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Abstract. Controls on   

A key challenge for biological oceanography is relating the physiological mechanisms controlling phytoplankton 

growth to the spatial distribution of those phytoplankton. Physiological mechanisms are typically determined in two 

ways:often isolated by varying one driver of growth at a time, such as nutrient or light, in a controlled laboratory 25 

setting (producing what we call “intrinsic relationships) or by observing the emergence of relationships in the 

environment (”. We contrast these with the “apparent relationships). However, challenges remain when trying to 

take the intrinsic relationships found in a lab and scaling them up to the size of ecosystems (i.e., linking intrinsic 

relationships in the lab to apparent relationships in large ecosystems). We investigated whether machine learning 

(ML) techniques could help bridge this gap. ML methods have many benefits, including the ability to accurately 30 

predict outcomes in complex systems without prior knowledge.” which emerge in the environment in climatological 

data. Although previous studies have found that machine learning (ML) can find apparent relationships, there has 

yet to be a systematic study that has examinedexamining when and why these apparent relationships will diverge 

from the underlying intrinsic relationships. To investigate this question, we created found in the lab, and how and 
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why this may depend on the method applied. Here we conduct a proof-of-concept study with three scenarios: one 35 

where in which biomass is by construction a function of time-averaged phytoplankton growth rate. In the intrinsic 

and apparent relationships operate on the same timefirst scenario, the inputs and spatial scale, another model 

whereoutputs of the intrinsic and apparent relationships have differentvary over the same monthly timescales. In the 

second, the intrinsic relationships relate averages of drivers that vary on hourly timescales to biomass, but the same 

spatial scale,apparent relationships are sought between monthly averages of these inputs and finally one in which 40 

monthly averaged output. In the third scenario we apply ML to the output of an actual Earth System Model (ESM 

output.). Our results demonstrated that when intrinsic and apparent relationships are closely related and operate on 

the same spatial and temporal timescale, ML is Neural Network Ensembles (NNEs) were able to extract the intrinsic 

relationships when only provided information about the apparent relationships. However, when the, while co-

limitation and its inability to extrapolate, resulted in Random Forests (RF) diverging from the true response. When 45 

intrinsic and apparent relationships operated on different timescales (as little separation as hourly toversus 

daily), NNEs fed with apparent relationships in time-averaged data produced responses with the ML methodsright 

shape but underestimated the biomass in . This was because when the intrinsic relationships. This was largely 

attributable torelationship was nonlinear, the decline inresponse to a time-averaged input differed systematically 

from the variation of the measurements; the hourly time series had higher variability than the daily, weekly, and 50 

monthly-averaged time series.time-averaged response. Although the limitations found by MLNNEs were 

overestimated, they were able to produce more realistic shapes of the actual relationships compared to MLR. Future 

research may use this type of information to investigate which nutrients affect the biomass most when values of the 

other nutrients change.Multiple Linear Regression. Additionally, NNEs were able to model the interactions between 

predictors and their effects on biomass, allowing for a qualitative assessment of the co-limitation patterns and the 55 

nutrient causing the most limitation. Future research may be able to use this type of analysis for observational 

datasets and other ESMs to identify apparent relationships between biogeochemical variables (rather than 

spatiotemporal distributions only) and identify interactions and co-limitations without having to perform (or at least 

performing fewer) growth experiments in a lab. From our study, it appears that ML can extract useful information 

from ESM output and could likely do so for observational datasets, as well. 60 

1 Introduction 

Phytoplankton growth can be limited by multiple environmental factors (Moore et al., 2013) such as macronutrients, 

micronutrients, and light. Limiting macronutrients include nitrogen (Eppley et al., 1973; Ryther and Dunstan, 1971; 

Vince and Valiela, 1973), phosphorus (Downing et al., 1999), and silicate (Brzezinski and Nelson, 1995; Dugdale et 

al., 1995; Egge and Aksnes, 1992; Ku et al., 1995; Wong and Matear, 1999). Limiting micronutrients can include 65 

iron (Boyd et al., 2007; Martin, 1990; Martin and Fitzwater, 1988), zinc, and cobalt (Hassler et al., 2012). 

Additionally, limitations can interact with one another to produce colimitationsco-limitations (Saito et al., 2008). 

Examples of this include the possible interactions between the micronutrients iron, zinc, and cobalt (Hassler et al., 

2012) and the interaction between nitrogen and iron (Schoffman et al., 2016) such that local sources of nitrogen can 

have a strong influence on the amount of iron needed by phytoplankton (Maldonado and Price, 1996; Price et al., 70 
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1991; Wang and Dei, 2001). Spatial and temporal variations, such as mixed layer depth and temperature, affect such 

limitations, and have been related to phytoplankton biomass using different functional relationships (Longhurst et 

al., 1995).  

 

Limitations on phytoplankton growth are usually characterized in two ways – which we term intrinsic and apparent. 75 

Intrinsic relationships are those where the effect of one driver (nutrient/light) at a time is observed, while all others 

are held constant (often at levels where they are not limiting). An example of such intrinsic relationships is the 

Michaels-Menten growth rate curves that emerge from laboratory experiments (Eppley and Thomas, 1969). 

Apparent relationships are those which emerge in the observed environment. An example of apparent relationships 

isare those that emerge from satellite observations, which provide spatial distributions of phytoplankton on 80 

timescales (say a month) much longer than the phytoplankton doubling time, which can be compared against 

monthly distributions of nutrients. A significant challenge that remains is determining how intrinsic relationships 

found in the laboratory scale up to the apparent relationships observed at the ecosystem scale (i.e., scaling the small 

to the large). Differences may arise between the two because apparent relationships reflect both intrinsic growth and 

loss rates, which are near balance over the long monthly timescales usually considered in climatological analyses. 85 

Biomass concentrations may thus not reflect growth rates. Differences may also arise because different limitation 

factors may not vary independently.  

 

Earth System Models (ESMs) have proved valuable in linking intrinsic and apparent relationships. The intrinsic 

relationships are programmed into ESMs as equations that are run forward in time, and the output is typically 90 

provided as monthly- averaged fields. The output of these ESMs is then compared against observed fields, such as 

chlorophyll and nutrients, and can be analyzed to find apparent relationships between the two. If the ESM output is 

close to the observations we find in nature, we say that the ESM is performing well. However, as recently pointed 

out by Löptien and Dietze (2019), ESMs can trade-off biases in physical parameters with biases in biogeochemical 

parameters (i.e., they can arrive at the same answer for different reasons). Using two versions of the UVic 2.9 ESM, 95 

they showed that they could increase mixing (thus bringing more nutrients to the surface) while simultaneously 

allowing for this nutrient to be more efficiently cycled – producing similar distributions of surface properties. 

However, the carbon uptake and oxygen concentrations predicted by the two models diverged under climate change. 

Similarly, Sarmiento et al. (2004) showed that physical climate models would be expected to produce different 

spatial distributions of physical biomes due to differences in patterns of upwelling and downwelling, as well as the 100 

annual cycle of sea ice. These differences would then be expected to be reflected in differences in biogeochemical 

cycling, independent of differences in the biological models. These studies highlight the importance of constraining 

not just individual biogeochemical fields, but also their relationships with each other. What is less clear is: 1. Can 

robust relationships be found? 2. If so, what methods are most skillful in finding them? 3. How do you interpret the 

apparent relationships that emerge when they diverge from the intrinsic relationships we expect?  105 
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Recently,To help with constraining these fields, some researchers have turned to machine learning (ML) to help in 

uncovering the dynamics of ESMs. ML istechniques are capable of fitting a model to a dataset without any prior 

knowledge of the system and without any of the biases that may come from researchers about what processes are 

most important. As applied to ESMs, ML has mostly been used to constrain physics parameterizations, such as 110 

longwave radiation (Belochitski et al., 2011; Chevallier et al., 1998) and atmospheric convection (Brenowitz and 

Bretherton, 2018; Gentine et al., 2018; Krasnopolsky et al., 2010, 2013; O’Gorman and Dwyer, 2018; Rasp et al., 

2018).  

 

With regardsregard to phytoplankton, ML has not been explicitly applied within ESMs but has been used on 115 

phytoplankton observations (Bourel et al., 2017; Flombaum et al., 2020; Kruk and Segura, 2012; Mattei et al., 2018; 

Olden, 2000; Rivero-Calle et al., 2015; Scardi, 1996, 2001; Scardi and Harding, 1999) and has used ESM output as 

input for ana ML model trained on phytoplankton observations (Flombaum et al., 2020). Rivero-Calle et al. (2015) 

used random forest (RF) to identify the drivers of coccolithophore abundance in the North Atlantic through feature 

importance measures and partial dependence plots. The authors were able to find an apparent relationship between 120 

coccolithophore abundance and environmental levels of CO2, which was consistent with intrinsic relationships 

between coccolithophore growth rates and ambient CO2 reported from 41 laboratory studies. They also found 

consistency between the apparent and intrinsic relationships between coccolithophores and temperature. While they 

were able to find links between particular apparent relationships found with the RFs and intrinsic relationships 

between laboratory studies, it remains unclear when and why this link breaks. 125 

 

ML has been used to examine apparent relationships of phytoplankton in the environment (Flombaum et al., 2020; 

Rivero-Calle et al., 2015; Scardi, 1996, 2001) and it is reasonable to assume that ML could find intrinsic 

relationships when provided a new independent dataset from laboratory growth experiments. However, it has yet to 

be determined under what circumstances the apparent relationships captured by ML are no longer equalhave 130 

significantly different functional forms to the intrinsic relationships that actually control phytoplankton growth. In 

this paper, we identify two drivers of such divergence. The first is colimitation that limits the biological responses 

actually found in the ocean, which causes non-parametric ML methods to produce apparently non-physical results. 

The second is climatological averaging of the input and output variables, which can distort these relationships in the 

presence of non-linearity. 135 

 

To investigate when and why the link between intrinsic and apparent relationships break, we appliedtry to answer 

two main questions in this paper: 
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1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are 

most skillful in finding them? 140 

2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic 

relationships we expect? to three scenarios. For 

 

In addressing the first, we question, we first needed to demonstrate that we had a ML method that would correctly 

extract intrinsic relationships from apparent relationships. We constructed a simple model in which the biomass is 145 

directly proportional to the time-smoothed growth rate. In this scenario, intrinsic and apparent relationships operated 

on the same time and spatial scale and were only separated by a scaling factor, but in which the environmental 

drivers of phytoplankton growth had realistic inter-relationships. In Having a better handle on the results from the 

first question, we were able to move onto the second, we  question where we looked at where the link between 

intrinsic and apparent relationships diverged. We modified the first scenario to allowso that the intrinsic and 150 

apparent relationships to operate on different timescales – allowing us to evaluate the impact of use a time-averaging 

onaveraged input (similar to what would be used in observations), but the retrieval of intrinsic relationships. In the 

third operate by smoothing growth rates derived from hourly input. Finally, we took theconduct a proof-of-concept 

study with real output from an established biogeochemical modelthe ESM used to generate the inputs for scenarios 1 

and 2, in which the biomass is a non-linearnonlinear function of growth rate to demonstrate the potential information 155 

that can be extracted from ESM output using MLthe time-smoothed growth rate. 

 

2 Methods 

The main points of each Scenario are summarized in Table 1 including information on the predictors, target variable, 

equations used to calculate biomass, source file, and scenario description. For each of the three scenarios, three ML 160 

methods were used (Multiple Linear Regression [MLR], Random Forests [RF], and Neural Network Ensembles 

[NNE]). 

 

2.1 Scenario 1: IntrinsicClosely related intrinsic and apparent relationships on the same timescale 

In the first scenario, we wanted to determine how well different ML methods could extract intrinsic relationships 165 

when only provided information on the apparent relationships and when the intrinsic and apparent relationships were 

operating on the same timescale. In this scenario, the apparent relationships between predictors and biomass were 

simply the result of multiplying the intrinsic relationships between predictors and biomassgrowth rate by a scaling 

constant. 

 170 
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We designed a simple phytoplankton system in which biomass was a function of micronutrient, macronutrient, and 

light limitations based on realistic inter-relationships between limitations (Eq. 1):  

B = S∗ × min(𝐿𝑚𝑖𝑐𝑟𝑜 , 𝐿𝑚𝑎𝑐𝑟𝑜) × 𝐿𝐼𝑟𝑟        (1) 

B = S∗ × min(𝐿𝑚𝑖𝑐𝑟𝑜 , 𝐿𝑚𝑎𝑐𝑟𝑜) × 𝐿𝐼𝑟𝑟 (1) 

where B is the value for biomass (mol kg-1), S∗ is a scaling factor, and Lmicro,macro,irr are the limitation terms for 

micronutrient (micro), dissolved macronutrient (macro), and light (irradiance; irr), respectively. The scaling factor 175 

(1.9x10-6 mol kg-1) was used, so the resulting biomass calculation was in units of mol kg-1. While simplistic, this is 

actually the steady-state solution of a simple phytoplankton-zooplankton system when grazing scales as the product 

of phytoplankton and zooplankton concentrations, and zooplankton mortality is quadratic in the zooplankton 

concentration. 

 180 

Each of the nutrient limitation terms (L𝐿𝑚𝑖𝑐𝑟𝑜,𝑚𝑎𝑐𝑟𝑜  in Eq. 1) were functions of Michaelis-Menten growth curves 

(Eq. 2): 

𝐿𝑁 =  
N

KN+N
           (2) 

𝐿𝑁 =  
N

KN + N
 (2) 

where LN is the limitation term for the respective factor, N is the concentration of the nutrient/intensity of the light, 

and KN is the half-saturation constant specific to each factor. limitation. The light limitation was given by (Eq. 3): 185 

𝐿𝐼𝑟𝑟 =  1 − 𝑒
−(

𝐼𝑟𝑟
𝐾𝐼𝑟𝑟

)
 (3) 

where LIrr is the light limitation term, Irr is the light intensity, and KIrr is the light limitation constant. In terms of our 

nomenclature, Eq. 1 defines the apparent relationship between nutrients, light, and biomass, such as might be found 

in the environment, while Eq. 2 isand 3 are the intrinsic relationshiprelationships between nutrientnutrients/light and 

growth rate, such as might be found in the laboratory or coded in an ESM.  

