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Abstract 32 

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink 33 

during the past several decades. However, both annual net ecosystem productivity (NEP) and 34 

its inter-annual variation (IAVNEP) keep varying over space. Thus, identifying local indicators 35 

for the spatially varying NEP and IAVNEP is critical for locating the major and sustainable C 36 

sinks on the land. Here, based on daily NEP observations from FLUXNET sites and large-scale 37 

estimates from an atmospheric inversion product, we found a robust logarithmic correlation 38 

between annual NEP and seasonal carbon uptake-release ratio (i.e., U/R). The cross-site 39 

variation of mean annual NEP could be logarithmically indicated by U/R, while the spatial 40 

distribution of IAVNEP was associated with the slope (i.e., β) of the logarithmic correlation 41 

between annual NEP and U/R. Among biomes, for example, forests and croplands had the largest 42 

U/R ratio (1.06 ± 0.83) and β (473 ± 112 g C m-2 yr-1), indicating the highest NEP and IAVNEP 43 

in forests and croplands, respectively. We further showed that these two simple indicators could 44 

directly infer the spatial variations of NEP and IAVNEP in global gridded NEP products. Overall, 45 

this study provides two simple local indicators for the intricate spatial variations in the strength 46 

and stability of land C sinks. These indicators could be helpful for locating the persistent 47 

terrestrial C sinks and provides valuable constraints for improving the simulation of land-48 

atmospheric C exchanges.  49 

  50 
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1. Introduction 51 

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO2 emission (Ciais et 52 

al., 2019) and are primarily responsible for the recent temporal fluctuations of the measured 53 

atmospheric CO2 growth rate (Randerson, 2013; Le Quéré et al., 2018). In addition, evidence 54 

based on eddy-flux measurements (Baldocchi et al., 2018; Rödenbeck et al., 2018), aircraft 55 

atmospheric budgets (Peylin et al., 2013), and process-based model simulations (Poulter et al., 56 

2014; Ahlstrom et al., 2015) has shown a large spatial variability in net ecosystem productivity 57 

(NEP) on the land. The elusive variation of terrestrial NEP over space refers to both of the 58 

substantial varying mean annual NEP and the divergent inter-annual variability (IAV) in NEP 59 

(i.e., IAVNEP; usually quantified as the standard deviation of annual NEP) across space 60 

(Baldocchi et al., 2018; Marcolla et al., 2017). The mean annual NEP is related to the strength 61 

of carbon exchange of a specific ecosystem (Randerson et al., 2002; Luo and Weng, 2011; Jung 62 

et al., 2017), while IAVNEP characterizes the stability of such carbon exchange (Musavi et al., 63 

2017). Thus, whether and how NEP and IAVNEP change over the space is important for 64 

predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu et al., 2017). 65 

Large spatial difference in terrestrial NEP has been reported from eddy-flux measurements, 66 

model outputs and atmospheric inversion products. In addition, the global average IAV of NEP 67 

is large relative to global annual mean NEP (Baldocchi et al., 2018). More importantly, the 68 

spatial variations of NEP and IAVNEP have been typically underestimated by the global flux 69 

tower-based product and the process-based global models (Jung et al., 2020; Fu et al., 2019). 70 

These discrepancies have further revealed the necessary to identify local indicators for the 71 

spatially varying NEP and IAVNEP, separately. The NEP in terrestrial ecosystems is determined 72 

by two components, including vegetation photosynthesis and ecosystem respiration (Reichstein 73 

et al., 2005), and their relative difference could determine the spatial variation of NEP 74 

(Baldocchi et al., 2015; Biederman et al., 2016). Many previous analyses have attributed the 75 

IAVNEP at the site level to the different sensitivities of ecosystem photosynthesis and respiration 76 

to environmental drivers (Gilmanov et al., 2005; Reichstein et al., 2005) and biotic controls 77 

(Besnard et al., 2018; Musavi et al., 2017). For example, some studies have reported that IAVNEP 78 

is more associated with variations in photosynthesis than carbon release (Ahlstrom et al., 2015; 79 
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Novick et al., 2015; Li et al., 2017), whereas others have indicated that respiration is more 80 

sensitive to anomalous climate variability (Valentini et al., 2000; von Buttlar et al., 2017). 81 

However, despite the previous efforts in a predictive understanding of the land-atmospheric C 82 

exchanges, the multi-model spread has not reduced over time (Arora et al., 2019). Therefore, it 83 

is imperative to explore the potential indicators for the spatially varying NEP, which could help 84 

attribute the spatial variation of NEP and IAVNEP into different processes and provide valuable 85 

constraints for the global C cycle. Alternatively, the annual NEP of a given ecosystem can be 86 

also directly decomposed into net CO2 uptake flux and CO2 release flux (Gray et al., 2014), 87 

which are more direct components for NEP (Fu et al., 2019). It is still unclear how the ecosystem 88 

net CO2 uptake and release fluxes would control the spatially varying NEP. 89 

Conceptually, the total net CO2 uptake flux (U) is determined by the length of CO2 uptake 90 

