
1 

 

Can machine learning extract the mechanisms controlling 

phytoplankton growth from large-scale observations? – A proof 

of concept study 

 
Christopher Holder1, Anand Gnanadesikan1 5 

1 Morton K. Blaustein Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 

21218, United States of America 

Correspondence to: Christopher Holder (cholder2@jh.edu) 

 

Abstract  10 

A key challenge for biological oceanography is relating the physiological mechanisms controlling phytoplankton 

growth to the spatial distribution of those phytoplankton. Physiological mechanisms are often isolated by varying 

one driver of growth, such as nutrient or light, in a controlled laboratory setting producing what we call “intrinsic 

relationships”. We contrast these with the “apparent relationships” which emerge in the environment in 

climatological data. Although previous studies have found machine learning (ML) can find apparent relationships, 15 

there has yet to be a systematic study examining when and why these apparent relationships diverge from the 

underlying intrinsic relationships found in the lab, and how and why this may depend on the method applied. Here 

we conduct a proof-of-concept study with three scenarios in which biomass is by construction a function of time-

averaged phytoplankton growth rate. In the first scenario, the inputs and outputs of the intrinsic and apparent 

relationships vary over the same monthly timescales. In the second, the intrinsic relationships relate averages of 20 

drivers that vary on hourly timescales to biomass, but the apparent relationships are sought between monthly 

averages of these inputs and monthly averaged output. In the third scenario we apply ML to the output of an actual 

Earth System Model (ESM). Our results demonstrated that when intrinsic and apparent relationships operate on the 

same spatial and temporal timescale, Neural Network Ensembles (NNEs) were able to extract the intrinsic 

relationships when only provided information about the apparent relationships, while co-limitation and its inability 25 

to extrapolate, resulted in Random Forests (RF) diverging from the true response. When intrinsic and apparent 

relationships operated on different timescales (as little separation as hourly versus daily), NNEs fed with apparent 

relationships in time-averaged data produced responses with the right shape but underestimated the biomass. This 

was because when the intrinsic relationship was nonlinear, the response to a time-averaged input differed 

systematically from the time-averaged response. Although the limitations found by NNEs were overestimated, they 30 

were able to produce more realistic shapes of the actual relationships compared to Multiple Linear Regression. 

Additionally, NNEs were able to model the interactions between predictors and their effects on biomass, allowing 

for a qualitative assessment of the co-limitation patterns and the nutrient causing the most limitation. Future research 

may be able to use this type of analysis for observational datasets and other ESMs to identify apparent relationships 
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between biogeochemical variables (rather than spatiotemporal distributions only) and identify interactions and co-35 

limitations without having to perform (or at least performing fewer) growth experiments in a lab. From our study, it 

appears that ML can extract useful information from ESM output and could likely do so for observational datasets, 

as well. 

1 Introduction 

Phytoplankton growth can be limited by multiple environmental factors (Moore et al., 2013) such as macronutrients, 40 

micronutrients, and light. Limiting macronutrients include nitrogen (Eppley et al., 1973; Ryther and Dunstan, 1971; 

Vince and Valiela, 1973), phosphorus (Downing et al., 1999), and silicate (Brzezinski and Nelson, 1995; Dugdale et 

al., 1995; Egge and Aksnes, 1992; Ku et al., 1995; Wong and Matear, 1999). Limiting micronutrients can include 

iron (Boyd et al., 2007; Martin, 1990; Martin and Fitzwater, 1988), zinc, and cobalt (Hassler et al., 2012). 

Additionally, limitations can interact with one another to produce co-limitations (Saito et al., 2008). Examples of 45 

this include the possible interactions between the micronutrients iron, zinc, and cobalt (Hassler et al., 2012) and the 

interaction between nitrogen and iron (Schoffman et al., 2016) such that local sources of nitrogen can have a strong 

influence on the amount of iron needed by phytoplankton (Maldonado and Price, 1996; Price et al., 1991; Wang and 

Dei, 2001). Spatial and temporal variations, such as mixed layer depth and temperature, affect such limitations, and 

have been related to phytoplankton biomass using different functional relationships (Longhurst et al., 1995).  50 

 

Limitations on phytoplankton growth are usually characterized in two ways – which we term intrinsic and apparent. 

Intrinsic relationships are those where the effect of one driver (nutrient/light) at a time is observed, while all others 

are held constant (often at levels where they are not limiting). An example of such intrinsic relationships is the 

Michaels-Menten growth rate curves that emerge from laboratory experiments (Eppley and Thomas, 1969). 55 

Apparent relationships are those which emerge in the observed environment. An example of apparent relationships 

are those that emerge from satellite observations, which provide spatial distributions of phytoplankton on timescales 

(say a month) much longer than the phytoplankton doubling time, which can be compared against monthly 

distributions of nutrients. A significant challenge that remains is determining how intrinsic relationships found in the 

laboratory scale up to the apparent relationships observed at the ecosystem scale (i.e., scaling the small to the large). 60 

Differences may arise between the two because apparent relationships reflect both intrinsic growth and loss rates, 

which are near balance over the long monthly timescales usually considered in climatological analyses. Biomass 

concentrations may thus not reflect growth rates. Differences may also arise because different limitation factors may 

not vary independently.  

 65 

Earth System Models (ESMs) have proved valuable in linking intrinsic and apparent relationships. The intrinsic 

relationships are programmed into ESMs as equations that are run forward in time, and the output is typically 

provided as monthly averaged fields. The output of these ESMs is then compared against observed fields, such as 
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chlorophyll and nutrients, and can be analyzed to find apparent relationships between the two. If the ESM output is 

close to the observations we find in nature, we say that the ESM is performing well. However, as recently pointed 70 

out by Löptien and Dietze (2019), ESMs can trade-off biases in physical parameters with biases in biogeochemical 

parameters (i.e., they can arrive at the same answer for different reasons). Using two versions of the UVic 2.9 ESM, 

they showed that they could increase mixing (thus bringing more nutrients to the surface) while simultaneously 

allowing for this nutrient to be more efficiently cycled – producing similar distributions of surface properties. 

However, the carbon uptake and oxygen concentrations predicted by the two models diverged under climate change. 75 

Similarly, Sarmiento et al. (2004) showed that physical climate models would be expected to produce different 

spatial distributions of physical biomes due to differences in patterns of upwelling and downwelling, as well as the 

annual cycle of sea ice. These differences would then be expected to be reflected in differences in biogeochemical 

cycling, independent of differences in the biological models. These studies highlight the importance of constraining 

not just individual biogeochemical fields, but also their relationships with each other.  80 

 

To help with constraining these fields, some researchers have turned to machine learning (ML) to help in uncovering 

the dynamics of ESMs. ML techniques are capable of fitting a model to a dataset without any prior knowledge of the 

system and without any of the biases that may come from researchers about what processes are most important. As 

applied to ESMs, ML has mostly been used to constrain physics parameterizations, such as longwave radiation 85 

(Belochitski et al., 2011; Chevallier et al., 1998) and atmospheric convection (Brenowitz and Bretherton, 2018; 

Gentine et al., 2018; Krasnopolsky et al., 2010, 2013; O’Gorman and Dwyer, 2018; Rasp et al., 2018).  

 

With regard to phytoplankton, ML has not been explicitly applied within ESMs but has been used on phytoplankton 

observations (Bourel et al., 2017; Flombaum et al., 2020; Kruk and Segura, 2012; Mattei et al., 2018; Olden, 2000; 90 

Rivero-Calle et al., 2015; Scardi, 1996, 2001; Scardi and Harding, 1999) and has used ESM output as input for a ML 

model trained on phytoplankton observations (Flombaum et al., 2020). Rivero-Calle et al. (2015) used random forest 

(RF) to identify the drivers of coccolithophore abundance in the North Atlantic through feature importance measures 

and partial dependence plots. The authors were able to find an apparent relationship between coccolithophore 

abundance and environmental levels of CO2, which was consistent with intrinsic relationships between 95 

coccolithophore growth rates and ambient CO2 reported from 41 laboratory studies. They also found consistency 

between the apparent and intrinsic relationships between coccolithophores and temperature. While they were able to 

find links between particular apparent relationships found with the RFs and intrinsic relationships between 

laboratory studies, it remains unclear when and why this link breaks. 

 100 

ML has been used to examine apparent relationships of phytoplankton in the environment (Flombaum et al., 2020; 

Rivero-Calle et al., 2015; Scardi, 1996, 2001) and it is reasonable to assume that ML could find intrinsic 
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relationships when provided a new independent dataset from laboratory growth experiments. However, it has yet to 

be determined under what circumstances the apparent relationships captured by ML have significantly different 

functional forms to the intrinsic relationships that actually control phytoplankton growth.  105 

 

To investigate when and why the link between intrinsic and apparent relationships break, we try to answer two main 

questions in this paper: 

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are 

most skillful in finding them? 110 

2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic 

relationships we expect?  

 

In addressing the first question, we first needed to demonstrate that we had a ML method that would correctly 

extract intrinsic relationships from apparent relationships. We constructed a simple model in which the biomass is 115 

directly proportional to the time-smoothed growth rate. In this scenario, intrinsic and apparent relationships operated 

on the same time and spatial scale and were only separated by a scaling factor, but the environmental drivers of 

phytoplankton growth had realistic inter-relationships. Having a better handle on the results from the first question, 

we were able to move onto the second question where we looked at where the link between intrinsic and apparent 

relationships diverged. We modified the first scenario so that the apparent relationships use a time-averaged input 120 

(similar to what would be used in observations), but the intrinsic relationships operate by smoothing growth rates 

derived from hourly input. Finally, we conduct a proof-of-concept study with real output from the ESM used to 

generate the inputs for scenarios 1 and 2, in which the biomass is a nonlinear function of the time-smoothed growth 

rate. 

 125 

2 Methods 

The main points of each Scenario are summarized in Table 1 including information on the predictors, target variable, 

equations used to calculate biomass, source file, and scenario description. For each of the three scenarios, three ML 

methods were used (Multiple Linear Regression [MLR], Random Forests [RF], and Neural Network Ensembles 

[NNE]). 130 

 

2.1 Scenario 1: Closely related intrinsic and apparent relationships on the same timescale 

In the first scenario, we wanted to determine how well different ML methods could extract intrinsic relationships 

when only provided information on the apparent relationships and when the intrinsic and apparent relationships were 
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operating on the same timescale. In this scenario, the apparent relationships between predictors and biomass were 135 

simply the result of multiplying the intrinsic relationships between predictors and growth rate by a scaling constant. 