 190 

For the concentrations of each factor (N in Eq. 2), we took the monthly- averaged value for every lat/lon pair (i.e., 

12 monthly values for each lat/lon pair) from the Earth System Model ESM2Mc (Galbraith et al., 2011). ESM2Mc is 

a fully coupled atmosphere, ocean, sea ice model into which is embedded in an ocean biogeochemical cycling 

module. Known as BLING (Biogeochemistry with Light, Iron, Nutrients, and Gases; Galbraith et al., 2010), this 

module carries a macronutrient, a micronutrient, and light as predictive variables and uses them to predict biomass 195 

using a highly parameterized ecosystem (described in more detail below).  The half-saturation coefficients (KN in 
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Eq. 2) for the macronutrient and micronutrient were also borrowed from BLING with values of 1x10-7 mol kg-1 and 

2x10-10 mol kg-1, respectively. The half-saturationlight-limitation coefficient for lightKIrr was set at 34.3 W m-2
, 

which was the global mean for the light limitation factor in the ESM2Mc simulation used later in this paper. 

 200 

The final dataset consisted of three input/predictor variables and one responsetarget term with a total of 77,328 

“observations.”. The input variables given to each of three ML methods (Multiple Linear Regression, [MLR], 

Random Forests, [RF], and Neural Network Ensembles, [NNE], described in more detail below) were the 

concentrations (not the limitation terms) for the micronutrient, macronutrient, and light. The responsetarget variable 

was the biomass we calculated from Eq. 1 and 2. 1-3. The same three ML methods were applied to all three 205 

Scenarios. 

 

The dataset was then randomly split into training and testing subsetsdatasets, with 60% of the observations going to 

the training subsetdataset and the remainder going to the testing subsetdataset. This provided a convenientstandard 

way to test the generalizability of each ML method by presenting them with “new” observations from the test 210 

subsetdataset and ensuring the models did not overfit the data. The input and output values for the training 

subsetdataset were then used to train a model for each ML method. Once each method was trained, we provided the 

trained models with the input values of the testing subsetdataset to acquire their respective predictions. These 

predictions were then compared to the actual output values of the test subsetdataset. To assess model performance, 

we calculated the coefficient of determination (R2), the mean squared error (MSE),) and the root mean squared error 215 

(RMSE) between the ML predictions and the actual output values for the training and testing subsetsdatasets. 

 

Following this, a sensitivity analysis was performed on the trained ML models. We allowed one predictor to vary 

across its min-max range while holding the other two input variables at their 25th, 50th (median), and 75thspecific 

percentile values. This was repeated for each predictor. This allowed us to isolate the impact of each predictor on the 220 

biomass – creating “cross-sections” of the dataset where only one variable changes.changed at a time. For 

comparison, these values were also run through Eq. 1 and 2-3 to calculate the “true” response of how the simple 

phytoplankton model would behave. This allowed us to view which of the models most closely reproduced the 

underlying intrinsic relationships of the simple phytoplankton model.  

 225 

For our main sensitivity analyses, we chose to hold the predictors that were not being varied at their respective 25th, 

50th, and 75th percentile values. We chose to use these particular percentile values for several reasons: 

1. It allowed us to avoid the extreme percentiles (1st and 99th). As we approach these extremes, the uncertainty 

in the predictions grows quite rapidly because of the lack of training samples within that domain space of 
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the dataset. For example, there are no observations which satisfy the conditions of being in the 99 th 230 

percentile of two variables simultaneously. This extreme distance outside of the training domain generally 

leads to standard deviations in predictions that are too large to provide a substantial level of certainty about 

the ML model’s predictions. 

2. Similar to the idea that we can avoid the extremes, we also chose these values as they are quite typical 

values for the edges of box plots. Generally, values within the range of the 25th to 75th percentiles are not 235 

considered outliers. Along those lines, we wanted to examine the conditions in a domain space that are 

likely to be found in actual observational datasets, with the reasoning that if there was high uncertainty in 

the ML predictions at these more moderate levels, there would be even higher uncertainty towards the 

extremes. 

 240 

This method of sensitivity analysis is in contrast tocontrasts with partial dependence plots (PDPs), which are 

commonly used in ML visualization. PDPs show the marginal effect that predictors have on the outcome. They 

consider every combination of the values for a predictor of interest and all values of the other predictors, essentially 

covering all combinations of the entire data spacepredictors. The predictions of a model are then averaged and show 

the marginal effect of a predictor on the outcome – creating responses moderately comparable to “averaged cross-245 

sections.”. Because of this averaged response, PDPs may hide significant effects from subgroups within a dataset. A 

sensitivity analysis avoids this disadvantage by allowing separate visualization of subgroup relationships. For 

example, if macronutrient is the primary limiter over half of the domain, but not limiting at all over the other half, 

PDPs of the biomass dependence on micronutrient will reflect this macronutrient limitation, while a sensitivity 

analysis at the 75th percentile of macronutrient will not. 250 

 

Using the predictions produced from the sensitivity analyses, we also computed the half-saturation constants for 

each curve. Using the Matlab function “fitnlm,” theA limitation of observational data is the frequency of sampling, 

which limits the ability to estimate half-saturation coefficients without performing growth experiments in a lab. 

Calculating the half-saturation constants from the sensitivity analysis predictions allowed us to investigate if ML 255 

methods could provide a quantitative estimate from the raw observational data. The half-saturation constants were 

determined by fitting a non-linear regression model to each sensitivity analysis curve matching the form of a 

Michaelis-Menten curve (Eq. 34): 

𝐵 =
𝛼1𝑁

𝛼2+𝑁
           (3) 

𝐵 =
𝛼1𝑁

𝛼2 + 𝑁
 (4) 

where B corresponds to the biomass predictions from the sensitivity analyses, N represents the nutrient 260 

concentrations from the sensitivity analyses, and α1 and α2 are the constants that are being estimated by the non-
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linear regression model. The constant α2 was taken as the estimation of the half-saturation coefficient for each 

sensitivity analysis curve. 

 

Since co-limitations can affect the calculation of half-saturation coefficients, we also created interaction plots. This 265 

is useful because trying to calculate the half-saturation constant based on a nutrient curve that is experiencing 

limitation by another nutrient could cause the calculation to be underestimated. The interaction plots are a form of 

sensitivity analysis where two predictor variables are varied across their min-max range, rather than one. This 

produces a mesh of predictor pairs covering the range of possible combinations of two predictors. With these 

interaction plots, it was possible to visualize the interaction of two variables and their combined effect on the target 270 

variable. For each pair of predictors that were varying, we set the other predictor that was not varying to its 50 th 

percentile (median) value. As with the sensitivity analysis for single predictors, these predictor values were run 

through Eq. 1-3 so a comparison could be made as to which method most closely reproduced the true variable 

interactions.  

 275 

2.2 Scenario 2: IntrinsicDistantly related intrinsic and apparent relationships on different timescales 

In Scenario 1, the intrinsic relationships between environmental conditions and growth rate and apparent 

relationships between environmental conditions and biomass differed only by a scale factor and operated at the same 

time and spatial scale. However, intimescale. In reality, input variables (such as light) vary on hourly time 

scalestimescales so that growth rates vary on similar timescales. Biomass reflects the average of this growth rate 280 

over many hours-days, while satellite observations and ESM model output are often only available on monthly- 

averaged timescales. So the reality is that even if a system is controlled by intrinsic relationships, the apparent 

relationships gained from climatological variables on long timescales will not reproduce these intrinsic relationships 

since the average light (irradiance) limitation is not equal to the limitation given the averaged light value (Eq. 45). 

𝐿𝐼𝑟𝑟
̅̅ ̅̅ ̅ =

𝐼𝑟𝑟

𝐾𝐼𝑟𝑟+𝐼𝑟𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅
  ≠

𝐼𝑟𝑟 ̅̅ ̅̅ ̅

𝐾𝐼𝑟𝑟+𝐼𝑟𝑟̅̅̅̅̅
          (4) 285 

𝐿𝐼𝑟𝑟
̅̅ ̅̅ ̅ = (1 − 𝑒

−(
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟
)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  ≠ 1 − 𝑒

−(
𝐼𝑟𝑟̅̅̅̅̅

𝐾𝐼𝑟𝑟
)
 (5) 

where the overbar denotes a time-average, and Irr stands for irradiance (light).  WeFor Scenario 2, we wanted to 

investigate how such time averaging biased our estimation of the intrinsic relationships from the apparent ones; i.e., 

how does the link between the intrinsic and apparent relationships change with different amounts of averaging over 

time? 

 290 
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For the short timescale intrinsic relationships, we took daily inputs for the three predictor variables for one year from 

the BLINGESM2Mc model. We further reduced the timescale from days to hours to introduce daily variability for 

the irradiance variable relative to the latitude, longitude, and time of year (Eq. 56).  

IrrInt(t) =
12πIrrdaily

𝑇𝐷𝑎𝑦
sin (

𝜋(𝑡−𝑡𝑆𝑢𝑛𝑟𝑖𝑠𝑒)

𝑇𝐷𝑎𝑦
)  when 0 < 𝑡 < 𝑇𝐷𝑎𝑦       (5) 

IrrInt(t) =
12πIrrdaily

𝑇𝐷𝑎𝑦

sin (
𝜋(𝑡 − 𝑡𝑆𝑢𝑛𝑟𝑖𝑠𝑒)

𝑇𝐷𝑎𝑦

)  when 0 < 𝑡 < 𝑇𝐷𝑎𝑦 (6) 

where IrrInt is the hourly interpolated value of irradiance, Irrdaily is the daily-mean value of irradiance, t is the hour of 295 

the day being interpolated, tSunrise is the hour of sunrise, and TDay is the total length of the day. The resulting curve 

preserves the day -to -day variation in the daily mean irradiance due to clouds butand allows a realistic variation 

over the course of the day. The hourly values for the micronutrient and macronutrient were assigned using a 

standard interpolation between each of the daily values. Thus, light was the only predictor variable that varied 

hourly. These hourly interpolated values were then used to calculate the an “hourly biomass” from Eq. 1 and 2-3. 300 

Note that we are not claiming thereal-world biomass itself would be zero at night but assume that on a long enough 

timescale, it should approach the average of the hourly biomass.  

 

To simulate apparent relationships, we smoothed the hourly values for both biomass and the input variables into 

daily, weekly, and monthly averages for each lat/lon point. To reiterate, the intrinsic and apparent relationships in 305 

Scenario 2 differed in timescales, but not in spatial scales. Each dataset was then analyzed following steps similar to 

those outlined in Scenario 1; constructing training and testing subsetsdatasets, using the same variables for inputas 

inputs to predict the output (biomass), and using the same ML methods. To assess each method’s performance, we 

calculated the R2 value, MSE, and the RMSE between the predictions and observations for the training and testing 

subsetsdatasets. We also performed a sensitivity analysis and, calculated half-saturation constants, and created 310 

interaction plots similar to those described above. 

 

2.3 Scenario 3: BLING biogeochemical model 

As a demonstration of their capabilities, the ML methods were also applied directly to monthly averaged output 

from the BLING model itself using the same predictors in Scenarios 1 and 2, but using the biomass calculated from 315 

the actual BLING model. As described in Galbraith et al. (2010), BLING is a biogeochemical model where biomass 

is diagnosed as a non-linear function of the growth rate smoothed in time. The growth rates, in turn, have the same 

functional form as in Scenarios 1 and 2, namely (Eq. 7): 
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μ = min (
𝑁𝑚𝑖𝑐𝑟𝑜

𝐾𝑚𝑖𝑐𝑟𝑜+𝑁𝑚𝑖𝑐𝑟𝑜
,

𝑁𝑚𝑎𝑐𝑟𝑜

𝐾𝑚𝑎𝑐𝑟𝑜+𝑁𝑚𝑎𝑐𝑟𝑜
) × (1 − exp (−

𝐼𝑟𝑟

𝐼𝑟𝑟𝐾
))      (6) 

μ = 𝜇0 ∗ exp(𝑘 ∗ 𝑇) ∗ min (
𝑁𝑚𝑖𝑐𝑟𝑜

𝐾𝑚𝑖𝑐𝑟𝑜 + 𝑁𝑚𝑖𝑐𝑟𝑜

,
𝑁𝑚𝑎𝑐𝑟𝑜

𝐾𝑚𝑎𝑐𝑟𝑜 + 𝑁𝑚𝑎𝑐𝑟𝑜

) × (1 − exp (−
𝐼𝑟𝑟

𝐼𝑟𝑟𝐾

)) (7) 

where the first exponential parameterizes temperature-dependent growth following Eppley (1972), 𝑁𝑚𝑎𝑐𝑟𝑜,𝑚𝑖𝑐𝑟𝑜 are 320 

just the samethe macronutrient and micronutrient concentrations of nutrients as in Scenarios 1 and 2, 

𝐾𝑚𝑎𝑐𝑟𝑜,𝑚𝑖𝑐𝑟𝑜are the half-saturation coefficients for the macronutrient and micronutrient, Irr is the irradiance, and 

𝐼𝑟𝑟𝑘 is a scaling for light limitation – very similar to what was done in Eq. 1 and 2 with a slight. An important 

difference in the handling of light (note that the Michaelis-Menten form of light limitation in the previous scenarios 

can be obtained by expanding 
1

exp(
𝐼𝑟𝑟

𝐼𝑟𝑟𝑘
)
 as a two-term Taylor series and that in this case 𝐾𝐼𝑟𝑟 = 𝐼𝑟𝑟𝑘). A more 325 

substantive difference(to which we will return later in the manuscript) is that the light limitation term is calculated 

using a variable Chl:C ratio following the theory of Geider et al. (1997). The variation of the Chl:C ratio would 

correspond to a 𝐾𝐼𝑟𝑟 in Scenarios 1 and 2 which adjusts in response to both changes in irradiance (if nutrient is low) 

or changes in nutrient (if irradiance is high)), as well as changes in temperature. Given the resulting growth rate 𝜇, 

the total biomass then asymptotes towards (Eq. 8) 330 

𝐵 = (
𝜇̃

𝜆
+

𝜇̃3

𝜆3) 𝑆∗           (7) 

𝐵 = (
𝜇

𝜆
+

𝜇3

𝜆3
) 𝑆∗ (8) 

where 𝜆 = 𝜆0 exp(𝑘 ∗ 𝑇) is a grazing rate, the tilde denotes an average over a few days and 𝑆∗ is just the biomass 

constant that we saw in the previous two scenarios. Note that because grazing and growth have the same temperature 

dependence, the biomass then ends up depending on the nutrients and light in a manner very similar to Scenarios 1 

and 2. Growth rates and biomass are then combined to drive the uptake and water-column cycling of micronutrient 335 

and macronutrient within a coarse-resolution version of the GFDL ESM2M fully coupled model (Galbraith et al., 

2011), denoted as ESM2Mc. 

