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Abstract 33 

Multiple lines of evidence have demonstrated the persistence of global land carbon (C) sink 34 

during the past several decades. However, both annual net ecosystem productivity (NEP) and its 35 

inter-annual variation (IAVNEP) keep varying over space. Thus, identifying local indicators for 36 

the spatially varying NEP and IAVNEP is critical for locating the major and sustainable C sinks 37 

on the land. Here, based on a machine-learning-derived database, we first showed that the 38 

variations of NEP and IAVNEP are spatially asynchronous. Then, based on daily NEP 39 

observations from eddy covariance sites, we found robust logarithmic correlation between 40 

annual NEP and ratio of total CO2 exchanges during net uptake (U) and release (R) periods 41 

(i.e., U/R). The cross-site variation of mean annual NEP can be linearly indicated by ln(U/R), 42 

while the spatial distribution of IAVNEP was well indicated by the slope (i.e., β) of the 43 

demonstrated logarithmic correlation. Among biomes, for example, forests and croplands had 44 

the largest U/R ratio (1.06 ± 0.83) and β (473 ± 112 g C m-2 yr-1), indicating the highest NEP 45 

and IAVNEP in forests and croplands, respectively. We further showed that the spatial variations 46 

of NEP and IAVNEP were both underestimated by the machine-learning-based and 47 

process-based global models. Overall, this study underscores the asynchronously changes in 48 

the strength and stability of land C sinks over space, and provides two simple local indicators 49 

for their intricate spatial variations. These indicators could be helpful for locating the 50 

persistent terrestrial C sinks and provides valuable constraints for improving the simulation of 51 

land-atmospheric C exchanges.  52 

  53 
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1. Introduction 54 

Terrestrial ecosystems reabsorb about one-quarter of anthropogenic CO2 emission (Ciais et al., 55 

2019) and are primarily responsible for the recent temporal fluctuations of the measured 56 

atmospheric CO2 growth rate (Randerson, 2013; Le Quéré et al., 2018). However, evidence 57 

based on eddy-flux measurements (Baldocchi, Chu, & Reichstein, 2018; Rödenbeck, Zaehle, 58 

Keeling, & Heimann, 2018), aircraft atmospheric budgets (Peylin et al., 2013), and 59 

process-based model simulations (Poulter et al., 2014; Ahlstrom et al., 2015) has shown a large 60 

spatial variability in net ecosystem productivity (NEP) on the land. The elusive variation of 61 

terrestrial NEP over space refers to both of the dramatic varying mean annual NEP and the 62 

divergent inter-annual variability (IAV) in NEP (i.e., IAVNEP; usually quantified as the standard 63 

deviation of annual NEP) across space (Baldocchi, Chu, & Reichstein, 2018; Marcolla, 64 

Rödenbeck, & Cescatti, 2017). The mean annual NEP is related to the strength of carbon sink 65 

of a specific ecosystem (Randerson, Chapin III, Harden, Neff, & Harmon, 2002; Luo, & Weng, 66 

2011; Jung et al., 2017), while IAVNEP characterizes the stability of such carbon sink (Musavi 67 

et al., 2017). Thus, whether and how NEP and IAVNEP change asynchronously over the space 68 

is important for predicting the future locations of carbon sinks on the land (Yu et al., 2014; Niu 69 

et al., 2017). 70 

The NEP in terrestrial ecosystems is determined by two components, including vegetation 71 

photosynthesis and ecosystem respiration (Reichstein et al., 2005). Because there is a strong 72 

covariance between photosynthesis and respiration over space (Baldocchi, Sturtevant, & 73 

Contributors, 2015; Biederman et al., 2016), their relative difference could determine the 74 

spatial variation of NEP. Many previous analyses have attributed the IAVNEP at the site level to 75 

the different sensitivities of ecosystem photosynthesis and respiration to environmental 76 

fluctuations among years (Gilmanov et al., 2005; Reichstein et al., 2005; Musavi, 2017). For 77 

example, some studies have reported that IAVNEP is more associated with variations in 78 

photosynthesis than carbon release (Ahlstrom et al., 2015; Novick, Oishi, Ward, Siqueira, 79 

