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Abstract—Controlson

A key challenge for biological oceanography is relating the physiological mechanisms controlling phytoplankton
growth to the spatial distribution of those phytoplankton. Physiological mechanisms are typicatly-determined-in-twe
ways:often isolated by varying one driver of growth-at-a-time, such as nutrient or light, in a controlled laboratory
setting {producing what we call “intrinsic relationships)-erby-observing-the-emergence-ofrelationshipsin-the
environment{”. We contrast these with the “apparent relationships)}—Hewever-chalengesremain-when-trying-te

data. Although previous studies have found that-machine learning (ML) can find apparent relationships, there has

yet to be a systematic study that-has-examinedexamining when and why these apparent relationships wit-diverge
from the underlying intrinsic relationships—Fe-investigate-this-questionwe-created found in the lab, and how and
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why this may depend on the method applied. Here we conduct a proof-of-concept study with three scenarios—ene

where in which biomass is by construction a function of time-averaged phytoplankton growth rate. In the intrinsic

and-apparentrelationships-operate-on-the-same-timefirst scenario, the inputs and spatial-scale,-another-model
whereoutputs of the intrinsic and apparent relationships have-differentvary over the same monthly timescales. In the

second, the intrinsic relationships relate averages of drivers that vary on hourly timescales to biomass, but the same
spatial-scale;apparent relationships are sought between monthly averages of these inputs and finaty-ene-in-which
monthly averaged output. In the third scenario we apply ML to the output of an actual Earth System Model (ESM
eutput:). Our results demonstrated that when intrinsic and apparent relationships are-closelyrelated-and-operate on
the same spatial and temporal timescale, Mi-is-Neural Network Ensembles (NNEs) were able to extract the intrinsic

relationships when only provided information about the apparent relationships—Hewever-when-the, while co-

limitation and its inability to extrapolate, resulted in Random Forests (RF) diverging from the true response. When

intrinsic and apparent relationships operated on different timescales (as little separation as hourly teversus

daily), NNEs fed with apparent relationships in time-averaged data produced responses with the Mk-methedsright

shape but underestimated the biomass-n-. This was because when the intrinsic relationships—This-was-largely
attributable-torelationship was nonlinear, the decline-inresponse to a time-averaged input differed systematically

fromthe =-= ne-measutremen " the-noy \/ imae arig nag .e-- '..e . alaTa na e" \AQQ \/ aTala!
monthhy-averaged-time-series:time-averaged response. Although the limitations found by MENNES were
overestimated, they were able to produce more realistic shapes of the actual relationships compared to MER-Future

other-nutrientschange-Multiple Linear Regression. Additionally, NNEs were able to model the interactions between
predictors and their effects on biomass, allowing for a qualitative assessment of the co-limitation patterns and the

nutrient causing the most limitation. Future research may be able to use this type of analysis for observational

datasets and other ESMs to identify apparent relationships between biogeochemical variables (rather than

spatiotemporal distributions only) and identify interactions and co-limitations without having to perform (or at least

performing fewer) growth experiments in a lab. From our study, it appears that ML can extract useful information

from ESM output and could likely do so for observational datasets, as well.

1 Introduction

Phytoplankton growth can be limited by multiple environmental factors (Moore et al., 2013) such as macronutrients,
micronutrients, and light. Limiting macronutrients include nitrogen (Eppley et al., 1973; Ryther and Dunstan, 1971;
Vince and Valiela, 1973), phosphorus (Downing et al., 1999), and silicate (Brzezinski and Nelson, 1995; Dugdale et
al., 1995; Egge and Aksnes, 1992; Ku et al., 1995; Wong and Matear, 1999). Limiting micronutrients can include
iron (Boyd et al., 2007; Martin, 1990; Martin and Fitzwater, 1988), zinc, and cobalt (Hassler et al., 2012).
Additionally, limitations can interact with one another to produce eelimitationsco-limitations (Saito et al., 2008).
Examples of this include the possible interactions between the micronutrients iron, zinc, and cobalt (Hassler et al.,
2012) and the interaction between nitrogen and iron (Schoffman et al., 2016) such that local sources of nitrogen can

have a strong influence on the amount of iron needed by phytoplankton (Maldonado and Price, 1996; Price et al.,
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1991; Wang and Dei, 2001). Spatial and temporal variations, such as mixed layer depth and temperature, affect such
limitations, and have been related to phytoplankton biomass using different functional relationships (Longhurst et
al., 1995).

Limitations on phytoplankton growth are usually characterized in two ways — which we term intrinsic and apparent.
Intrinsic relationships are those where the effect of one driver (nutrient/light) at a time is observed, while all others
are held constant (often at levels where they are not limiting). An example of such intrinsic relationships is the
Michaels-Menten growth rate curves that emerge from laboratory experiments (Eppley and Thomas, 1969).
Apparent relationships are those which emerge in the observed environment. An example of apparent relationships
isare those that emerge from satellite observations, which provide spatial distributions of phytoplankton on
timescales (say a month) much longer than the phytoplankton doubling time, which can be compared against
monthly distributions of nutrients. A significant challenge that remains is determining how intrinsic relationships
found in the laboratory scale up to the apparent relationships observed at the ecosystem scale (i.e., scaling the small
to the large). Differences may arise between the two because apparent relationships reflect both intrinsic growth and
loss rates, which are near balance over the long monthly timescales usually considered in climatological analyses.
Biomass concentrations may thus not reflect growth rates. Differences may also arise because different limitation

factors may not vary independently.

Earth System Models (ESMs) have proved valuable in linking intrinsic and apparent relationships. The intrinsic
relationships are programmed into ESMs as equations that are run forward in time, and the output is typically
provided as monthly- averaged fields. The output of these ESMs is then compared against observed fields, such as
chlorophyll and nutrients, and can be analyzed to find apparent relationships between the two. If the ESM output is
close to the observations we find in nature, we say that the ESM is performing well. However, as recently pointed
out by Loptien and Dietze (2019), ESMs can trade-off biases in physical parameters with biases in biogeochemical
parameters (i.e., they can arrive at the same answer for different reasons). Using two versions of the UVic 2.9 ESM,
they showed that they could increase mixing (thus bringing more nutrients to the surface) while simultaneously
allowing for this nutrient to be more efficiently cycled — producing similar distributions of surface properties.
However, the carbon uptake and oxygen concentrations predicted by the two models diverged under climate change.
Similarly, Sarmiento et al. (2004) showed that physical climate models would be expected to produce different
spatial distributions of physical biomes due to differences in patterns of upwelling and downwelling, as well as the
annual cycle of sea ice. These differences would then be expected to be reflected in differences in biogeochemical
cycling, independent of differences in the biological models. These studies highlight the importance of constraining
not just individual biogeochemical fields, but also their relationships with each other. \WWhat-is-less-clearis:-1-Can
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Reeenthy;To help with constraining these fields, some researchers have turned to machine learning (ML) to help in

uncovering the dynamics of ESMs. ML istechniques are capable of fitting a model to a dataset without any prior
knowledge of the system and without any of the biases that may come from researchers about what processes are
most important. As applied to ESMs, ML has mostly been used to constrain physics parameterizations, such as
longwave radiation (Belochitski et al., 2011; Chevallier et al., 1998) and atmospheric convection (Brenowitz and
Bretherton, 2018; Gentine et al., 2018; Krasnopolsky et al., 2010, 2013; O’Gorman and Dwyer, 2018; Rasp et al.,
2018).

With regardsregard to phytoplankton, ML has not been explicitly applied within ESMs but has been used on
phytoplankton observations (Bourel et al., 2017; Flombaum et al., 2020; Kruk and Segura, 2012; Mattei et al., 2018;
Olden, 2000; Rivero-Calle et al., 2015; Scardi, 1996, 2001; Scardi and Harding, 1999) and has used ESM output as
input for ara ML model trained on phytoplankton observations (Flombaum et al., 2020). Rivero-Calle et al. (2015)
used random forest (RF) to identify the drivers of coccolithophore abundance in the North Atlantic through feature
importance measures and partial dependence plots. The authors were able to find an apparent relationship between
coccolithophore abundance and environmental levels of CO,, which was consistent with intrinsic relationships
between coccolithophore growth rates and ambient CO; reported from 41 laboratory studies. They also found
consistency between the apparent and intrinsic relationships between coccolithophores and temperature. While they
were able to find links between particular apparent relationships found with the RFs and intrinsic relationships

between laboratory studies, it remains unclear when and why this link breaks.

ML has been used to examine apparent relationships of phytoplankton in the environment (Flombaum et al., 2020;
Rivero-Calle et al., 2015; Scardi, 1996, 2001) and it is reasonable to assume that ML could find intrinsic
relationships when provided a new independent dataset from laboratory growth experiments. However, it has yet to
be determined under what circumstances the apparent relationships captured by ML are-ro-longereguathave

significantly different functional forms to the intrinsic relationships that actually control phytoplankton growth.

To investigate when and why the link between intrinsic and apparent relationships break, we appliedtry to answer

two main questions in this paper:
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1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are

most skillful in finding them?

2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic
relationships we expect? to-three-scenarios—For

In addressing the firstwe_question, we first needed to demonstrate that we had a ML method that would correctly

extract intrinsic relationships from apparent relationships. We constructed a simple model in which the biomass is

directly proportional to the time-smoothed growth rate. In this scenario, intrinsic and apparent relationships operated

on the same time and spatial scale and were only separated by a scaling factor, but in~which-the environmental

drivers of phytoplankton growth had realistic inter-relationships. #a-Having a better handle on the results from the

first question, we were able to move onto the second~a«e- question where we looked at where the link between
intrinsic and apparent relationships diverged. We modified the first scenario to-allewso that the intrinsic-and

apparent relationships

onaveraged input (similar to what would be used in observations), but the retrieval-efintrinsic relationships—ta-the

third operate by smoothing growth rates derived from hourly input. Finally, we toek-theconduct a proof-of-concept
study with real output from an-established-biogeechemical-modelthe ESM used to generate the inputs for scenarios 1
and 2, in which the biomass is a ren-Hnrearnonlinear function of growth-rate-to-demonstrate-the-potentiak-information
that-can-be-extracted-from-ESM-output-using-Mkthe time-smoothed growth rate.

2 Methods

The main points of each Scenario are summarized in Table 1 including information on the predictors, target variable,

equations used to calculate biomass, source file, and scenario description. For each of the three scenarios, three ML

methods were used (Multiple Linear Regression [MLR], Random Forests [RF], and Neural Network Ensembles
NNE]).