 

As described in Galbraith et al. (2011) and Bahl et al. (2019), ESM2Mc produces relatively realistic spatial 

distributions of nutrients, oxygen, and radiocarbon. Although simpler in its configuration relative to models such as 340 

TOPAZ (Tracers of Ocean Productivity with Allometric Zooplankton; Dunne et al., 2013), it has been demonstrated 

that in a higher-resolution physical model BLING produces simulations of mean nutrients, anthropogenic carbon 

uptake, and oceanic deoxygenation under global warming that are almost identical to such complicated models 

(Galbraith et al., 2015). 

 345 
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We chose to use BLING for three main reasons. The first is that we know it produces robust apparent relationships 

between nutrients, light, and biomass by construction – although these relationships can be relatively complicated – 

particularly insofar as iron and light colimitationco-limitation is involved (Galbraith et al., 2010). As such, it 

represents a reasonable challenge for ana ML method to recover such non-linear relationships. The second is that we 

know how these relationships are determined by the underlying intrinsic relationships between limiting factors and 350 

growth. Models with more complicated ecosystems (including explicit zooplankton and grazing interactions 

between functional groups) may exhibit more complicated time-dependence that would confuse such a 

straightforward linkage between phytoplankton growth limitation and biomass. The third is that despite its 

simplicity, the model has relatively realistic annual mean distributions of surface nutrients, iron, and chlorophyll, 

and under global warming, it simulates changes in oxygen and anthropogenic carbon uptake that are similar to much 355 

more complicated ESMs (Galbraith et al., 2015).  

 

2.4 ML Algorithms 

We chose to use Random Forests (RFs) and Neural Network Ensembles (NNEs) in this manuscript because they are 

two of the more popular ML algorithms..  Although other ML methods exist, the list of possible choices is rather 360 

long. With the main purpose of this paper being to examine the link between intrinsic and apparent relationships on 

different time and spatial scales, itIt was decided that the number of ML algorithms being compared would be 

limited to RFs and NNEs, given their popularity in studying ecological systems. The results of the ML methods 

were compared against Additionally, we chose to compare the performance of the ML techniques to the 

performance of Multiple Linear Regression (MLR) to demonstrate the better performance of ML as compared to 365 

more conventional empirical methods. Although the stronger performance of ML may seem clear to experienced 

ML experts, it was not immediately evident to), which allows us since we previously had little experience with ML. 

Therefore, MLR is included here for demonstrative purposes for less experienced ML users. 

 

to quantify the importance of nonlinearity. It should be noted that we are not trying to suggest that MLR is always 370 

ineffective for studying ecological systems. MLR is a very useful and informative approach for studying linear 

relationships within marine ecological systems (Chase et al., 2007; Harding et al., 2015; Kruk et al., 2011). 

However, we highly encourage our readers to try ML as it can provide insight into the non-linear portions of a 

dataset.  

 375 

2.4.1 Random Forests 

RFs are an ensemble ML method utilizing a large number ofmany decision trees to turn “weak learners” into a 

single “strong learner” by averaging multiple outputs (Breiman, 2001). In general, RFs work by sampling (with 

replacement) about two-thirds of a dataset and constructing a decision tree. This process is known as bootstrap 



 

13 

 

aggregation. At each split, the random forest takes a random subset of the predictors and examines which variable 380 

can be used to split a given set of points into two maximally distinct groups. This use of random predictor subsets 

helps to ensure the model is not overfitting the data. The process of splitting the data is repeated until an optimal tree 

is constructed or until the stopping criteria are met, such as a set number of observations in every branch (then called 

a leaf / final node). The process of constructing a tree is then repeated a specified number of times, which results in a 

group (i.e., “forest”) of decision trees. Random forests can also be used to construct regression trees in which a new 385 

set of observations traverse each decision tree with its associated predictor values and the result from each tree is 

aggregated into an averaged value. 

 

Here, we used the same parameters for RF in the three scenarios to allow for a direct comparison between the 

scenarios and to minimize the possible avenues for errors. Each RF scenario was implemented using the TreeBagger 390 

function in MATLABMatlab 2019b, where 500 decision trees were constructed with each terminal node resulting in 

a minimum of five observations per node. An optimization was performed to decide the number of decision trees 

that minimized the error while still having a relatively short runtime of only several minutes. For additional details 

about the construction and training of the RFs, please see Appendix BFor reproducible results, the random number 

generator was set to “twister” with an integer of “123”. Any remaining options were left to their default values in the 395 

TreeBagger function.  

 

2.4.2 Neural NetworksNetwork Ensembles 

Neural networks (NNs) are another type of ML that has become increasingly popular in ecological applications 

(Flombaum et al., 2020; Franceschini et al., 2019; Guégan et al., 1998; Lek et al., 1996a, 1996b; Mattei et al., 2018; 400 

Olden, 2000; Özesmi and Özesmi, 1999; Scardi, 1996, 2001; Scardi and Harding, 1999). Scardi (1996) used NNs to 

model phytoplankton primary production in the Chesapeake and Delaware Bays. Lek et al. (1996a1996b) 

demonstrated the ability of NNs to explain trout abundance using several environmental variables through the use of 

the “profiling” method, a type of variable importance metric that averages the results of multiple sensitivity analyses 

to acquire the importance of each variable across its range of values. 405 

 

Feed-forward NNs consist of nodes connected by synapses (or weights) and biases with one input layer, (usually) at 

least one hidden layer, and one output layer. The nodes of the input layer correspond to the input values of the 

predictor variables, and the hidden and output layer nodes each contain an “activation function.”. Each node from 

one layer is connected to all other nodes before and after it. The values from the input layer are transformed by the 410 

weights and biases connecting the input layer to the hidden layer, put through the activation function of the hidden 

layer, modified by the weights and biases connecting the hidden layer to the output layer, and finally entered into the 

final activation function of the output node. 
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The output (predictions) from this forward pass through the network is compared to the actual values, and the error 415 

is calculated. This error is then used to update the weights with a backward pass through the network using 

backpropagation. The process is repeated a specified number of times or until some optimal stopping criteria are 

met, such as error minimization or validation checks where the error has increased a specified number of times. For 

a more in-depth discussion of NNs, see Schmidhuber (2015). 

 420 

For this particular study, we use neural network ensembles (NNEs), which are a collection of NNs (each of which 

uses a subsample of the data) whose predictions are averaged into a single prediction. It has been demonstrated that 

NNEs can outperform single NNs and increase the performance of a model by reducing the generalization error 

(Hansen and Salamon, 1990). 

 425 

To minimize the differences between scenarios, we used the same framework for the NNs in each scenario. Each 

NN consisted of three input nodes (one for each of the predictor variables), 25 nodes in the hidden layer, and one 

output node. The activation function within the hidden nodes was a hyperbolic tangent sigmoid function, and the 

activation function within the output node used a linear function. The stopping criteria for each NN was set as a 

validation check, such that the training stopped when the error between the predictions and observations increased 430 

for six consecutive epochs. An optimization was performed to decide the number of nodes in the hidden layer that 

minimized the error while maintaining a short training time. Additionally,A sensitivity analyses wereanalysis was 

also performed using different activation functions to ensure the choice of activation function had minimal effect on 

the outcome and apparent relationships found by the NNEs. Furthermore, another sensitivity analysis was performed 

to ensure additional hidden layers were not necessary. The details of the optimization and sensitivity analyses to 435 

determine the NN parameters can be found in Appendix B. 

 

Each NNE scenario used the feedforwardnet function in MATLAB 2019b. Any options not previously specified 

remained at their default values in the feedforwardnet function. The NNEs contained ten individual NNs for each 

scenario. For reproducibility, the random number generator was set to “twister,” and the random number seed was 440 

set to the respective number of its NN (i.e., 1, 2, 3, up to 10). 

 

Each NNE consisted of ten individual NNs, and each NN was trained using the feedforwardnet function in Matlab 

2019b. 

 445 
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Each variable was scaled between -1 and 1 based on its respective maximum and minimum (Eq. 9). 

𝑉𝑆 =  
𝑚𝑎𝑥𝑆 − 𝑚𝑖𝑛𝑆

𝑚𝑎𝑥𝑈 − 𝑚𝑖𝑛 𝑈
 (𝑉𝑈 − 𝑚𝑖𝑛𝑈) + 𝑚𝑖𝑛𝑆 (9) 

where V is the value of the variable being scaled, S stands for the scaled value, and U represents the unscaled value. 

This step ensures that no values are too close to the limits of the hyperbolic tangent sigmoid activation function, 

which would significantly increase the training time of each NN. These scalings were also applied to the RF and 

MLR methods for consistency between methods and the scaling did not affect the results of either method (results 450 

not shown).Additionally, this normalization ensures that each predictor falls within a similar range, so more weight 

is not provided to variables with larger ranges. Although scaling is not necessary for RF and MLR, the scalings used 

for the NNE were still applied to each method for consistency. The results presented in this paper were then 

transformed back to their original scales to avoid confusion from scaling.  (Eq. 10). 

 455 

3 Results 

3.1 Scenario 1: Intrinsic and apparent relationships on 

𝑉𝑈 =  
𝑚𝑎𝑥𝑈 − 𝑚𝑖𝑛𝑈

𝑚𝑎𝑥𝑆 − 𝑚𝑖𝑛 𝑆
 (𝑉𝑆 − 𝑚𝑖𝑛𝑆) + 𝑚𝑖𝑛𝑈 (10) 

Where the letters represent the same timescale 

In Scenario 1, the RF and NNE both outperformed the MLR as demonstrated by higher R2 values, lower MSE, and 

lower RMSE (Table 1). The decreased performance of the MLR is not inherently surprising, given the non-linearity 460 

of the underlying model, but it does demonstrate that the range of nutrients and light produced as inputs by 

ESM2Mc is capable of producing a non-linear response. Additionally, each method showed similar performances 

between the training and testing subsets suggesting adequate capture of the model dynamics in both subsets.  

 

From the spatial distributions of the true response and the predictions from each method, it can be observed that the 465 

RF and NNE showed the closest agreement with the true response (Fig. 1). Although MLR was able to reproduce 

the general trend of the highest biomass in the low latitudes and low biomass in the high latitudes, it was not able to 

predict higher biomass values.  

 

In addition to examining whether the different ML methods got the “right” answer, we also interrogated these 470 

methods to look at how different predictors contributed to the answer, and whether these contributions matched the 

intrinsic relationships between the predictors and growth rate as we had put into the model. The MLR (red dashed 
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lines) shows very little response to changes in macronutrient (left column), an unrealistic negative response to 

increases in micronutrient (central column), and a reasonable (albeit linear) match to the light response (right 

column).  By contrast, the response to any predictor for the NNE (green dashed lines) showed agreement with the 475 

true response of the model (black lines) in all circumstances insofar as the true response was always within the 

standard deviation of the NNE predictions. The RF prediction of the response to a given predictor (blue dashed 

lines) showed agreement with the true response when the other predictors are fixed at the lower percentiles (top two 

rows) but began deviating in the higher percentiles. 

 480 

When we computed an “effective” half-saturation for the nutrient curves in the top row of Fig. 2, we got values for 

𝐾𝑁 that were far lower than the actual ones specified in the model (Table 4). The “effective” half-saturation of when 

other predictors are held at their 25th percentile for the micro- and macronutrient were underestimated by one and 

two orders of magnitude, respectively. It was only at the higher percentiles that the micronutrient “effective” half-

saturation was adequately captured when the macronutrient was not limiting. Furthermore, the “effective” half-485 

saturation of the macronutrient was not captured even when the other variables were held at their 75th percentiles 

because the 75th percentile of the micronutrient still limited growth. 

 

3.2 Scenario 2: Intrinsic and apparent relationships on different timescales 

As in Scenario 1, the RF and NNE outperformed the MLR based on the performance metrics for the daily, weekly, 490 

and monthly time-averaged scenarios (Table 2). The comparable performances between the training and testing 

subsets suggest a sufficient sampling of the data for each method to capture the dynamics of the underlying model. 