Juang, & Stoy, 2015; Li et al., 2017), whereas others have indicated that respiration is more 80 

sensitive to anomalous climate variability (Valentini et al., 2000; von Buttlar et al., 2017). 81 

Alternatively, the annual NEP of a given ecosystem can be defined numerically as the balance 82 
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between the CO2 uptake and release processes (Gray et al., 2014), which are more direct 83 

components for NEP (Fu et al., 2019). It is still unclear whether ecosystem CO2 uptake and 84 

release could be integrated into some simple indicators for the spatially varying NEP and 85 

IAVNEP in terrestrial ecosystems. 86 

Conceptually, the total CO2 uptake flux (U) is determined by the length of CO2 uptake 87 

period (CUP) and the CO2 uptake rate, while the total CO2 release flux (R) depends on the 88 

length of CO2 release period (CRP) and the CO2 release rate (Fig. 2b). The variations of NEP 89 

thus should be innovatively attributed to these decomposed components. A strong spatial 90 

correlation between mean annual NEP and length of CO2 uptake period has been reported in 91 

evergreen needle- and broad-leaved forests (Churkina, Schimel, Braswell, & Xiao, 2005; 92 

Richardson, Keenan, Migliavacca, Ryu, Sonnentag, & Toomey, 2013; Keenan et al., 2014), 93 

whereas atmospheric inversion data and vegetation photosynthesis model indicated a dominant 94 

role of the maximal carbon uptake rate (Fu, Dong, Zhou, Stoy, & Niu, 2017; Zhou et al., 2017). 95 

However, the relative importance of these phenological and physiological indicators for the 96 

spatially varying NEP remains unclear. 97 

In this study, we first explored the changes in NEP and IAVNEP at the global scale based 98 

on data from a widely-used machine-learning-derived product (i.e., FLUXCOM). To address 99 

the local indicators for spatially varying NEP, we decomposed annual NEP into U and R. Then, 100 

we examined the relationship of 𝑁𝐸𝑃 ∝  
𝑈

𝑅
 based on the observations at 72 eddy covariance 101 

towers which has >5 years measurements in the FLUXNET2015 Dataset (Jung et al., 2017). In 102 

addition, we used the observations to evaluate the spatial variations of NEP and IAVNEP in the 103 

FLUXCOM database and a process-based model (CLM4.5) (Oleson et al., 2013). The major 104 

aim of this study is to explore whether there are useful local indicators for the spatially varying 105 

NEP and IAVNEP in terrestrial ecosystems. 106 

2. Materials and Methods 107 

2.1 Datasets 108 

Daily NEP observations of eddy covariance sites were obtained from the FLUXNET2015 Tier 109 

1 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The FLUXNET2015 dataset 110 
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provides half-hourly data of carbon, water and energy fluxes at over 210 sites that are 111 

standardized and gap-filled (Pastorello et al., 2017). However, time series of most sites are still 112 

too short for the analysis of inter-annual variation in NEP. So only the sites that provided the 113 

availability of eddy covariance flux measurements for at least 5 years are selected. This leads 114 

to a global dataset of 72 sites with different biomes across different climatic regions. Based on 115 

the biome classification from the International Geosphere-Biosphere Programme (IGBP) 116 

provided for the FLUXNET2015 sites, the selected sites include 35 forests (FOR), 15 117 

grasslands (GRA), 11 croplands (CRO), 4 wetlands (WET), 2 shrublands (SHR) and 5 118 

savannas (SAV) (Fig. S1 and Table S1). The stand age information of forest sites is the average 119 

tree age of the stand, and was obtained from the Biological Ancillary Disturbance and 120 

Metadata (BAMD) of the FLUXNET dataset (Musavi, et al., 2017). 121 

    The FLUXCOM dataset presents an upscaling of carbon flux estimates from 224 flux 122 

tower sites based on multiple machine learning algorithms and satellite data (Jung et al., 2017). 123 

Meteorological measurements from CRUNCEPv6 and a serious of remotely sensed datasets 124 

were used as input. For this study, we downloaded the NEP product from the Data Portal of the 125 

Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). Daily outputs from 126 

FLUXCOM for the period 1980-2013 were used to map the spatial variation in terrestrial NEP 127 

and calculate the local indicators for the spatially varying NEP at the same locations of the flux 128 

tower sites. 129 

    Daily NEP simulations from Community Land Model version 4.5 (CLM4.5) were also 130 

used to calculate the local indicators for the spatially varying NEP at the corresponding flux 131 

tower sites. We ran the CLM4.5 model from 1990 to 2010 with a spatial resolution of 1° to 132 

match the available FLUXCOM dataset. Here, NEP was derived as the difference between 133 

GPP and TER, and TER was calculated as the sum of simulated autotrophic and heterotrophic 134 

respiration. The daily outputs from CLM4.5 were used to calculate the local indicators for the 135 

spatially varying NEP at the same locations of the flux tower sites. 136 

2.2 Decomposition of NEP and the calculations for its local indicators 137 
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The annual NEP of a given ecosystem can be defined numerically as the difference between 138 

the CO2 uptake and release. As illustrated in Figure 2b: 139 

                          𝑁𝐸𝑃 = 𝑈 − 𝑅                               (1) 140 

where the total CO2 uptake flux (U) and the total CO2 release flux (R) can be further 141 

decomposed as: 142 

                          𝑈 = 𝑈̅ × 𝐶𝑈𝑃                                (2) 143 

                          𝑅 = 𝑅̅ × 𝐶𝑅𝑃                                (3) 144 

where the 𝑈̅ (g C m-2 d-1) is the mean daily CO2 uptake over CUP and 𝑅̅ (g C m-2 d-1) 145 

represents the mean daily CO2 release over CRP. The calculations of these direct indicators are 146 

as follows: 147 

                 𝑈 = ∑ 𝑁𝐸𝑃𝑖  (𝑚
𝑖=1 𝑁𝐸𝑃𝑖 > 0;  𝐶𝑈𝑃 = 𝑚)                   (4) 148 

                     𝑅 = ∑ 𝑁𝐸𝑃𝑖  (𝑛
𝑖=1 𝑁𝐸𝑃𝑖 < 0; 𝐶𝑅𝑃 = 𝑛)                     (5) 149 

where 𝑁𝐸𝑃𝑖 refers to the daily NEP (g C m-2 d-1) in the ith day. Because many studies have 150 

reported that the vegetation CO2 uptake during the growing season and the non-growing soil 151 

respiration are tightly correlated (Luo, & Zhou, 2006; Xia, Chen, Piao, Ciais, Luo, & Wan, 152 

2014; Zhao, Peichl, Ӧquist, & Nilsson, 2016), we further tested the relationship between 153 

annual NEP and the ratio of 
𝑈

𝑅
 (i.e., 𝑁𝐸𝑃 ∝  

𝑈

𝑅
). Then we found that annual NEP was closely 154 

related with the ratio of 
𝑈

𝑅
 (Figure S2). Therefore, NEP in any year of any given ecosystem 155 

can be expressed as: 156 

                𝑁𝐸𝑃 = 𝛽 ∙ ln (
𝑈

𝑅
)                               (6) 157 

where the parameter 𝛽 represents the slope of the linear relationship of 𝑁𝐸𝑃 ∝ ln (
𝑈

𝑅
). Based 158 

on the definitions of U and R, the ratio 
𝑈

𝑅
 can be further written as: 159 

                   
𝑈

𝑅
=

𝑈̅

𝑅̅
∙

𝐶𝑈𝑃

𝐶𝑅𝑃
                                   (7) 160 
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These components of NEP contain both photosynthesis and respiration flux, which 161 

directly indicate the net CO2 exchange of an ecosystem. Ecologically, the ratio of 
𝑈̅

𝑅̅
 reflects 162 

the relative physiological difference between ecosystem CO2 uptake and release strength, 163 

while the ratio of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 is an indicator of net ecosystem CO2 exchange phenology. 164 