period (CUP) and the CO2 uptake rate, while the total net CO2 release flux (R) depends on the 91 

length of CO2 release period (CRP) and the CO2 release rate (Fig. 1b). The variations of NEP 92 

thus could be attributed to these decomposed components. A strong spatial correlation between 93 

mean annual NEP and length of CO2 uptake period has been reported in evergreen needle- and 94 

broad-leaved forests (Churkina et al., 2005; Richardson et al., 2013; Keenan et al., 2014), 95 

whereas atmospheric inversion data and vegetation photosynthesis model indicated a dominant 96 

role of the maximal carbon uptake rate (Fu et al., 2017; Zhou et al., 2017). However, the relative 97 

importance of these phenological and physiological indicators for the spatially varying NEP 98 

remains unclear. 99 

In this study, we decomposed annual NEP into U and R, and explored the local indicators 100 

for spatially varying NEP. Based on the eddy-covariance fluxes from FLUXNET2015 Dataset 101 

(Pastorello et al., 2017) and the atmospheric inversion product (Rödenbeck et al., 2018), we 102 

examined the relationship between NEP and its direct components. In addition, we used the 103 

observations to evaluate the spatial variations of NEP and IAVNEP in the FLUXCOM product 104 

and a process-based model (CLM4.5) (Oleson et al., 2013). The major aim of this study is to 105 

explore whether there are useful local indicators for the spatially varying NEP and IAVNEP in 106 

terrestrial ecosystems. 107 

2. Materials and Methods 108 
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2.1 Datasets 109 

Daily NEP observations of eddy covariance sites are obtained from the FLUXNET2015 Tier 1 110 

dataset. The FLUXNET2015 dataset provides half-hourly data of carbon, water and energy 111 

fluxes at over 210 sites that are standardized and gap-filled (Pastorello et al., 2017). However, 112 

time series of most sites are still too short for the analysis of inter-annual variation in NEP. So 113 

only the sites that provided the availability of eddy covariance flux measurements for at least 5 114 

years are selected. This leads to a global dataset of 72 sites with different biomes across different 115 

climatic regions. Based on the biome classification from the International Geosphere-Biosphere 116 

Programme (IGBP) provided for the FLUXNET2015 sites, the selected sites include 35 forests 117 

(FOR), 15 grasslands (GRA), 11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 118 

5 savannas (SAV) (Fig. S1 and Table S1). 119 

The Jena CarboScope Inversion product combines high precision measurements of 120 

atmospheric CO2 concentration with simulated atmospheric transport to infer the net CO2 121 

exchanges between land, ocean and atmosphere at large scales (Rödenbeck et al., 2018). Here, 122 

we used the daily land-atmosphere CO2 fluxes from the s85_v4.1 version at a spatial resolution 123 

of 5° × 3.75°. Considering the relatively low spatial resolution of the Jena Inversion product, 124 

the daily fluxes were only used to calculate the local indicators for the spatially varying NEP at 125 

the global scale. 126 

Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also used 127 

to calculate the local indicators for the spatially varying NEP at the corresponding flux tower 128 

sites. We ran the CLM4.5 model from 1985 to 2010 at a spatial resolution of 1° with CRUNECP 129 

meteorological forcing. Here, NEP was derived as the difference between GPP and TER, and 130 

TER was calculated as the sum of simulated autotrophic and heterotrophic respiration. The daily 131 

outputs from CLM4.5 were used to calculate the local indicators for the spatially varying NEP 132 

both at the global scale and at the FLUXNET site level. 133 

The FLUXCOM product presents an upscaling of carbon flux estimates from 224 flux 134 

tower sites based on multiple machine learning algorithms and meteorological drivers (Jung et 135 

al., 2017). To be consistent with the meteorological forcing of Jena Inversion product and the 136 

CLM4.5 model, we used the FLUXCOM CRUNCEPv6 products. In addition, in order to reduce 137 
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the uncertainty caused by machine-learning methods, we averaged all the FLUXCOM 138 

CRUNCEPv6 products with different machine-learning methods. It should be noted that the 139 

inter-annual variability of FLUXCOM product is driven by meteorological measurements and 140 

satellite data, which partially includes information on vegetation state and other land surface 141 

properties. Daily outputs from FLUXCOM for the period 1985-2010 at 0.5° spatial resolution 142 

were used to calculate the local indicators for the spatially varying NEP both at the global scale 143 

and at the FLUXNET site level. 144 

2.2 Decomposition of NEP and the calculations for its local indicators 145 

The annual NEP of a given ecosystem can be defined numerically as the difference between the 146 

net CO2 uptake and release (Figure 2b). These components of NEP contain both photosynthesis 147 

and respiration flux, which directly indicate the net CO2 exchange of an ecosystem. The total 148 

net CO2 uptake flux (U) and the total net CO2 release flux (R) can be further decomposed as: 149 