 

We designed a simple phytoplankton system in which biomass was a function of micronutrient, macronutrient, and 

light limitations based on realistic inter-relationships between limitations (Eq. 1):  

B = S∗ × min(𝐿𝑚𝑖𝑐𝑟𝑜 , 𝐿𝑚𝑎𝑐𝑟𝑜) × 𝐿𝐼𝑟𝑟 (1) 

where B is the value for biomass (mol kg-1), S∗ is a scaling factor, and Lmicro,macro,irr are the limitation terms for 140 

micronutrient (micro), dissolved macronutrient (macro), and light (irradiance; irr), respectively. The scaling factor 

(1.9x10-6 mol kg-1) was used, so the resulting biomass calculation was in units of mol kg-1. While simplistic, this is 

actually the steady-state solution of a simple phytoplankton-zooplankton system when grazing scales as the product 

of phytoplankton and zooplankton concentrations, and zooplankton mortality is quadratic in the zooplankton 

concentration. 145 

 

Each of the nutrient limitation terms (𝐿𝑚𝑖𝑐𝑟𝑜,𝑚𝑎𝑐𝑟𝑜 in Eq. 1) were functions of Michaelis-Menten growth curves (Eq. 

2): 

𝐿𝑁 =  
N

KN + N
 (2) 

where LN is the limitation term for the respective factor, N is the concentration of the nutrient, and KN is the half-

saturation constant specific to each limitation. The light limitation was given by (Eq. 3): 150 

𝐿𝐼𝑟𝑟 =  1 − 𝑒
−(

𝐼𝑟𝑟
𝐾𝐼𝑟𝑟

)
 (3) 

where LIrr is the light limitation term, Irr is the light intensity, and KIrr is the light limitation constant. In terms of our 

nomenclature, Eq. 1 defines the apparent relationship between nutrients, light, and biomass, such as might be found 

in the environment, while Eq. 2 and 3 are the intrinsic relationships between nutrients/light and growth rate, such as 

might be found in the laboratory or coded in an ESM.  

 155 

For the concentrations of each factor (N in Eq. 2), we took the monthly averaged value for every lat/lon pair (i.e., 12 

monthly values for each lat/lon pair) from the Earth System Model ESM2Mc (Galbraith et al., 2011). ESM2Mc is a 

fully coupled atmosphere, ocean, sea ice model into which is embedded an ocean biogeochemical cycling module. 

Known as BLING (Biogeochemistry with Light, Iron, Nutrients, and Gases; Galbraith et al., 2010), this module 

carries a macronutrient, a micronutrient, and light as predictive variables and uses them to predict biomass using a 160 

highly parameterized ecosystem (described in more detail below). The half-saturation coefficients (KN in Eq. 2) for 
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the macronutrient and micronutrient were also borrowed from BLING with values of 1x10-7 mol kg-1 and 2x10-10 

mol kg-1, respectively. The light-limitation coefficient KIrr was set at 34.3 W m-2
, which was the global mean for the 

light limitation factor in the ESM2Mc simulation used later in this paper. 

 165 

The final dataset consisted of three input/predictor variables and one target term with a total of 77,328 observations. 

The input variables given to each of three ML methods (Multiple Linear Regression [MLR], Random Forests [RF], 

and Neural Network Ensembles [NNE], described in more detail below) were the concentrations (not the limitation 

terms) for the micronutrient, macronutrient, and light. The target variable was the biomass we calculated from Eq. 1-

3. The same three ML methods were applied to all three Scenarios. 170 

 

The dataset was then randomly split into training and testing datasets, with 60% of the observations going to the 

training dataset and the remainder going to the testing dataset. This provided a standard way to test the 

generalizability of each ML method by presenting them with new observations from the test dataset and ensuring the 

models did not overfit the data. The input and output values for the training dataset were used to train a model for 175 

each ML method. Once each method was trained, we provided the trained models with the input values of the testing 

dataset to acquire their respective predictions. These predictions were then compared to the actual output values of 

the test dataset. To assess model performance, we calculated the coefficient of determination (R2) and the root mean 

squared error (RMSE) between the ML predictions and the actual output values for the training and testing datasets. 

 180 

Following this, a sensitivity analysis was performed on the trained ML models. We allowed one predictor to vary 

across its min-max range while holding the other two input variables at specific percentile values. This was repeated 

for each predictor. This allowed us to isolate the impact of each predictor on the biomass – creating “cross-sections” 

of the dataset where only one variable changed at a time. For comparison, these values were also run through Eq. 1-

3 to calculate the true response of how the simple phytoplankton model would behave. This allowed us to view 185 

which of the models most closely reproduced the underlying intrinsic relationships of the simple phytoplankton 

model.  

 

For our main sensitivity analyses, we chose to hold the predictors that were not being varied at their respective 25th, 

50th, and 75th percentile values. We chose to use these particular percentile values for several reasons: 190 

1. It allowed us to avoid the extreme percentiles (1st and 99th). As we approach these extremes, the uncertainty 

in the predictions grows quite rapidly because of the lack of training samples within that domain space of 

the dataset. For example, there are no observations which satisfy the conditions of being in the 99 th 

percentile of two variables simultaneously. This extreme distance outside of the training domain generally 
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leads to standard deviations in predictions that are too large to provide a substantial level of certainty about 195 

the ML model’s predictions. 

2. Similar to the idea that we can avoid the extremes, we also chose these values as they are quite typical 

values for the edges of box plots. Generally, values within the range of the 25th to 75th percentiles are not 

considered outliers. Along those lines, we wanted to examine the conditions in a domain space that are 

likely to be found in actual observational datasets, with the reasoning that if there was high uncertainty in 200 

the ML predictions at these more moderate levels, there would be even higher uncertainty towards the 

extremes. 

 

This method of sensitivity analysis contrasts with partial dependence plots (PDPs), which are commonly used in ML 

visualization. PDPs show the marginal effect that predictors have on the outcome. They consider every combination 205 

of the values for a predictor of interest and all values of the other predictors, essentially covering all combinations of 

the predictors. The predictions of a model are then averaged and show the marginal effect of a predictor on the 

outcome – creating responses moderately comparable to averaged cross-sections. Because of this averaged response, 

PDPs may hide significant effects from subgroups within a dataset. A sensitivity analysis avoids this disadvantage 

by allowing separate visualization of subgroup relationships. For example, if macronutrient is the 210 

primary limiter over half of the domain, but not limiting at all over the other half, PDPs of the biomass dependence 

on micronutrient will reflect this macronutrient limitation, while a sensitivity analysis at the 75th percentile of 

macronutrient will not. 

 

Using the predictions produced from the sensitivity analyses, we also computed the half-saturation constants for 215 

each curve. A limitation of observational data is the frequency of sampling, which limits the ability to estimate half-

saturation coefficients without performing growth experiments in a lab. Calculating the half-saturation constants 

from the sensitivity analysis predictions allowed us to investigate if ML methods could provide a quantitative 

estimate from the raw observational data. The half-saturation constants were determined by fitting a non-linear 

regression model to each sensitivity analysis curve matching the form of a Michaelis-Menten curve (Eq. 4): 220 

𝐵 =
𝛼1𝑁

𝛼2 + 𝑁
 (4) 

where B corresponds to the biomass predictions from the sensitivity analyses, N represents the nutrient 

concentrations from the sensitivity analyses, and α1 and α2 are the constants that are being estimated by the non-

linear regression model. The constant α2 was taken as the estimation of the half-saturation coefficient for each 

sensitivity analysis curve. 

 225 
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Since co-limitations can affect the calculation of half-saturation coefficients, we also created interaction plots. This 

is useful because trying to calculate the half-saturation constant based on a nutrient curve that is experiencing 

limitation by another nutrient could cause the calculation to be underestimated. The interaction plots are a form of 

sensitivity analysis where two predictor variables are varied across their min-max range, rather than one. This 

produces a mesh of predictor pairs covering the range of possible combinations of two predictors. With these 230 

interaction plots, it was possible to visualize the interaction of two variables and their combined effect on the target 

variable. For each pair of predictors that were varying, we set the other predictor that was not varying to its 50 th 

percentile (median) value. As with the sensitivity analysis for single predictors, these predictor values were run 

through Eq. 1-3 so a comparison could be made as to which method most closely reproduced the true variable 

interactions.  235 

 

2.2 Scenario 2: Distantly related intrinsic and apparent relationships on different timescales 

In Scenario 1, the intrinsic relationships between environmental conditions and growth rate and apparent 

relationships between environmental conditions and biomass differed only by a scale factor and operated at the same 

timescale. In reality, input variables (such as light) vary on hourly timescales so that growth rates vary on similar 240 

timescales. Biomass reflects the average of this growth rate over many hours-days, while satellite observations and 

ESM model output are often only available on monthly averaged timescales. So the reality is that even if a system is 

controlled by intrinsic relationships, the apparent relationships gained from climatological variables on long 

timescales will not reproduce these intrinsic relationships since the average light (irradiance) limitation is not equal 

to the limitation given the averaged light value (Eq. 5). 245 

𝐿𝐼𝑟𝑟
̅̅ ̅̅ ̅ = (1 − 𝑒

−(
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟
)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  ≠ 1 − 𝑒

−(
𝐼𝑟𝑟̅̅̅̅̅

𝐾𝐼𝑟𝑟
)
 (5) 

where the overbar denotes a time-average, and Irr stands for irradiance (light). For Scenario 2, we wanted to 

investigate how such time averaging biased our estimation of the intrinsic relationships from the apparent ones; i.e., 

how does the link between the intrinsic and apparent relationships change with different amounts of averaging over 

time? 

 250 

For the short timescale intrinsic relationships, we took daily inputs for the three predictor variables for one year from 

the ESM2Mc model. We further reduced the timescale from days to hours to introduce daily variability for the 

irradiance variable relative to the latitude, longitude, and time of year (Eq. 6).  