Environmental changes may regulate these ecological processes and ultimately affect the 165 

ecosystem NEP. The slope β indicates the response sensitivity of NEP to the changes in 166 

phenology and physiological processes. All of β, 
𝐶𝑈𝑃

𝐶𝑅𝑃
 and 

𝑈̅

𝑅̅
 were then calculated from the 167 

selected eddy covariance sites and the corresponding pixels of these sites in models. These 168 

derived indicators from eddy covariance sites were then used to benchmark the results 169 

extracted from the same locations in models. 170 

2.4 Calculation of the relative contributions 171 

To further identify the relative contributions of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in driving the spatiotemporal 172 

variations in the local indicator 
𝑈

𝑅
, we linearized the equation (7) as 173 

    log (
𝑈

𝑅
) = log (

𝑈̅

𝑅̅
) + log (

𝐶𝑈𝑃

𝐶𝑅𝑃
)                                 (8) 174 

Then we used a relative importance analysis method to quantify the relative contributions 175 

of each ratio to the spatiotemporal variations in 
𝑈

𝑅
. The algorithm was performed with the 176 

“ralaimpo” package in R (R Development Core Team, 2011). The “relaimpo” package is based 177 

on variance decomposition for multiple linear regression models. We chose the most 178 

commonly used method named “Lindeman-Merenda-Gold (LMG)” (Grömping, 2007) from 179 

the methods provided by the “ralaimpo” package. This method allows us to quantify the 180 

contributions of explanatory variables in a multiple linear regression model. In each site, we 181 

calculated the contributions of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 in explaining inter-annual variation in 

𝑈

𝑅
. Across 182 

the 72 FLUXNET sites, we quantified the relative importance of 
𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 to cross-site 183 

changes in 
𝑈

𝑅
. 184 

3. Results 185 
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3.1 Spatial variability in terrestrial NEP 186 

Based on the FLUXCOM product, a large spatial variation in terrestrial NEP and IAVNEP 187 

existed over 1980-2013. The tropical forests were typically large carbon sinks accompanied by 188 

considerable interannual variability. On the contrary, the boreal tundra ecosystems were stable 189 

carbon sinks and the shrublands in the Southern Hemisphere were variable carbon sources (Fig. 190 

1a). This remarkable spatial difference in terrestrial NEP was particularly obvious from 191 

eddy-flux measurements (Fig. S1), and the global average IAV of NEP (175 ± 111 g C m-2 yr-1) 192 

was large relative to global annual mean NEP (216 ± 234 g C m-2 yr-1). These spatial patterns 193 

were also supported by the model outputs (Jung et al., 2017) and atmospheric inversion product 194 

(Marcolla, Rödenbeck, & Cescatti, 2017).  195 

More importantly, we found that the variations of NEP and IAVNEP were spatially 196 

asynchronous. Along the latitudinal gradients, terrestrial NEP peaked at equatorial regions, 197 

whereas the highest IAVNEP existed in semiarid regions near 37o S (Fig. 1b). The demonstrated 198 

spatial asynchrony further revealed the necessary to identify local indicators for the spatially 199 

varying NEP and IAVNEP, separately.  200 

3.2 Local indicators for spatially varying NEP 201 

To find local indicators for the spatially varying NEP in terrestrial ecosystems, we first tested 202 

the relationship between NEP and the 
𝑈

𝑅
 ratio across the 72 flux-tower sites. We found robust 203 

logarithmic correlation between annual NEP and 
𝑈

𝑅
 at all sites (Fig. 2a; Fig. S2), with ~90% 204 

of R2 falling within a range from 0.7 to 1 (Fig. 2c). Across the 72 flux-tower sites, the spatial 205 

changes in mean annual NEP were significantly correlated to ln (
𝑈

𝑅
) (R2 = 0.65, P < 0.01) 206 

(Fig. 3a). This finding suggests that the mean annual ratio ln (
𝑈

𝑅
) is a good indicator for NEP 207 

and its spatial variation. By contrast, the spatial variation of IAVNEP was well explained by the 208 

slope (i.e., β) of the temporal correlation between NEP and ln (
𝑈

𝑅
) at each site (R2 = 0.39, P < 209 

0.01; Fig. 3b) rather than ln (
𝑈

𝑅
) (Fig. S3). The wide range of ratio β reveals a large 210 

divergence of NEP sensitivity across biomes, ranging from 121 ± 118 g C m-2 yr-1 in shrubland 211 

to 473 ± 112 g C m-2 yr-1 in cropland.  212 

https://doi.org/10.5194/bg-2020-26
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

