van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions. 566 

Nature, 461, 53-59, 2009. 567 

Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C. J. M. E. A. G., Moors, 568 

E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, 569 

C., Grünwald, T., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, Ü., 570 

Berbigier, P., Loustau, D., Guðmundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., 571 

Clement, R., Moncrieff, J., Montagnani, L., Minerbi S., and Jarvis, P. G.: Respiration as 572 

the main determinant of carbon balance in European forests. Nature, 404, 861-865, 2000. 573 

Von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., 574 

Menzer, O., Arain, M., Buchmann, N., Cescatti, A., Geinelle, D., Kiely, G., Law, B., 575 

Magliudo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, 576 

L., Oechel, W., Pavelka, M., Pelchl, M., Rambal, S., Raschi, A., Scott, R.L., Vaccari, F., 577 

Van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M.: Impacts of droughts and 578 

extreme temperature events on gross primary production and ecosystem respiration: a 579 

systematic assessment across ecosystems and climate zones. Biogeosciences, 15, 1293-580 

1318, 2017. 581 

Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S.: Terrestrial carbon cycle affected by 582 

non-uniform climate warming. Nat. Geosci., 7, 173-180, 2014. 583 

Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X., Delire, C., Koven, C., 584 

MacDougall, A., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Ciais, 585 

P., Decharme, B., Gouttevin, I., Hajima, T., Hayes, D. J., Huang, K., Ji, D., Krinner, G., 586 

Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., Sueyoshi, T., Shi, Z., Yan, L., 587 

Liang, J., Jiang, L., Zhang, Q., and Luo, Y.: Terrestrial ecosystem model performance in 588 



26 
 

simulating productivity and its vulnerability to climate change in the northern permafrost 589 

region. J. Geophys. Res-Biogeo., 122, 430-446, 2017. 590 

Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A., Blanken, P. D., 591 

Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen, S., Dong, J., Flanagan, L. B., 592 

Frankenberg, C., Georgiadis, T., Gough, C. M., Hui, D., Kiely, G., Li, J., Lund, M., 593 

Magliulo, V., Marcolla, B., Merbold, L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, 594 

S., Raschi, A., Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A., 595 

Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.: Joint control of 596 

terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. 597 

Sci. USA, 112, 2788-2793, 2015. 598 

Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu, X.: High carbon dioxide 599 

uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl Acad. 600 

Sci. USA, 111, 4910-4915, 2014. 601 

Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., and Guanter, L.: 602 

Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal 603 

amplitude. Nature, 515, 394-397, 2014. 604 

Zhao, J., Peichl, M., Öquist, M., and Nilsson, M. B.: Gross primary production controls the 605 

subsequent winter CO2 exchange in a boreal peatland. Glob. Change Biol., 22, 4028-4037, 606 

2016. 607 

Zhou, S., Zhang, Y., Ciais, P., Xiao, X., Luo, Y., Caylor, K. K., Huang, Y., and Wang, G.: 608 

Dominant role of plant physiology in trend and variability of gross primary productivity in 609 

North America. Sci. Rep., 7, 41366, 2017. 610 

 611 