                          𝑈 = 𝑈̅ × 𝐶𝑈𝑃                                (1) 150 

                          𝑅 = 𝑅̅ × 𝐶𝑅𝑃                                (2) 151 

where CUP (d yr-1) is the length of CO2 uptake period and CRP (d yr-1) is the length of CO2 152 

release period; 𝑈̅ (g C m-2 d-1) is the mean daily net CO2 uptake over CUP and 𝑅̅ (g C m-2 d-153 

1) represents the mean daily net CO2 release over CRP. Many studies have reported that the 154 

vegetation net CO2 uptake during the growing season and the non-growing season soil net CO2 155 

release are tightly correlated (Luo et al., 2014; Zhao et al., 2016). Therefore, we further tested 156 

the relationship between annual NEP and 
𝑈

𝑅
  (i.e., 𝑁𝐸𝑃 ∝  

𝑈

𝑅
 ), which reflects the seasonal 157 

carbon uptake-release ratio. Consequently, NEP in any given ecosystem can be expressed as 158 

(Fig. S2): 159 

                  𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                                (3) 160 

where the parameter 𝛽  represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
) , 161 

indicating the site-level carbon uptake sensitivity. Based on the definitions of U and R, the ratio 162 

𝑈

𝑅
 can be further written as: 163 
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𝑈

𝑅
=

𝑈̅

𝑅̅
∙

𝐶𝑈𝑃

𝐶𝑅𝑃
                                   (4) 164 

The ratio of 
𝑈̅

𝑅̅
  reflects the relative physiological difference between ecosystem CO2 165 

uptake and release strength, while the ratio of 
𝐶𝑈𝑃

𝐶𝑅𝑃
  is an indicator of net ecosystem CO2 166 

exchange phenology. Environmental changes may regulate these ecological processes and 167 

ultimately affect the ecosystem NEP. The slope β indicates the response sensitivity of NEP to 168 

the changes in phenology and physiological processes. All of β, 
𝐶𝑈𝑃

𝐶𝑅𝑃
  and 

𝑈̅

𝑅̅
  were then 169 

calculated from the selected eddy covariance sites and the corresponding pixels of these sites in 170 

models. These derived indicators from eddy covariance sites were then used to benchmark the 171 

results extracted from the same locations in models. 172 

2.4 Calculation of the relative contributions 173 

We further quantified the relative contributions of 
𝑈

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatial variations 174 

in NEP: 175 

   NEP = 𝛽 ∙ [ln (
𝑈̅

𝑅̅
) + ln (

𝐶𝑈𝑃

𝐶𝑅𝑃
)]                       (5) 176 

For each eddy covariance site, the parameter 𝛽 was constant. Then, we used a relative 177 

importance analysis method to quantify the relative contributions of these two ratios to the 178 

spatial variations in NEP. The algorithm was performed with the “ralaimpo” package in R (R 179 

Development Core Team, 2011). The “relaimpo” package is based on variance decomposition 180 

for multiple linear regression models. We chose the most commonly used method named 181 

“Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from the methods provided by the 182 

“ralaimpo” package. This method allows us to quantify the contributions of explanatory 183 

variables in a multiple linear regression model. Across the 72 FLUXNET sites, we quantified 184 

the relative importance of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 to cross-site changes in NEP. 185 

3. Results 186 

3.1 The relationship between NEP and its direct components 187 

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we tested the 188 
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relationship between NEP and its direct components (𝑈 and 𝑅) across the 72 flux-tower sites. 189 

The results showed that annual NEP was closely related to the ratio 
𝑈

𝑅
  (Fig. S2). The 190 

logarithmic correlations between annual NEP and 
𝑈

𝑅
 were significant at all sites (Fig. 1a), and 191 

~90% of R2 falling within a range from 0.7 to 1 (Fig. 1c). 192 

In addition, the relationship between NEP and 
𝑈

𝑅
 was also confirmed by the atmospheric 193 

inversion product (i.e., Jena CarboScope Inversion). The control of 
𝑈

𝑅
  on annual NEP was 194 

robust in most global grid cells (i.e. 0.6 < R2 < 1). The coefficient of determination for this 195 

relationship was higher in 80% of the regions, but lower in North America (Fig. 2). These two 196 

datasets both showed that the indicator 
𝑈

𝑅
 could successfully capture the variability in annual 197 

NEP. 198 

3.2 Local indicators for spatially varying NEP 199 

Across the 72 flux-tower sites, the across-site variation in mean annual NEP were significantly 200 

correlated to mean annual ln (
𝑈

𝑅
) of each site (R2 = 0.65, P < 0.01) (Fig. 3a). In this network, 201 

the mean annual ratio ln (
𝑈

𝑅
) was a good indicator for cross-site variation in NEP. By contrast, 202 

the spatial variation of IAVNEP was moderately explained by the slope (i.e., β) of the temporal 203 

correlation between NEP and ln (
𝑈

𝑅
)  at each site (R2 = 0.39, P < 0.01; Fig. 3b) rather than 204 

ln (
𝑈

𝑅
) (Fig. S3). The wide range of ratio β reveals a large divergence of NEP sensitivity across 205 

biomes, ranging from 121 ± 118 g C m-2 yr-1 in shrubland to 473 ± 112 g C m-2 yr-1 in cropland.  206 