2.1 Scenario 1: tatrinsicClosely related intrinsic and apparent relationships on the same timescale

In the first scenario, we wanted to determine how well different ML methods could extract intrinsic relationships
when only provided information on the apparent relationships and when the intrinsic and apparent relationships were

operating on the same timescale. In this scenario, the apparent relationships between predictors and biomass were

simply the result of multiplying the intrinsic relationships between predictors and biemassgrowth rate by a scaling

constant.
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We designed a simple phytoplankton system in which biomass was a function of micronutrient, macronutrient, and

light limitations based on realistic inter-relationships between limitations (Eq. 1):

B—¢ minll I A (1)
D=0y < trmerer Pmacro ) 7S UEE 7
B =S, X min(Lpicro) Lmacro) X Lirr (€8]

where B is the value for biomass (mol kg?), S, is a scaling factor, and Lmicromacro,irr are the limitation terms for
micronutrient (micro), dissolved macronutrient (macro), and light (irradiance; irr), respectively. The scaling factor
(1.9x10® mol kg!) was used, so the resulting biomass calculation was in units of mol kg2. While simplistic, this is
actually the steady-state solution of a simple phytoplankton-zooplankton system when grazing scales as the product
of phytoplankton and zooplankton concentrations, and zooplankton mortality is quadratic in the zooplankton
concentration.

Each of the nutrient limitation terms (L yyicr0 macro 1N EQ. 1) were functions of Michaelis-Menten growth curves
(Eq. 2):

_ N (2)
N K N \=J
N
Ly = 2
N ReEN 2)

where Ly is the limitation term for the respective factor, N is the concentration of the nutrient/intensity-of the-light,

and Ky is the half-saturation constant specific to each factor-limitation. The light limitation was given by (Eq. 3):

Irr
LIT'T' = 1- e_(KIrr)

3)

where Ly is the light limitation term, Irr is the light intensity, and K,y is the light limitation constant. In terms of our

nomenclature, Eq. 1 defines the apparent relationship between nutrients, light, and biomass, such as might be found
in the environment, while Eq. 2 isand 3 are the intrinsic relatienshiprelationships between rutrientnutrients/light and
growth rate, such as might be found in the laboratory or coded in an ESM.

For the concentrations of each factor (N in Eq. 2), we took the monthly- averaged value for every lat/lon pair (i.e.,
12 monthly values for each lat/lon pair) from the Earth System Model ESM2Mc (Galbraith et al., 2011). ESM2Mc is
a fully coupled atmosphere, ocean, sea ice model into which is embedded in-an ocean biogeochemical cycling
module. Known as BLING (Biogeochemistry with Light, Iron, Nutrients, and Gases; Galbraith et al., 2010), this
module carries a macronutrient, a micronutrient, and light as predictive variables and uses them to predict biomass

using a highly parameterized ecosystem (described in more detail below). -The half-saturation coefficients (Ky in
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Eq. 2) for the macronutrient and micronutrient were also borrowed from BLING with values of 1x10"7 mol kg* and
2x10%° mol kg1, respectively. The half-saturationlight-limitation coefficient for-lightKr was set at 34.3 W m™?,
which was the global mean for the light limitation factor in the ESM2Mc simulation used later in this paper.

The final dataset consisted of three input/predictor variables and one respensetarget term with a total of 77,328
“observations-=. The input variables given to each of three ML methods (Multiple Linear Regression; [MLR],
Random Forests; [RF], and Neural Network Ensembles; [NNE], described in more detail below) were the
concentrations (not the limitation terms) for the micronutrient, macronutrient, and light. The responsetarget variable

was the biomass we calculated from Eq. 1-and-2-1-3. The same three ML methods were applied to all three

Scenarios.

The dataset was then randomly split into training and testing subsetsdatasets, with 60% of the observations going to
the training subsetdataset and the remainder going to the testing subsetdataset. This provided a eenvenientstandard
way to test the generalizability of each ML method by presenting them with “new?” observations from the test
subsetdataset and ensuring the models did not overfit the data. The input and output values for the training
subsetdataset were-then used to train a model for each ML method. Once each method was trained, we provided the
trained models with the input values of the testing subsetdataset to acquire their respective predictions. These
predictions were then compared to the actual output values of the test subsetdataset. To assess model performance,
we calculated the coefficient of determination (R?)-the-mean-squared-error{MSE),) and the root mean squared error
(RMSE) between the ML predictions and the actual output values for the training and testing subsetsdatasets.

Following this, a sensitivity analysis was performed_on the trained ML models. We allowed one predictor to vary
across its min-max range while holding the other two input variables at their25%-50%(median)-and-75*specific
percentile values. This was repeated for each predictor. This allowed us to isolate the impact of each predictor on the

biomass — creating “cross-sections” of the dataset where only one variable ehanges.changed at a time. For

comparison, these values were also run through Eq. 1-ard-2-3 to calculate the “true” response of how the simple
phytoplankton model would behave. This allowed us to view which of the models most closely reproduced the

underlying intrinsic relationships of the simple phytoplankton model.

For our main sensitivity analyses, we chose to hold the predictors that were not being varied at their respective 25™,

501 and 75™ percentile values. We chose to use these particular percentile values for several reasons:

1. Itallowed us to avoid the extreme percentiles (1%t and 99™). As we approach these extremes, the uncertainty

in the predictions grows quite rapidly because of the lack of training samples within that domain space of
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the dataset. For example, there are no observations which satisfy the conditions of being in the 99t

percentile of two variables simultaneously. This extreme distance outside of the training domain generally

leads to standard deviations in predictions that are too large to provide a substantial level of certainty about

the ML model’s predictions.

2. Similar to the idea that we can avoid the extremes, we also chose these values as they are quite typical

values for the edges of box plots. Generally, values within the range of the 25 to 75" percentiles are not

considered outliers. Along those lines, we wanted to examine the conditions in a domain space that are

likely to be found in actual observational datasets, with the reasoning that if there was high uncertainty in

the ML predictions at these more moderate levels, there would be even higher uncertainty towards the

extremes.

This method of sensitivity analysis is-in-contrast-tecontrasts with partial dependence plots (PDPs), which are
commonly used in ML visualization. PDPs show the marginal effect that predictors have on the outcome. They
consider every combination of the values for a predictor of interest and all values of the other predictors, essentially

covering all combinations of the entire-data-spacepredictors. The predictions of a model are then averaged and show

the marginal effect of a predictor on the outcome — creating responses moderately comparable to “averaged cross-
sections:2. Because of this averaged response, PDPs may hide significant effects from subgroups within a dataset. A
sensitivity analysis avoids this disadvantage by allowing separate visualization of subgroup relationships._For

example, if macronutrient is the primary limiter over half of the domain, but not limiting at all over the other half,

PDPs of the biomass dependence on micronutrient will reflect this macronutrient limitation, while a sensitivity

analysis at the 75" percentile of macronutrient will not.

Using the predictions produced from the sensitivity analyses, we also computed the half-saturation constants for

each curve. Using-the-Matlab-funetionfitalm;>theA limitation of observational data is the frequency of sampling,

which limits the ability to estimate half-saturation coefficients without performing growth experiments in a lab.

Calculating the half-saturation constants from the sensitivity analysis predictions allowed us to investigate if ML

methods could provide a quantitative estimate from the raw observational data. The half-saturation constants were

determined by fitting a non-linear regression model to each sensitivity analysis curve matching the form of a
Michaelis-Menten curve (Eq. 34):

'}

|
~
(€8]
=

where B corresponds to the biomass predictions from the sensitivity analyses, N represents the nutrient

concentrations from the sensitivity analyses, and a1 and o> are the constants that are being estimated by the non-
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linear regression model. The constant a, was taken as the estimation of the half-saturation coefficient for each

sensitivity analysis curve.

Since co-limitations can affect the calculation of half-saturation coefficients, we also created interaction plots. This

is useful because trying to calculate the half-saturation constant based on a nutrient curve that is experiencing

limitation by another nutrient could cause the calculation to be underestimated. The interaction plots are a form of

sensitivity analysis where two predictor variables are varied across their min-max range, rather than one. This

produces a mesh of predictor pairs covering the range of possible combinations of two predictors. With these

interaction plots, it was possible to visualize the interaction of two variables and their combined effect on the target

variable. For each pair of predictors that were varying, we set the other predictor that was not varying to its 501

percentile (median) value. As with the sensitivity analysis for single predictors, these predictor values were run

through Eq. 1-3 so a comparison could be made as to which method most closely reproduced the true variable

interactions.

2.2 Scenario 2: tatrinsieDistantly related intrinsic and apparent relationships on different timescales

In Scenario 1, the intrinsic relationships between environmental conditions and growth rate and apparent

relationships between environmental conditions and biomass differed only by a scale factor and operated at the same

time-and-spatial-scale—However-intimescale. In reality, input variables (such as light) vary on hourly time

sealestimescales so that growth rates vary on similar timescales. Biomass reflects the average of this growth rate

over many hours-days, while satellite observations and ESM model output are often only available on monthly-

averaged timescales. So the reality is that even if a system is controlled by intrinsic relationships, the apparent
relationships gained from climatological variables on long timescales will not reproduce these intrinsic relationships

since the average light (irradiance) limitation is not equal to the limitation given the averaged light value (Eq. 45).
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where the overbar denotes a time-average, and Irr stands for irradiance (light). \A/eFor Scenario 2, we wanted to

investigate how such time averaging biased our estimation of the intrinsic relationships from the apparent ones; i.e.,
how does the link between the intrinsic and apparent relationships change with different amounts of averaging over

time?
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For the short timescale intrinsic relationships, we took daily inputs for the three predictor variables for one year from
the BLINGESM2Mc model. We further reduced the timescale from days to hours to introduce daily variability for

the irradiance variable relative to the latitude, longitude, and time of year (Eq. 56).

ferp, (8 = %%(W\ when-0 <t <T (5)
121‘[Irrd il ﬂ(t -t i )
Irrpye () = “sin Sunrtse” ) when 0 < t < Tpay (6)
TDay TDay

where Irri is the hourly interpolated value of irradiance, Irraiy is the daily-mean value of irradiance, t is the hour of
the day being interpolated, tsunise iS the hour of sunrise, and Toay is the total length of the day. The resulting curve
preserves the day--to--day variation in the daily mean irradiance due to clouds butand allows a realistic variation
over the course of the day. The hourly values for the micronutrient and macronutrient were assigned using a
standard interpolation between each of the daily values. Thus, light was the only predictor variable that varied

hourly. These hourly interpolated values were then used to calculate the-an “hourly biomass” from Eq. 1-ane-2-3.
Note that we are not claiming thereal-world biomass-itself would be zero at night but assume that on a long enough

timescale, it should approach the average of the hourly biomass.