IrrInt(t) =
12πIrrdaily

𝑇𝐷𝑎𝑦

sin (
𝜋(𝑡 − 𝑡𝑆𝑢𝑛𝑟𝑖𝑠𝑒)

𝑇𝐷𝑎𝑦

)  when 0 < 𝑡 < 𝑇𝐷𝑎𝑦 (6) 
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where IrrInt is the hourly interpolated value of irradiance, Irrdaily is the daily-mean value of irradiance, t is the hour of 

the day being interpolated, tSunrise is the hour of sunrise, and TDay is the total length of the day. The resulting curve 255 

preserves the day-to-day variation in the daily mean irradiance due to clouds and allows a realistic variation over the 

course of the day. The hourly values for the micronutrient and macronutrient were assigned using a standard 

interpolation between each of the daily values. Thus, light was the only predictor variable that varied hourly. These 

hourly interpolated values were then used to calculate an “hourly biomass” from Eq. 1-3. Note that we are not 

claiming real-world biomass would be zero at night but assume that on a long enough timescale, it should approach 260 

the average of the hourly biomass.  

 

To simulate apparent relationships, we smoothed the hourly values for both biomass and the input variables into 

daily, weekly, and monthly averages for each lat/lon point. To reiterate, the intrinsic and apparent relationships in 

Scenario 2 differed in timescales, but not in spatial scales. Each dataset was then analyzed following steps similar to 265 

those outlined in Scenario 1; constructing training and testing datasets, using the same variables as inputs to predict 

the output (biomass), and using the same ML methods. To assess each method’s performance, we calculated the R2 

value and the RMSE between the predictions and observations for the training and testing datasets. We also 

performed a sensitivity analysis, calculated half-saturation constants, and created interaction plots similar to those 

described above. 270 

 

2.3 Scenario 3: BLING biogeochemical model 

As a demonstration of their capabilities, the ML methods were also applied directly to monthly averaged output 

from the BLING model itself using the same predictors in Scenarios 1 and 2, but using the biomass calculated from 

the actual BLING model. As described in Galbraith et al. (2010), BLING is a biogeochemical model where biomass 275 

is diagnosed as a non-linear function of the growth rate smoothed in time. The growth rates, in turn, have the same 

functional form as in Scenarios 1 and 2, namely (Eq. 7): 

μ = 𝜇0 ∗ exp(𝑘 ∗ 𝑇) ∗ min (
𝑁𝑚𝑖𝑐𝑟𝑜

𝐾𝑚𝑖𝑐𝑟𝑜 + 𝑁𝑚𝑖𝑐𝑟𝑜

,
𝑁𝑚𝑎𝑐𝑟𝑜

𝐾𝑚𝑎𝑐𝑟𝑜 + 𝑁𝑚𝑎𝑐𝑟𝑜

) × (1 − exp (−
𝐼𝑟𝑟

𝐼𝑟𝑟𝐾

)) (7) 

where the first exponential parameterizes temperature-dependent growth following Eppley (1972), 𝑁𝑚𝑎𝑐𝑟𝑜,𝑚𝑖𝑐𝑟𝑜 are 

the macronutrient and micronutrient concentrations, 𝐾𝑚𝑎𝑐𝑟𝑜,𝑚𝑖𝑐𝑟𝑜are the half-saturation coefficients for the 

macronutrient and micronutrient, Irr is the irradiance, and 𝐼𝑟𝑟𝑘 is a scaling for light limitation. An important 280 

difference (to which we will return later in the manuscript) is that the light limitation term is calculated using a 

variable Chl:C ratio following the theory of Geider et al. (1997). The variation of the Chl:C ratio would correspond 

to a 𝐾𝐼𝑟𝑟 in Scenarios 1 and 2 which adjusts in response to both changes in irradiance (if nutrient is low) or changes 

in nutrient (if irradiance is high), as well as changes in temperature. Given the resulting growth rate 𝜇 the total 

biomass then asymptotes towards (Eq. 8) 285 
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𝐵 = (
𝜇

𝜆
+

𝜇3

𝜆3
) 𝑆∗ (8) 

where 𝜆 = 𝜆0 exp(𝑘 ∗ 𝑇) is a grazing rate, the tilde denotes an average over a few days and 𝑆∗ is the biomass 

constant that we saw in the previous two scenarios. Note that because grazing and growth have the same temperature 

dependence, the biomass then ends up depending on the nutrients and light in a manner very similar to Scenarios 1 

and 2. Growth rates and biomass are then combined to drive the uptake and water-column cycling of micronutrient 

and macronutrient within a coarse-resolution version of the GFDL ESM2M fully coupled model (Galbraith et al., 290 

2011), denoted as ESM2Mc. 

 

As described in Galbraith et al. (2011) and Bahl et al. (2019), ESM2Mc produces relatively realistic spatial 

distributions of nutrients, oxygen, and radiocarbon. Although simpler in its configuration relative to models such as 

TOPAZ (Tracers of Ocean Productivity with Allometric Zooplankton; Dunne et al., 2013), it has been demonstrated 295 

that in a higher-resolution physical model BLING produces simulations of mean nutrients, anthropogenic carbon 

uptake, and oceanic deoxygenation under global warming that are almost identical to such complicated models 

(Galbraith et al., 2015). 

 

We chose to use BLING for three main reasons. The first is that we know it produces robust apparent relationships 300 

between nutrients, light, and biomass by construction – although these relationships can be relatively complicated – 

particularly insofar as iron and light co-limitation is involved (Galbraith et al., 2010). As such, it represents a 

reasonable challenge for a ML method to recover such non-linear relationships. The second is that we know how 

these relationships are determined by the underlying intrinsic relationships between limiting factors and growth. 

Models with more complicated ecosystems (including explicit zooplankton and grazing interactions between 305 

functional groups) may exhibit more complicated time-dependence that would confuse such a straightforward 

linkage between phytoplankton growth limitation and biomass. The third is that despite its simplicity, the model has 

relatively realistic annual mean distributions of surface nutrients, iron, and chlorophyll, and under global warming, it 

simulates changes in oxygen and anthropogenic carbon uptake that are similar to much more complicated ESMs 

(Galbraith et al., 2015).  310 

 

2.4 ML Algorithms 

We chose to use Random Forests (RFs) and Neural Network Ensembles (NNEs) in this manuscript.  Although other 

ML methods exist, the list of possible choices is rather long. It was decided that the number of ML algorithms being 

compared would be limited to RFs and NNEs, given their popularity in studying ecological systems. Additionally, 315 

we chose to compare the performance of the ML techniques to the performance of Multiple Linear Regression 
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(MLR), which allows us to quantify the importance of nonlinearity. It should be noted that we are not trying to 

suggest that MLR is always ineffective for studying ecological systems. MLR is a very useful and informative 

approach for studying linear relationships within marine ecological systems (Chase et al., 2007; Harding et al., 2015; 

Kruk et al., 2011). 320 

 

2.4.1 Random Forests 

RFs are an ensemble ML method utilizing many decision trees to turn “weak learners” into a single “strong learner” 

by averaging multiple outputs (Breiman, 2001). In general, RFs work by sampling (with replacement) about two-

thirds of a dataset and constructing a decision tree. This process is known as bootstrap aggregation. At each split, the 325 

random forest takes a random subset of the predictors and examines which variable can be used to split a given set 

of points into two maximally distinct groups. This use of random predictor subsets helps to ensure the model is not 

overfitting the data. The process of splitting the data is repeated until an optimal tree is constructed or until the 

stopping criteria are met, such as a set number of observations in every branch (then called a leaf / final node). The 

process of constructing a tree is then repeated a specified number of times, which results in a group (i.e., “forest”) of 330 

decision trees. Random forests can also be used to construct regression trees in which a new set of observations 

traverse each decision tree with its associated predictor values and the result from each tree is aggregated into an 

averaged value. 

 

Here, we used the same parameters for RF in the three scenarios to allow for a direct comparison between the 335 

scenarios and to minimize the possible avenues for errors. Each RF scenario was implemented using the TreeBagger 

function in Matlab 2019b, where 500 decision trees were constructed with each terminal node resulting in a 

minimum of five observations per node. An optimization was performed to decide the number of decision trees that 

minimized the error while still having a relatively short runtime of only several minutes. For additional details about 

the construction and training of the RFs, please see Appendix B.  340 

 

2.4.2 Neural Network Ensembles 

Neural networks (NNs) are another type of ML that has become increasingly popular in ecological applications 

(Flombaum et al., 2020; Franceschini et al., 2019; Guégan et al., 1998; Lek et al., 1996a, 1996b; Mattei et al., 2018; 

Olden, 2000; Özesmi and Özesmi, 1999; Scardi, 1996, 2001; Scardi and Harding, 1999). Scardi (1996) used NNs to 345 

model phytoplankton primary production in the Chesapeake and Delaware Bays. Lek et al. (1996b) demonstrated 

the ability of NNs to explain trout abundance using several environmental variables through the use of the 

“profiling” method, a type of variable importance metric that averages the results of multiple sensitivity analyses to 

acquire the importance of each variable across its range of values. 
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 350 

Feed-forward NNs consist of nodes connected by weights and biases with one input layer, (usually) at least one 

hidden layer, and one output layer. The nodes of the input layer correspond to the input values of the predictor 

variables, and the hidden and output layer nodes each contain an activation function. Each node from one layer is 

connected to all other nodes before and after it. The values from the input layer are transformed by the weights and 

biases connecting the input layer to the hidden layer, put through the activation function of the hidden layer, 355 

modified by the weights and biases connecting the hidden layer to the output layer, and finally entered into the final 

activation function of the output node. 

 

The output (predictions) from this forward pass through the network is compared to the actual values, and the error 

is calculated. This error is then used to update the weights with a backward pass through the network using 360 

backpropagation. The process is repeated a specified number of times or until some optimal stopping criteria are 

met, such as error minimization or validation checks where the error has increased a specified number of times. For 

a more in-depth discussion of NNs, see Schmidhuber (2015). 

 

For this particular study, we use neural network ensembles (NNEs), which are a collection of NNs (each of which 365 

uses a subsample of the data) whose predictions are averaged into a single prediction. It has been demonstrated that 

NNEs can outperform single NNs and increase the performance of a model by reducing the generalization error 

(Hansen and Salamon, 1990). 

 

To minimize the differences between scenarios, we used the same framework for the NNs in each scenario. Each 370 

NN consisted of three input nodes (one for each of the predictor variables), 25 nodes in the hidden layer, and one 

output node. The activation function within the hidden nodes was a hyperbolic tangent sigmoid function, and the 

activation function within the output node used a linear function. The stopping criteria for each NN was set as a 

validation check, such that the training stopped when the error between the predictions and observations increased 

for six consecutive epochs. An optimization was performed to decide the number of nodes in the hidden layer that 375 

minimized the error while maintaining a short training time. A sensitivity analysis was also performed using 

different activation functions to ensure the choice of activation function had minimal effect on the outcome. 