The decomposition of indicator 
𝑈

𝑅
 into 

𝑈̅

𝑅̅
 and 

𝐶𝑈𝑃

𝐶𝑅𝑃
 allowed us to quantify the relative 213 

importance of these two ratios in driving 
𝑈

𝑅
 variability. The linear regression and relative 214 

importance analysis showed a more important role of 
𝐶𝑈𝑃

𝐶𝑅𝑃
 (81%) than 

𝑈̅

𝑅̅
 (19%) in explaining 215 

the cross-site variation of 
𝑈

𝑅
 (Fig. 4). Therefore, the spatial distribution of mean annual NEP 216 

was mostly driven by the phenological rather than physiological changes. 217 

3.3 Simulated spatial variations in NEP by models  218 

We further used these two simple indicators (i.e., 
𝑈

𝑅
 and β) to evaluate the simulated spatial 219 

variations of NEP by the machine-learning approach (i.e., FLUXCOM) and a widely-used 220 

process-based model (i.e., CLM4.5). We found that both of FLUXCOM and CLM4.5 221 

underestimated the spatial variation of mean annual NEP and IAVNEP (Fig. 5a). The low spatial 222 

variation of mean annual NEP in FLUXCOM and CLM4.5 could be inferred from their more 223 

converging ln (
𝑈

𝑅
) than flux-tower measurements (Fig. 5b). The underestimated variation of 224 

IAVNEP in these modeling results was also clearly shown by the smaller β values (268.22, 225 

126.00 and 145.08 for FLUXNET, FLUXCOM and CLM4.5, respectively) (Fig. 5b). 226 

4. Discussion 227 

4.1 New perspective for locating the major and sustainable land C sinks 228 

Large spatial differences of mean annual NEP and IAVNEP have been well-documented in 229 

previous studies (Jung et al., 2017; Marcolla, Rödenbeck, & Cescatti, 2017; Fu et al., 2019). 230 

Here we provide a new perspective for quantifying the spatially varying NEP by tracing 231 

annual NEP into several local indicators. Therefore, these traceable indicators could provide 232 

useful constraints for predicting annual NEP, especially in areas without eddy-covariance 233 

towers. 234 

Typically, the C sink capacity and its stability of a specific ecosystem are characterized 235 

separately (Keenan et al., 2014; Ahlstrom et al., 2015; Jung et al., 2017). Here we integrated 236 

NEP into two simple indicators that could directly locate the major and sustainable land C sink. 237 

Among biomes, forests and croplands had the largest ln (
𝑈

𝑅
) and β, indicating the strongest 238 
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and the most unstable C sink in forests and croplands, respectively. The highest β in croplands 239 

implies that the rapid global expansion of cropland may enlarge the IAVNEP on the land. In fact, 240 

the cropland expansion has been confirmed as one important driver of the recent increasing 241 

global vegetation growth peak (Huang et al., 2018) and atmospheric CO2 seasonal amplitude 242 

(Gary et al., 2014; Zeng et al., 2014).   243 

4.2 Phenology-dominant spatial distribution of mean annual NEP 244 

Recent studies have demonstrated that the spatiotemporal variations in terrestrial gross 245 

primary productivity are jointly controlled by plant phenology and physiology (Xia et al., 2015; 246 

Zhou et al., 2016). Here we demonstrated the dominant role of the phenology indicator 
𝐶𝑈𝑃

𝐶𝑅𝑃
 in 247 

driving the spatial difference of 
𝑈

𝑅
 and therefore the mean annual NEP. The reported low 248 

correlation between 
𝑈

𝑅
 and the physiological indicator 

𝑈̅

𝑅̅
 could partly be attributed to the 249 

convergence of 
𝑈̅

𝑅̅
 across FLUXNET sites (Fig. S4). The convergent 

𝑈̅

𝑅̅
 across sites was first 250 

discovered by Churkina et al. (2005) as 2.73 ± 1.08 across 28 sites, which included DBF, EBF 251 

and crop/grass. In this study, we found the 
𝑈̅

𝑅̅
 across the 72 sites is 2.71 ± 1.61, which 252 

validates the discovery by Churkina et al. However, the 
𝑈̅

𝑅̅
 varied among biomes (2.86 ± 1.56 253 

for forest, 2.16 ± 1.14 for grassland, 3.47 ± 1.98 for cropland, 2.89 ± 1.47 for wetland, 1.89 ± 254 