To simulate apparent relationships, we smoothed the hourly values for both biomass and the input variables into
daily, weekly, and monthly averages for each lat/lon point. To reiterate, the intrinsic and apparent relationships in
Scenario 2 differed in timescales, but not in spatial scales. Each dataset was then analyzed following steps similar to
those outlined in Scenario 1; constructing training and testing subsetsdatasets, using the same variables for-inputas
inputs to predict the output (biomass), and using the same ML methods. To assess each method’s performance, we
calculated the R? value;-MSE; and_the RMSE between the predictions and observations for the training and testing
subsetsdatasets. We also performed a sensitivity analysis-and, calculated half-saturation constants, and created

interaction plots similar to those described above.

2.3 Scenario 3: BLING biogeochemical model

As a demonstration of their capabilities, the ML methods were also applied directly to monthly averaged output
from the BLING model itself using the same predictors in Scenarios 1 and 2, but using the biomass calculated from
the actual BLING model. As described in Galbraith et al. (2010), BLING is a biogeochemical model where biomass
is diagnosed as a non-linear function of the growth rate smoothed in time. The growth rates, in turn, have the same

functional form as in Scenarios 1 and 2, namely (Eg. 7):

10
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320 where the first exponential parameterizes temperature-dependent growth following Eppley (1972), Nyyacro micro are
justthe-samethe macronutrient and micronutrient concentrations-of-nutrients-as-in-Seenarios-tand-2,

Kinacromicroare the half-saturation coefficients for the macronutrient and micronutrient, Irr is the irradiance, and

Irr, is a scaling for light limitation—very-similarto-what was-dene-in-Eg—1-and-2-with-a-slight. An important

difference in-the-handlingo aht (nhote that the Michae Menten-form-o ah mitation-in-the previoy a

325

substantive-difference(to which we will return later in the manuscript) is that the light limitation term is calculated

using a variable Chl:C ratio following the theory of Geider et al. (1997). The variation of the Chl:C ratio would

correspond to a K;,,- in Scenarios 1 and 2 which adjusts in response to both changes in irradiance (if nutrient is low)

or changes in nutrient (if irradiance is high)), as well as changes in temperature. Given the resulting growth rate u;
330 the total biomass then asymptotes towards_(Eq. 8)

p o (F, )¢ (7

RS A
~ =3
a

B=(=+4+—=]S. 8
(/1+)l3> ®

where 1 = 1, exp(k = T) is a grazing rate, the tilde denotes an average over a few days and S, is just-the biomass

constant that we saw in the previous two scenarios._Note that because grazing and growth have the same temperature

dependence, the biomass then ends up depending on the nutrients and light in @ manner very similar to Scenarios 1

335 and 2. Growth rates and biomass are then combined to drive the uptake and water-column cycling of micronutrient
and macronutrient within a coarse-resolution version of the GFDL ESM2M fully coupled model (Galbraith et al.,
2011), denoted as ESM2Mc.

As described in Galbraith et al. (2011) and Bahl et al. (2019), ESM2Mc produces relatively realistic spatial

340 distributions of nutrients, oxygen, and radiocarbon. Although simpler in its configuration relative to models such as
TOPAZ (Tracers of Ocean Productivity with Allometric Zooplankton; Dunne et al., 2013), it has been demonstrated
that in a higher-resolution physical model BLING produces simulations of mean nutrients, anthropogenic carbon
uptake, and oceanic deoxygenation under global warming that are almost identical to such complicated models
(Galbraith et al., 2015).

345
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We chose to use BLING for three main reasons. The first is that we know it produces robust apparent relationships
between nutrients, light, and biomass by construction — although these relationships can be relatively complicated —
particularly insofar as iron and light eslimitatienco-limitation is involved (Galbraith et al., 2010). As such, it
represents a reasonable challenge for ana ML method to recover such non-linear relationships. The second is that we
know how these relationships are determined by the underlying intrinsic relationships between limiting factors and
growth. Models with more complicated ecosystems (including explicit zooplankton and grazing interactions
between functional groups) may exhibit more complicated time-dependence that would confuse such a
straightforward linkage between phytoplankton growth limitation and biomass. The third is that despite its
simplicity, the model has relatively realistic annual mean distributions of surface nutrients, iron, and chlorophyll,
and under global warming, it simulates changes in oxygen and anthropogenic carbon uptake that are similar to much
more complicated ESMs (Galbraith et al., 2015).

2.4 ML Algorithms

We chose to use Random Forests (RFs) and Neural Network Ensembles (NNES) in this manuscript-because-they-are
M&ef—theme%epepumm_—algemhm& AIthough other ML methods exist, the list of possible choices is rather
long. Wi

different-time-and-spatial-seales-itlt was decided that the number of ML algorithms being compared would be
limited to RFs and NNEs, given their popularity in studying ecological systems. Fheresuts-of-the Ml—methods
were-compared-agatast-Additionally, we chose to compare the performance of the ML techniques to the
Qerformance of Multiple Linear Regression (MLR

to quantify the importance of nonlinearity. It should be noted that we are not trying to suggest that MLR is always

ineffective for studying ecological systems. MLR is a very useful and informative approach for studying linear

relationships within marine ecological systems (Chase et al., 2007; Harding et al., 2015; Kruk et al., 2011).

2.4.1 Random Forests

RFs are an ensemble ML method utilizing a-large-number-ofmany decision trees to turn “weak learners” into a
single “strong learner” by averaging multiple outputs (Breiman, 2001). In general, RFs work by sampling (with

replacement) about two-thirds of a dataset and constructing a decision tree. This process is known as bootstrap

12
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aggregation. At each split, the random forest takes a random subset of the predictors and examines which variable
can be used to split a given set of points into two maximally distinct groups. This use of random predictor subsets
helps to ensure the model is not overfitting the data. The process of splitting the data is repeated until an optimal tree
is constructed or until the stopping criteria are met, such as a set number of observations in every branch (then called
a leaf / final node). The process of constructing a tree is then repeated a specified number of times, which results in a
group (i.e., “forest”) of decision trees. Random forests can also be used to construct regression trees in which a new
set of observations traverse each decision tree with its associated predictor values and the result from each tree is

aggregated into an averaged value.

Here, we used the same parameters for RF in the three scenarios to allow for a direct comparison between the
scenarios and to minimize the possible avenues for errors. Each RF scenario was implemented using the TreeBagger
function in MATLEABMatlab 2019b, where 500 decision trees were constructed with each terminal node resulting in

a minimum of five observations per node. An optimization was performed to decide the number of decision trees

that minimized the error while still having a relatively short runtime of only several minutes. For additional details

about the construction and training of the RFs, please see Appendix B

2.4.2 Neural NetwerksNetwork Ensembles

Neural networks (NNs) are another type of ML that has become increasingly popular in ecological applications
(Flombaum et al., 2020; Franceschini et al., 2019; Guégan et al., 1998; Lek et al., 1996a, 1996b; Mattei et al., 2018;
Olden, 2000; Ozesmi and Ozesmi, 1999; Scardi, 1996, 2001; Scardi and Harding, 1999). Scardi (1996) used NNs to
model phytoplankton primary production in the Chesapeake and Delaware Bays. Lek et al. (1996a1996b)

demonstrated the ability of NNs to explain trout abundance using several environmental variables through the use of
the “profiling” method, a type of variable importance metric that averages the results of multiple sensitivity analyses
to acquire the importance of each variable across its range of values.

Feed-forward NNs consist of nodes connected by syrapses{or-weights} and biases with one input layer, (usually) at
least one hidden layer, and one output layer. The nodes of the input layer correspond to the input values of the
predictor variables, and the hidden and output layer nodes each contain an “activation function-2. Each node from
one layer is connected to all other nodes before and after it. The values from the input layer are transformed by the
weights and biases connecting the input layer to the hidden layer, put through the activation function of the hidden
layer, modified by the weights and biases connecting the hidden layer to the output layer, and finally entered into the

final activation function of the output node.
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The output (predictions) from this forward pass through the network is compared to the actual values, and the error
is calculated. This error is then used to update the weights with a backward pass through the network using
backpropagation. The process is repeated a specified number of times or until some optimal stopping criteria are
met, such as error minimization or validation checks where the error has increased a specified number of times. For

a more in-depth discussion of NNs, see Schmidhuber (2015).

For this particular study, we use neural network ensembles (NNEs), which are a collection of NNs (each of which

uses a subsample of the data) whose predictions are averaged into a single prediction. It has been demonstrated that

NNEs can outperform single NNs and increase the performance of a model by reducing the generalization error
(Hansen and Salamon, 1990).

To minimize the differences between scenarios, we used the same framework for the NNs in each scenario. Each
NN consisted of three input nodes (one for each of the predictor variables), 25 nodes in the hidden layer, and one
output node. The activation function within the hidden nodes was a hyperbolic tangent sigmoid function, and the
activation function within the output node used a linear function. The stopping criteria for each NN was set as a
validation check, such that the training stopped when the error between the predictions and observations increased
for six consecutive epochs. An optimization was performed to decide the number of nodes in the hidden layer that

minimized the error while maintaining a short training time. Additionathy, A sensitivity anahyses-wereanalysis was
also performed using different activation functions to ensure the choice of activation function had minimal effect on

the outcome-and-apparentrelationships-found-by-the NNEs. Furthermore, another sensitivity analysis was performed

to ensure additional hidden layers were not necessary. The details of the optimization and sensitivity analyses to

determine the NN parameters can be found in Appendix B.

Each NNE consisted of ten individual NNs, and each NN was trained using the feedforwardnet function in Matlab

2019b.
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Each variable was scaled between -1 and 1 based on its respective maximum and minimum_(Eg. 9).

v maxs — ming W ny) ) ©
s = ——————— (Vy — miny) + ming
maxy —min y

where V is the value of the variable being scaled, S stands for the scaled value, and U represents the unscaled value.

This step ensures that no values are too close to the limits of the hyperbolic tangent sigmoid activation function,

which would significantly increase the training time of each NN. Fhese-scalings-were-also-applied-to-the RF-and

notshewn)-Additionally, this normalization ensures that each predictor falls within a similar range, so more weight

is not provided to variables with larger ranges. Although scaling is not necessary for RF and MLR, the scalings used

for the NNE were still applied to each method for consistency. The results presented in this paper were then

transformed back to their original scales to avoid confusion from scaling—_(Eg. 10).

3-Results
lationshi

v maxy — miny w. ing) + mi 10
= — —min min (10)
v maxS —min S s s v

Where the letters represent the same timescale
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4-Discussion

43.1 Scenario 1: IntrinsicClosely related intrinsic and apparent relationships on the same timescale

In the first scenario, our main objective was to determine if ML methods could extract intrinsic relationships when
given information on the apparent relationships and reasonable spatiotemporal distributions of eslimitatienco-

limitation when the intrinsic and apparent relationships were operating on the same timescale.