Furthermore, another sensitivity analysis was performed to ensure additional hidden layers were not necessary. The 

details of the optimization and sensitivity analyses to determine the NN parameters can be found in Appendix B. 

 380 

Each NNE consisted of ten individual NNs, and each NN was trained using the feedforwardnet function in Matlab 

2019b. 
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Each variable was scaled between -1 and 1 based on its respective maximum and minimum (Eq. 9). 

𝑉𝑆 =  
𝑚𝑎𝑥𝑆 − 𝑚𝑖𝑛𝑆

𝑚𝑎𝑥𝑈 − 𝑚𝑖𝑛 𝑈
 (𝑉𝑈 − 𝑚𝑖𝑛𝑈) + 𝑚𝑖𝑛𝑆 (9) 

where V is the value of the variable being scaled, S stands for the scaled value, and U represents the unscaled value. 385 

This step ensures that no values are too close to the limits of the hyperbolic tangent sigmoid activation function, 

which would significantly increase the training time of each NN. Additionally, this normalization ensures that each 

predictor falls within a similar range, so more weight is not provided to variables with larger ranges. Although 

scaling is not necessary for RF and MLR, the scalings used for the NNE were still applied to each method for 

consistency. The results presented in this paper were then transformed back to their original scales to avoid 390 

confusion from scaling (Eq. 10). 

𝑉𝑈 =  
𝑚𝑎𝑥𝑈 − 𝑚𝑖𝑛𝑈

𝑚𝑎𝑥𝑆 − 𝑚𝑖𝑛 𝑆
 (𝑉𝑆 − 𝑚𝑖𝑛𝑆) + 𝑚𝑖𝑛𝑈 (10) 

Where the letters represent the same values as in Eq. 9. 

 

3 Results and Discussion 

3.1 Scenario 1: Closely related intrinsic and apparent relationships on the same timescale 395 

In the first scenario, our main objective was to determine if ML methods could extract intrinsic relationships when 

given information on the apparent relationships and reasonable spatiotemporal distributions of co-limitation when 

the intrinsic and apparent relationships were operating on the same timescale. 

 

In Scenario 1, the RF and NNE both outperformed the MLR as demonstrated by higher R2 values and lower RMSE 400 

(Table 2). The MLR captured just under half of the variance, while the RF and NNE essentially captured all of it. 

The decreased performance of the MLR is not inherently surprising, given the non-linearity of the underlying model, 

but it does demonstrate that the range of nutrients and light produced as inputs by ESM2Mc are capable of 

producing a non-linear response. Additionally, each method showed similar performances between the training and 

testing datasets suggesting adequate capture of the model dynamics in both datasets.  405 

 

From the spatial distributions of the true response and the predictions from each method, it can be observed that the 

RF and NNE showed the closest agreement with the true response (Fig. 1). For example, the RF and NNE were able 

to reproduce the biomass patterns in the Equatorial Atlantic and Pacific, along with the low biomass concentrations 
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at higher latitudes (Fig. 1 a, c, d). Although MLR was able to reproduce the general trend of the highest biomass in 410 

the low latitudes and low biomass in the high latitudes, it was not able to predict higher biomass values (Fig. 1 b).  

 

In addition to examining whether the different ML methods matched the correct response, we also interrogated these 

methods to look at how different predictors contributed to the answer, and whether these contributions matched the 

intrinsic relationships between the predictors and biomass as we had put into the model (Fig. 2). The MLR (red 415 

dashed lines) showed very little response to changes in macronutrient (Fig. 2 a, d, g), an unrealistic negative 

response to increases in micronutrient (Fig. 2 b, e, h), and a reasonable (albeit linear) match to the light response 

(Fig. 2 c, f, i). By contrast, the response to any predictor for the NNE (green dashed lines) showed agreement with 

the true response of the model (black lines) in all circumstances, insofar as the true response was always within the 

standard deviation of the NNE predictions (Fig. 2).  420 

 

The RF prediction of the response to a given predictor (blue dashed lines) showed agreement with the true response 

when the other predictors were fixed at the lower percentiles (Fig. 2 a-c), but began deviating in the higher 

percentiles (Fig. 2 d-i). This was likely due to the range of the training dataset and how RFs acquire their 

predictions. When presented with predictor information, RFs rely on the information contained within their training 425 

data. If they are presented with predictor information that goes outside the range of the dataspace of the training set, 

RFs will provide a prediction based within the range of the training set. When performing the sensitivity analysis, 

the values of the predictors in the higher percentiles were outside the range of the training dataset. For example, RF 

deviates from the true response as the concentration of the macronutrient increases – actually decreasing as nutrient 

increases despite the fact that such a result is not programmed into the underlying model (Fig. 2 g). Although there 430 

may be observations in the training dataset where the light and micronutrient are at their 75th percentile values when 

the macronutrient is low, there likely are not any observations where high levels of the macronutrient, micronutrient, 

and light are co-occurring. Without any observations meeting that criteria, the RF provided the highest prediction it 

could based on the training information.  

 435 

In contrast to the RF’s inability to extrapolate outside the training range, the NNE showed its capability to make 

predictions on observations on which it was not trained (Fig. 2). Note, however, that while we have programmed 

Michaelis-Menten intrinsic dependencies for individual limitations into our model, we did not get Michaelis-Menten 

type curves back for macro- and micronutrients when the other variables were set at low percentiles (Fig. 2 a-c). The 

reason is that Liebig’s law of the minimum applies to the two nutrient limitations. When the micronutrient is low, it 440 

prevents the entire Michaelis-Menten curve for the macronutrient from being seen.  
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Although the NNEs captured the true intrinsic relationships, we could not interpret these curves without 

remembering that multiple limitations affect biomass. For example, when we computed an estimated half-saturation 

for the nutrient curves in the top row of Fig. 2, we calculated values for 𝐾𝑁 that were far lower than the actual ones 445 

specified in the model (Table 3). The estimated half-saturation when other predictors were held at their 25th 

percentile for the micro- and macronutrient were underestimated by one and two orders of magnitude, respectively. 

When higher percentiles were used (Table 4), the estimated half-saturation was overestimated for some predictors 

and underestimated for others. At the 99th percentile, the macronutrient half-saturation was underestimated by 49% 

and micronutrient and light were overestimated by 77% and 36%, respectively (Table 4). It is possible that even at 450 

the higher percentiles, micronutrient was still exerting some limitation on the macronutrient curve which would 

explain why the estimate for the macronutrient half-saturation was underestimated. However, this does not explain 

why the estimations for the micronutrient and light half-saturations were overestimated by so much. Although the 

ability to calculate half-saturation coefficients from the sensitivity analysis curves seemed to be a way to quantify 

the accuracy of the ML predictions, co-limitations lead to high uncertainties in the estimates. While mathematically 455 

obvious, this result has implications for attempts to extract (and interpret) KN from observational datasets, such that 

one would expect colimitation to produce a systematic underestimation of KN. 

 

In an effort to visualize the co-limitations and to investigate the extent to which any of the methods could reproduce 

these interactions, we examined the interaction plots (Fig. 3). MLR expectedly predicted linear relationships in 460 

which higher concentration pairs of irradiance/macronutrient and irradiance/micronutrient lead to higher biomass 

(Fig. 3 h, i), but it incorrectly predicted the interaction between the micro- and macronutrient such that decreasing 

concentrations of macronutrient lead to higher biomass (Fig. 3 g). Note that the x and y axes in Fig. 3g were 

switched relative to the other subplot axes, which was necessary to visualize the interaction. RF incorrectly 

predicted the highest concentrations of biomass at moderate levels of the micro- and macronutrient in their 465 

interactions with irradiance (Fig. 3 k, l). RF again incorrectly predicted the greatest biomass in the 

micro/macronutrient interaction occurring at low levels of micronutrient across most levels of macronutrient (Fig. 3 

j). The NNE was the only method that was able to reproduce the interactions of the model (Fig. 3 d-f, m-o). 

Although the NNE overestimated the biomass prediction when concentrations were high for both predictors in the 

irradiance/micronutrient and irradiance/macronutrient interactions (Fig. 3 e, f, n, o), these were also the areas of the 470 

dataspace without any observations to constrain the NNE (Fig. 3 b, c). Similar to the sensitivity analyses for single 

predictors, the NNE was capable of extrapolating outside the range of the training dataset while RF was not. 

 

The NNE interaction plots (Fig. 3 m-o) bear resemblance to the co-limitation plots seen in Fig. 2 of Saito et al. 

(2008) and allowed for a qualitative comparison of the type of co-limitation that two predictors have on the target 475 

variable. For example, the micro/macronutrient interaction in Fig. 3m shows the same type of response as would be 

expected in Liebig minimizing (Saito et al., 2008 Fig. 2C). This result is what we would expect given that the 

equations for Scenario 1 (Eq. 1-3) were Liebig minimizing by construction between the macro- and micronutrient. 
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Additionally, Liebig minimizing can be seen in the pattern displayed in the interaction plot of the true expected 

response (Fig. 3 d).  480 

 

The interactions of macronutrient/irradiance (Fig. 3 n) and micronutrient/irradiance (Fig. 3 o) mirrored the co-

limitation pattern of Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B) where neither predictor was 

limiting and the effects of the two predictors have a multiplicative effect on the target variable. This was again 

consistent with the equations that govern Scenario 1 (Eq. 1-3). In Eq. 1, the irradiance limitation was only multiplied 485 

by the lesser limitation of the macro- and micronutrient and did not show a pattern of Liebig minimizing. It was 

interesting that the macronutrient/irradiance interaction (Fig. 3 n) almost appeared to display a pattern of No Co-

limitation (Saito et al., 2008 Fig. 2A), but this stark increase in the biomass past low concentrations of the 

macronutrient can be partially explained by the contour plot of observations (Fig. 3 b). The majority of observations 

where macronutrient concentrations were low had a correspondingly high value for irradiance. Additionally, when 490 

the macronutrient passed a certain concentration (which happened to be very low in these conditions), the 

micronutrient became the limiting nutrient, such that light was the only variable that then affected the biomass (data 

not shown).  