 

Examining the monthly apparent relationships found for each method and comparing them to the true intrinsic 

relationships shows that none of the methods were able to reproduce the true intrinsic relationships, with one 495 

exception being the 25th percentile plot of the micronutrient (Fig. 3). This result was consistent across the different 

timescales, and the sensitivity analysis showed little difference in the predicted relationships between the daily, 

weekly, and monthly averaged timescales for the NNEs (Fig. 4). Interestingly, the NNE and RF appeared to 

asymptote near the proper concentration for the micro- and macronutrients (Fig. 3). For example, the true response 

of the macronutrient has a sharp asymptote at low concentrations, and the NNE and RF appear to mimic this 500 

asymptote, even though the predicted biomass concentration is lower than the true biomass (Fig. 3). Furthermore, 

the ML methods were able to mimic the non-linearity of the system, which is an important result regardless.  
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When the “effective” half-saturation constants were computed for the daily, weekly, and monthly NNEs, many of 

the light and micronutrient half-saturations were of the same magnitude as the true value (Table 4). This is an 505 

interesting result given that the predicted biomass concentrations were much lower than the true response.  

 

3.3 Scenario 3: BLING biogeochemical model 

When run in the full ESM, the BLING biogeochemistry does end up producing surface biomass, which is a strong 

function of the growth rate (Fig. 6a) with a non-linear relationship as in Eq. 7. As the growth rate, in turn, is given 510 

by Eq. 6, we can also examine how the monthly mean limitation terms for nutrient and light compare with the means 

given by computing the limitations with monthly mean values of nutrients, 𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘. As shown in Fig. 6b, the 

nutrient limitation is relatively well captured using the monthly mean values, although there is a tendency for the 

monthly means to underestimate moderate values of nutrient limitation. Further analysis shows that this is due to the 

interaction between micro- and macro- nutrient limitation – with the average of the minimum limitation being 515 

somewhat higher than the minimum of the average limitation. However, using the actual monthly mean values of 

𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘 (Fig. 6c) causes the light limitation to be systematically biased high9. 

 

When MLR and ML were applied to the output of one of the BLING simulations, the RF and NNE again 

outperformed the MLR in all of the performance metrics for the training and testing subsets (Table 3 Results and 3). 520 

The RF performed slightly better than the NNE (R2 of 0.973 vs. 0.942) on the training subset, but this difference was 

lessened in the testing subset (R2 of 0.945 vs. 0.939). Although there were slight differences in the RF performance 

between the training and testing subsets, the values of the performance metrics were of the same magnitude. The 

similar performance for each method across the training and testing subset expresses the adequate capture of the 

dataset’s variability.  525 

 

The sensitivity analysis shows the biomass continues to increase with an eventual asymptote even in the 75th 

percentile plots (Fig. 7). However, the NNE curve for biomass is strongly hindered in the light and macronutrient 

plots even at higher percentiles, while large increases are observed in the micronutrient plots when light and 

macronutrient are at higher concentrations.  530 
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4 Discussion 

43.1 Scenario 1: IntrinsicClosely related intrinsic and apparent relationships on the same timescale 

In the first scenario, our main objective was to determine if ML methods could extract intrinsic relationships when 

given information on the apparent relationships and reasonable spatiotemporal distributions of colimitationco-535 

limitation when the intrinsic and apparent relationships were operating on the same timescale. 

 

In Scenario 1, the RF and NNE both outperformed the MLR as demonstrated by higher R2 values and lower RMSE 

(Table 2). The MLR captured just under half of the variance, while the RF and NNE essentially captured all of it. 

The decreased performance of the MLR is not inherently surprising, given the non-linearity of the underlying model, 540 

but it does demonstrate that the range of nutrients and light produced as inputs by ESM2Mc are capable of 

producing a non-linear response. Additionally, each method showed similar performances between the training and 

testing datasets suggesting adequate capture of the model dynamics in both datasets.  

 

From the spatial distributions of the true response and the predictions from each method, it can be observed that the 545 

RF and NNE showed the closest agreement with the true response (Fig. 1). Despite the fact that it agreed wellFor 

example, the RF and NNE were able to reproduce the biomass patterns in the Equatorial Atlantic and Pacific, along 

with the low biomass concentrations at higher latitudes (Fig. 1 a, c, d). Although MLR was able to reproduce the 

general trend of the highest biomass in the low latitudes and low biomass in the high latitudes, it was not able to 

predict higher biomass values (Fig. 1 b).  550 

 

In addition to examining whether the different ML methods observations, the RF prediction deviated frommatched 

the correct response, we also interrogated these methods to look at how different predictors contributed to the 

answer, and whether these contributions matched the intrinsic relationships between the predictors and biomass as 

we had put into the model (Fig. 2). The MLR (red dashed lines) showed very little response to changes in 555 

macronutrient (Fig. 2 a, d, g), an unrealistic negative response to increases in micronutrient (Fig. 2 b, e, h), and a 

reasonable (albeit linear) match to the light response (Fig. 2 c, f, i). By contrast, the response to any predictor for the 

NNE (green dashed lines) showed agreement with the true response of the model (black lines) in all circumstances, 

insofar as the true response was always within the standard deviation of the NNE predictions (Fig. 2).  

 560 

The RF prediction of the response to a given variablepredictor (blue dashed lines) showed agreement with the true 

response when the other variables are heldpredictors were fixed at higherthe lower percentiles (Fig. 2). 2 a-c), but 

began deviating in the higher percentiles (Fig. 2 d-i). This canwas likely be explained bydue to the range of the 

training subsetdataset and how RFs acquire their predictions. When presented with predictor information, RFs rely 
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on the information contained within their training data. If they are presented with predictor information that goes 565 

outside the range of the dataspace of the training set, RFs will provide a prediction based onwithin the range of the 

training set. When performing the sensitivity analysis, the values of the predictors in the higher percentiles were 

probably outside the range of the training subsetdataset. For example, the bottom left plot of Fig. 2 shows how RF 

deviates from the true response as the concentration of the macronutrient increases – actually decreasing as nutrient 

increases despite the fact that such a result is not programmed into the underlying model. (Fig. 2 g). Although there 570 

may be observations in the training subsetdataset where the light and micronutrient are at their 75th percentile values 

when the macronutrient is low, there likely are not any observations where high levels of the macronutrient, 

micronutrient, and light are co-occurring. Without any observations meeting that criteria, the RF provided the 

highest prediction it could based on the training information. We discuss this point in more detail below.  

 575 

In contrast to the RF’s inability to extrapolate outside the training range, the NNE showed its capability to make 

predictions on observations on which it was not trained (Fig. 2). Note, however, that while we have programmed 

Michaelis-Menten intrinsic dependencies for individual limitations into our model, we dodid not get Michaelis-

Menten type curves back for macro- and micronutrients when the other variables were set at low percentiles. (Fig. 2 

a-c). The reason is that Liebig’s law of the minimum applies to the two nutrient limitations so that when. When the 580 

micronutrient is low, it prevents the entire Michaelis-Menten curve for the macronutrient from being seen.  

 

When the “effective” half-saturation was computed for the macro- and micronutrient curves in Fig. 2, they were far 

lower than the true values in the lower percentiles because of colimitations between the macro- and micronutrients 

(Table 4).Although the NNEs captured the true intrinsic relationships, we could not interpret these curves without 585 

remembering that multiple limitations affect biomass. For example, when we computed an estimated half-saturation 

for the nutrient curves in the top row of Fig. 2, we calculated values for 𝐾𝑁 that were far lower than the actual ones 

specified in the model (Table 3). The estimated half-saturation when other predictors were held at their 25th 

percentile for the micro- and macronutrient were underestimated by one and two orders of magnitude, respectively. 

When higher percentiles were used (Table 4), the estimated half-saturation was overestimated for some predictors 590 

and underestimated for others. At the 99th percentile, the macronutrient half-saturation was underestimated by 49% 

and micronutrient and light were overestimated by 77% and 36%, respectively (Table 4). It is possible that even at 

the higher percentiles, micronutrient was still exerting some limitation on the macronutrient curve which would 

explain why the estimate for the macronutrient half-saturation was underestimated. However, this does not explain 

why the estimations for the micronutrient and light half-saturations were overestimated by so much. Although the 595 

ability to calculate half-saturation coefficients from the sensitivity analysis curves seemed to be a way to quantify 

the accuracy of the ML predictions, co-limitations lead to high uncertainties in the estimates. While mathematically 

obvious, this result has implications for attempts to extract (and interpret) KN from observational datasets, such that 

one would expect colimitation to produce a systematic underestimation of KN. 
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 600 

In an effort to visualize the co-limitations and to investigate the extent to which any of the methods could reproduce 

these interactions, we examined the interaction plots (Fig. 3). MLR expectedly predicted linear relationships in 

which higher concentration pairs of irradiance/macronutrient and irradiance/micronutrient lead to higher biomass 

(Fig. 3 h, i), but it incorrectly predicted the interaction between the micro- and macronutrient such that decreasing 

concentrations of macronutrient lead to higher biomass (Fig. 3 g). Note that the x and y axes in Fig. 3g were 605 

switched relative to the other subplot axes, which was necessary to visualize the interaction. RF incorrectly 

predicted the highest concentrations of biomass at moderate levels of the micro- and macronutrient in their 

interactions with irradiance (Fig. 3 k, l). RF again incorrectly predicted the greatest biomass in the 

micro/macronutrient interaction occurring at low levels of micronutrient across most levels of macronutrient (Fig. 3 

j). The NNE was the only method that was able to reproduce the interactions of the model (Fig. 3 d-f, m-o). 610 

Although the NNE overestimated the biomass prediction when concentrations were high for both predictors in the 

irradiance/micronutrient and irradiance/macronutrient interactions (Fig. 3 e, f, n, o), these were also the areas of the 

dataspace without any observations to constrain the NNE (Fig. 3 b, c). Similar to the sensitivity analyses for single 

predictors, the NNE was capable of extrapolating outside the range of the training dataset while RF was not. 

 615 

The NNE interaction plots (Fig. 3 m-o) bear resemblance to the co-limitation plots seen in Fig. 2 of Saito et al. 

(2008) and allowed for a qualitative comparison of the type of co-limitation that two predictors have on the target 

variable. For example, the micro/macronutrient interaction in Fig. 3m shows the same type of response as would be 

expected in Liebig minimizing (Saito et al., 2008 Fig. 2C). This result is what we would expect given that the 

equations for Scenario 1 (Eq. 1-3) were Liebig minimizing by construction between the macro- and micronutrient. 620 

Additionally, Liebig minimizing can be seen in the pattern displayed in the interaction plot of the true expected 

response (Fig. 3 d).  

 

The interactions of macronutrient/irradiance (Fig. 3 n) and micronutrient/irradiance (Fig. 3 o) mirrored the co-

limitation pattern of Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B) where neither predictor was 625 

limiting and the effects of the two predictors have a multiplicative effect on the target variable. This was again 

consistent with the equations that govern Scenario 1 (Eq. 1-3). In Eq. 1, the irradiance limitation was only multiplied 

by the lesser limitation of the macro- and micronutrient and did not show a pattern of Liebig minimizing. It was 

interesting that the macronutrient/irradiance interaction (Fig. 3 n) almost appeared to display a pattern of No Co-

limitation (Saito et al., 2008 Fig. 2A), but this stark increase in the biomass past low concentrations of the 630 

macronutrient can be partially explained by the contour plot of observations (Fig. 3 b). The majority of observations 

where macronutrient concentrations were low had a correspondingly high value for irradiance. Additionally, when 

the macronutrient passed a certain concentration (which happened to be very low in these conditions), the 
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micronutrient became the limiting nutrient, such that light was the only variable that then affected the biomass (data 

not shown).  635 

 

With respect to our main objective for Scenario 1, it was evident that only the NNE was able to extract the intrinsic 

relationships from information on the apparent relationships. This was due in large part to its capability of 

extrapolating outside the range of the training dataset, whereas RFs were constrained by training data, and MLR was 

limited by its inherent linearity and simplicity. Furthermore, the attempts to quantify the half-saturation coefficients 640 

from the sensitivity analysis curves proved unreliable because of nutrient co-limitations. However, we were able to 

use interaction plots to qualitatively describe the type of co-limitation occurring between each pair of predictors and 

support the result from the single predictor sensitivity analyses that micronutrient was most limiting in many 

situations. 

 645 

43.2 Scenario 2: IntrinsicDistantly related intrinsic and apparent relationships on different timescales 

In Scenario 1, the intrinsic and apparent relationships were simply related by a scaling factor. In practice, the 

relationships are more difficult to connect to each other. For the second scenario, both the output biomass and 

predictors (light, macronutrient, and micronutrient) were averaged over daily, weekly, and monthly timescales. Our 

main objective was to investigate how the link between intrinsic and apparent relationships changed when using 650 

climatologically averaged data – as is generally the case for observational studies.  

 

When comparing As in Scenario 1, the apparent relationships of the RF and NNE outperformed the MLR based on 

the performance metrics for the daily, weekly, and monthly time-averaged scenarios (Table 2), with linear models 

only able to explain about 30% of the variance. The comparable performances between the training and testing 655 

datasets with thosesuggested a sufficient sampling of the hourly data for each method to capture the dynamics of the 

underlying model. 