In Scenario 1, the RF and NNE both outperformed the MLR as demonstrated by higher R? values and lower RMSE

(Table 2). The MLR captured just under half of the variance, while the RF and NNE essentially captured all of it.

The decreased performance of the MLR is not inherently surprising, given the non-linearity of the underlying model,

but it does demonstrate that the range of nutrients and light produced as inputs by ESM2M(c are capable of

producing a non-linear response. Additionally, each method showed similar performances between the training and

testing datasets suggesting adequate capture of the model dynamics in both datasets.

From the spatial distributions of the true response and the predictions from each method, it can be observed that the
RF and NNE showed the closest agreement with the true response (Fig. 1). Bespite-thefact thatit-agreed-weHFor
example, the RF and NNE were able to reproduce the biomass patterns in the Equatorial Atlantic and Pacific, along

with the low biomass concentrations at higher latitudes (Fig. 1 a, ¢, d). Although MLR was able to reproduce the

general trend of the highest biomass in the low latitudes and low biomass in the high latitudes, it was not able to

predict higher biomass values (Fig. 1 b).

In addition to examining whether the different ML methods ebservations;-the- RF-prediction-deviated-frommatched

the correct response, we also interrogated these methods to look at how different predictors contributed to the

answer, and whether these contributions matched the intrinsic relationships between the predictors and biomass as

we had put into the model (Fig. 2). The MLR (red dashed lines) showed very little response to changes in

macronutrient (Fig. 2 a, d, g), an unrealistic negative response to increases in micronutrient (Fig. 2 b, e, h), and a

reasonable (albeit linear) match to the light response (Fig. 2 c, f, i). By contrast, the response to any predictor for the

NNE (green dashed lines) showed agreement with the true response of the model (black lines) in all circumstances,

insofar as the true response was always within the standard deviation of the NNE predictions (Fig. 2).

The RF prediction of the response to a given variablepredictor (blue dashed lines) showed agreement with the true
response when the other variables-are-heldpredictors were fixed at higherthe lower percentiles (Fig. 22 a-c), but
began deviating in the higher percentiles (Fig. 2 d-i). This eanwas likely be-explained-bydue to the range of the

training subsetdataset and how RFs acquire their predictions. When presented with predictor information, RFs rely
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on the information contained within their training data. If they are presented with predictor information that goes
outside the range of the dataspace of the training set, RFs will provide a prediction based enwithin the range of the
training set. When performing the sensitivity analysis, the values of the predictors in the higher percentiles were
probably-outside the range of the training subsetdataset. For example,-the-bottom-left plot-of Fig—2-shows-how RF
deviates from the true response as the concentration of the macronutrient increases — actually decreasing as nutrient
increases despite the fact that such a result is not programmed into the underlying model-_(Fig. 2 g). Although there
may be observations in the training subsetdataset where the light and micronutrient are at their 75™ percentile values
when the macronutrient is low, there likely are not any observations where high levels of the macronutrient,

micronutrient, and light are co-occurring. Without any observations meeting that criteria, the RF provided the

highest prediction it could based on the training information. WWe-diseuss-this-peintin-more-detail-below-

In contrast to the RF’s inability to extrapolate outside the training range, the NNE showed its capability to make
predictions on observations on which it was not trained (Fig. 2). Note, however, that while we have programmed
Michaelis-Menten intrinsic dependencies for individual limitations into our model, we dedid not get Michaelis-
Menten type curves back for macro- and micronutrients when the other variables were set at low percentiles-_(Fig. 2
a-C). The reason is that Liebig’s law of the minimum applies to the two nutrient limitations-se-that-when. When the

micronutrient is low, it prevents the entire Michaelis-Menten curve for the macronutrient from being seen.

{Fable-4)-Although the NNEs captured the true intrinsic relationships, we could not interpret these curves without

remembering that multiple limitations affect biomass. For example, when we computed an estimated half-saturation

for the nutrient curves in the top row of Fig. 2, we calculated values for K, that were far lower than the actual ones

specified in the model (Table 3). The estimated half-saturation when other predictors were held at their 251

percentile for the micro- and macronutrient were underestimated by one and two orders of magnitude, respectively.

When higher percentiles were used (Table 4), the estimated half-saturation was overestimated for some predictors

and underestimated for others. At the 99" percentile, the macronutrient half-saturation was underestimated by 49%

and micronutrient and light were overestimated by 77% and 36%, respectively (Table 4). It is possible that even at

the higher percentiles, micronutrient was still exerting some limitation on the macronutrient curve which would

explain why the estimate for the macronutrient half-saturation was underestimated. However, this does not explain

why the estimations for the micronutrient and light half-saturations were overestimated by so much. Although the

ability to calculate half-saturation coefficients from the sensitivity analysis curves seemed to be a way to quantify

the accuracy of the ML predictions, co-limitations lead to high uncertainties in the estimates. While mathematically

obvious, this result has implications for attempts to extract (and interpret) Ky from observational datasets, such that

one would expect colimitation to produce a systematic underestimation of K.
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In an effort to visualize the co-limitations and to investigate the extent to which any of the methods could reproduce

these interactions, we examined the interaction plots (Fig. 3). MLR expectedly predicted linear relationships in

which higher concentration pairs of irradiance/macronutrient and irradiance/micronutrient lead to higher biomass

(Fig. 3 h, i), but it incorrectly predicted the interaction between the micro- and macronutrient such that decreasing

concentrations of macronutrient lead to higher biomass (Fig. 3 g). Note that the x and y axes in Fig. 3q were

switched relative to the other subplot axes, which was necessary to visualize the interaction. RF incorrectly

predicted the highest concentrations of biomass at moderate levels of the micro- and macronutrient in their

interactions with irradiance (Fig. 3 k, I). RF again incorrectly predicted the greatest biomass in the

micro/macronutrient interaction occurring at low levels of micronutrient across most levels of macronutrient (Fig. 3

i). The NNE was the only method that was able to reproduce the interactions of the model (Fig. 3 d-f, m-0).

Although the NNE overestimated the biomass prediction when concentrations were high for both predictors in the

irradiance/micronutrient and irradiance/macronutrient interactions (Fig. 3 e, f, n, 0), these were also the areas of the

dataspace without any observations to constrain the NNE (Fig. 3 b, ¢). Similar to the sensitivity analyses for single

predictors, the NNE was capable of extrapolating outside the range of the training dataset while RF was not.

The NNE interaction plots (Fig. 3 m-0) bear resemblance to the co-limitation plots seen in Fig. 2 of Saito et al.

(2008) and allowed for a qualitative comparison of the type of co-limitation that two predictors have on the target

variable. For example, the micro/macronutrient interaction in Fig. 3m shows the same type of response as would be

expected in Liebig minimizing (Saito et al., 2008 Fig. 2C). This result is what we would expect given that the

equations for Scenario 1 (Eq. 1-3) were Liebig minimizing by construction between the macro- and micronutrient.

Additionally, Liebig minimizing can be seen in the pattern displayed in the interaction plot of the true expected

response (Fig. 3 d).

The interactions of macronutrient/irradiance (Fig. 3 n) and micronutrient/irradiance (Fig. 3 0) mirrored the co-

limitation pattern of Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B) where neither predictor was

limiting and the effects of the two predictors have a multiplicative effect on the target variable. This was again

consistent with the equations that govern Scenario 1 (Eq. 1-3). In Eq. 1, the irradiance limitation was only multiplied

by the lesser limitation of the macro- and micronutrient and did not show a pattern of Liebig minimizing. It was

interesting that the macronutrient/irradiance interaction (Fig. 3 n) almost appeared to display a pattern of No Co-

limitation (Saito et al., 2008 Fig. 2A), but this stark increase in the biomass past low concentrations of the

macronutrient can be partially explained by the contour plot of observations (Fig. 3 b). The majority of observations

where macronutrient concentrations were low had a correspondingly high value for irradiance. Additionally, when

the macronutrient passed a certain concentration (which happened to be very low in these conditions), the

20



635

640

645

650

655

660

665

micronutrient became the limiting nutrient, such that light was the only variable that then affected the biomass (data

not shown).

With respect to our main objective for Scenario 1, it was evident that only the NNE was able to extract the intrinsic
relationships from information on the apparent relationships. This was due in large part to its capability of
extrapolating outside the range of the training dataset, whereas RFs were constrained by training data, and MLR was

limited by its inherent linearity and simplicity._Furthermore, the attempts to quantify the half-saturation coefficients

from the sensitivity analysis curves proved unreliable because of nutrient co-limitations. However, we were able to

use interaction plots to qualitatively describe the type of co-limitation occurring between each pair of predictors and

support the result from the single predictor sensitivity analyses that micronutrient was most limiting in many

situations.

43.2 Scenario 2: ntrinsicDistantly related intrinsic and apparent relationships on different timescales

In Scenario 1, the intrinsic and apparent relationships were simply related by a scaling factor. In practice, the
relationships are more difficult to connect to each other. For the second scenario, both the output biomass and
predictors (light, macronutrient, and micronutrient) were averaged over daily, weekly, and monthly timescales. Our
main objective was to investigate how the link between intrinsic and apparent relationships changed when using

climatologically averaged data — as is generally the case for observational studies.

When-comparing-As in Scenario 1, the apparentrelationships-ofthe-RF and NNE outperformed the MLR based on

the performance metrics for the daily, weekly, and monthly time-averaged scenarios (Table 2), with linear models

only able to explain about 30% of the variance. The comparable performances between the training and testing
datasets with-thesesuggested a sufficient sampling of the hourhy-data for each method to capture the dynamics of the

underlying model.

Examining the monthly apparent relationships found for each method and comparing them to the true intrinsic

relationships; showed that none of the methods atmest-always-underestimated-the-true-response-to-were able to

reproduce the true intrinsic relationships — in general systematically underestimating biomass at high levels of light

and nutrient (Fig. 3-and-4). The one exception was the 25™ percentile plot of the micronutrient (Fig. 4b). The

underestimation was consistent across the different timescales, and the sensitivity analysis showed little difference in

the predicted relationships between the daily, weekly, and monthly averaged timescales for the NNEs (Fig. 5). Fhis

resultBecause the NNEs showed the closest approximations to the correct shape and magnitude of the curves

compared to RF and MLR (Fig. 4), the remaining analysis of Scenario 2 is mainly focused on NNEs.
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The underestimation was not entirely unexpected. The averaging of the hourly values into daily, weekly, and

monthly timescales quickly leadslead to a loss of variability; (Fig. 6), especially for light (Fig. 6c). A large portion

of B3-n-faet-the variability was lost in the irradiance variable going from hourly to daily time-averaging-with-the
onger-timescales-showing-only-small-differences-in-the pessible-range-of values(Fig-—5)-(Fig. 6¢). The loss of

variability meansmeant that the light limitation computed from the averaged light iswas systematically higher than

the averaged light limitation. To match the observed biomass, the asymptotic biomass at high light haswould have to
be systematically lower (see Appendix A for the mathematical proof). Differences were much smaller for

nutrientsmacronutrient and micronutrient as they varied much less over the course of a month in our dataset. Our

results emphasize that when comparing apparent relationships in the environment to intrinsic relationships from the
laboratory, it is essential to take into account which timescales of variability that averaging has removed. Insofar as
most variability is at hourly time scales, daily-, weekly-, and monthly-averaged data will produce very similar

apparent relationships (Fig. 45). But if there was a strong week-to-week variability in some predictor, this may not

be the case.