 

With respect to our main objective for Scenario 1, it was evident that only the NNE was able to extract the intrinsic 495 

relationships from information on the apparent relationships. This was due in large part to its capability of 

extrapolating outside the range of the training dataset, whereas RFs were constrained by training data, and MLR was 

limited by its inherent linearity and simplicity. Furthermore, the attempts to quantify the half-saturation coefficients 

from the sensitivity analysis curves proved unreliable because of nutrient co-limitations. However, we were able to 

use interaction plots to qualitatively describe the type of co-limitation occurring between each pair of predictors and 500 

support the result from the single predictor sensitivity analyses that micronutrient was most limiting in many 

situations. 

 

3.2 Scenario 2: Distantly related intrinsic and apparent relationships on different timescales 

In Scenario 1, the intrinsic and apparent relationships were simply related by a scaling factor. In practice, the 505 

relationships are more difficult to connect to each other. For the second scenario, both the output biomass and 

predictors (light, macronutrient, and micronutrient) were averaged over daily, weekly, and monthly timescales. Our 

main objective was to investigate how the link between intrinsic and apparent relationships changed when using 

climatologically averaged data – as is generally the case for observational studies.  

 510 
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As in Scenario 1, the RF and NNE outperformed the MLR based on the performance metrics for the daily, weekly, 

and monthly time-averaged scenarios (Table 2), with linear models only able to explain about 30% of the variance. 

The comparable performances between the training and testing datasets suggested a sufficient sampling of the data 

for each method to capture the dynamics of the underlying model. 

 515 

Examining the monthly apparent relationships found for each method and comparing them to the true intrinsic 

relationships showed that none of the methods were able to reproduce the true intrinsic relationships – in general 

systematically underestimating biomass at high levels of light and nutrient (Fig. 4). The one exception was the 25th 

percentile plot of the micronutrient (Fig. 4b). The underestimation was consistent across the different timescales, 

and the sensitivity analysis showed little difference in the predicted relationships between the daily, weekly, and 520 

monthly averaged timescales for the NNEs (Fig. 5). Because the NNEs showed the closest approximations to the 

correct shape and magnitude of the curves compared to RF and MLR (Fig. 4), the remaining analysis of Scenario 2 

is mainly focused on NNEs. 

 

The underestimation was not entirely unexpected. The averaging of the hourly values into daily, weekly, and 525 

monthly timescales quickly lead to a loss of variability (Fig. 6), especially for light (Fig. 6c). A large portion of the 

variability was lost in the irradiance variable going from hourly to daily (Fig. 6c). The loss of variability meant that 

the light limitation computed from the averaged light was systematically higher than the averaged light limitation. 

To match the observed biomass, the asymptotic biomass at high light would have to be systematically lower (see 

Appendix A for the mathematical proof). Differences were much smaller for macronutrient and micronutrient as 530 

they varied much less over the course of a month in our dataset. Our results emphasize that when comparing 

apparent relationships in the environment to intrinsic relationships from the laboratory, it is essential to take into 

account which timescales of variability that averaging has removed. Insofar as most variability is at hourly time 

scales, daily-, weekly-, and monthly-averaged data will produce very similar apparent relationships (Fig. 5). But if 

there was a strong week-to-week variability in some predictor, this may not be the case. 535 

 

To understand how the apparent relationships were changing across different timescales, we averaged the hourly 

dataset over a range of hourly timespans. Specifically, we averaged over the timescales of 1-hour (original hourly 

set), 2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. This new set of averaged timescales was 

then used to train NNEs with one NNE corresponding to each averaged timescale. We then performed sensitivity 540 

analyses on each of the trained NNEs to see the apparent relationships for each averaged timescale and set the 

percentile vales for the other variables at their 50th percentile (median). For more details about this method, please 

see Appendix D. To visualize all the timescales at once, we plotted them on surface plots (Fig. 7). The greatest 

changes in the apparent relationships occurred in the first 24 hours (Fig. 7 b, d, f). Furthermore, when focused on the 
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first 24 hours, the apparent relationships below 12 hours were relatively close to the hourly apparent relationships 545 

(Fig. 7 a, c, e) suggesting that a large portion of the variability may have been lost between the 12- to 24-hour 

averaged datasets. It may be possible to use this type of diagnostics test to find the sampling frequency which would 

be needed to recover true relationships in other datasets or to see how relationships change over different timescales. 

Although we only averaged time in Scenario 2, this diagnostics test could also be applied to datasets that are 

averaged in space only or in space and time.  550 

 

Even though in Scenario 1 we showed estimating the half-saturation coefficients from the sensitivity analysis curves 

can be unreliable, we felt that it could be helpful to include them in this manuscript so other researchers who may 

have a similar idea in the future can be cautioned against it. It was not surprising that the estimated half-saturation 

coefficients for Scenario 2 were also incorrect (Tables 3 and 4). The inaccuracies in Scenario 2 though were likely 555 

the result of co-limitations and averaging, whereas Scenario 1 only dealt with co-limitations. Furthermore, even 

though the predicted curves for the daily, weekly, and monthly NNEs were relatively similar (Fig. 5), the estimated 

half-saturations varied quite a bit between them (Table 3). This was even more pronounced for the half-saturation 

estimates at the 97th, 98th, and 99th percentiles (Table 4). For example, the estimated half-saturation for light from the 

daily-NNE at these upper percentiles was an entire order of magnitude higher than the actual value (Table 4).  560 

 

As with Scenario 1, we visualized the variable interactions in Scenario 2 with interaction plots and compared these 

to the colimitation plots in Fig. 2 of Saito et al. (2008). As we observed in Scenario 1, the interaction plots showed 

that when the NNEs were tasked with making predictions outside the range of their dataset, their predictions could 

be drastically over or underestimated (Fig. 8 d-l) because no observations existed in that space to constrain the 565 

NNEs (Fig. 9). For example, in the irradiance/micronutrient plot (Fig. 8 l) when high irradiance coincided with high 

micronutrient concentrations, the NNE predicted a rapid increase in the biomass prediction. From Fig. 9i, which 

shows the density plot of the observations for irradiance and micronutrient, it can be seen that this same area was far 

outside the range of the dataset where there were no observations to constrain the NNE.  

 570 

Each of the NNEs for the daily, weekly, and monthly-averaged datasets showed similar co-limitation patterns (Fig. 8 

d-l) which also agreed with the patterns of the true interactions (Fig. 8 a-c). The macronutrient/micronutrient 

interaction plots (Fig. 8 d, g, j) exhibited a pattern of Liebig minimizing as shown in Fig. 2C of Saito et al. (2008). 

The irradiance/macronutrient (Fig. 8 e, h, k) and irradiance/micronutrient (Fig. 8 f, i, l) interaction plots show a co-

limitation pattern consistent with Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). These interaction 575 

patterns are the same interaction patterns observed in Scenario 1. Once again, these patterns would be expected 

because the equations contain these patterns, by construction. Surprisingly, these patterns held across time-averaging 

even as great as one month (720 hours). Although the monthly interaction underestimated the biomass, the general 
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pattern, non-linearity, and interaction of the variables remained consistent across the different timescales. This could 

imply that the use of monthly-mean observations could still allow researchers to identify interactions that hold true 580 

at timescales as small as one hour.  

 

Regarding our main objective for Scenario 2 to understand how the link between intrinsic and apparent relationships 

changed, only the NNEs were able to provide reliable information. The sensitivity analysis with individual 

predictors showed that variability could be lost in the span of a single day when considering information on hourly 585 

timescales. This caused an underestimation of the biomass values for timescales that were averaged over ranges 

greater than and equal to 24 hours. However, it was possible to visualize how the relationships changed from the 

hourly data to the 720-hour (monthly) data by training NNEs on different timescales of the data. Additionally, the 

interaction patterns observed in Scenario 1 where the intrinsic and apparent relationships were closely related were 

also observed in the interaction patterns of Scenario 2 where the intrinsic and apparent relationships were distantly 590 

related. This suggested that it may be possible to capture variable interactions occurring at small timescales, even 

when data is sampled at a frequency as infrequent as once per month. 

 

3.3 Scenario 3: BLING biogeochemical model 

When run in the full ESM, the BLING biogeochemistry does end up producing surface biomass which is a strong 595 

function of the growth rate (Fig. 10a) with a non-linear relationship as in Eq. 8. As the growth rate, in turn, is given 

by Eq. 7, we can also examine how the monthly mean limitation terms for nutrient and light compare with the means 

given by computing the limitations with monthly mean values of nutrients, 𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘. As shown in Fig. 10b, the 

nutrient limitation is relatively well captured using the monthly mean values, although there is a tendency for the 

monthly means to underestimate moderate values of nutrient limitation. Further analysis shows that this is due to the 600 

interaction between micro- and macronutrient limitation – with the average of the minimum limitation being 

somewhat higher than the minimum of the average limitation. However, using the actual monthly mean values of 

𝐼𝑟𝑟, and 𝐼𝑟𝑟𝑘 (Fig. 10c) causes the light limitation to be systematically biased high. 

 

To demonstrate their capabilities, NNEs were applied directly to the monthly averaged output of one of the BLING 605 

simulations. The main purpose of the final scenario was to demonstrate the capabilities of NNEs when applied to 

actual ESM output with the reasoning that if it was unable to provide useful information on BLING (in which, by 

definition, the biomass and limitations are closely related), it would also fail on more complex models. 

 

Scenario 3 showed similar results to those of Scenarios 1 and 2, with respect to the performance metrics of the 610 

training and testing datasets (Table 2), the inaccuracy of the estimated half-saturation coefficients (Tables 3 and 4), 

and deviations in the interaction plots where no observations occur (Fig. 12). The performance metrics for Scenario 
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3 showed performances between the training and testing datasets indicating sufficient sampling of the data (Table 2). 

Additionally, the half-saturation coefficients were included here (Tables 3 and 4) for the same reasons as stated in 

Section 3.2 for Scenario 2. The largest deviation in the interaction plots occurred in the macronutrient/irradiance plot 615 

when both macronutrient and light concentrations were near their maximum (Fig. 12 e). However, this was not 

surprising since no observations existed in that range to constrain the NNE (Fig. 12 b). 