1.10 for shrub, 1.83 ± 0.88 for savanna). This spatial convergence of 
𝑈̅

𝑅̅
 at the ecosystem level 255 

provides important constraints for global models that simulate various physiological processes 256 

(Peng et al., 2015; Xia et al., 2017). These findings imply that the phenology changes will 257 

greatly affect the locations of the terrestrial carbon sink by modifying the length of carbon 258 

uptake period (Richardson, Keenan, Migliavacca, Ryu, Sonnentag, & Toomey, 2013; Keenan 259 

et al., 2014). 260 

4.3 The underestimated spatial variations of NEP in models 261 

This study showed that the considerable spatial variations in mean annual NEP and IAVNEP 262 

were both underestimated by the machine-learning-based and process-based global models, 263 

which could also be inferred from their local indicators. The low variations of 
𝑈

𝑅
 ratio in the 264 
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two modeling approaches could be largely due to their simple representations of the diverse 265 

terrestrial plant communities into a few plant functional types with parameterized properties 266 

(Sakschewski et al., 2015). The ignorance of year-to-year vegetation dynamic could lead to the 267 

smaller β by allowing for only limited variations of phenological and physiological responses 268 

to environmental changes (Reichstein, Bahn, Mahecha, Kattge, & Baldocchi, 2014; Kunstler 269 

et al., 2016). Although the magnitude of IAVNEP depends on the spatial resolution (Marcolla, 270 

Rödenbeck, & Cescatti, 2017), we recommend future model benchmarking analyses to use not 271 

only the machine-learning-based data product (Bonan et al., 2018) but also the site-level 272 

measurements or indicators (i.e., ln (
𝑈

𝑅
) and β). 273 

4.4 Conclusions and further implications 274 

In summary, the findings in this study have some important implications for understanding the 275 

variation of NEP on the land. First, forest ecosystems have the largest annual NEP due to the 276 

largest ln (
𝑈

𝑅
) while croplands show the highest IAVNEP because of the highest β. Second, the 277 

spatial convergence of 
𝑈̅

𝑅̅
 suggests a tight linkage between plant growth and the non-growing 278 

season soil microbial activities (Xia, Chen, Piao, Ciais, Luo, & Wan, 2014; Zhao, Peichl, 279 

Ӧquist, & Nilsson, 2016). However, it remains unclear whether the inter-biome variation in 
𝑈̅

𝑅̅
 280 

is due to different plant-microbe interactions between biomes. Third, the within-site 281 

convergent but spatially varying β needs better understanding. Previous studies have shown 282 

that a rising standard deviation of ecosystem functions could indicate an impending ecological 283 

state transition (Carpenter, & Brock, 2006; Scheffer et al., 2009). Thus, a sudden shift of the 284 

β-value may be an important early-warning signal for the critical transition of IAVNEP of an 285 

ecosystem.  286 

In addition, considering the limited eddy-covariance sites with long-term observations, 287 

these findings need further validation once the longer time-series of measurements from more 288 

sites and vegetation types become available. Overall, this study highlights the asynchronous 289 

changes in NEP and IAVNEP over space on the land, and provides the 
𝑈

𝑅
 ratio and β as two 290 

simple local indicators for their spatial variations. These indicators could be helpful for 291 
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locating the persistent terrestrial C sinks in where the ln (
𝑈

𝑅
) ratio is high but the β is low. 292 

Their estimates based on observations are also valuable for benchmarking and improving the 293 

simulation of land-atmospheric C exchanges in Earth system models.  294 
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FIGURES 314 

Figure 1 Locations of carbon sinks (mean annual NEP) and their stability (IAVNEP) on the land. 315 

a, Spatial patterns of mean annual NEP and IAVNEP. b, Latitudinal patterns of mean annual 316 

NEP and IAVNEP. 317 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form 318 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges 319 

during net uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with 320 

at least 5 years of observations. b, Conceptual figure for the decomposition framework 321 

introduced in this study. Annual NEP can be quantitatively decomposed into the following 322 

indicators: 𝑁𝐸𝑃 = 𝑈 − 𝑅. c, Distribution of the explanation of 
𝑈

𝑅
 on temporal variability of 323 

NEP (R2) for FLUXNET sites. 324 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 325 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
)  across 326 