To understand how the apparent relationships were changing across different timescales, we averaged the hourly

dataset over a range of hourly timespans. Specifically, we averaged over the timescales of 1-hour (original hourly
set), 2,3,4,6,8,12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. This new set of averaged timescales was

then used to train NNEs with one NNE corresponding to each averaged timescale. We then performed sensitivity

analyses on each of the trained NNEs to see the apparent relationships for each averaged timescale and set the

percentile vales for the other variables at their 50t percentile (median). For more details about this method, please

see Appendix D. To visualize all the timescales at once, we plotted them on surface plots (Fig. 7). The greatest

changes in the apparent relationships occurred in the first 24 hours (Fig. 7 b, d, f). Furthermore, when focused on the

first 24 hours, the apparent relationships below 12 hours were relatively close to the hourly apparent relationships

(Fig. 7 a, c, e) suggesting that a large portion of the variability may have been lost between the 12- to 24-hour

averaged datasets. It may be possible to use this type of diagnostics test to find the sampling frequency which would

be needed to recover true relationships in other datasets or to see how relationships change over different timescales.

Although we only averaged time in Scenario 2, this diagnostics test could also be applied to datasets that are

averaged in space only or in space and time.

Even though in Scenario 1 we showed estimating the half-saturation coefficients from the sensitivity analysis curves

can be unreliable, we felt that it could be helpful to include them in this manuscript so other researchers who may

have a similar idea in the future can be cautioned against it. It was not surprising that the estimated half-saturation

coefficients for Scenario 2 were also incorrect (Tables 3 and 4). The inaccuracies in Scenario 2 though were likely

the result of co-limitations and averaging, whereas Scenario 1 only dealt with co-limitations. Furthermore, even
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though the predicted curves for the daily, weekly, and monthly NNEs were relatively similar (Fig. 5), the estimated

half-saturations varied quite a bit between them (Table 3). This was even more pronounced for the half-saturation

estimates at the 97™, 98" and 99" percentiles (Table 4). For example, the estimated half-saturation for light from the

daily-NNE at these upper percentiles was an entire order of magnitude higher than the actual value (Table 4).

As with Scenario 1, we visualized the variable interactions in Scenario 2 with interaction plots and compared these

to the colimitation plots in Fig. 2 of Saito et al. (2008). As we observed in Scenario 1, the interaction plots showed

that when the NNEs were tasked with making predictions outside the range of their dataset, their predictions could

be drastically over or underestimated (Fig. 8 d-I) because no observations existed in that space to constrain the

NNEs (Fig. 9). For example, in the irradiance/micronutrient plot (Fig. 8 I) when high irradiance coincided with high

micronutrient concentrations, the NNE predicted a rapid increase in the biomass prediction. From Fig. 9i, which

shows the density plot of the observations for irradiance and micronutrient, it can be seen that this same area was far

outside the range of the dataset where there were no observations to constrain the NNE.

Each of the NNEs for the daily, weekly, and monthly-averaged datasets showed similar co-limitation patterns (Fig. 8

d-1) which also agreed with the patterns of the true interactions (Fig. 8 a-c). The macronutrient/micronutrient

interaction plots (Fig. 8 d, g, ) exhibited a pattern of Liebig minimizing as shown in Fig. 2C of Saito et al. (2008).

The irradiance/macronutrient (Fig. 8 e, h, k) and irradiance/micronutrient (Fig. 8 f, i, I) interaction plots show a co-

limitation pattern consistent with Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). These interaction

patterns are the same interaction patterns observed in Scenario 1. Once again, these patterns would be expected

because the equations contain these patterns, by construction. Surprisingly, these patterns held across time-averaging

even as great as one month (720 hours). Although the monthly interaction underestimated the biomass, the general

pattern, non-linearity, and interaction of the variables remained consistent across the different timescales. This could

imply that the use of monthly-mean observations could still allow researchers to identify interactions that hold true

at timescales as small as one hour.

Regarding our main objective for Scenario 2 to understand how the link between intrinsic and apparent relationships

changed, only the NNEs were able to provide reliable information. The sensitivity analysis with individual

predictors showed that variability could be lost in the span of a single day when considering information on hourly

timescales. This caused an underestimation of the biomass values for timescales that were averaged over ranges

greater than and equal to 24 hours. However, it was possible to visualize how the relationships changed from the

hourly data to the 720-hour (monthly) data by training NNEs on different timescales of the data. Additionally, the

interaction patterns observed in Scenario 1 where the intrinsic and apparent relationships were closely related were

also observed in the interaction patterns of Scenario 2 where the intrinsic and apparent relationships were distantly
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related. This suggested that it may be possible to capture variable interactions occurring at small timescales, even

when data is sampled at a frequency as infrequent as once per month.

3.3 Scenario 3: BLING biogeochemical model

When run in the full ESM, the BLING biogeochemistry does end up producing surface biomass which is a strong

function of the growth rate (Fig. 10a) with a non-linear relationship as in Eq. 8. As the growth rate, in turn, is given

by Eqg. 7, we can also examine how the monthly mean limitation terms for nutrient and light compare with the means

given by computing the limitations with monthly mean values of nutrients, Irr, and Irr,. As shown in Fig. 10b, the

nutrient limitation is relatively well captured using the monthly mean values, although there is a tendency for the

monthly means to underestimate moderate values of nutrient limitation. Further analysis shows that this is due to the

interaction between micro- and macronutrient limitation — with the average of the minimum limitation being

somewhat higher than the minimum of the average limitation. However, using the actual monthly mean values of

Irr,and Irr,_(Fig.

10c) causes the light limitation to be systematically biased high.

To demonstrate their capabilities, each-method-was-alseNNEs were applied directly to the monthly averaged output
of one of the BLING simulations. The main purpose of the final scenario was to demonstrate the capabilities of the
MLmethodsNNEs when applied to actual ESM output with the reasoning that if the- ML-methods-wereit was unable

to provide useful information on BLING-they (in which, by definition, the biomass and limitations are closely

related), it would also fail on more complex models.
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Scenario 3 showed similar results to those of Scenarios 1 and 2, with respect to the performance metrics of the

training and testing datasets (Table 2), the inaccuracy of the estimated half-saturation coefficients (Tables 3 and 4),
and deviations in the interaction plots where no observations occur (Fig. 12). The large-increases-in-biomass
performance metrics for Scenario 3 showed performances between the training and testing datasets indicating

sufficient sampling of the data (Table 2). Additionally, the half-saturation coefficients were included here (Tables 3

and 4) for the same reasons as stated in Section 3.2 for Scenario 2. The largest deviation in the interaction plots

occurred in the macronutrient/irradiance plot when both macronutrient and light concentrations were near their

maximum (Fig. 12 e). However, this was not surprising since no observations existed in that range to constrain the
NNE (Fig. 12 b).

In the sensitivity analysis, the macronutrient and light plots (Fig. 11 a, ¢, d, f, g, i) exhibited curves consistent with

colimitation where the curves reached an asymptote at a relatively low concentration. Although this value increased

with the increasing percentiles, the asymptotic value was rather low when compared to the curves in the
micronutrient plots and-hindranee-of-(Fig. 11 b, e, h). For example, the predicted curves for the macronutrient (Fig.

11 green line) relative to the observations (Fig. 11 gray contours) showed that higher biomass values were possible

even when micronutrient and irradiance were at their 75 percentile values and increases in the macronutrient did

not yield higher biomass #-(Fig. 11 a, d, g). Since the light andcurves (Fig. 11 c, f, i) showed the same trend as the

macronutrient-plets-suggest, this suggests that the systemmicronutrient was limiting in those circumstances. This is

Hmitedsupported by the eenecentrationmicronutrient curves in which the asymptotic values occurred at relatively
higher concentrations of the micronutrient (Fig. #11 b, e, h). The predicted biomass remained-tow-evenwhen
maeronutrientand-tight-were-at faverablelevels-beeause-for the micronutrient curves exceeded the highest
observation even when-atthe 75" percentile-value, the-micronutrient was-still- limiting(Fig—8)-in the 50" percentile

plot (Fig. 11 e). Furthermore, the interaction plots supported this where only interactions with increasing

micronutrient saw increases in biomass (Fig. 12 d and f), while the macronutrient/irradiance plot (in which

micronutrient was held fixed) quickly plateaued (Fig. 12 e). Conceptually this makes sense since the micronutrient

limitation in the BLING model hinders growth, but also limits the eff|C|ency of light-harvesting (Galbraith et al.,

5This result of micronutrient limitation was consistent with the other Scenarios and was not unexpected. The

equations governing Scenarios 1 and 2 (Eq. 1-3) were similar to the equation governing BLING (Eq. 7). So,

micronutrient limitation being present across all three Scenarios was consistent with what would be expected.
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The interaction plots for Scenario 3 (Fig. 12 d-f) all appear to show a co-limitation pattern consistent with

Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). This agrees with the patterns of the previous

Scenarios, except for the micro/macronutrient interaction. In Scenarios 1 and 2, the micro/macronutrient interaction

showed a pattern matching Liebig minimizing, while Scenario 3 suggested Independent Multiplicative Nutrients.

This result would not have been expected from simply looking at the structure of the equations but arises in part

from the coupling between the nutrient and light limitations.

Since the objective of Scenario 3 was to apply what we learned in Scenarios 1 and 2 to output from an actual

biogeochemical model, we believe we have demonstrated the capabilities of the information one can extract.

Although the guantitative method of estimating the half-saturation coefficients proved unreliable, the gualitative

information was informative. This includes information on limitations and interactions between variables, along

with the ability to understand the level of variability explained by a given set of predictors.

4 Conclusions
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Fhis-paperalso-limitedAlthough researchers have been able to find apparent relationships for phytoplankton in

environmental datasets, it remained unclear why and when the environmental apparent relationships were no longer

equal to the intrinsic relationships that control phytoplankton growth. Our main objective in this manuscript was to

understand when and why the link between intrinsic and apparent relationships would break by answering two

questions:

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are most

skillful in finding them?