 

In the sensitivity analysis, the macronutrient and light plots (Fig. 11 a, c, d, f, g, i) exhibited curves consistent with 

colimitation where the curves reached an asymptote at a relatively low concentration. Although this value increased 620 

with the increasing percentiles, the asymptotic value was rather low when compared to the curves in the 

micronutrient plots (Fig. 11 b, e, h). For example, the predicted curves for the macronutrient (Fig. 11 green line) 

relative to the observations (Fig. 11 gray contours) showed that higher biomass values were possible even when 

micronutrient and irradiance were at their 75th percentile values and increases in the macronutrient did not yield 

higher biomass (Fig. 11 a, d, g). Since the light curves (Fig. 11 c, f, i) showed the same trend as the macronutrient, 625 

this suggests that the micronutrient was limiting in those circumstances. This is supported by the micronutrient 

curves in which the asymptotic values occurred at relatively higher concentrations of the micronutrient (Fig. 11 b, e, 

h). The predicted biomass for the micronutrient curves exceeded the highest observation even in the 50 th percentile 

plot (Fig. 11 e). Furthermore, the interaction plots supported this where only interactions with increasing 

micronutrient saw increases in biomass (Fig. 12 d and f), while the macronutrient/irradiance plot (in which 630 

micronutrient was held fixed) quickly plateaued (Fig. 12 e). Conceptually this makes sense since the micronutrient 

limitation in the BLING model hinders growth, but also limits the efficiency of light-harvesting (Galbraith et al., 

2010). This result of micronutrient limitation was consistent with the other Scenarios and was not unexpected. The 

equations governing Scenarios 1 and 2 (Eq. 1-3) were similar to the equation governing BLING (Eq. 7). So, 

micronutrient limitation being present across all three Scenarios was consistent with what would be expected.  635 

 

The interaction plots for Scenario 3 (Fig. 12 d-f) all appear to show a co-limitation pattern consistent with 

Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). This agrees with the patterns of the previous 

Scenarios, except for the micro/macronutrient interaction. In Scenarios 1 and 2, the micro/macronutrient interaction 

showed a pattern matching Liebig minimizing, while Scenario 3 suggested Independent Multiplicative Nutrients. 640 

This result would not have been expected from simply looking at the structure of the equations but arises in part 

from the coupling between the nutrient and light limitations. 

 

Since the objective of Scenario 3 was to apply what we learned in Scenarios 1 and 2 to output from an actual 

biogeochemical model, we believe we have demonstrated the capabilities of the information one can extract. 645 

Although the quantitative method of estimating the half-saturation coefficients proved unreliable, the qualitative 
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information was informative. This includes information on limitations and interactions between variables, along 

with the ability to understand the level of variability explained by a given set of predictors.  

 

4 Conclusions 650 

Although researchers have been able to find apparent relationships for phytoplankton in environmental datasets, it 

remained unclear why and when the environmental apparent relationships were no longer equal to the intrinsic 

relationships that control phytoplankton growth. Our main objective in this manuscript was to understand when and 

why the link between intrinsic and apparent relationships would break by answering two questions: 

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are most 655 

skillful in finding them? 

2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic 

relationships we expect?  

 

In addressing the first question, we observed that NNEs were far superior to RFs and MLR at extracting the intrinsic 660 

relationships using information on the apparent relationships when the intrinsic and apparent relationships were 

closely related. RFs were unable to match the relationships because of their inherent inability to extrapolate outside 

the range of their training data. Additionally, even though NNEs matched the true relationships well, we were 

unable to quantify half-saturation coefficient estimates from the sensitivity analysis curves because of co-limitations 

between the predictors. However, we were able to show that one can use interaction plots to qualitatively visualize 665 

the type of co-limitations occurring between two predictors and identify the variables causing limitations. 

 

Regarding the second question, we demonstrated that time-averaging can lead to a loss of variability in the dataset 

which, in turn, can greatly affect the predicted relationships one can extract. For our particular system, we found 

averaging over large timespans caused underestimation of the predicted relationships (as shown in Appendix A, this 670 

will generally be the case for relationships which are concave downward – the opposite will be true for relationships 

that are concave upward). However, we showed that it was possible to visualize how the relationships were 

changing from intrinsic to apparent relationships by training NNEs on different averaged timescales of the data. 

Furthermore, we showed that the general trends, variable interactions, and nutrient limitations occurring when the 

intrinsic and apparent relationships were closely linked (as in Scenario 1) could propagate through to situations 675 

when the intrinsic and apparent relationships operated over different timescales (Scenario 2).  
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As a proof-of-concept, we also showed that it was possible to extract information from the output of a 

biogeochemical model (Scenario 3) using the information and techniques we employed in Scenarios 1 and 2.  

 680 

This study suffers from two major limitations: the number of ML algorithms we investigated and the number of 

predictor variables included for each scenario. We limited the number of ML algorithms and predictors for 

simplicity and easier visualization of the sensitivity analyses. In the real world, phytoplankton may be limited by 

more physical and biological processes, making the visualization of the sensitivity analyses impractical due to the 

sheer number of possible interactions that would have to be considered. In cases such as those, it would be beneficial 685 

to perform some form of importance analysis or dimensionality reduction to remove insignificant predictor 

variables, after which sensitivity analyses could be done on the remaining predictors. 

 

The results of this study have several potential applications for oceanographers, including marine ecologists and 

Earth System modelers. For example, using output from biogeochemical models or observations from environmental 690 

datasets, researchers may now be able to: 

1. Identify important interactions and colimitations occurring between variables. 

2. Discern the type of colimitation occurring between nutrients. 

3. Find nutrient limitations without having to perform (or at least being able to conduct fewer) nutrient growth 

experiments in a lab. 695 

4. Identify apparent relationships between biogeochemical variables, instead of using only spatiotemporal 

distributions. 

5. Understand how variable relationships change over different spatial and temporal scales. 

 

Some potential future applications relevant to the results we show here include: 700 

1. Using these techniques to find and compare the apparent relationships of different ESMs. This would allow 

the researcher to more specifically identify why different ESMs produce different results. 

2. Apply these methods to compare the apparent relationships in observational data and ESM output. This 

would allow for finer tuning of ESM parameters and relationships, instead of only matching ESM spatial 

distributions to those of observational distributions. 705 

Preliminary work on both applications shows them to have promising results. We will report on these in future 

manuscripts.   
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Appendix A 

Illustration of why time variation causes underestimation of the dependence of biomass on a limiter 

𝐵 = 𝑆∗ ∗ (1 − exp (−
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)) = 𝑆∗ ∗ (1 − exp (−
𝐼𝑟𝑟̅̅ ̅̅ + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

))  (A1) 

where the overbar refers to a time-average and the prime to a variation from this time average. Insofar as the 710 

variations are small. 

𝐵 ≈ 𝑆∗ (
𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

−
1

2
(

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

)

2

) = 𝑆∗

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐼𝑟𝑟𝑘

∗ (1 −
1

2
∗

𝐼𝑟𝑟 + 𝐼𝑟𝑟′

𝐾𝐼𝑟𝑟

) (A2) 

Averaging yields 

𝐵̅ ≈ 𝑆∗ ({
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

∗ (1 −
𝐼𝑟𝑟

2𝐾𝐼𝑟𝑟

) } −
𝐼𝑟𝑟′2

2𝐾𝐼𝑟𝑟

)  <  𝑆∗ (1 − exp (−
𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)) (A3) 

so that if we are trying to fit a curve of the form 

𝐵̅ ≈ 𝑆∗
𝑎𝑣𝑒 {1 − exp (−

𝐼𝑟𝑟

𝐾𝐼𝑟𝑟

)} (A4) 

We would expect that 𝑆∗
𝑎𝑣𝑒 < 𝑆∗. 

  715 
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Appendix B 

This appendix provides additional details of the training and construction of the RFs and NNEs that may not have 

been included in the main text of the manuscript. 

 

Appendix B1: Random Forests 720 

The RFs were implemented in Matlab 2019b using the TreeBagger function. Each RF used three predictors: 

macronutrient, micronutrient, and irradiance. The target variable was phytoplankton biomass. At each split, one 

random predictor variable was chosen from which two maximally distinct groups were determined. The splits 

continued until each terminal node contained a minimum of 5 observations. For reproducible results, the random 

number generator was set to “twister” with an integer of “123”. A total of 500 decision trees were constructed for 725 

each RF. This number was chosen because we wanted a sufficient number of trees to minimize the error and still be 

able to run the training in a relatively short span of time on a standard computer/laptop. The Out-of-Bag (OOB) 

error for each trained RF can be seen in Fig. B1. Past about 100 trees, the OOB error reaches an asymptote, such that 

more trees do not decrease the error. We chose to keep the number of trees at 500 because this helped to ensure 

generalization in the RF. Additionally, it did not significantly increase the training time and it allowed for the RF 730 

structure to be the same across all the Scenarios.  

 

Each variable was scaled between -1 and 1 corresponding to each variable’s respective minimum and maximum, 

respectively (Eq. 9). These scalings were applied for use specifically in the NNEs, but for consistency they were also 

applied to the MLR and RF. The values of the variables and predictions of each method were unscaled for analysis 735 

(Eq. 10). 
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Figure B1: The Out-of-Bag (OOB) error for the trained RFs of each Scenario. The OOB error is shown as a function 

of the number of trees for each RF (500 decision trees for each one). The y-axis for each plot is on a log scale. 740 

Additionally, the plot for Scenario 2 shows the OOB error curves for each of the time-averaged datasets (daily, 

weekly, monthly). 

  

Scenario 1

Scenario 2

Scenario 3

a

b

c
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Appendix B2: Neural Network Ensembles 

The NNEs consisted of ten individual NNs and each NN was trained using the feedforwardnet function in Matlab 745 

2019b.  

 

The framework of each NN had three input nodes, 25 nodes in a single hidden layer, and one output node. The 

activation function for the hidden nodes was a hyperbolic tangent sigmoid function and the output node activation 

function was a simple linear function. The training dataset was used in the training of each NN, which consisted of 750 

60% of the total observations in the entire dataset. For the training of each individual NN, Matlab further randomly 

partitioned the training dataset into its own training subset, validation subset, and testing subset. A total of 70% of 

the observations from the training dataset went to the training subset, 15% went to the validation subset, and 15% 

went to the testing subset. To ensure that each NN was trained on different observations, distinct combinations of 

observations went into each subset for the training of each NN. This was done using a different number for the 755 

random number seed before the start of training for each NN. The random number seed ahead of each NN was set to 

the respective number of the NN. For example, the random number seed for the first NN was set to 1, the seed for 

the second NN was set to 2, etc. This random number seed ensured that the observations from the training dataset 

were being partitioned into different training, validation, and testing subsets for each individual NN. The stopping 

criteria for each NN was a validation check, so training stopped when the error increased for six consecutive epochs. 760 

 

The sensitivity analysis used to determine the optimal number of nodes in a single layer NNE for the daily, weekly, 

and monthly averaged datasets for Scenario 2 can be seen in Table B1. Separate NNEs were trained for each of the 

time-averaged datasets (daily, weekly, monthly) for each set of nodes. For example, separate NNEs were trained for 

the daily-averaged dataset with 1 node, the weekly-averaged dataset with 1 node, and the monthly-averaged dataset 765 

with one node. Each NNE maintained the same construction as those specified in the manuscript (10 individual 

NNs) and kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made 

predictions on the testing dataset and the R2 values were calculated based on the comparison between those 

predictions and the actual values of the testing dataset. These values are recorded in Table B1. From the 

performance metrics, it was decided that 25 nodes provided a sufficient level of performance while also maintaining 770 

a reasonable time for training. 