The decomposition of indicator 
𝑈

𝑅
  into 

𝑈̅

𝑅̅
  and 

𝐶𝑈𝑃

𝐶𝑅𝑃
  allowed us to quantify the relative 207 

importance of these two ratios in driving NEP variability. The linear regression and relative 208 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (58%) than 

𝑈̅

𝑅̅
 (42%) in explaining 209 

the cross-site variation of NEP (Fig. 4). Therefore, the spatial distribution of mean annual NEP 210 

was more strongly driven by the phenological changes. 211 

3.3 Simulated spatial variations in NEP by models  212 
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We further used these two simple indicators (i.e., 
𝑈

𝑅
 and β) to evaluate the simulated spatial 213 

variations of NEP by the global flux tower-based product (i.e., FLUXCOM) and a widely-used 214 

process-based model at the FLUXNET site level (i.e., CLM4.5). We found that the low spatial 215 

variation of mean annual NEP in FLUXCOM and CLM4.5 could be inferred from their more 216 

converging ln (
𝑈

𝑅
)  than flux-tower measurements (Fig. 5). The underestimated variation of 217 

IAVNEP in these modeling results was also clearly shown by the smaller β values (268.22, 126.00 218 

and 145.08 for FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b).  219 

In addition, the spatial variations of NEP and IAVNEP were associated with the spatial 220 

resolution of the product (Marcolla et al., 2017). Considering the scale mismatch between 221 

FLUXNET sites and the gridded product, we run the same analysis at the global scale based on 222 

Jena Inversion product. At the global scale, the spatial variation of mean annual NEP can be also 223 

well indicated by ln (
𝑈

𝑅
)  (Fig. 6). The larger net C uptake in FLUXCOM resulted from its 224 

higher simulations for ln (
𝑈

𝑅
). Furthermore, the larger spatial variation of IAVNEP in CLM4.5 225 

could be inferred from the indicator β. 226 

4. Discussion 227 

4.1 New perspective for locating the major and sustainable land C sinks 228 

Large spatial differences of mean annual NEP and IAVNEP have been well-documented in 229 

previous studies (Jung et al., 2017; Marcolla et al., 2017; Fu et al., 2019). Here we provide a 230 

new perspective for quantifying the spatially varying NEP by tracing annual NEP into several 231 

local indicators. Therefore, these traceable indicators could provide useful constraints for 232 

predicting annual NEP, especially in areas without eddy-covariance towers. 233 

Typically, the C sink capacity and its stability of a specific ecosystem are characterized 234 

separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated 235 

NEP into two simple indicators that could directly locate the major and sustainable land C sink. 236 

Among biomes, forests and croplands had the largest ln (
𝑈

𝑅
) and β, indicating the strongest and 237 

the most unstable C sink in forests and croplands, respectively. However, the relatively lower β 238 

in shrublands and savannas should be interpreted cautiously. There are very few semi-arid 239 
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ecosystems in the FLUXNET sites, while they represent a large portion of land at the global 240 

scale and have been shown to substantially control the interannual variability of NEP (Ahlström 241 

et al., 2015). The highest β implies that the land covered by cropland with the largest IAVNEP. 242 

Therefore, the reported rapid global expansion of cropland may enlarge the fluctuations in Land-243 

atmosphere CO2 exchange. In fact, the cropland expansion has been confirmed as one important 244 

driver of the recent increasing global vegetation growth peak (Huang et al., 2018) and 245 

atmospheric CO2 seasonal amplitude (Gary et al., 2014; Zeng et al., 2014). 246 

4.2 Joint control of plant phenology and physiology on mean annual NEP 247 

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross primary 248 

productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; Zhou et 249 

al., 2016). Here we demonstrated that the spatial difference of mean annual NEP was determined 250 

by both the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
  (58%) and the physiological indicator 

𝑈̅

𝑅̅
  (42%). In 251 

addition, the lower contribution of the physiological indicator could partly be attributed to the 252 

convergence of 
𝑈̅

𝑅̅
 across FLUXNET sites (Fig. S4).  253 

The convergent 
𝑈̅

𝑅̅
 across sites was first discovered by Churkina et al. (2005) as 2.73 ± 1.08 254 

across 28 sites, which included DBF, EBF and crop/grass. In this study, we found the 
𝑈̅

𝑅̅
 across 255 

the 72 sites is 2.71 ± 1.61, which confirms with the findings of Churkina et al. This spatial 256 

convergence of 
𝑈̅

𝑅̅
 at site level provides important constraints for global models that simulate 257 

large spatial variation in physiological processes (Peng et al., 2015; Xia et al., 2017). These 258 

findings imply that the phenology changes will greatly affect the locations of the terrestrial 259 

carbon sink by modifying the length of carbon uptake period (Richardson et al., 2013; Keenan 260 

et al., 2014). 261 

4.3 The simulated local indicators from gridded products 262 

This study showed that the considerable spatial variations in mean annual NEP and IAVNEP from 263 

global gridded products could also be inferred from their local indicators. The low variations of 264 