2.  How do you interpret the apparent relationships that emerge when they diverge from the intrinsic

relationships we expect?

In addressing the first question, we observed that NNEs were far superior to RFs and MLR at extracting the intrinsic

relationships using information on the apparent relationships when the intrinsic and apparent relationships were

closely related. RFs were unable to match the relationships because of their inherent inability to extrapolate outside

the range of their training data. Additionally, even though NNEs matched the true relationships well, we were

unable to quantify half-saturation coefficient estimates from the sensitivity analysis curves because of co-limitations

between the predictors. However, we were able to show that one can use interaction plots to qualitatively visualize

the type of co-limitations occurring between two predictors and identify the variables causing limitations.

Regarding the second guestion, we demonstrated that time-averaging can lead to a loss of variability in the dataset

which, in turn, can greatly affect the predicted relationships one can extract. For our particular system, we found

averaging over large timespans caused underestimation of the predicted relationships (as shown in Appendix A, this

will generally be the case for relationships which are concave downward — the opposite will be true for relationships

that are concave upward). However, we showed that it was possible to visualize how the relationships were

changing from intrinsic to apparent relationships by training NNEs on different averaged timescales of the data.

Furthermore, we showed that the general trends, variable interactions, and nutrient limitations occurring when the

intrinsic and apparent relationships were closely linked (as in Scenario 1) could propagate through to situations

when the intrinsic and apparent relationships operated over different timescales (Scenario 2).

As a proof-of-concept, we also showed that it was possible to extract information from the output of a

biogeochemical model (Scenario 3) using the information and techniques we employed in Scenarios 1 and 2.

This study suffers from two major limitations: the number of ML algorithms we investigated and the number of

predictor variables included for each scenario-se-that. We limited the number of ML algorithms and predictors for
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simplicity and easier visualization of the sensitivity analyses-could-be-easthy-visuatized. In the real world,
phytoplankton may be limited by more physical and biological processes, making the visualization of the sensitivity

analyses impractical due to the sheer number of possible interactions that would have to be considered. In cases such

as those, it would be beneficial to perform some form of importance analysis or dimensionality reduction to remove

insignificant predictor variables, after which sensitivity analyses could be done on the remaining predictors.

The results of this study have several potential applications for oceanographers, including marine ecologists and

Earth System modelers. For example, using output from biogeochemical models or observations from environmental

datasets, researchers may now be able to:

1. Identify important interactions and colimitations occurring between variables.

2. Discern the type of colimitation occurring between nutrients.

3. Find nutrient limitations without having to perform (or at least being able to conduct fewer) nutrient growth

experiments in a lab.

4. ldentify apparent relationships between biogeochemical variables, instead of using only spatiotemporal

distributions.
5. Understand how variable relationships change over different spatial and temporal scales.

Some potential future applications relevant to the results we show here include:

1. Using these techniques to find and compare the apparent relationships of different ESMs. This would allow

the researcher to more specifically identify why different ESMs produce different results.
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2. Apply these methods to compare the apparent relationships in observational data and ESM output. This

935 would allow for finer tuning of ESM parameters and relationships, instead of only matching ESM spatial

distributions to those of observational distributions.

Preliminary work on both applications shows them to have promising results. We will report on these in future

manuscripts.
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Appendix A

Illustration of why time variation causes underestimation of the dependence of biomass on a limiter

B =& — A
¥ Kyptlrr * Kl
Irr Irr + Irr’
B=S**(1—exp(— ))zS**<1—exp<——>> (Al)
Klrr KIrr

where the overbar refers to a time-average and the prime to a variation from this time average. Insofar as the

variations are small.
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so that if we are trying to fit a curve of the form
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We would expect that S&7¢ < S,.
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Appendix B

This appendix provides additional details of the training and construction of the RFs and NNEs that may not have

been included in the main text of the manuscript.

Appendix B1: Random Forests

The RFs were implemented in Matlab 2019b using the TreeBagger function. Each RF used three predictors:

macronutrient, micronutrient, and irradiance. The target variable was phytoplankton biomass. At each split, one

random predictor variable was chosen from which two maximally distinct groups were determined. The splits

continued until each terminal node contained a minimum of 5 observations. For reproducible results, the random

number generator was set to “twister” with an integer of “123”. A total of 500 decision trees were constructed for

each RF. This number was chosen because we wanted a sufficient number of trees to minimize the error and still be

able to run the training in a relatively short span of time on a standard computer/laptop. The Out-of-Bag (OOB)

error for each trained RF can be seen in Fig. B1. Past about 100 trees, the OOB error reaches an asymptote, such that

more trees do not decrease the error. We chose to keep the number of trees at 500 because this helped to ensure

generalization in the RF. Additionally, it did not significantly increase the training time and it allowed for the RF

structure to be the same across all the Scenarios.

Each variable was scaled between -1 and 1 corresponding to each variable’s respective minimum and maximum,

respectively (Eg. 9). These scalings were applied for use specifically in the NNEs, but for consistency they were also

applied to the MLR and RF. The values of the variables and predictions of each method were unscaled for analysis

(Eqg. 10).
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Figure B1: The Out-of-Bag (OOB) error for the trained RFs of each Scenario. The OOB error is shown as a function

of the number of trees for each RF (500 decision trees for each one). The y-axis for each plot is on a log scale.

Additionally, the plot for Scenario 2 shows the OOB error curves for each of the time-averaged datasets (daily,

weekly, monthly).
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Appendix B2: Neural Network Ensembles

The NNEs consisted of ten individual NNs and each NN was trained using the feedforwardnet function in Matlab
2019b.

The framework of each NN had three input nodes, 25 nodes in a single hidden layer, and one output node. The

activation function for the hidden nodes was a hyperbolic tangent sigmoid function and the output node activation

function was a simple linear function. The training dataset was used in the training of each NN, which consisted of

60% of the total observations in the entire dataset. For the training of each individual NN, Matlab further randomly

partitioned the training dataset into its own training subset, validation subset, and testing subset. A total of 70% of

the observations from the training dataset went to the training subset, 15% went to the validation subset, and 15%

went to the testing subset. To ensure that each NN was trained on different observations, distinct combinations of

observations went into each subset for the training of each NN. This was done using a different number for the

random number seed before the start of training for each NN. The random number seed ahead of each NN was set to

the respective number of the NN. For example, the random number seed for the first NN was set to 1, the seed for

the second NN was set to 2, etc. This random number seed ensured that the observations from the training dataset

were being partitioned into different training, validation, and testing subsets for each individual NN. The stopping

criteria for each NN was a validation check, so training stopped when the error increased for six consecutive epochs.

The sensitivity analysis used to determine the optimal number of nodes in a single layer NNE for the daily, weekly,

and monthly averaged datasets for Scenario 2 can be seen in Table B1. Separate NNEs were trained for each of the

time-averaged datasets (daily, weekly, monthly) for each set of nodes. For example, separate NNEs were trained for

the daily-averaged dataset with 1 node, the weekly-averaged dataset with 1 node, and the monthly-averaged dataset

with one node. Each NNE maintained the same construction as those specified in the manuscript (10 individual

NNSs) and kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made

predictions on the testing dataset and the R? values were calculated based on the comparison between those

predictions and the actual values of the testing dataset. These values are recorded in Table B1. From the

performance metrics, it was decided that 25 nodes provided a sufficient level of performance while also maintaining

a reasonable time for training.

The sensitivity analysis determining if an additional hidden layer increased the performance of the time-averaged

datasets in Scenario 2 can be seen in Table B2. Each NNE consisted of ten individual NNs. The NNs were trained

according to the same criteria specified in the manuscript. The inclusion of an additional hidden layer did not

significantly increase the performance of the NNEs, but it did significantly increase the time needed for training the
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NNs. We decided to use only one hidden layer since the performance did not increase significantly and to keep the

training time within a reasonable timeframe.

The sensitivity analysis assessing different activation functions in the nodes of the hidden layer for the time-

averaged datasets of Scenario 2 can be seen in Table B3. Each NNE contained ten individual NNs. The NNs kept

the same training criteria specified in the manuscript. We tested a total of seven activation functions: hyperbolic

tangent (symmetric) sigmoid, logarithmic sigmoid, inverse, positive linear (ReLU), linear, soft max, and radial basis.

The linear and inverse activation functions showed the poorest performance. The performance metrics were

comparable for the other activation functions. We decided to use the hyperbolic tangent (symmetric) sigmoid

activation function for the nodes in the hidden layer.
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Table B1: The R? values for the diagnostic test used to determine how the number of nodes in the hidden layer of a

single layer neural network affected the performance of the time-averaged datasets of Scenario 2. The target variable

1025 was biomass (mol kg1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly,

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 1 node was trained, a unigue

NNE for the weekly averaged dataset with 1 node was trained, etc.). Each NNE contained 10 individual NNs and

kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made predictions

on the testing dataset and the R? values were calculated based on the comparison between those predictions and the

1030 actual values of the testing dataset.

R? Values
Daily Weekly Monthly
1 0.5533 0.5472 0.5624
2 0.7655 0.7705 0.7806
5 0.9283 0.9248 0.9363
10 0.9633 0.9628 0.9673
Number of
15 0.9676 0.9678 0.9713
Nodes
20 0.9693 0.9694 0.9727
25 0.9700 0.9702 0.9732
35 0.9709 0.9709 0.9737
50 0.9716 0.9715 0.9743
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Table B2: The R? values for the diagnostic test used to determine how the number of hidden layers and nodes within

individual neural networks affected the performance of the Scenario 2 time-averaged datasets. The target variable

was biomass (mol kg™). A separate NNE was trained for each of the time-averaged datasets (daily, weekly,

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 25 nodes was trained, a

unigue NNE for the weekly averaged dataset with 25 nodes was trained, etc.). Each NNE contained 10 individual

neural networks and kept the same training and stopping specifications outlined in the manuscript. The trained

NNEs made predictions on the testing dataset and the R? values were calculated based on the comparison between

those predictions and the actual values of the testing dataset. The layers and number of nodes in the table are

specified as follows: # nodes in first layer - # nodes in second layer. If only one number is listed, this specifies the

number of nodes in the single hidden layer and that a second layer was not used.

R? Values
Daily Weekly Monthly
Layers and 25 0.9700 0.9702 0.9732
Number of 25-10 0.9722 0.9724 0.9750
Nodes 25-25 0.9726 0.9727 0.9756
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Table B3: The R? values for the diagnostic test used to assess how different activation functions in the hidden layer

affected the performance of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg1). A

separate NNE was trained for each of the time-averaged datasets (daily, weekly, monthly) for each activation

1050 function (ex. A unique NNE for the daily-averaged dataset with the logarithmic sigmoid activation function was

trained, a unique NNE for the weekly averaged dataset with the logarithmic sigmoid activation function was trained,

etc.). Each NNE contained 10 individual neural networks and kept the same training and stopping specifications

outlined in the manuscript. The trained NNEs made predictions on the testing dataset and the R? values were

calculated based on the comparison between those predictions and the actual values of the testing dataset.