 

The sensitivity analysis determining if an additional hidden layer increased the performance of the time-averaged 

datasets in Scenario 2 can be seen in Table B2. Each NNE consisted of ten individual NNs. The NNs were trained 

according to the same criteria specified in the manuscript. The inclusion of an additional hidden layer did not 775 

significantly increase the performance of the NNEs, but it did significantly increase the time needed for training the 
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NNs. We decided to use only one hidden layer since the performance did not increase significantly and to keep the 

training time within a reasonable timeframe. 

 

The sensitivity analysis assessing different activation functions in the nodes of the hidden layer for the time-780 

averaged datasets of Scenario 2 can be seen in Table B3. Each NNE contained ten individual NNs. The NNs kept 

the same training criteria specified in the manuscript. We tested a total of seven activation functions: hyperbolic 

tangent (symmetric) sigmoid, logarithmic sigmoid, inverse, positive linear (ReLU), linear, soft max, and radial basis. 

The linear and inverse activation functions showed the poorest performance. The performance metrics were 

comparable for the other activation functions. We decided to use the hyperbolic tangent (symmetric) sigmoid 785 

activation function for the nodes in the hidden layer. 
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Table B1: The R2 values for the diagnostic test used to determine how the number of nodes in the hidden layer of a 

single layer neural network affected the performance of the time-averaged datasets of Scenario 2. The target variable 

was biomass (mol kg-1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly, 790 

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 1 node was trained, a unique 

NNE for the weekly averaged dataset with 1 node was trained, etc.). Each NNE contained 10 individual NNs and 

kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made predictions 

on the testing dataset and the R2 values were calculated based on the comparison between those predictions and the 

actual values of the testing dataset. 795 

 

 

  

Daily Weekly Monthly

1 0.5533 0.5472 0.5624

2 0.7655 0.7705 0.7806

5 0.9283 0.9248 0.9363

10 0.9633 0.9628 0.9673

15 0.9676 0.9678 0.9713

20 0.9693 0.9694 0.9727

25 0.9700 0.9702 0.9732

35 0.9709 0.9709 0.9737

50 0.9716 0.9715 0.9743

Number of 

Nodes

R
2
 Values
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Table B2: The R2 values for the diagnostic test used to determine how the number of hidden layers and nodes within 

individual neural networks affected the performance of the Scenario 2 time-averaged datasets. The target variable 800 

was biomass (mol kg-1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly, 

monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 25 nodes was trained, a 

unique NNE for the weekly averaged dataset with 25 nodes was trained, etc.). Each NNE contained 10 individual 

neural networks and kept the same training and stopping specifications outlined in the manuscript. The trained 

NNEs made predictions on the testing dataset and the R2 values were calculated based on the comparison between 805 

those predictions and the actual values of the testing dataset. The layers and number of nodes in the table are 

specified as follows: # nodes in first layer - # nodes in second layer. If only one number is listed, this specifies the 

number of nodes in the single hidden layer and that a second layer was not used. 

 

 810 

  

Daily Weekly Monthly

25 0.9700 0.9702 0.9732

25-10 0.9722 0.9724 0.9750

25-25 0.9726 0.9727 0.9756

R
2
 Values

Layers and 

Number of 

Nodes
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Table B3: The R2 values for the diagnostic test used to assess how different activation functions in the hidden layer 

affected the performance of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg-1). A 

separate NNE was trained for each of the time-averaged datasets (daily, weekly, monthly) for each activation 

function (ex. A unique NNE for the daily-averaged dataset with the logarithmic sigmoid activation function was 815 

trained, a unique NNE for the weekly averaged dataset with the logarithmic sigmoid activation function was trained, 

etc.). Each NNE contained 10 individual neural networks and kept the same training and stopping specifications 

outlined in the manuscript. The trained NNEs made predictions on the testing dataset and the R2 values were 

calculated based on the comparison between those predictions and the actual values of the testing dataset.  

 820 

*The low R2 value of the daily-averaged dataset for the Inverse activation function (1.01 x 10-5) was because the 

first neural network of that NNE stopped training after only 1 epoch due to the momentum parameter (“mu” in 

Matlab) reaching its maximum value. This significantly decreased the R2 performance of that particular NNE. 

Removing the first neural network from that NNE increased the R2 value to 0.7236. 

  825 

Daily Weekly Monthly

Hyperbolic Tangent (Symmetric) Sigmoid 0.9681 0.9688 0.9722

Logarithmic Sigmoid 0.9679 0.9691 0.9722

1.01 x 10
-5

(0.7236)*

Postive Linear (ReLU) 0.9652 0.9671 0.9704

Linear 0.3104 0.3059 0.3125

Soft Max 0.9643 0.9649 0.9695

Radial Basis 0.9671 0.9688 0.9716

Activation 

Functions

R
2
 Values

Inverse 0.7921 0.2455
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Appendix C 

 

Figure C1: Boxplots showing the variability in the predictor and target variables of Scenario 1. The dataset consisted 

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) 

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50th 830 

percentile), the box edges are the 25th and 75th percentile values, and the whiskers are the minimum and maximum 

values. 

  

a b

c d
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Figure C2: Boxplots showing the variability in the predictor and target variables of Scenario 3. The dataset consisted 835 

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) 

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50th 

percentile), the box edges are the 25th and 75th percentile values, and the whiskers are the minimum and maximum 

values.  

a b

c d
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Appendix D 840 

This appendix provides details about the method used to visualize how the apparent relationships in Scenario 2 were 

changing from the hourly timescale through to the monthly averaged timescale. 

 

To capture the apparent relationships ranging from the hourly to monthly averaged timescales, we averaged the 

hourly dataset over a range of timespans. Specifically, we averaged over the timespans of 1-hour (original hourly 845 

dataset), 2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. The timescales had to be multiples of, 

or divisible by, 24 hours. Hours that did not meet these criteria would mean that hours from one day would be 

averaged with hours from another day. For example, using a 7-hour timespan for averaging would have meant that 

the last three hours of Day 1 were being averaged with the first four hours of Day 2. 

 850 

We trained one NNE for each of the averaged timescales. Each NNE contained ten individual NNs. The NNs kept 

the same training criteria specified in the manuscript. 

 

After training the NNEs, we performed a sensitivity analysis on each of them to visualize the predicted apparent 

relationships. The percentile values for variables that were not varying were set at their 50th percentile (median) 855 

values. We then plotted all the predicted curves on a single surface plot so we could view the relationships of all the 

timescales at once. Additionally, because the greatest variability was lost in the first 24 hours, we also focused on 

the apparent relationships for the timespans that were less than or equal to 24 hours.  
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Code and Data Availability 860 

The Matlab scripts for the construction of the figures and tables, the scripts for training and testing the MLR, RF, 

and NNE algorithms, and the source files for each scenario are available in the Zenodo data repository 

(https://doi.org/10.5281/zenodo.3932388, Holder and Gnanadesikan, 2020). 
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Tables 1083 

Table 1: Details for each Scenario that include the predictor variables, the target variable, the equations used to 1084 

calculate biomass, the type of source file used to acquire the values for the predictors, and a short description with 1085 

important details about each scenario. 1086 

 1087 

  1088 

Scenario Predictors Target Equations Used Source File Description

1)

2)

1)

1a) The macronutrient and micronutrient 

hourly values were calculated using a 

standard interpolation between the daily 

points.

1b) The irradiance hourly values were 

calculated from Eq. 6 using the value of 

the BLING daily input, hour of day, time of 

year, and location.

2)

3)

4)

5)

6)

7, 8

(Equations within BLING 

used to determine the 

biomass)

1

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
1, 2, 3 The true relationships were calculated by using 

the range of the values for the predictors and 

calculating the biomass based on Eq. 1, 2, and 3

Monthly Output from BLING

2

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
1, 2, 3, 6 Daily Output from BLING

3

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Biomass 

(mol kg
-1

)
Monthly Output from BLING

1)

Scenario Description

Nutrient distributions (predictors) from BLING 

were run through Eq. 1, 2, and 3 to calculate 

the biomass (target)

Hourly values for the predictors were 

interpolated using the Daily Output of BLING

Nutrient distributions from the BLING Output 

were used as the predictors; Biomass from the 

BLING Output itself was used as the target

Hourly values of the predictors were fed to Eq. 