 

Examining the monthly apparent relationships found for each method and comparing them to the true intrinsic 

relationships, showed that none of the methods almost always underestimated the true response to were able to 660 

reproduce the true intrinsic relationships – in general systematically underestimating biomass at high levels of light 

and nutrient (Fig. 3 and 4). The one exception was the 25th percentile plot of the micronutrient (Fig. 4b). The 

underestimation was consistent across the different timescales, and the sensitivity analysis showed little difference in 

the predicted relationships between the daily, weekly, and monthly averaged timescales for the NNEs (Fig. 5). This 

resultBecause the NNEs showed the closest approximations to the correct shape and magnitude of the curves 665 

compared to RF and MLR (Fig. 4), the remaining analysis of Scenario 2 is mainly focused on NNEs. 
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The underestimation was not entirely unexpected. The averaging of the hourly values into daily, weekly, and 

monthly timescales quickly leadslead to a loss of variability, (Fig. 6), especially for light (Fig. 6c). A large portion 

of 5). In fact, the variability was lost in the irradiance variable going from hourly to daily time averaging with the 670 

longer timescales showing only small differences in the possible range of values (Fig. 5).(Fig. 6c). The loss of 

variability meansmeant that the light limitation computed from the averaged light iswas systematically higher than 

the averaged light limitation. To match the observed biomass, the asymptotic biomass at high light haswould have to 

be systematically lower (see Appendix A for the mathematical proof). Differences were much smaller for 

nutrientsmacronutrient and micronutrient as they varied much less over the course of a month in our dataset. Our 675 

results emphasize that when comparing apparent relationships in the environment to intrinsic relationships from the 

laboratory, it is essential to take into account which timescales of variability that averaging has removed. Insofar as 

most variability is at hourly time scales, daily-, weekly-, and monthly-averaged data will produce very similar 

apparent relationships (Fig. 45). But if there was a strong week-to-week variability in some predictor, this may not 

be the case. 680 

 

To understand how the apparent relationships were changing across different timescales, we averaged the hourly 

dataset over a range of hourly timespans. Specifically, we averaged over the timescales of 1-hour (original hourly 

set), 2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. This new set of averaged timescales was 

then used to train NNEs with one NNE corresponding to each averaged timescale. We then performed sensitivity 685 

analyses on each of the trained NNEs to see the apparent relationships for each averaged timescale and set the 

percentile vales for the other variables at their 50th percentile (median). For more details about this method, please 

see Appendix D. To visualize all the timescales at once, we plotted them on surface plots (Fig. 7). The greatest 

changes in the apparent relationships occurred in the first 24 hours (Fig. 7 b, d, f). Furthermore, when focused on the 

first 24 hours, the apparent relationships below 12 hours were relatively close to the hourly apparent relationships 690 

(Fig. 7 a, c, e) suggesting that a large portion of the variability may have been lost between the 12- to 24-hour 

averaged datasets. It may be possible to use this type of diagnostics test to find the sampling frequency which would 

be needed to recover true relationships in other datasets or to see how relationships change over different timescales. 

Although we only averaged time in Scenario 2, this diagnostics test could also be applied to datasets that are 

averaged in space only or in space and time.  695 

 

Even though in Scenario 1 we showed estimating the half-saturation coefficients from the sensitivity analysis curves 

can be unreliable, we felt that it could be helpful to include them in this manuscript so other researchers who may 

have a similar idea in the future can be cautioned against it. It was not surprising that the estimated half-saturation 

coefficients for Scenario 2 were also incorrect (Tables 3 and 4). The inaccuracies in Scenario 2 though were likely 700 

the result of co-limitations and averaging, whereas Scenario 1 only dealt with co-limitations. Furthermore, even 
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though the predicted curves for the daily, weekly, and monthly NNEs were relatively similar (Fig. 5), the estimated 

half-saturations varied quite a bit between them (Table 3). This was even more pronounced for the half-saturation 

estimates at the 97th, 98th, and 99th percentiles (Table 4). For example, the estimated half-saturation for light from the 

daily-NNE at these upper percentiles was an entire order of magnitude higher than the actual value (Table 4).  705 

 

As with Scenario 1, we visualized the variable interactions in Scenario 2 with interaction plots and compared these 

to the colimitation plots in Fig. 2 of Saito et al. (2008). As we observed in Scenario 1, the interaction plots showed 

that when the NNEs were tasked with making predictions outside the range of their dataset, their predictions could 

be drastically over or underestimated (Fig. 8 d-l) because no observations existed in that space to constrain the 710 

NNEs (Fig. 9). For example, in the irradiance/micronutrient plot (Fig. 8 l) when high irradiance coincided with high 

micronutrient concentrations, the NNE predicted a rapid increase in the biomass prediction. From Fig. 9i, which 

shows the density plot of the observations for irradiance and micronutrient, it can be seen that this same area was far 

outside the range of the dataset where there were no observations to constrain the NNE.  

 715 

Each of the NNEs for the daily, weekly, and monthly-averaged datasets showed similar co-limitation patterns (Fig. 8 

d-l) which also agreed with the patterns of the true interactions (Fig. 8 a-c). The macronutrient/micronutrient 

interaction plots (Fig. 8 d, g, j) exhibited a pattern of Liebig minimizing as shown in Fig. 2C of Saito et al. (2008). 

The irradiance/macronutrient (Fig. 8 e, h, k) and irradiance/micronutrient (Fig. 8 f, i, l) interaction plots show a co-

limitation pattern consistent with Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). These interaction 720 

patterns are the same interaction patterns observed in Scenario 1. Once again, these patterns would be expected 

because the equations contain these patterns, by construction. Surprisingly, these patterns held across time-averaging 

even as great as one month (720 hours). Although the monthly interaction underestimated the biomass, the general 

pattern, non-linearity, and interaction of the variables remained consistent across the different timescales. This could 

imply that the use of monthly-mean observations could still allow researchers to identify interactions that hold true 725 

at timescales as small as one hour.  

 

Regarding our main objective for Scenario 2 to understand how the link between intrinsic and apparent relationships 

changed, only the NNEs were able to provide reliable information. The sensitivity analysis with individual 

predictors showed that variability could be lost in the span of a single day when considering information on hourly 730 

timescales. This caused an underestimation of the biomass values for timescales that were averaged over ranges 

greater than and equal to 24 hours. However, it was possible to visualize how the relationships changed from the 

hourly data to the 720-hour (monthly) data by training NNEs on different timescales of the data. Additionally, the 

interaction patterns observed in Scenario 1 where the intrinsic and apparent relationships were closely related were 

also observed in the interaction patterns of Scenario 2 where the intrinsic and apparent relationships were distantly 735 
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related. This suggested that it may be possible to capture variable interactions occurring at small timescales, even 

when data is sampled at a frequency as infrequent as once per month. 

 

3.3 Scenario 3: BLING biogeochemical model 

When run in the full ESM, the BLING biogeochemistry does end up producing surface biomass which is a strong 740 

function of the growth rate (Fig. 10a) with a non-linear relationship as in Eq. 8. As the growth rate, in turn, is given 

by Eq. 7, we can also examine how the monthly mean limitation terms for nutrient and light compare with the means 

given by computing the limitations with monthly mean values of nutrients, 𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘. As shown in Fig. 10b, the 

nutrient limitation is relatively well captured using the monthly mean values, although there is a tendency for the 

monthly means to underestimate moderate values of nutrient limitation. Further analysis shows that this is due to the 745 

interaction between micro- and macronutrient limitation – with the average of the minimum limitation being 

somewhat higher than the minimum of the average limitation. However, using the actual monthly mean values of 

𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘 (Fig. Although the ML methods were unable to reproduce the intrinsic relationships, they were able to 

model the general trend of the relationships (i.e., higher concentrations of each predictor lead to higher biomass; 

eventual asymptotes in the macro- and micronutrient). Additionally, the NNE and RF appeared to asymptote at the 750 

same nutrient concentrations as that of the true response (Fig. 3). This type of result can help to answer questions 

such as: which nutrients have the greatest impact on biomass when other nutrients change? This effectively allows 

one to examine the interactions between variables. 

 

The computed “effective” half-saturation constants were interestingly of the same magnitude as the true value 755 

(Table 4). This is a clear demonstration of the potential hazards one may face when inferring KN from observational 

datasets, as mentioned previously in Scenario 1. A further implication from Scenario 1 is reinforced in the 

computation of the “effective” half-saturation of the macronutrient, such that it is underestimated by an order of 

magnitude relative to the true value because of micronutrient limitation (Table 4). 

 760 

4.3 Scenario 3: BLING biogeochemical model 

10c) causes the light limitation to be systematically biased high. 

 

To demonstrate their capabilities, each method was alsoNNEs were applied directly to the monthly averaged output 

of one of the BLING simulations. The main purpose of the final scenario was to demonstrate the capabilities of the 765 

ML methodsNNEs when applied to actual ESM output with the reasoning that if the ML methods wereit was unable 

to provide useful information on BLING, they (in which, by definition, the biomass and limitations are closely 

related), it would also fail on more complex models. 
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Scenario 3 showed similar results to those of Scenarios 1 and 2, with respect to the performance metrics of the 770 

training and testing datasets (Table 2), the inaccuracy of the estimated half-saturation coefficients (Tables 3 and 4), 

and deviations in the interaction plots where no observations occur (Fig. 12). The large increases in biomass 

performance metrics for Scenario 3 showed performances between the training and testing datasets indicating 

sufficient sampling of the data (Table 2). Additionally, the half-saturation coefficients were included here (Tables 3 

and 4) for the same reasons as stated in Section 3.2 for Scenario 2. The largest deviation in the interaction plots 775 

occurred in the macronutrient/irradiance plot when both macronutrient and light concentrations were near their 

maximum (Fig. 12 e). However, this was not surprising since no observations existed in that range to constrain the 

NNE (Fig. 12 b). 

 

In the sensitivity analysis, the macronutrient and light plots (Fig. 11 a, c, d, f, g, i) exhibited curves consistent with 780 

colimitation where the curves reached an asymptote at a relatively low concentration. Although this value increased 

with the increasing percentiles, the asymptotic value was rather low when compared to the curves in the 

micronutrient plots and hindrance of (Fig. 11 b, e, h). For example, the predicted curves for the macronutrient (Fig. 

11 green line) relative to the observations (Fig. 11 gray contours) showed that higher biomass values were possible 

even when micronutrient and irradiance were at their 75th percentile values and increases in the macronutrient did 785 

not yield higher biomass in (Fig. 11 a, d, g). Since the light andcurves (Fig. 11 c, f, i) showed the same trend as the 

macronutrient plots suggest, this suggests that the systemmicronutrient was limiting in those circumstances. This is 

limitedsupported by the concentrationmicronutrient curves in which the asymptotic values occurred at relatively 

higher concentrations of the micronutrient (Fig. 711 b, e, h). The predicted biomass remained low even when 

macronutrient and light were at favorable levels because for the micronutrient curves exceeded the highest 790 

observation even when at the 75th percentile value, the micronutrient was still limiting (Fig. 8).in the 50th percentile 

plot (Fig. 11 e). Furthermore, the interaction plots supported this where only interactions with increasing 

micronutrient saw increases in biomass (Fig. 12 d and f), while the macronutrient/irradiance plot (in which 

micronutrient was held fixed) quickly plateaued (Fig. 12 e). Conceptually this makes sense since the micronutrient 

limitation in the BLING model hinders growth, but also limits the efficiency of light-harvesting (Galbraith et al., 795 

2010). Additionally, the computation of the “effective” half-saturation constants demonstrates that the half-

saturation constant for light drops sharply as nutrients drop (Table 4). 

 

5This result of micronutrient limitation was consistent with the other Scenarios and was not unexpected. The 

equations governing Scenarios 1 and 2 (Eq. 1-3) were similar to the equation governing BLING (Eq. 7). So, 800 

micronutrient limitation being present across all three Scenarios was consistent with what would be expected.  
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The interaction plots for Scenario 3 (Fig. 12 d-f) all appear to show a co-limitation pattern consistent with 

Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). This agrees with the patterns of the previous 

Scenarios, except for the micro/macronutrient interaction. In Scenarios 1 and 2, the micro/macronutrient interaction 805 

showed a pattern matching Liebig minimizing, while Scenario 3 suggested Independent Multiplicative Nutrients. 

This result would not have been expected from simply looking at the structure of the equations but arises in part 

from the coupling between the nutrient and light limitations. 

 

Since the objective of Scenario 3 was to apply what we learned in Scenarios 1 and 2 to output from an actual 810 

biogeochemical model, we believe we have demonstrated the capabilities of the information one can extract. 

Although the quantitative method of estimating the half-saturation coefficients proved unreliable, the qualitative 

information was informative. This includes information on limitations and interactions between variables, along 

with the ability to understand the level of variability explained by a given set of predictors.  

 815 

4 Conclusions 

Our main objective in this manuscript was to use ML to determine under what conditions intrinsic and apparent 

relationships between phytoplankton are no longer equal, to identify whether such divergence depends on the ML 

method or how the input data is handled, and to understand how such divergence is related to underlying biological 

dynamics. 820 

 

In Scenario 1, we demonstrated that NNEs were capable of extracting the intrinsic non-linear relationships from the 

apparent relationships when apparent and intrinsic relationships were operating on the same timescale and when 

they were linearly related by a scaling factor. However, this relationship broke down in Scenario 2, when time-

averaging caused a systematic overestimate of light limitation. We note that while Scenario 2 illustrates that the 825 

ability to recover the intrinsic relationship with light may be compromised by temporal averaging, spatial averaging 

could have a similar impact. If, for example, we imagine coastal regions in which nutrient delivery is very patchy, a 

spatially averaged relationship between biomass and nutrient may also show similar biases. So it appears that the 

extent to which ML methods can extract the intrinsic relationships depends on the extent to which the variability of 

the system is captured; i.e., more coverage of the parameter space at higher temporal resolution would yield more 830 

accurate estimates of the intrinsic relationships. 