𝑈

𝑅
 ratio in CLM4.5 could be largely due to their simple representations of the diverse terrestrial 265 
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plant communities into a few plant functional types with parameterized properties (Cui et al., 266 

2019; Sakschewski et al., 2015). In addition, the higher 
𝑈

𝑅
  ratio from FLUXCOM product 267 

indicated its widely reported larger net C uptake (Fig. 6) (Jung et al., 2020). Meanwhile, the 268 

ignorance of fire, land-use change and other disturbances could lead to the smaller β by allowing 269 

for only limited variations of phenological and physiological dynamics (Reichstein et al., 2014; 270 

Kunstler et al., 2016). Although the magnitude of IAVNEP depends on the spatial resolution 271 

(Marcolla et al., 2017), we recommend future model benchmarking analyses to use not only the 272 

global product compiled from machine-learning method (Bonan et al., 2018) but also the site-273 

level measurements or indicators (Xia et al., 2020). 274 

4.4 Conclusions and further implications 275 

In summary, this study highlights the changes in NEP and IAVNEP over space on the land, and 276 

provides the 
𝑈

𝑅
  ratio and β as two simple local indicators for their spatial variations. These 277 

indicators could be helpful for locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) 278 

ratio is high but the β is low. Their estimates based on observations are also valuable for 279 

benchmarking and improving the simulation of land-atmospheric C exchanges in Earth system 280 

models. The findings in this study have some important implications for understanding the 281 

variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the 282 

largest ln (
𝑈

𝑅
) while croplands show the highest IAVNEP because of the highest β. Second, the 283 

spatial convergence of 
𝑈̅

𝑅̅
 suggests a tight linkage between plant growth and the non-growing 284 

season soil microbial activities (Xia et al., 2014; Zhao et al., 2016). However, it remains unclear 285 

whether the inter-biome variation in 
𝑈̅

𝑅̅
 is due to different plant-microbe interactions between 286 

biomes. Third, the within-site convergent but spatially varying β needs better understanding. 287 

Previous studies have shown that a rising standard deviation of ecosystem functions could 288 

indicate an impending ecological state transition (Carpenter and Brock, 2006; Scheffer et al., 289 

2009). Thus, a sudden shift of the β-value may be an important early-warning signal for the 290 

critical transition of carbon uptake sensitivity of an ecosystem. In this study, the atmospheric 291 

inversion product shows low correlation between NEP and ln (
𝑈

𝑅
) in some boreal ecosystems, 292 
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which might due to that the terrestrial NEP is not well constrained for these regions or these 293 

boreal ecosystems are experiencing state transition. Therefore, the robustness in relationship 294 

between annual NEP and ln (
𝑈

𝑅
) depends on the temporal stability of carbon uptake sensitivity 295 

for an ecosystem. In addition, the spatial variation in β reveals the differences of carbon uptake 296 

sensitivity across ecosystems. Furthermore, considering the limited eddy-covariance sites with 297 

long-term observations, these findings need further validation once the longer time-series of 298 

measurements from more sites and vegetation types become available.  299 
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FIGURES 324 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =325 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 326 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 327 

years of observations. b, Conceptual figure for the decomposition framework introduced in this 328 

study. Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 =329 

𝑈 − 𝑅 . c, Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of NEP (R2) for 330 

FLUXNET sites. 331 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 332 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 333 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 334 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 335 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 336 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 337 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 338 

with the size of the point.  339 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 340 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the spatial 341 

variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the point. 342 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 343 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 344 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 345 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 346 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 347 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 348 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 349 
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ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note 350 

that the modeled results are from the pixels extracted from the same locations of the flux tower 351 

sites. 352 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 353 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 354 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 355 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 356 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 357 

Jena Inversion, FLUXCOM and CLM4.5. 358 

359 
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 360 

Figure 1 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form NEP =361 

𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges during net 362 

uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with at least 5 363 

years of data. b, Conceptual figure for the decomposition framework introduced in this study. 364 

Annual NEP can be quantitatively decomposed into the following indicators: 𝑁𝐸𝑃 = 𝑈 − 𝑅. c, 365 

Distribution of the explanation of 
𝑈

𝑅
  on temporal variability of FLUXNET NEP (R2) for 366 

FLUXNET sites. 367 

  368 
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 369 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
  for Jena Inversion product (of the form 370 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). The black box indicates the location of the sample. 371 

  372 
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 373 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 374 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
) across FLUXNET 375 

sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
)  for different terrestrial 376 

biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show the distribution 377 

of parameter β for different terrestrial biomes. The number of site-years at each site is indicated 378 

with the size of the point.  379 

  380 
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  381 

Figure 4 The relative contributions of the local indicators in explaining the spatial patterns of 382 

mean annual NEP. a, The linear regression between mean annual NEP with 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.33, P 383 