R? Values
Daily Weekly Monthly
Hyperbolic Tangent (Symmetric) Sigmoid 0.9681 0.9688 0.9722
Logarithmic Sigmoid 0.9679 0.9691 0.9722
. Inverse L01x10° 0.7921 0.2455
Activation (0.7236)*
Functions Postive Linear (ReLU) 0.9652 0.9671 0.9704
Linear 0.3104 0.3059 0.3125
Soft Max 0.9643 0.9649 0.9695
1055 Radial Basis 0.9671 0.9688 0.9716

*The low R? value of the daily-averaged dataset for the Inverse activation function (1.01 x 10-%) was because the
first neural network of that NNE stopped training after only 1 epoch due to the momentum parameter (“mu” in
Matlab) reaching its maximum value. This significantly decreased the R? performance of that particular NNE.
Removing the first neural network from that NNE increased the R? value to 0.7236.
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Figure C1: Boxplots showing the variability in the predictor and target variables of Scenario 1. The dataset consisted

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c)

1065 irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50

percentile), the box edges are the 25™ and 75™ percentile values, and the whiskers are the minimum and maximum

values.
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1070 Figure C2: Boxplots showing the variability in the predictor and target variables of Scenario 3. The dataset consisted

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c)

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50™

percentile), the box edges are the 25™ and 75™ percentile values, and the whiskers are the minimum and maximum

values.
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1075 Appendix D

This appendix provides details about the method used to visualize how the apparent relationships in Scenario 2 were

changing from the hourly timescale through to the monthly averaged timescale.

To capture the apparent relationships ranging from the hourly to monthly averaged timescales, we averaged the

1080 hourly dataset over a range of timespans. Specifically, we averaged over the timespans of 1-hour (original hourly
dataset), 2, 3,4, 6, 8,12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. The timescales had to be multiples of,

or divisible by, 24 hours. Hours that did not meet these criteria would mean that hours from one day would be

averaged with hours from another day. For example, using a 7-hour timespan for averaging would have meant that

the last three hours of Day 1 were being averaged with the first four hours of Day 2.

1085

We trained one NNE for each of the averaged timescales. Each NNE contained ten individual NNs. The NNs kept

the same training criteria specified in the manuscript.

After training the NNEs, we performed a sensitivity analysis on each of them to visualize the predicted apparent

1090 relationships. The percentile values for variables that were not varying were set at their 50" percentile (median)

values. We then plotted all the predicted curves on a single surface plot so we could view the relationships of all the

timescales at once. Additionally, because the greatest variability was lost in the first 24 hours, we also focused on

the apparent relationships for the timespans that were less than or equal to 24 hours.
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Code and Data Availability

The Matlab scripts for the construction of the figures and tables, the scripts for training and testing the MLR, RF,
and NNE algorithms, and the source files for each scenario are available in the Zenodo data repository
(https://doi.org/10.5281/zen0d0.3932388, Holder and Gnanadesikan, 2020).
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Tables

Table 1: Details for each Scenario 1-comparisenthat include the predictor variables, the target variable, the equations
used to calculate biomass, the type of MER;-RFsource file used to acquire the values for the predictors, and NNE

method-performancea short description with important details about each scenario.

Scenario

Predictors Target Equations Used

Macronutrient (mol kg™);

Biomass
Micronutrient (mol kg™); (mol kg') 1,23
Irradiance (W m?)
Macronutrient (mol kg™); Biomass
Micronutrient (mol kg™); (mol kg') 1,236
Irradiance (W m?)
. g 7,8
Macronutrient (mol kg™); . ’
] . ( g_l )_ Biomass  (Equations within BLING
Micronutrient (mol kg™); (mol kg% used to determine the
Irradiance (W m?) biomass)

Source File Description

Scenario Description

1) Nutrient distributions (predictors) from BLING
were run through Eq. 1, 2, and 3 to calculate
the biomass (target)

Monthly Output from BLING  2) The true relationships were calculated by using

Daily Output from BLING

Monthly Output from BLING

the range of the values for the predictors and
calculating the biomass based on Eq. 1, 2, and 3

1) Hourly values for the predictors were
interpolated using the Daily Output of BLING
1a) The macronutrient and micronutrient
hourly values were calculated using a
standard interpolation between the daily
points.

1b) The irradiance hourly values were
calculated from Eq. 6 using the value of
the BLING daily input, hour of day, time of
year, and location.

2) Hourly values of the predictors were fed to Eq.
1, 2, and 3 to calculate hourly values for the
biomass (target)

3) Daily-averaged values were calculated by
averaging 24 hours for each location through
one year

4) Weekly-averaged values were calculated by
averaging 168 hour blocks of time for each
location through the year

5) Monthly-averaged values were calculated by
averaging the number of hours in each month
(days per month * 24) for each location through
the year

6) The true relationships were calculated by using
the range of the hourly values for the predictors
and calculating the biomass based on Eqg. 1, 2,
and 3

1) Nutrient distributions from the BLING Output
were used as the predictors; Biomass from the
BLING Output itself was used as the target
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1325
1326

1327

1328

Table 2: Performance metrics (Coefficient of Determination [R?] and Root Mean Squared Error [RMSE]) for the

training and testing sets-

Training Data Testing Data
R-squared MSE RMSE R-squared MSE RMSE
MLR 0.4141 1.09 x 10 1.05 x 107 0.4092 1.10 x 10™ 1.05 x 107
RF 0.9988 2.53x 10 5.03 x 10° 0.9977 5.00 x 107 7.07 x 10°
NNE 0.9998 3.18x 10 1.78 x 10° 0.9998 3.19x 10 1.79x 10°
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1330

1329  Fable2:-datasets of each Scenario ;_Leempanse&e#Ml:R—RF—and NNE-the respective ML method perfermancefor
(MLR — Multiple Linear Regression; RF —

Daily
Weekly
Monthly
1334
1335
1336

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

Training Data

Testing Data

1331 Random Forest; NNE — Neural Network Ensemble). Scenario 2 had three time-averaged datasets (daily, weekly, and

1332 monthly-time-averaged-apparentrelationship-data:). The target variable for all Scenarios was phytoplankton
1333 biomass.

R-squared
0.3312
0.9847
0.9707

0.3170
0.9842
0.9695

0.3122
0.9863
0.9732

MSE
477 x 10"
1.12x 106
2.09 x 10

4.39x 10
1.04 x 10
1.96 x 10%

413x 10"
8.45 x 1077
1.61x 10

52

RMSE
6.90 x 10°®
1.06 x 10°®
1.45x 10°®

6.63 x 10°®
1.02 x 10°®
1.40 x 10°®

6.42 x 10°®
9.19x 10°
1.27 x 10°®

R-squared
0.3254
0.9695
0.9700

0.3172
0.9699
0.9702

0.3230
0.9737
0.9732

MSE
484 x 10"
2.22x 10
2.15x 10

4.35x 10
1.94 x 101
1.90 x 101

4.06 x 10°
1.60 x 10
1.61x 107

RMSE
6.96 x 10°
1.49 x 10°®
1.47 x 10°®

6.60 x 10
1.39x 10°®
1.38x 10°®

6.37 x 10®
1.26 x 10°®
1.27 x 10°®



1337

1338

1339

1340

MLR
RF
NNE

Training Data

Testing Data

R-squared
0.0672
0.9727
0.9417

MSE
6.51x 10
2.02 x 10"
4.07 x 10

53

R-squared
0.0691
0.9445
0.9386

MSE
6.39 x 107
3.92x 10
4.22 x 10"

RMSE
2.53x10%
6.26 x 107
6.50 x 10
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1342

True Value

Scenario 1

Daily

Scenario 2 | Weekly

Monthly

Scenario 3

25th Percentile
50th Percentile
75th Percentile

25th Percentile
50th Percentile
75th Percentile

25th Percentile
50th Percentile
75th Percentile

25th Percentile
50th Percentile
75th Percentile

25th Percentile
50th Percentile
75th Percentile

NNE

Macronutrient

1.00 x 107

6.80 x 10°°
1.06 x 10
1.91 x 10°®

1.03 x 10%
3.22x 10°
3.35x 10°®

6.99 x 10°°
3.21 x 10°®
5.05 x 10°®

7.70 x 10°
3.16 x 10°®
7.39x 108

3.50 x 10°®
8.89 x 10°®
1.64 x 107

54

Micronutrient

2.00 x 10™%°

-5.55 x 10!
1.31x 101
2.54 x 10™1°

-1.13x 10™°
1.78 x 10%°
9.55 x 10™%°

-1.15x 100
1.87 x 101°
8.33x 10™°

-1.35x 10™%°
2.01 x 10™°
1.09 x 10°

-2.11 x 10*
6.94 x 10™°
2.41 x 10°

Light

34.30

34.05
34.89
34.23

26.73
27.97
20.98

30.17
26.26
24.63

27.32
20.97
22.19

1.85
5.80
7.78
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1344

Scenario 1

Daily

Scenario 2 | Weekly

Monthly

Scenario 3

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

Training Data

R-squared RMSE

0.4528 1.32x107
0.9989 6.46 x10°°
0.9999 1.70 x 10°°

0.3160 8.75x10®
0.9841 1.35x10°%
0.9686 1.88x10°®

0.3054 8.35x 10
0.9835 1.30x10°®
0.9680 1.79x10®

0.3022 8.07 x10®
0.9859 1.16 x10°®
0.9722 1.61x10°®

0.0672 2.55x10°
0.9727 4.49x10°
0.9417 6.38 x10°

Testing Data
R-squared RMSE
0.4471 1.33x10”
0.9977 9.15x10°°
0.9999 1.73x10°
0.3104 8.82 x10°®
0.9684 1.90x 10
0.9681 1.90x10°®
0.3059 8.31x10®
0.9687 1.78 x10°®
0.9688 1.76 x10°®
0.3125 8.01x10®
0.9729 1.60x10°®
0.9722 1.61x10°
0.0691 253x10°
0.9445 6.26 x 10
0.9386 6.50 x 10°°
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1345 Table 3: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient,

1346 micronutrient, and light) based on the 25™ 501 and 75™ percentiles. The percentiles correspond to the values at

1347 which the other predictors were set (ex. For the 25" Percentile Macronutrient value, the macronutrient varied across

1348 its min-max range while micronutrient and light were set at their respective 25™ percentile values). The coefficients

1349 were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of

1350  the form in Eq. 4, where ay was the estimate for each half-saturation coefficient.