 

Although RFs and NNEs were unable to extract the exact intrinsic relationships due to time-averaging, they were 

able to model the general trend of the relationships in Scenario 2. This mimicking of the non-linear relationships can 

still be a valuable tool for examining a dataset, in that one can assess which combinations of nutrients most affect 835 
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the biomass and can get a relative estimate of the uncertainty in the prediction; effectively, allowing one to examine 

the interactions between variables and their effect on the outcome. This was further demonstrated in Scenario 3 

when it was observed that even at high concentrations of light and macronutrient, biomass was limited by the 

concentration of micronutrient. This observation was not immediately expected or evident to us when we applied 

these methods to the BLING model. Similar insights might be found in other ESM output or observational datasets. 840 

 

In addition to climatological averaging, it was also observed that colimitation could affect the apparent relationships 

found by ML. In each Scenario, we observed instances where biomass was low even when the concentrations of one 

of the drivers were high. This was due to one of the other drivers being limiting. Had we not known what the true 

intrinsic relationships were, it may have appeared that the ML methods were producing unrealistic results. For 845 

example, if the real world behaved like the right-hand column of Fig. 7, we might conclude that phytoplankton were 

strongly photo-inhibited, even though our results with BLING (which does not have explicit photoinhibition) 

demonstrate that this is not a necessary conclusion. This demonstrates the caution one must take in interpreting these 

kinds of systems. 

 850 

Both RFs and NNEs performed well when the predictions they were asked to make were within the range of the 

training data. However, the sensitivity analyses illustrated the impact of RFs inability to extrapolate outside that 

range and that RF’s suggested systematic decreases in biomass at high values of a limiting variable. Nonetheless, 

RFs were able to capture the same relationships as the NNEs when the sensitivity analysis was querying 

environments within the range of the training data. It seems that as long as RFs are presented with information 855 

across the range of the dataset, RFs will perform just as well as NNEs in a sensitivity analysis. This strengthens the 

conclusions of Rivero-Calle et al. (2015) in that physiologically reasonable relationships between forcing variables 

and biomass found using RF are reliable so long as the forcing variables (in this case pCO2 and temperature) vary 

over their entire range independently of other variables (nutrients and light). However, when variation in pCO2 is 

related to variation in nutrients and light (i.e., in the seasonal climatology where pCO2 is high in the winter, light is 860 

low, and nutrients are high) RFs are unable to extract a clear signal of pCO2 limitation. 

 

This paper examined two of the more popular ML algorithms, but many other methods exist as well. Future research 

should attempt to use some of the other methods to see how they perform. However, one of the main takeaways 

would likely be the same regardless of the ML method; the training data should contain sufficient coverage of the 865 

range of forcing and the spatiotemporal variability within a system in order to capture the intrinsic relationships. 
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This paper also limitedAlthough researchers have been able to find apparent relationships for phytoplankton in 

environmental datasets, it remained unclear why and when the environmental apparent relationships were no longer 

equal to the intrinsic relationships that control phytoplankton growth. Our main objective in this manuscript was to 870 

understand when and why the link between intrinsic and apparent relationships would break by answering two 

questions: 

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are most 

skillful in finding them? 

2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic 875 

relationships we expect?  

 

In addressing the first question, we observed that NNEs were far superior to RFs and MLR at extracting the intrinsic 

relationships using information on the apparent relationships when the intrinsic and apparent relationships were 

closely related. RFs were unable to match the relationships because of their inherent inability to extrapolate outside 880 

the range of their training data. Additionally, even though NNEs matched the true relationships well, we were 

unable to quantify half-saturation coefficient estimates from the sensitivity analysis curves because of co-limitations 

between the predictors. However, we were able to show that one can use interaction plots to qualitatively visualize 

the type of co-limitations occurring between two predictors and identify the variables causing limitations. 

 885 

Regarding the second question, we demonstrated that time-averaging can lead to a loss of variability in the dataset 

which, in turn, can greatly affect the predicted relationships one can extract. For our particular system, we found 

averaging over large timespans caused underestimation of the predicted relationships (as shown in Appendix A, this 

will generally be the case for relationships which are concave downward – the opposite will be true for relationships 

that are concave upward). However, we showed that it was possible to visualize how the relationships were 890 

changing from intrinsic to apparent relationships by training NNEs on different averaged timescales of the data. 

Furthermore, we showed that the general trends, variable interactions, and nutrient limitations occurring when the 

intrinsic and apparent relationships were closely linked (as in Scenario 1) could propagate through to situations 

when the intrinsic and apparent relationships operated over different timescales (Scenario 2).  

 895 

As a proof-of-concept, we also showed that it was possible to extract information from the output of a 

biogeochemical model (Scenario 3) using the information and techniques we employed in Scenarios 1 and 2.  

 

This study suffers from two major limitations: the number of ML algorithms we investigated and the number of 

predictor variables included for each scenario so that. We limited the number of ML algorithms and predictors for 900 
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simplicity and easier visualization of the sensitivity analyses could be easily visualized. In the real world, 

phytoplankton may be limited by more physical and biological processes, making the visualization of the sensitivity 

analyses impractical due to the sheer number of possible interactions that would have to be considered. In cases such 

as those, it would be beneficial to perform some form of importance analysis or dimensionality reduction to remove 

insignificant predictor variables, after which sensitivity analyses could be done on the remaining predictors. 905 

 

ML techniques have several benefits that could make them useful for biological oceanographers and ecosystem 

modelers. Many ML methods (including the two presented here) do not require any prior knowledge of a system to 

construct a model. Additionally, new methods are continually being developed for viewing the dynamics of the ML 

models. Given these advantages, ML could provide a compact form for representing relationships between 910 

ecosystem parameters such as biomass and primary productivity and their environmental drivers (nutrients and light) 

in observational data and complex models. Preliminary work indicates that we can use NNEs in particular to: 1. 

Compare model relationships with those derived from observational datasets, rather than simply using spatial 

patterns of errors. 2. Evaluate whether differences between models reflect important differences in biological 

parameters or whether they are due to differences in the physical circulation. We would expect that two different 915 

physical models run with the same biological scheme would produce the same relationships. 3. Evaluating whether 

global warming really would be expected to drive ecosystems outside their historical parameter range. We will 

report on these results in a future manuscript. 

 

The results of this study have several potential applications for oceanographers, including marine ecologists and 920 

Earth System modelers. For example, using output from biogeochemical models or observations from environmental 

datasets, researchers may now be able to: 

1. Identify important interactions and colimitations occurring between variables. 

2. Discern the type of colimitation occurring between nutrients. 

3. Find nutrient limitations without having to perform (or at least being able to conduct fewer) nutrient growth 925 

experiments in a lab. 

4. Identify apparent relationships between biogeochemical variables, instead of using only spatiotemporal 

distributions. 

5. Understand how variable relationships change over different spatial and temporal scales. 

 930 

Some potential future applications relevant to the results we show here include: 

1. Using these techniques to find and compare the apparent relationships of different ESMs. This would allow 

the researcher to more specifically identify why different ESMs produce different results. 
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2. Apply these methods to compare the apparent relationships in observational data and ESM output. This 

would allow for finer tuning of ESM parameters and relationships, instead of only matching ESM spatial 935 

distributions to those of observational distributions. 

Preliminary work on both applications shows them to have promising results. We will report on these in future 

manuscripts.   
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Appendix A 

Illustration of why time variation causes underestimation of the dependence of biomass on a limiter 940 

𝐵 = 𝑆∗ ∗
𝐼𝑟𝑟

𝐾𝑖𝑟𝑟+𝐼𝑟𝑟
= 𝑆∗ ∗

𝐼𝑟𝑟̅̅ ̅̅̅+𝐼𝑟𝑟′

𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅+𝐼𝑟𝑟′
         (A1) 

𝐵 = 𝑆∗ ∗ (1 − exp (−
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)) = 𝑆∗ ∗ (1 − exp (−
𝐼𝑟𝑟̅̅ ̅̅ + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

))  (A1) 

where the overbar refers to a time-average and the prime to a variation from this time average. Insofar as the 

variations are small. 

𝐵 = 𝑆∗ ∗
𝐼𝑟𝑟̅̅ ̅̅̅+𝐼𝑟𝑟′

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅)∗(1+𝐼𝑟𝑟′ (𝐾𝑖𝑟𝑟+𝐼𝑟𝑟̅̅ ̅̅̅))⁄
≈ 𝑆∗

𝐼𝑟𝑟̅̅ ̅̅̅+𝐼𝑟𝑟′

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅)
∗ (1 − 𝐼𝑟𝑟′ (𝐾𝑖𝑟𝑟 + 𝐼𝑟𝑟̅̅ ̅̅ ))⁄      (A2) 

𝐵 ≈ 𝑆∗ (
𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

−
1

2
(

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

)

2

) = 𝑆∗

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐼𝑟𝑟𝑘

∗ (1 −
1

2
∗

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

) (A2) 

Averaging yields 945 

𝐵̅ ≈ 𝑆∗ {
𝐼𝑟𝑟̅̅ ̅̅̅

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅)
−

𝐼𝑟𝑟′2̅̅ ̅̅ ̅̅ ̅̅

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟̅̅̅̅̅)2} < 𝑆∗
𝐼𝑟𝑟̅̅ ̅̅̅

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅)
        (A3) 

𝐵̅ ≈ 𝑆∗ ({
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

∗ (1 −
𝐼𝑟𝑟

2𝐾𝐼𝑟𝑟

) } −
𝐼𝑟𝑟′2

2𝐾𝐼𝑟𝑟

)  <  𝑆∗ (1 − exp (−
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)) (A3) 

so that if we are trying to fit a curve of the form 

𝐵̅ ≈ 𝑆∗
𝑎𝑣𝑒 {

𝐼𝑟𝑟̅̅ ̅̅̅

(𝐾𝑖𝑟𝑟+𝐼𝑟𝑟 ̅̅ ̅̅ ̅)
}           (A4) 

𝐵̅ ≈ 𝑆∗
𝑎𝑣𝑒 {1 − exp (−

𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)} (A4) 

We would expect that 𝑆∗
𝑎𝑣𝑒 < 𝑆∗. 

  950 
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Appendix B 

This appendix provides additional details of the training and construction of the RFs and NNEs that may not have 

been included in the main text of the manuscript. 

 

Appendix B1: Random Forests 955 

The RFs were implemented in Matlab 2019b using the TreeBagger function. Each RF used three predictors: 

macronutrient, micronutrient, and irradiance. The target variable was phytoplankton biomass. At each split, one 

random predictor variable was chosen from which two maximally distinct groups were determined. The splits 

continued until each terminal node contained a minimum of 5 observations. For reproducible results, the random 

number generator was set to “twister” with an integer of “123”. A total of 500 decision trees were constructed for 960 

each RF. This number was chosen because we wanted a sufficient number of trees to minimize the error and still be 

able to run the training in a relatively short span of time on a standard computer/laptop. The Out-of-Bag (OOB) 

error for each trained RF can be seen in Fig. B1. Past about 100 trees, the OOB error reaches an asymptote, such that 

more trees do not decrease the error. We chose to keep the number of trees at 500 because this helped to ensure 

generalization in the RF. Additionally, it did not significantly increase the training time and it allowed for the RF 965 

structure to be the same across all the Scenarios.  

 

Each variable was scaled between -1 and 1 corresponding to each variable’s respective minimum and maximum, 

respectively (Eq. 9). These scalings were applied for use specifically in the NNEs, but for consistency they were also 

applied to the MLR and RF. The values of the variables and predictions of each method were unscaled for analysis 970 

(Eq. 10). 
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Figure B1: The Out-of-Bag (OOB) error for the trained RFs of each Scenario. The OOB error is shown as a function 

of the number of trees for each RF (500 decision trees for each one). The y-axis for each plot is on a log scale. 975 

Additionally, the plot for Scenario 2 shows the OOB error curves for each of the time-averaged datasets (daily, 

weekly, monthly). 

  

Scenario 1

Scenario 2

Scenario 3

a

b

c
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Appendix B2: Neural Network Ensembles 

The NNEs consisted of ten individual NNs and each NN was trained using the feedforwardnet function in Matlab 980 

2019b.  

 

The framework of each NN had three input nodes, 25 nodes in a single hidden layer, and one output node. The 

activation function for the hidden nodes was a hyperbolic tangent sigmoid function and the output node activation 

function was a simple linear function. The training dataset was used in the training of each NN, which consisted of 985 

60% of the total observations in the entire dataset. For the training of each individual NN, Matlab further randomly 

partitioned the training dataset into its own training subset, validation subset, and testing subset. A total of 70% of 

the observations from the training dataset went to the training subset, 15% went to the validation subset, and 15% 

went to the testing subset. To ensure that each NN was trained on different observations, distinct combinations of 

observations went into each subset for the training of each NN. This was done using a different number for the 990 

random number seed before the start of training for each NN. The random number seed ahead of each NN was set to 

the respective number of the NN. For example, the random number seed for the first NN was set to 1, the seed for 

the second NN was set to 2, etc. This random number seed ensured that the observations from the training dataset 

were being partitioned into different training, validation, and testing subsets for each individual NN. The stopping 

criteria for each NN was a validation check, so training stopped when the error increased for six consecutive epochs. 995 

 

The sensitivity analysis used to determine the optimal number of nodes in a single layer NNE for the daily, weekly, 

and monthly averaged datasets for Scenario 2 can be seen in Table B1. Separate NNEs were trained for each of the 

time-averaged datasets (daily, weekly, monthly) for each set of nodes. For example, separate NNEs were trained for 

the daily-averaged dataset with 1 node, the weekly-averaged dataset with 1 node, and the monthly-averaged dataset 1000 

with one node. Each NNE maintained the same construction as those specified in the manuscript (10 individual 

NNs) and kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made 

predictions on the testing dataset and the R2 values were calculated based on the comparison between those 

predictions and the actual values of the testing dataset. These values are recorded in Table B1. From the 

performance metrics, it was decided that 25 nodes provided a sufficient level of performance while also maintaining 1005 

a reasonable time for training. 