< 0.01) and 
𝑈̅

𝑅̅
 (R2 = 0.25, P < 0.01) across sites. b, The relative contributions of each indicator 384 

to the spatial variation of NEP. The number of site-years at each site is indicated with the size 385 

of the point. 386 

  387 
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 388 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 389 

product and the Community Land Model (CLM4.5) at the FLUXNET site level. a, The variation 390 

of mean annual NEP and IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation 391 

in mean annual NEP: the standard deviation of mean annual NEP across sites; Variation in 392 

IAVNEP: the standard deviation of IAVNEP across sites. b, Representations of the local indicators 393 

for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) 394 

and 𝛽 are shown at the top and right. Significance of the relationship between annual NEP and 395 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P < 0.05; open circles: P > 0.05. 396 

Note that the modeled results are from the pixels extracted from the same locations of the flux 397 

tower sites. 398 

 399 
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 400 

Figure 6 Representations of the spatially varying NEP and its local indicators in FLUXCOM 401 

product and the Community Land Model (CLM4.5) at the global scale. a, The variation of mean 402 

annual NEP and IAVNEP derives from Jena Inversion, FLUXCOM and CLM4.5. Variation in 403 

mean annual NEP: the spatial variation of mean annual NEP; Variation in IAVNEP: the spatial 404 

variation of standard deviation in IAVNEP. b, Representations of the local indicators for NEP in 405 

Jena Inversion, FLUXCOM and CLM4.5. 406 

  407 



22 
 

References 408 

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., 409 

Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. 410 

D., Viovy, N., Wang, Y., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-411 

arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899, 412 

2015. 413 

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., 414 

Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., 415 

Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C., 416 

Krasting, J., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, 417 

T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-418 

concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to 419 

CMIP5 models, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-473, in review, 420 

2019. 421 

Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net and gross ecosystem 422 

carbon fluxes: A review. Agric. For. Meteorol., 249, 520-533, 2018. 423 

Baldocchi, D., Sturtevant, C., and Contributors, F.: Does day and night sampling reduce spurious 424 

correlation between canopy photosynthesis and ecosystem respiration? Agric. For. 425 

Meteorol., 207, 117-126, 2015. 426 

Besnard, S., Carvalhais, N., Arain, A., Black, A., de Bruin, S., Buchmann, N., Cescatti, A., Chen, 427 

J., JClevers, J.G.P.W., Desai, A.R., Gough, C.M., Havrankova, K., Herold, M., Hörtnagl, 428 

L., Jung, M., Knohl, A., Kruijt, B., Krupkova, L., Law, B.E., Lindroth, A., Noormets, A., 429 

Roupsard, O., Steinbrecher, R., Varlagin, A., Vincke, C. and Reichstein, M.: Quantifying 430 

the effect of forest age in annual net forest carbon balance. Environ. Res. Lett., 13, 124018, 431 

2018. 432 

Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E. 433 

A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, . E., Dore, S., 434 

and Burns, S. P.: Terrestrial carbon balance in a drier world: the effects of water availability 435 

in southwestern North America. Glob. Change Biol., 22, 1867-1879, 2016. 436 

Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, 437 

E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization 438 

of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). 439 

Geosci. Model Dev., 11, 1467-1496, 2018. 440 

Carpenter, S. R., and Brock, W. A.: Rising variance: a leading indicator of ecological transition. 441 

Ecol. Lett., 9, 311-318, 2006. 442 

Churkina, G., Schimel, D., Braswell, B. H., and Xiao, X.: Spatial analysis of growing season 443 

length control over net ecosystem exchange. Glob. Change Biol., 11, 1777-1787, 2005. 444 



23 
 

Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S. L., Moriarty, R., Broquet, 445 

G., Le Quéré, C., Canadell, J. G., Peng, S., Poulter, B., Liu Z., and Tans, P.: Five decades 446 

of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 568, 447 

221-225, 2019. 448 

Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N., Ito, A., Luo, Y., Jain, A. K., 449 

Mao, J., Michalak, A. M., Niu, S., Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto, 450 

D. M., Schaefer, K. M., Schwalm, C. R., Shi, X., Tian, H., Wang, W., Wang, J., Wei, Y., 451 

Yan, E., Yan, L., Zeng, N., Zhu, Q., & Xia, J.: Vegetation functional properties determine 452 

uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian 453 

monsoon region. Global Biogeochem. Cy., 33, 668-689, 2019. 454 

Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., and Niu, S.: Long term trend and interannual variability 455 

of land carbon uptake-the attribution and processes. Environ. Res. Lett., 12, 014018, 2017. 456 

Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and Niu, S.: Maximum 457 

carbon uptake rate dominates the interannual variability of global net ecosystem exchange. 458 

Glob. Change Biol., 25, 3381-3394, 2019. 459 

Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A. B., Haferkamp, M. R., 460 

Meyers, T. P., and Morgan, J. A.: Integration of CO2 flux and remotely-sensed data for 461 

primary production and ecosystem respiration analyses in the Northern Great Plains: 462 