NNE

Macronutrient Micronutrient Light

True Value 1.00 x 107 2.00 x 1010 34.30

25th Percentile 6.27 x 10° 1.29 x 10°° 38.91

Scenario 1 50th Percentile 1.04 x 108 1.44 x 1010 38.26

75th Percentile 1.88 x 108 286 x 1010 40.09

25th Percentile 987 x 10° -9.85 x 1011 22.04

Daily 50th Percentile 3.22 x 108 1.88 x 1010 23.20

75th Percentile 4.89 x 10 3.51 x 10710 20.09

25th Percentile 1.08 x 10°8 -6.48 x 1010 26.18

Scenario 2 | Weekly | 50th Percentile 3.78x 10% 1.92 x 107° 25.50

75th Percentile 6.36 x 10° 1.11 x 10°° 18.49

25th Percentile 7.64 x 10° -6.90 x 1010 23.13

Monthly | 50th Percentile 3.26 x 10 1.63 x 1010 19.37

75th Percentile 1.38 x 10”7 1.04 x 10° 21.89

25th Percentile 3.50 x 10 6.84 x 10° 1.85

Scenario 3 50th Percentile 8.89 x 10°® 6.94 x 10°1° 5.80

351 75th Percentile 1.64 x 10" 2.41x 10° 7.78
1352
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1353 Table 4: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient,
1354 micronutrient, and light) based on the 971 98" and 99" percentiles. The percentiles correspond to the values at
1355 which the other predictors were set (ex. For the 97" Percentile Macronutrient value, the macronutrient varied across
1356 its min-max range while micronutrient and light were set at their respective 97" percentile values). The coefficients
1357 were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of
1358 the form in Eq. 4, where a, was the estimate for each half-saturation coefficient.
NNE
Macronutrient Micronutrient Light
True Value 1.00 x 107 2.00 x 10" 34.30
97th Percentile 4.33x 108 4.73 x 10710 39.48
Scenario 1 98th Percentile 4.85x 10 4.68 x 107° 42.11
99th Percentile 6.06 x 10 4.49 x 10710 49.43
97th Percentile 228 x 10”7 4.10 x 1010 217.3
Daily | 98th Percentile 2.99 x 10”7 4.02 x 1010 254.0
99th Percentile 3.93 x 10”7 3.90 x 10710 276.2
97th Percentile 2.590 x 107 7.23x 10710 68.86
Scenario 2 | Weekly | 98th Percentile 3.39 x 10”7 6.33 x 10°1° 70.56
99th Percentile 4.28 x 107 519 x 1010 70.32
97th Percentile 3.56 x 10~ 9.04 x 10710 85.22
Monthly | 98th Percentile 3.96 x 10”7 9.16 x 10°1° 82.73
99th Percentile 517 x 10”7 9.55 x 10°1° 82.61
97th Percentile 5.19 x 107 2.00 x 10° 54.00
Scenario 3 98th Percentile 7.02 x 107 1.89 x 10° 76.48
350 99th Percentile 1.01 x 10°® 1.74 x 10°° 86.21
1360
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365 Figure 1: Contour plots comparing the true response for the yearly- averaged biomass (tep-left)-a) of Scenario 1 and
366 the associated predictions for MLR (tep-rightb), RF (bottem-eftc), and NNE (bettom-right).d). The biomass was
367 measured in units of mol kg™*.
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Figure 2: Sensitivity analysis for Scenario 1 with-the-showing the true and predicted relationships for each ML
method. The columns eorrespendingcorrespond to the predictors and the rows eerrespendingcorrespond with the
percentile value at which the other predictors were set—The-black-tine-shews (ex. Subplot a varies the true-intrinsic
relationship-and-themacronutrient across its min-max range, while the micronutrient and light are held at their 25t
percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq. 1-3. The

dashed lines show the predicted apparent relationships for each method- (MLR — red; RF — blue; NNE — green). The

RF and NNE predicted relationships are the average of the individual predictions for each method. The gray regions

around the RF and NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in
the 10 individual NN predictions of the NNE).
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1383 Figure 3: Contour and interaction plots for Scenario 1. The contour plots show the density of observations for each

1384 set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate

1385 many observations. The interaction plots (d-o0) show the biomass values for different combinations of the predictors

1386 on each x and y axis. The predictor that was not varying was set at its 50™ percentile (median) value (ex. Subplot d

1387 allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held

1388 fixed at its 50" percentile value). The top three interaction plots (d-f) show the true interactions calculated from Eq.

1389 1-3. The remaining interaction plots show the predicted interactions for MLR (g-i), RF (j-1), and NNE (m-0). Note
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390 that the x and y axes for subplot g were switched so that the interaction could be visualized. The RF and NNE

391 predicted relationships are the average of the individual predictions for each method.

392
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1394 Figure 4: Sensitivity analysis for Scenario 2 with-theshowing the true and predicted relationships for each ML

1395 method. The columns eorrespendingcorrespond to the predictors and the rows eerrespendingcorrespond with the
1396 percentile value at which the other predictors were set- (ex. Subplot a varies the macronutrient across its min-max

1397 range, while the micronutrient and light are held at their 25™ percentile values, respectively). The black line shows

1398 the true intrinsic relationship and-thecalculated from Eg. 1-3. The dashed lines show the predicted monthly apparent

1399 relationships for each method-
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1400 (MLR —red; RF — blue; NNE — green). The RF and NNE predicted relationships are the average of the individual

1401 predictions for each method. The gray regions around the RF and NNE dashed lines show one standard deviation in

1402 the predictions (ex. One standard deviation in the 10 individual NN predictions of the NNE).
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Figure 45: Sensitivity analysis for Scenario 2 with-the-columns-cerrespendingshowing the true and predicted NNE
relationships for the different time-averaged datasets. The columns correspond to the predictors and the rows

correspendingcorrespond with the percentile value at which the other predictors were set-_(ex. Subplot a varies the

macronutrient across its min-max range, while the micronutrient and light are held at their 25" percentile values,
respectively). The black line shows the true intrinsic relationship and-thecalculated from Eq. 1-3. The dashed lines
show the predicted apparent relationships for the-NNEs-correspending-to-the-dathyweekhyand-each time-averaged
dataset (Daily — red; Weekly — blue; Monthly — green). The conditions for the sensitivity analysis were based on the
values from the monthly timescales:
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Figure-5-Lineplotshowing-the-differencesaveraged dataset. It was necessary to give the same conditions to all the

time-averaged datasets so that a direct comparison could be made between the predictions of the respective NNEs.

The predicted relationships are the average of the individual predictions for each time-averaged NNE, respectively.

The gray regions around the NNE dashed lines show one standard deviation in Hght-levelsforapeintthe predictions
(ex. One standard deviation in the Nerth-Atlantic(39:08°N-40.52W)for the various-timescales-in-Seenario2-
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1421 10 individual NN predictions of each NNE).
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1425

1426 Figure 6: Boxplots showing the variability in the predictor and target variables of Scenario 2 for the various time-

1427 averaged datasets. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target

1428 variable was phytoplankton (d) biomass. The red line corresponds to the median (50" percentile), the box edges are

1429 the 25" and 75™ percentile values, and the whiskers are the minimum and maximum values.
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Figure 7: Surface plots showing the apparent relationships found across different averaged timescales for Scenario 2.

The timescales range from 1 hour (original hourly set) up to 720 hours (monthly). The three plots on the right (b, d,

) show the relationships across the entire range of timescales (1 through 720 hours). The three plots on the left (a, c,

e) show the timescales at and below 24 hours. The top plots show the relationships for the macronutrient (a, b), the

middle plots show the relationships for the micronutrient (c, d), and the bottom plots show the relationships for

irradiance (e, f). Variables not varying across their range were set at their 50" percentile (median) value. The
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1438 conditions of the sensitivity analyses were based on the conditions of the monthly averaged (720-hour) dataset. It

1439 was necessary to give the same conditions to the all the time-averaged datasets so that a direct comparison could be

1440 made between the predictions of the respective NNEs. The predicted relationships are the average of the individual

1441 predictions for each time-averaged NNE.

1442
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Figure 8: Interaction plots for Scenario 2. The interaction plots show the biomass values for different combinations

of the predictors on each x and y axis. The predictor that was not varying was set at its 50th percentile (median)

value (ex. Subplot d allows the micro- and macronutrient to vary across their respective min-max ranges, while the

irradiance is held fixed at its 50th percentile value). The top three interaction plots (a-c) show the true interactions

calculated from Eg. 1-3. The remaining interaction plots show the predicted interactions for the time-averaged

datasets: daily (d-f), weekly (g-i), and monthly (j-1). The conditions for the sensitivity analysis were based on the

values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-averaged

datasets so that a direct comparison could be made between the predictions of the respective NNEs. The predicted

relationships are the average of the individual predictions for each time-averaged NNE.
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1455 Figure 9: Contour plots of Scenario 2 for the time-averaged datasets: daily (a-c), weekly (d-f), and monthly (g-i).

1456 The contour plots show the density of observations for each set of predictors where blue signifies very few

1457 observations and colors moving up the spectrum to red indicate many observations.
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Figure 10: Scatter plots from the BLING model (a: surface biomass vs. temperature-normalized growth rate; b:
mean-nutrient-Hmitation-vs—monthly-averaged nutrients vs. mean nutrient limitation; c: mean-Hght-Hmitation-vs:

monthly-averaged Irr, Irr vs. mean light limitation).
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Figure #11: Sensitivity analysis for Scenario 3 withshowing the predicted relationships for the NNE. The columns
correspondingcorrespond to the predictors and the rows eorrespendingcorrespond with the percentile value at which
the other predictors were set-The-gray-circlesshow-the-observationsfrom-the BLING-model-and-the dashed-ine
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across its min-max range, while the micronutrient; and light with-the-colorare held at their 25 percentile values,

respectively). The green dashed line shows the apparent relationships predicted by the NNE. The predicted
relationships are the average of the data-points-corresponding-to-individual predictions for each NN. The gray
regions around the NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in

the 10 individual NN predictions of the NNE). The contour plot behind the predicted relationships show the

observations for each predictor against the biomass-cencentrations-. Lighter colors signify a higher density of

observations, while darker colors correspond to fewer observations.
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Figure 12: Contour and interaction plots for Scenario 3. The contour plots show the density of observations for each

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate

many observations. The interaction plots (d-f) show the biomass values for different combinations of the predictors

on each x and y axis. The predictor that was not varying was set at its 50 percentile (median) value (ex. Subplot d

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held

fixed at its 50" percentile value). The interaction plots show the predicted interactions based on the NNE. The

predicted relationships are the average of the individual predictions for each NN.
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