 

The sensitivity analysis determining if an additional hidden layer increased the performance of the time-averaged 

datasets in Scenario 2 can be seen in Table B2. Each NNE consisted of ten individual NNs. The NNs were trained 

according to the same criteria specified in the manuscript. The inclusion of an additional hidden layer did not 1010 

significantly increase the performance of the NNEs, but it did significantly increase the time needed for training the 
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NNs. We decided to use only one hidden layer since the performance did not increase significantly and to keep the 

training time within a reasonable timeframe. 

 

The sensitivity analysis assessing different activation functions in the nodes of the hidden layer for the time-1015 

averaged datasets of Scenario 2 can be seen in Table B3. Each NNE contained ten individual NNs. The NNs kept 

the same training criteria specified in the manuscript. We tested a total of seven activation functions: hyperbolic 

tangent (symmetric) sigmoid, logarithmic sigmoid, inverse, positive linear (ReLU), linear, soft max, and radial basis. 

The linear and inverse activation functions showed the poorest performance. The performance metrics were 

comparable for the other activation functions. We decided to use the hyperbolic tangent (symmetric) sigmoid 1020 

activation function for the nodes in the hidden layer. 
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Table B1: The R2 values for the diagnostic test used to determine how the number of nodes in the hidden layer of a 

single layer neural network affected the performance of the time-averaged datasets of Scenario 2. The target variable 

was biomass (mol kg-1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly, 1025 

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 1 node was trained, a unique 

NNE for the weekly averaged dataset with 1 node was trained, etc.). Each NNE contained 10 individual NNs and 

kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made predictions 

on the testing dataset and the R2 values were calculated based on the comparison between those predictions and the 

actual values of the testing dataset. 1030 

 

 

  

Daily Weekly Monthly

1 0.5533 0.5472 0.5624

2 0.7655 0.7705 0.7806

5 0.9283 0.9248 0.9363

10 0.9633 0.9628 0.9673

15 0.9676 0.9678 0.9713

20 0.9693 0.9694 0.9727

25 0.9700 0.9702 0.9732

35 0.9709 0.9709 0.9737

50 0.9716 0.9715 0.9743

Number of 

Nodes

R
2
 Values
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Table B2: The R2 values for the diagnostic test used to determine how the number of hidden layers and nodes within 

individual neural networks affected the performance of the Scenario 2 time-averaged datasets. The target variable 1035 

was biomass (mol kg-1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly, 

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 25 nodes was trained, a 

unique NNE for the weekly averaged dataset with 25 nodes was trained, etc.). Each NNE contained 10 individual 

neural networks and kept the same training and stopping specifications outlined in the manuscript. The trained 

NNEs made predictions on the testing dataset and the R2 values were calculated based on the comparison between 1040 

those predictions and the actual values of the testing dataset. The layers and number of nodes in the table are 

specified as follows: # nodes in first layer - # nodes in second layer. If only one number is listed, this specifies the 

number of nodes in the single hidden layer and that a second layer was not used. 

 

 1045 

  

Daily Weekly Monthly

25 0.9700 0.9702 0.9732

25-10 0.9722 0.9724 0.9750

25-25 0.9726 0.9727 0.9756

R
2
 Values

Layers and 

Number of 

Nodes
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Table B3: The R2 values for the diagnostic test used to assess how different activation functions in the hidden layer 

affected the performance of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg-1). A 

separate NNE was trained for each of the time-averaged datasets (daily, weekly, monthly) for each activation 

function (ex. A unique NNE for the daily-averaged dataset with the logarithmic sigmoid activation function was 1050 

trained, a unique NNE for the weekly averaged dataset with the logarithmic sigmoid activation function was trained, 

etc.). Each NNE contained 10 individual neural networks and kept the same training and stopping specifications 

outlined in the manuscript. The trained NNEs made predictions on the testing dataset and the R2 values were 

calculated based on the comparison between those predictions and the actual values of the testing dataset.  

 1055 

*The low R2 value of the daily-averaged dataset for the Inverse activation function (1.01 x 10-5) was because the 

first neural network of that NNE stopped training after only 1 epoch due to the momentum parameter (“mu” in 

Matlab) reaching its maximum value. This significantly decreased the R2 performance of that particular NNE. 

Removing the first neural network from that NNE increased the R2 value to 0.7236. 

  1060 

Daily Weekly Monthly

Hyperbolic Tangent (Symmetric) Sigmoid 0.9681 0.9688 0.9722

Logarithmic Sigmoid 0.9679 0.9691 0.9722

1.01 x 10
-5

(0.7236)*

Postive Linear (ReLU) 0.9652 0.9671 0.9704

Linear 0.3104 0.3059 0.3125

Soft Max 0.9643 0.9649 0.9695

Radial Basis 0.9671 0.9688 0.9716

Activation 

Functions

R
2
 Values

Inverse 0.7921 0.2455
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Appendix C 

 

Figure C1: Boxplots showing the variability in the predictor and target variables of Scenario 1. The dataset consisted 

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) 

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50th 1065 

percentile), the box edges are the 25th and 75th percentile values, and the whiskers are the minimum and maximum 

values. 

  

a b

c d
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Figure C2: Boxplots showing the variability in the predictor and target variables of Scenario 3. The dataset consisted 1070 

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) 

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50th 

percentile), the box edges are the 25th and 75th percentile values, and the whiskers are the minimum and maximum 

values.  

a b

c d
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Appendix D 1075 

This appendix provides details about the method used to visualize how the apparent relationships in Scenario 2 were 

changing from the hourly timescale through to the monthly averaged timescale. 

 

To capture the apparent relationships ranging from the hourly to monthly averaged timescales, we averaged the 

hourly dataset over a range of timespans. Specifically, we averaged over the timespans of 1-hour (original hourly 1080 

dataset), 2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. The timescales had to be multiples of, 

or divisible by, 24 hours. Hours that did not meet these criteria would mean that hours from one day would be 

averaged with hours from another day. For example, using a 7-hour timespan for averaging would have meant that 

the last three hours of Day 1 were being averaged with the first four hours of Day 2. 

 1085 

We trained one NNE for each of the averaged timescales. Each NNE contained ten individual NNs. The NNs kept 

the same training criteria specified in the manuscript. 

 

After training the NNEs, we performed a sensitivity analysis on each of them to visualize the predicted apparent 

relationships. The percentile values for variables that were not varying were set at their 50th percentile (median) 1090 

values. We then plotted all the predicted curves on a single surface plot so we could view the relationships of all the 

timescales at once. Additionally, because the greatest variability was lost in the first 24 hours, we also focused on 

the apparent relationships for the timespans that were less than or equal to 24 hours.  
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Code and Data Availability 1095 

The Matlab scripts for the construction of the figures and tables, the scripts for training and testing the MLR, RF, 

and NNE algorithms, and the source files for each scenario are available in the Zenodo data repository 

(https://doi.org/10.5281/zenodo.3932388, Holder and Gnanadesikan, 2020). 
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Tables 1319 

Table 1: Details for each Scenario 1 comparisonthat include the predictor variables, the target variable, the equations 1320 

used to calculate biomass, the type of MLR, RFsource file used to acquire the values for the predictors, and NNE 1321 

method performancea short description with important details about each scenario. 1322 

 1323 

  1324 

Scenario Predictors Target Equations Used Source File Description

1)

2)

1)

1a) The macronutrient and micronutrient 

hourly values were calculated using a 

standard interpolation between the daily 

points.

1b) The irradiance hourly values were 

calculated from Eq. 6 using the value of 

the BLING daily input, hour of day, time of 

year, and location.

2)

3)

4)

5)

6)

7, 8

(Equations within BLING 

used to determine the 

biomass)

1

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
1, 2, 3 The true relationships were calculated by using 

the range of the values for the predictors and 

calculating the biomass based on Eq. 1, 2, and 3

Monthly Output from BLING

2

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
1, 2, 3, 6 Daily Output from BLING

3

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
Monthly Output from BLING

1)

Scenario Description

Nutrient distributions (predictors) from BLING 

were run through Eq. 1, 2, and 3 to calculate 

the biomass (target)

Hourly values for the predictors were 

interpolated using the Daily Output of BLING

Nutrient distributions from the BLING Output 

were used as the predictors; Biomass from the 

BLING Output itself was used as the target

Hourly values of the predictors were fed to Eq. 

1, 2, and 3 to calculate hourly values for the 

biomass (target)

Daily-averaged values were calculated by 

averaging 24 hours for each location through 

one year

Weekly-averaged values were calculated by 

averaging 168 hour blocks of time for each 

location through the year

Monthly-averaged values were calculated by 

averaging the number of hours in each month 

(days per month * 24) for each location through 

the year

The true relationships were calculated by using 

the range of the hourly values for the predictors 

and calculating the biomass based on Eq. 1, 2, 

and 3
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Table 2: Performance metrics (Coefficient of Determination [R2] and Root Mean Squared Error [RMSE]) for the 1325 

training and testing sets. 1326 

 1327 

  1328 

R-squared MSE RMSE R-squared MSE RMSE

MLR 0.4141 1.09 x 10
-14

1.05 x 10
-7 0.4092 1.10 x 10

-14
1.05 x 10

-7

RF 0.9988 2.53 x 10
-17

5.03 x 10
-9 0.9977 5.00 x 10

-17
7.07 x 10

-9

NNE 0.9998 3.18 x 10
-18

1.78 x 10
-9 0.9998 3.19 x 10

-18
1.79 x 10

-9

Training Data Testing Data
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Table 2: datasets of each Scenario 2 comparison of MLR, RF, and NNE the respective ML method performance for 1329 

the training and testing sets. Each method was trained and tested on the (MLR – Multiple Linear Regression; RF – 1330 

Random Forest; NNE – Neural Network Ensemble). Scenario 2 had three time-averaged datasets (daily, weekly, and 1331 

monthly time-averaged apparent relationship data.). The target variable for all Scenarios was phytoplankton 1332 

biomass.  1333 

 1334 

 1335 

  1336 

R-squared MSE RMSE R-squared MSE RMSE

MLR 0.3312 4.77 x 10
-15

6.90 x 10
-8 0.3254 4.84 x 10

-15
6.96 x 10

-8

RF 0.9847 1.12 x 10
-16

1.06 x 10
-8 0.9695 2.22 x 10

-16
1.49 x 10

-8

NNE 0.9707 2.09 x 10
-16

1.45 x 10
-8 0.9700 2.15 x 10

-16
1.47 x 10

-8

MLR 0.3170 4.39 x 10
-15

6.63 x 10
-8 0.3172 4.35 x 10

-15
6.60 x 10

-8

RF 0.9842 1.04 x 10
-16

1.02 x 10
-8 0.9699 1.94 x 10

-16
1.39 x 10

-8

NNE 0.9695 1.96 x 10
-16

1.40 x 10
-8 0.9702 1.90 x 10

-16
1.38 x 10

-8

MLR 0.3122 4.13 x 10
-15

6.42 x 10
-8 0.3230 4.06 x 10

-15
6.37 x 10

-8

RF 0.9863 8.45 x 10
-17

9.19 x 10
-9 0.9737 1.60 x 10

-16
1.26 x 10

-8

NNE 0.9732 1.61 x 10
-16

1.27 x 10
-8 0.9732 1.61 x 10

-16
1.27 x 10

-8

Training Data Testing Data

Daily

Weekly

Monthly
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Table 3: Scenario 3 comparison of MLR, RF, and NNE method performance for the training and testing sets. 1337 

 1338 

 1339 

  1340 

R-squared MSE RMSE R-squared MSE RMSE

MLR 0.0672 6.51 x 10
-16

2.55 x 10
-8 0.0691 6.39 x 10

-16
2.53 x 10

-8

RF 0.9727 2.02 x 10
-17

4.49 x 10
-9 0.9445 3.92 x 10

-17
6.26 x 10

-9

NNE 0.9417 4.07 x 10
-17

6.38 x 10
-9 0.9386 4.22 x 10

-17
6.50 x 10

-9

Training Data Testing Data
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Table 4: Estimated half-saturation coefficients using NNEs for each scenario and nutrient/light.  1341 

 1342 

Macronutrient Micronutrient Light

1.00 x 10
-7

2.00 x 10
-10 34.30

25th Percentile 6.80 x 10
-9

-5.55 x 10
-11 34.05

50th Percentile 1.06 x 10
-8

1.31 x 10
-10 34.89

75th Percentile 1.91 x 10
-8

2.54 x 10
-10 34.23

25th Percentile 1.03 x 10
-8

-1.13 x 10
-10 26.73

50th Percentile 3.22 x 10
-8

1.78 x 10
-10 27.97

75th Percentile 3.35 x 10
-8

9.55 x 10
-10 20.98

25th Percentile 6.99 x 10
-9

-1.15 x 10
-10 30.17

50th Percentile 3.21 x 10
-8

1.87 x 10
-10 26.26

75th Percentile 5.05 x 10
-8

8.33 x 10
-10 24.63

25th Percentile 7.70 x 10
-9

-1.35 x 10
-10 27.32

50th Percentile 3.16 x 10
-8

2.01 x 10
-10 20.97

75th Percentile 7.39 x 10
-8

1.09 x 10
-9 22.19

25th Percentile 3.50 x 10
-8

-2.11 x 10
4 1.85

50th Percentile 8.89 x 10
-8

6.94 x 10
-10 5.80

75th Percentile 1.64 x 10
-7

2.41 x 10
-9 7.78

Scenario 3

NNE

True Value

Scenario 1

Scenario 2

Daily

Weekly

Monthly



 