Potential for quantitative spatial extrapolation. Global Ecol. Biogeogr., 14, 271-292, 2005. 463 

Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J., Ramankutty, N., and Friedl, 464 

M. A.: Direct human influence on atmospheric CO2 seasonality from increased cropland 465 

productivity. Nature, 515, 398-401, 2014. 466 

Grömping, U.: Estimators of relative importance in linear regression based on variance 467 

decomposition. Am. Stat., 61, 139-147, 2007. 468 

Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui, E., Fang, Y., Fisher, J. B., 469 

Huntzinger, D. N., Li, Z., Michalak, A. M., Qiao, Y., Schaefer, K., Schwalm, C., Wang, J., 470 

Wei, Y., Xu, X., Yan, L., Bian C., and Luo, Y.: Enhanced peak growth of global vegetation 471 

and its key mechanisms. Nat. Ecol. Evol., 2, 1897-1905, 2018. 472 

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., 473 

Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, 474 

D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y., Weber, 475 

U., Zaehle S., and Zeng, N.: Compensatory water effects link yearly global land CO2 sink 476 

changes to temperature. Nature, 541, 516-520, 2017. 477 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., 478 

Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., 479 

Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., 480 

O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., 481 

Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from 482 

eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, 483 



24 
 

Biogeosciences, 17, 1343-1365, 2020. 484 

Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., Munger, J. W., 485 

O’Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and Richardson, A. D.: Net carbon uptake 486 

has increased through warming-induced changes in temperate forest phenology. Nat. Clim. 487 

Change, 4, 598-604, 2014. 488 

Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., 489 

Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., 490 

Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., 491 

Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-492 

Benito, P., Sun, I., Ståhl, G., Swenson, N. G., Thompson, J., Westerlund, B., Wirth, C., 493 

Zavala, M. A., Zeng, H., Zimmerman, J. K., Zimmermann N. E., and Westoby, M.: Plant 494 

functional traits have globally consistent effects on competition. Nature, 529, 204-207, 495 

2016. 496 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., 497 

Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, 498 

A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., 499 

Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, 500 

T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., 501 

Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. 502 

R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., 503 

Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., 504 

Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., 505 

Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van 506 

der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, 507 

R., Zaehle, S., and Zheng, B.: Global carbon budget 2018. Earth Syst. Sci. Data, 10, 405, 508 

2018. 509 

Li, G., Han, H., Du, Y., Hui, D., Xia, J., Niu, S., Li, X., and Wan, S.: Effects of warming and 510 

increased precipitation on net ecosystem productivity: a long-term manipulative 511 

experiment in a semiarid grassland. Agric. For. Meteorol., 232, 359-366, 2017. 512 

Luo, Y., and Weng, E.: Dynamic disequilibrium of the terrestrial carbon cycle under global 513 

change. Trends Ecol. Evol., 26, 96-104, 2011. 514 

Luo, Y., and Zhou, X.: Soil respiration and the environment. Elsevier, 2006. 515 

Marcolla, B., Rödenbeck, C., and Cescatti, A.: Patterns and controls of inter-annual variability 516 

in the terrestrial carbon budget. Biogeosciences, 14, 3815-3829, 2017. 517 

Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., Janssens, I., 518 

Knohl, A., Loustau, D., Roupsard, O., Varlagin, A., Rambal, S., Cescatti, A., Gianelle, D., 519 

Kondo, H., Tamrakar, R., and Mahecha, M. D.: Stand age and species richness dampen 520 

interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol., 1, 0048, 521 

2017. 522 



25 
 

Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., Zhang, L., Piao, S., Zhou, X., 523 

Zheng, H., Han, J., Wang, Q., and Yu, G.: Interannual variability of ecosystem carbon 524 

exchange: From observation to prediction. Global Ecol. Biogeogr., 26, 1225-1237, 2017. 525 

Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B., Juang, J. Y., and Stoy, P. C.: On the 526 

difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests 527 

in the southeastern United States. Glob. Change Biol., 21, 827-842, 2015. 528 

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, 529 

S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, 530 

R., Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., 531 

Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical 532 

description of version 4.5 of the Community Land Model (CLM), NCAR Earth System 533 

Laboratory-Climate and Global Dynamics Division, Boulder, Colorado, USA, Tech. Rep. 534 

TN-503+STR, http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf 535 

(last access: 27 September 2017), 2013. 536 

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., Baldocchi, D., and Torn, 537 

M.: A new data set to keep a sharper eye on land-air exchanges. Eos, 98, 2017. 538 

Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S., Piao, S., Ahlström, A.,   539 

Huntingford, C., Levy, P., Li, X., Liu, Y., Lomas, M., Poulter, B., Viovy, N., Wang, T.,  540 

Wang, X., Zaehle, S., Zeng, N., Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle 541 

of CO2 fluxes simulated by terrestrial ecosystem models. Global Biogeochem. Cy., 29, 46-542 

64, 2015. 543 

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, 544 

P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: 545 

Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 546 

inversions. Biogeosciences, 10, 6699-6720, 2013. 547 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., 548 

Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution 549 

of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 550 

600-603, 2014. 551 

Randerson, J. T.: Climate science: Global warming and tropical carbon. Nature, 494, 319-320, 552 

2013. 553 

Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C., and Harmon, M. E.: Net ecosystem 554 

production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol. 555 

Appl., 12, 937-947, 2002. 556 

R Development Core Team.: R: A Language and Environment for Statistical Computing 3-557 

900051-07-0, R Foundation for Statistical Computing, Vienna, Austria, 2011. 558 

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and 559 

ecosystem functional biogeography. Proc. Natl Acad. Sci. USA, 111, 13697-13702, 2014. 560 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,   561 



26 
 

Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,  562 

Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,  563 

Miglietta, F., Ourcival, J., Pumpanen J., Rambal, S., Rotenberg, E., Sanz, M.,  Tenhunen, 564 

J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net 565 

ecosystem exchange into assimilation and ecosystem respiration: review and improved 566 

algorithm. Glob. Change Biol., 11, 1424-1439, 2005. 567 

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.: 568 

Climate change, phenology, and phenological control of vegetation feedbacks to the 569 

climate system. Agric. For. Meteorol., 169, 156-173, 2013. 570 

Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon 571 

exchange respond to inter-annual climatic variations? Biogeosciences, 15, 2481-2498, 572 

2018. 573 

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Peñuelas, J., and 574 

Thonicke, K.: Leaf and stem economics spectra drive diversity of functional plant traits in 575 

a dynamic global vegetation model. Glob. Change Biol., 21, 2711-2725, 2015. 576 

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., 577 

van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions. 578 

Nature, 461, 53-59, 2009. 579 

Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C. J. M. E. A. G., Moors, 580 

E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, 581 

C., Grünwald, T., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, Ü., 582 

Berbigier, P., Loustau, D., Guðmundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., 583 

Clement, R., Moncrieff, J., Montagnani, L., Minerbi S., and Jarvis, P. G.: Respiration as 584 

the main determinant of carbon balance in European forests. Nature, 404, 861-865, 2000. 585 

Von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., 586 

Menzer, O., Arain, M., Buchmann, N., Cescatti, A., Geinelle, D., Kiely, G., Law, B., 587 

Magliudo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, 588 

L., Oechel, W., Pavelka, M., Pelchl, M., Rambal, S., Raschi, A., Scott, R.L., Vaccari, F., 589 

Van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M.: Impacts of droughts and 590 

extreme temperature events on gross primary production and ecosystem respiration: a 591 

systematic assessment across ecosystems and climate zones. Biogeosciences, 15, 1293-592 

1318, 2017. 593 

Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S.: Terrestrial carbon cycle affected by 594 

non-uniform climate warming. Nat. Geosci., 7, 173-180, 2014. 595 

Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X., Delire, C., Koven, C., 596 

MacDougall, A., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Ciais, 597 

P., Decharme, B., Gouttevin, I., Hajima, T., Hayes, D. J., Huang, K., Ji, D., Krinner, G., 598 

Lettenmaier, D. P., Miller, P. A., Moore, J. C., Smith, B., Sueyoshi, T., Shi, Z., Yan, L., 599 

Liang, J., Jiang, L., Zhang, Q., and Luo, Y.: Terrestrial ecosystem model performance in 600 



27 
 

simulating productivity and its vulnerability to climate change in the northern permafrost 601 

region. J. Geophys. Res-Biogeo., 122, 430-446, 2017. 602 

Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A., Blanken, P. D., 603 

Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen, S., Dong, J., Flanagan, L. B., 604 

Frankenberg, C., Georgiadis, T., Gough, C. M., Hui, D., Kiely, G., Li, J., Lund, M., 605 

Magliulo, V., Marcolla, B., Merbold, L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, 606 

S., Raschi, A., Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A., 607 

Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.: Joint control of 608 

terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. 609 

Sci. USA, 112, 2788-2793, 2015. 610 

Xia, J., Wang, J., and Niu, S.: Research challenges and opportunities for using big data in global 611 

change biology. Glob. Change Biol., 2020. https://doi.org/10.1111/gcb.15317 612 

Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu, X.: High carbon dioxide 613 

uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl Acad. 614 

Sci. USA, 111, 4910-4915, 2014. 615 

Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., and Guanter, L.: 616 

Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal 617 

amplitude. Nature, 515, 394-397, 2014. 618 

Zhao, J., Peichl, M., Öquist, M., and Nilsson, M. B.: Gross primary production controls the 619 

subsequent winter CO2 exchange in a boreal peatland. Glob. Change Biol., 22, 4028-4037, 620 

2016. 621 

Zhou, S., Zhang, Y., Ciais, P., Xiao, X., Luo, Y., Caylor, K. K., Huang, Y., and Wang, G.: 622 

Dominant role of plant physiology in trend and variability of gross primary productivity in 623 

North America. Sci. Rep., 7, 41366, 2017. 624 

 625 