FLUXNET sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
) for different 327 

terrestrial biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show 328 

the distribution of parameter β for different terrestrial biomes. The number of site-years at 329 

each site is indicated with the size of the point.  330 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 331 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the 332 

spatial variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the 333 

point. 334 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 335 

product and the Community Land Model (CLM4.5). a, The variation of mean annual NEP and 336 

IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation in mean annual NEP: 337 

the standard deviation of mean annual NEP across sites; Variation in IAVNEP: the standard 338 

deviation of IAVNEP across sites. b, Representations of the local indicators for NEP in 339 

FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) and 𝛽 are 340 
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shown at the top and right. Significance of the relationship between annual NEP and ln (
𝑈

𝑅
) 341 

for each site is indicated by the circle: closed circles: P<0.05; open circles: P>0.05. Note that 342 

the modeled results are from the pixels extracted from the same locations of the flux tower 343 

sites. 344 
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Figure 1 Locations of carbon sinks (mean annual NEP) and their stability (IAVNEP) on the land. 347 

a, Spatial patterns of mean annual NEP and IAVNEP. b, Latitudinal patterns of mean annual 348 

NEP and IAVNEP. 349 

  350 

https://doi.org/10.5194/bg-2020-26
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

 351 

Figure 2 Relationship between annual NEP and 
𝑈

𝑅
 for 72 FLUXNET sites (of the form 352 

NEP = 𝛽 ∙ ln (
𝑈

𝑅
)). a, Dependence of annual NEP on the ratio between total CO2 exchanges 353 

during net uptake (U) and release (R) periods (i.e., 
𝑈

𝑅
). Each line represents one flux site with 354 

at least 5 years of data. b, Conceptual figure for the decomposition framework introduced in 355 

this study. Annual NEP can be quantitatively decomposed into the following indicators: 356 

𝑁𝐸𝑃 = 𝑈 − 𝑅. c, Distribution of the explanation of 
𝑈

𝑅
 on temporal variability of FLUXNET 357 

NEP (R2) for FLUXNET sites. 358 
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 360 

Figure 3 Contributions of the two indicators in explaining the spatial patterns of mean annual 361 

NEP and IAVNEP. a, The relationship between annual mean NEP and ln (
𝑈

𝑅
)  across 362 

FLUXNET sites (R2 = 0.65, P < 0.01). The insets show the variation of ln (
𝑈

𝑅
) for different 363 

terrestrial biomes. b, The explanation of β on IAVNEP (R2 = 0.39, P < 0.01). The insets show 364 

the distribution of parameter β for different terrestrial biomes. The number of site-years at 365 

each site is indicated with the size of the point.  366 
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 368 

Figure 4 The linear regression between 
𝑈

𝑅
 with 

𝐶𝑈𝑃

𝐶𝑅𝑃
 (R2 = 0.71, P < 0.01) and 

𝑈̅

𝑅̅
 (R2 = 0.09, 369 

P < 0.01) across sites. The insets show the relative contributions of each indicator to the 370 

spatial variation of 
𝑈

𝑅
. The number of site-years at each site is indicated with the size of the 371 

point. 372 
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 374 

Figure 5 Representations of the spatially varying NEP and its local indicators in FLUXCOM 375 

product and the Community Land Model (CLM4.5). a, The variation of mean annual NEP and 376 

IAVNEP derives from FLUXNET, FLUXCOM and CLM4.5. Variation in mean annual NEP: 377 

the standard deviation of mean annual NEP across sites; Variation in IAVNEP: the standard 378 

deviation of IAVNEP across sites. b, Representations of the local indicators for NEP in 379 

FLUXNET, FLUXCOM and CLM4.5. The corresponding distributions of ln (
𝑈

𝑅
) and 𝛽 are 380 

shown at the top and right. Significance of the relationship between annual NEP and 381 

ln (
𝑈

𝑅
) for each site is indicated by the circle: closed circles: P < 0.05; open circles: P > 0.05. 382 

Note that the modeled results are from the pixels extracted from the same locations of the flux 383 

tower sites. 384 

 385 
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