55 

 

 1343 

  1344 

R-squared RMSE R-squared RMSE

MLR 0.4528 1.32 x 10
-7 0.4471 1.33 x 10

-7

RF 0.9989 6.46 x 10
-9 0.9977 9.15 x 10

-9

NNE 0.9999 1.70 x 10
-9 0.9999 1.73 x 10

-9

MLR 0.3160 8.75 x 10
-8 0.3104 8.82 x 10

-8

RF 0.9841 1.35 x 10
-8 0.9684 1.90 x 10

-8

NNE 0.9686 1.88 x 10
-8 0.9681 1.90 x 10

-8

MLR 0.3054 8.35 x 10
-8 0.3059 8.31 x 10

-8

RF 0.9835 1.30 x 10
-8 0.9687 1.78 x 10

-8

NNE 0.9680 1.79 x 10
-8 0.9688 1.76 x 10

-8

MLR 0.3022 8.07 x 10
-8 0.3125 8.01 x 10

-8

RF 0.9859 1.16 x 10
-8 0.9729 1.60 x 10

-8

NNE 0.9722 1.61 x 10
-8 0.9722 1.61 x 10

-8

MLR 0.0672 2.55 x 10
-8 0.0691 2.53 x 10

-8

RF 0.9727 4.49 x 10
-9 0.9445 6.26 x 10

-9

NNE 0.9417 6.38 x 10
-9 0.9386 6.50 x 10

-9

Monthly

Scenario 3

Training Data Testing Data

Scenario 1

Scenario 2

Daily

Weekly
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Table 3: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient, 1345 

micronutrient, and light) based on the 25th, 50th, and 75th percentiles. The percentiles correspond to the values at 1346 

which the other predictors were set (ex. For the 25th Percentile Macronutrient value, the macronutrient varied across 1347 

its min-max range while micronutrient and light were set at their respective 25th percentile values). The coefficients 1348 

were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of 1349 

the form in Eq. 4, where α2 was the estimate for each half-saturation coefficient.  1350 

 1351 

  1352 

Macronutrient Micronutrient Light

1.00 x 10
-7

2.00 x 10
-10 34.30

25th Percentile 6.27 x 10
-9

1.29 x 10
-9 38.91

50th Percentile 1.04 x 10
-8

1.44 x 10
-10 38.26

75th Percentile 1.88 x 10
-8

2.86 x 10
-10 40.09

25th Percentile 9.87 x 10
-9

-9.85 x 10
-11 22.04

50th Percentile 3.22 x 10
-8

1.88 x 10
-10 23.20

75th Percentile 4.89 x 10
-8

3.51 x 10
-10 20.09

25th Percentile 1.08 x 10
-8

-6.48 x 10
-10 26.18

50th Percentile 3.78 x 10
-8

1.92 x 10
-10 25.50

75th Percentile 6.36 x 10
-8

1.11 x 10
-9 18.49

25th Percentile 7.64 x 10
-9

-6.90 x 10
-10 23.13

50th Percentile 3.26 x 10
-8

1.63 x 10
-10 19.37

75th Percentile 1.38 x 10
-7

1.04 x 10
-9 21.89

25th Percentile 3.50 x 10
-8

6.84 x 10
2 1.85

50th Percentile 8.89 x 10
-8

6.94 x 10
-10 5.80

75th Percentile 1.64 x 10
-7

2.41 x 10
-9 7.78

Scenario 3

NNE

True Value

Scenario 1

Scenario 2

Daily

Weekly

Monthly
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Table 4: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient, 1353 

micronutrient, and light) based on the 97th, 98th, and 99th percentiles. The percentiles correspond to the values at 1354 

which the other predictors were set (ex. For the 97th Percentile Macronutrient value, the macronutrient varied across 1355 

its min-max range while micronutrient and light were set at their respective 97th percentile values). The coefficients 1356 

were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of 1357 

the form in Eq. 4, where α2 was the estimate for each half-saturation coefficient. 1358 

 1359 

  1360 

Macronutrient Micronutrient Light

1.00 x 10
-7

2.00 x 10
-10 34.30

97th Percentile 4.33 x 10
-8

4.73 x 10
-10 39.48

98th Percentile 4.85 x 10
-8

4.68 x 10
-10 42.11

99th Percentile 6.06 x 10
-8

4.49 x 10
-10 49.43

97th Percentile 2.28 x 10
-7

4.10 x 10
-10 217.3

98th Percentile 2.99 x 10
-7

4.02 x 10
-10 254.0

99th Percentile 3.93 x 10
-7

3.90 x 10
-10 276.2

97th Percentile 2.59 x 10
-7

7.23 x 10
-10 68.86

98th Percentile 3.39 x 10
-7

6.33 x 10
-10 70.56

99th Percentile 4.28 x 10
-7

5.19 x 10
-10 70.32

97th Percentile 3.56 x 10
-7

9.04 x 10
-10 85.22

98th Percentile 3.96 x 10
-7

9.16 x 10
-10 82.73

99th Percentile 5.17 x 10
-7

9.55 x 10
-10 82.61

97th Percentile 5.19 x 10
-7

2.00 x 10
-9 54.00

98th Percentile 7.02 x 10
-7

1.89 x 10
-9 76.48

99th Percentile 1.01 x 10
-6

1.74 x 10
-9 86.21

Scenario 3

NNE

True Value

Scenario 1

Scenario 2

Daily

Weekly

Monthly
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Figures 1361 

 1362 
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a b

c d
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Figure 1: Contour plots comparing the true response for the yearly- averaged biomass (top left) a) of Scenario 1 and 1365 

the associated predictions for MLR (top rightb), RF (bottom leftc), and NNE (bottom right).d). The biomass was 1366 

measured in units of mol kg-1.  1367 

  1368 
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Figure 2: Sensitivity analysis for Scenario 1 with the showing the true and predicted relationships for each ML 1371 

method. The columns correspondingcorrespond to the predictors and the rows correspondingcorrespond with the 1372 

percentile value at which the other predictors were set. The black line shows (ex. Subplot a varies the true intrinsic 1373 

relationship and themacronutrient across its min-max range, while the micronutrient and light are held at their 25th 1374 

percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq. 1-3. The 1375 

dashed lines show the predicted apparent relationships for each method. (MLR – red; RF – blue; NNE – green). The 1376 

RF and NNE predicted relationships are the average of the individual predictions for each method. The gray regions 1377 

around the RF and NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in 1378 

the 10 individual NN predictions of the NNE). 1379 
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 1382 

Figure 3: Contour and interaction plots for Scenario 1. The contour plots show the density of observations for each 1383 

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate 1384 

many observations. The interaction plots (d-o) show the biomass values for different combinations of the predictors 1385 

on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) value (ex. Subplot d 1386 

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held 1387 

fixed at its 50th percentile value). The top three interaction plots (d-f) show the true interactions calculated from Eq. 1388 

1-3. The remaining interaction plots show the predicted interactions for MLR (g-i), RF (j-l), and NNE (m-o). Note 1389 
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that the x and y axes for subplot g were switched so that the interaction could be visualized. The RF and NNE 1390 

predicted relationships are the average of the individual predictions for each method. 1391 

  1392 
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 1393 

Figure 4: Sensitivity analysis for Scenario 2 with theshowing the true and predicted relationships for each ML 1394 

method. The columns correspondingcorrespond to the predictors and the rows correspondingcorrespond with the 1395 

percentile value at which the other predictors were set. (ex. Subplot a varies the macronutrient across its min-max 1396 

range, while the micronutrient and light are held at their 25th percentile values, respectively). The black line shows 1397 

the true intrinsic relationship and thecalculated from Eq. 1-3. The dashed lines show the predicted monthly apparent 1398 

relationships for each method.1399 
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 (MLR – red; RF – blue; NNE – green). The RF and NNE predicted relationships are the average of the individual 1400 

predictions for each method. The gray regions around the RF and NNE dashed lines show one standard deviation in 1401 

the predictions (ex. One standard deviation in the 10 individual NN predictions of the NNE). 1402 
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 1405 

Figure 45: Sensitivity analysis for Scenario 2 with the columns correspondingshowing the true and predicted NNE 1406 

relationships for the different time-averaged datasets. The columns correspond to the predictors and the rows 1407 

correspondingcorrespond with the percentile value at which the other predictors were set. (ex. Subplot a varies the 1408 

macronutrient across its min-max range, while the micronutrient and light are held at their 25th percentile values, 1409 

respectively). The black line shows the true intrinsic relationship and thecalculated from Eq. 1-3. The dashed lines 1410 

show the predicted apparent relationships for the NNEs corresponding to the daily, weekly, and each time-averaged 1411 

dataset (Daily – red; Weekly – blue; Monthly – green). The conditions for the sensitivity analysis were based on the 1412 

values from the monthly timescales. 1413 
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 1415 

Figure 5: Line plot showing the differencesaveraged dataset. It was necessary to give the same conditions to all the 1416 

time-averaged datasets so that a direct comparison could be made between the predictions of the respective NNEs. 1417 

The predicted relationships are the average of the individual predictions for each time-averaged NNE, respectively. 1418 

The gray regions around the NNE dashed lines show one standard deviation in light levels for a pointthe predictions 1419 

(ex. One standard deviation in the North Atlantic (39.08°N 40.5°W) for the various timescales in Scenario 2. 1420 
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10 individual NN predictions of each NNE). 1421 

 1422 

 1423 

Figure 6  1424 
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 1425 

Figure 6: Boxplots showing the variability in the predictor and target variables of Scenario 2 for the various time-1426 

averaged datasets. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target 1427 

variable was phytoplankton (d) biomass. The red line corresponds to the median (50th percentile), the box edges are 1428 

the 25th and 75th percentile values, and the whiskers are the minimum and maximum values. 1429 
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 1431 

Figure 7: Surface plots showing the apparent relationships found across different averaged timescales for Scenario 2. 1432 

The timescales range from 1 hour (original hourly set) up to 720 hours (monthly). The three plots on the right (b, d, 1433 

f) show the relationships across the entire range of timescales (1 through 720 hours). The three plots on the left (a, c, 1434 

e) show the timescales at and below 24 hours. The top plots show the relationships for the macronutrient (a, b), the 1435 

middle plots show the relationships for the micronutrient (c, d), and the bottom plots show the relationships for 1436 

irradiance (e, f). Variables not varying across their range were set at their 50th percentile (median) value. The 1437 
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conditions of the sensitivity analyses were based on the conditions of the monthly averaged (720-hour) dataset. It 1438 

was necessary to give the same conditions to the all the time-averaged datasets so that a direct comparison could be 1439 

made between the predictions of the respective NNEs. The predicted relationships are the average of the individual 1440 

predictions for each time-averaged NNE. 1441 

  1442 
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1443 

Figure 8: Interaction plots for Scenario 2. The interaction plots show the biomass values for different combinations 1444 

of the predictors on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) 1445 

value (ex. Subplot d allows the micro- and macronutrient to vary across their respective min-max ranges, while the 1446 

irradiance is held fixed at its 50th percentile value). The top three interaction plots (a-c) show the true interactions 1447 

calculated from Eq. 1-3. The remaining interaction plots show the predicted interactions for the time-averaged 1448 

datasets: daily (d-f), weekly (g-i), and monthly (j-l). The conditions for the sensitivity analysis were based on the 1449 

values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-averaged 1450 

datasets so that a direct comparison could be made between the predictions of the respective NNEs. The predicted 1451 

relationships are the average of the individual predictions for each time-averaged NNE. 1452 
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 1454 

Figure 9: Contour plots of Scenario 2 for the time-averaged datasets: daily (a-c), weekly (d-f), and monthly (g-i). 1455 

The contour plots show the density of observations for each set of predictors where blue signifies very few 1456 

observations and colors moving up the spectrum to red indicate many observations. 1457 
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 1459 

Figure 10: Scatter plots from the BLING model (a: surface biomass vs. temperature-normalized growth rate; b: 1460 

mean nutrient limitation vs. monthly-averaged nutrients vs. mean nutrient limitation; c: mean light limitation vs. 1461 

monthly-averaged Irr, Irrk vs. mean light limitation). 1462 
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Figure 711: Sensitivity analysis for Scenario 3 withshowing the predicted relationships for the NNE. The columns 1466 

correspondingcorrespond to the predictors and the rows correspondingcorrespond with the percentile value at which 1467 

the other predictors were set. The gray circles show the observations from the BLING model and the dashed lines 1468 

show the predicted apparent relationships for each method. 1469 
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 1471 

Figure 8: A 3-D scatter plot showing the concentrations from Scenario 3 for (ex. Subplot a varies the macronutrient,  1472 

across its min-max range, while the micronutrient, and light with the colorare held at their 25th percentile values, 1473 

respectively). The green dashed line shows the apparent relationships predicted by the NNE. The predicted 1474 

relationships are the average of the data points corresponding to individual predictions for each NN. The gray 1475 

regions around the NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in 1476 

the 10 individual NN predictions of the NNE). The contour plot behind the predicted relationships show the 1477 

observations for each predictor against the biomass concentrations.. Lighter colors signify a higher density of 1478 

observations, while darker colors correspond to fewer observations.  1479 
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 1480 

Figure 12: Contour and interaction plots for Scenario 3. The contour plots show the density of observations for each 1481 

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate 1482 

many observations. The interaction plots (d-f) show the biomass values for different combinations of the predictors 1483 

on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) value (ex. Subplot d 1484 

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held 1485 

fixed at its 50th percentile value). The interaction plots show the predicted interactions based on the NNE. The 1486 

predicted relationships are the average of the individual predictions for each NN. 1487 
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