1, 2, and 3 to calculate hourly values for the 

biomass (target)

Daily-averaged values were calculated by 

averaging 24 hours for each location through 

one year

Weekly-averaged values were calculated by 

averaging 168 hour blocks of time for each 

location through the year

Monthly-averaged values were calculated by 

averaging the number of hours in each month 

(days per month * 24) for each location through 

the year

The true relationships were calculated by using 

the range of the hourly values for the predictors 

and calculating the biomass based on Eq. 1, 2, 

and 3
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Table 2: Performance metrics (Coefficient of Determination [R2] and Root Mean Squared Error [RMSE]) for the 1089 

training and testing datasets of each Scenario and the respective ML method (MLR – Multiple Linear Regression; 1090 

RF – Random Forest; NNE – Neural Network Ensemble). Scenario 2 had three time-averaged datasets (daily, 1091 

weekly, and monthly). The target variable for all Scenarios was phytoplankton biomass.  1092 

 1093 

  1094 

R-squared RMSE R-squared RMSE

MLR 0.4528 1.32 x 10
-7 0.4471 1.33 x 10

-7

RF 0.9989 6.46 x 10
-9 0.9977 9.15 x 10

-9

NNE 0.9999 1.70 x 10
-9 0.9999 1.73 x 10

-9

MLR 0.3160 8.75 x 10
-8 0.3104 8.82 x 10

-8

RF 0.9841 1.35 x 10
-8 0.9684 1.90 x 10

-8

NNE 0.9686 1.88 x 10
-8 0.9681 1.90 x 10

-8

MLR 0.3054 8.35 x 10
-8 0.3059 8.31 x 10

-8

RF 0.9835 1.30 x 10
-8 0.9687 1.78 x 10

-8

NNE 0.9680 1.79 x 10
-8 0.9688 1.76 x 10

-8

MLR 0.3022 8.07 x 10
-8 0.3125 8.01 x 10

-8

RF 0.9859 1.16 x 10
-8 0.9729 1.60 x 10

-8

NNE 0.9722 1.61 x 10
-8 0.9722 1.61 x 10

-8

MLR 0.0672 2.55 x 10
-8 0.0691 2.53 x 10

-8

RF 0.9727 4.49 x 10
-9 0.9445 6.26 x 10

-9

NNE 0.9417 6.38 x 10
-9 0.9386 6.50 x 10

-9

Monthly

Scenario 3

Training Data Testing Data

Scenario 1

Scenario 2

Daily

Weekly
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Table 3: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient, 1095 

micronutrient, and light) based on the 25th, 50th, and 75th percentiles. The percentiles correspond to the values at 1096 

which the other predictors were set (ex. For the 25th Percentile Macronutrient value, the macronutrient varied across 1097 

its min-max range while micronutrient and light were set at their respective 25th percentile values). The coefficients 1098 

were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of 1099 

the form in Eq. 4, where α2 was the estimate for each half-saturation coefficient.  1100 

 1101 

  1102 

Macronutrient Micronutrient Light

1.00 x 10
-7

2.00 x 10
-10 34.30

25th Percentile 6.27 x 10
-9

1.29 x 10
-9 38.91

50th Percentile 1.04 x 10
-8

1.44 x 10
-10 38.26

75th Percentile 1.88 x 10
-8

2.86 x 10
-10 40.09

25th Percentile 9.87 x 10
-9

-9.85 x 10
-11 22.04

50th Percentile 3.22 x 10
-8

1.88 x 10
-10 23.20

75th Percentile 4.89 x 10
-8

3.51 x 10
-10 20.09

25th Percentile 1.08 x 10
-8

-6.48 x 10
-10 26.18

50th Percentile 3.78 x 10
-8

1.92 x 10
-10 25.50

75th Percentile 6.36 x 10
-8

1.11 x 10
-9 18.49

25th Percentile 7.64 x 10
-9

-6.90 x 10
-10 23.13

50th Percentile 3.26 x 10
-8

1.63 x 10
-10 19.37

75th Percentile 1.38 x 10
-7

1.04 x 10
-9 21.89

25th Percentile 3.50 x 10
-8

6.84 x 10
2 1.85

50th Percentile 8.89 x 10
-8

6.94 x 10
-10 5.80

75th Percentile 1.64 x 10
-7

2.41 x 10
-9 7.78

Scenario 3

NNE

True Value

Scenario 1

Scenario 2

Daily

Weekly

Monthly
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Table 4: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient, 1103 

micronutrient, and light) based on the 97th, 98th, and 99th percentiles. The percentiles correspond to the values at 1104 

which the other predictors were set (ex. For the 97th Percentile Macronutrient value, the macronutrient varied across 1105 

its min-max range while micronutrient and light were set at their respective 97th percentile values). The coefficients 1106 

were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of 1107 

the form in Eq. 4, where α2 was the estimate for each half-saturation coefficient. 1108 

 1109 

  1110 

Macronutrient Micronutrient Light

1.00 x 10
-7

2.00 x 10
-10 34.30

97th Percentile 4.33 x 10
-8

4.73 x 10
-10 39.48

98th Percentile 4.85 x 10
-8

4.68 x 10
-10 42.11

99th Percentile 6.06 x 10
-8

4.49 x 10
-10 49.43

97th Percentile 2.28 x 10
-7

4.10 x 10
-10 217.3

98th Percentile 2.99 x 10
-7

4.02 x 10
-10 254.0

99th Percentile 3.93 x 10
-7

3.90 x 10
-10 276.2

97th Percentile 2.59 x 10
-7

7.23 x 10
-10 68.86

98th Percentile 3.39 x 10
-7

6.33 x 10
-10 70.56

99th Percentile 4.28 x 10
-7

5.19 x 10
-10 70.32

97th Percentile 3.56 x 10
-7

9.04 x 10
-10 85.22

98th Percentile 3.96 x 10
-7

9.16 x 10
-10 82.73

99th Percentile 5.17 x 10
-7

9.55 x 10
-10 82.61

97th Percentile 5.19 x 10
-7

2.00 x 10
-9 54.00

98th Percentile 7.02 x 10
-7

1.89 x 10
-9 76.48

99th Percentile 1.01 x 10
-6

1.74 x 10
-9 86.21

Scenario 3

NNE

True Value

Scenario 1

Scenario 2

Daily

Weekly

Monthly
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Figures 1111 

 1112 

Figure 1: Contour plots comparing the true response for the yearly averaged biomass (a) of Scenario 1 and the 1113 

associated predictions for MLR (b), RF (c), and NNE (d). The biomass was measured in units of mol kg-1.  1114 

  1115 

a b

c d
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 1116 

Figure 2: Sensitivity analysis for Scenario 1 showing the true and predicted relationships for each ML method. The 1117 

columns correspond to the predictors and the rows correspond with the percentile value at which the other predictors 1118 

were set (ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held 1119 

at their 25th percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq. 1120 

1-3. The dashed lines show the predicted apparent relationships for each method (MLR – red; RF – blue; NNE – 1121 

green). The RF and NNE predicted relationships are the average of the individual predictions for each method. The 1122 

gray regions around the RF and NNE dashed lines show one standard deviation in the predictions (ex. One standard 1123 

deviation in the 10 individual NN predictions of the NNE). 1124 
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 1126 

Figure 3: Contour and interaction plots for Scenario 1. The contour plots show the density of observations for each 1127 

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate 1128 

many observations. The interaction plots (d-o) show the biomass values for different combinations of the predictors 1129 

on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) value (ex. Subplot d 1130 

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held 1131 

fixed at its 50th percentile value). The top three interaction plots (d-f) show the true interactions calculated from Eq. 1132 

1-3. The remaining interaction plots show the predicted interactions for MLR (g-i), RF (j-l), and NNE (m-o). Note 1133 
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that the x and y axes for subplot g were switched so that the interaction could be visualized. The RF and NNE 1134 

predicted relationships are the average of the individual predictions for each method. 1135 

  1136 
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 1137 

Figure 4: Sensitivity analysis for Scenario 2 showing the true and predicted relationships for each ML method. The 1138 

columns correspond to the predictors and the rows correspond with the percentile value at which the other predictors 1139 

were set (ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held 1140 

at their 25th percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq. 1141 

1-3. The dashed lines show the predicted monthly apparent relationships for each method (MLR – red; RF – blue; 1142 

NNE – green). The RF and NNE predicted relationships are the average of the individual predictions for each 1143 

method. The gray regions around the RF and NNE dashed lines show one standard deviation in the predictions (ex. 1144 

One standard deviation in the 10 individual NN predictions of the NNE). 1145 
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 1147 

Figure 5: Sensitivity analysis for Scenario 2 showing the true and predicted NNE relationships for the different time-1148 

averaged datasets. The columns correspond to the predictors and the rows correspond with the percentile value at 1149 

which the other predictors were set (ex. Subplot a varies the macronutrient across its min-max range, while the 1150 

micronutrient and light are held at their 25th percentile values, respectively). The black line shows the true intrinsic 1151 

relationship calculated from Eq. 1-3. The dashed lines show the predicted apparent relationships for each time-1152 

averaged dataset (Daily – red; Weekly – blue; Monthly – green). The conditions for the sensitivity analysis were 1153 

based on the values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-1154 

averaged datasets so that a direct comparison could be made between the predictions of the respective NNEs. The 1155 

predicted relationships are the average of the individual predictions for each time-averaged NNE, respectively. The 1156 

gray regions around the NNE dashed lines show one standard deviation in the predictions (ex. One standard 1157 

deviation in the 10 individual NN predictions of each NNE). 1158 
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 1160 

Figure 6: Boxplots showing the variability in the predictor and target variables of Scenario 2 for the various time-1161 

averaged datasets. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target 1162 

variable was phytoplankton (d) biomass. The red line corresponds to the median (50 th percentile), the box edges are 1163 

the 25th and 75th percentile values, and the whiskers are the minimum and maximum values. 1164 

  1165 

a b

c d



53 

 

 1166 

Figure 7: Surface plots showing the apparent relationships found across different averaged timescales for Scenario 2. 1167 

The timescales range from 1 hour (original hourly set) up to 720 hours (monthly). The three plots on the right (b, d, 1168 

f) show the relationships across the entire range of timescales (1 through 720 hours). The three plots on the left (a, c, 1169 

e) show the timescales at and below 24 hours. The top plots show the relationships for the macronutrient (a, b), the 1170 

middle plots show the relationships for the micronutrient (c, d), and the bottom plots show the relationships for 1171 

irradiance (e, f). Variables not varying across their range were set at their 50th percentile (median) value. The 1172 
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conditions of the sensitivity analyses were based on the conditions of the monthly averaged (720-hour) dataset. It 1173 

was necessary to give the same conditions to the all the time-averaged datasets so that a direct comparison could be 1174 

made between the predictions of the respective NNEs. The predicted relationships are the average of the individual 1175 

predictions for each time-averaged NNE. 1176 

  1177 
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1178 

Figure 8: Interaction plots for Scenario 2. The interaction plots show the biomass values for different combinations 1179 

of the predictors on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) 1180 

value (ex. Subplot d allows the micro- and macronutrient to vary across their respective min-max ranges, while the 1181 

irradiance is held fixed at its 50th percentile value). The top three interaction plots (a-c) show the true interactions 1182 

calculated from Eq. 1-3. The remaining interaction plots show the predicted interactions for the time-averaged 1183 

datasets: daily (d-f), weekly (g-i), and monthly (j-l). The conditions for the sensitivity analysis were based on the 1184 

values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-averaged 1185 

datasets so that a direct comparison could be made between the predictions of the respective NNEs. The predicted 1186 

relationships are the average of the individual predictions for each time-averaged NNE. 1187 
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 1189 

Figure 9: Contour plots of Scenario 2 for the time-averaged datasets: daily (a-c), weekly (d-f), and monthly (g-i). 1190 

The contour plots show the density of observations for each set of predictors where blue signifies very few 1191 

observations and colors moving up the spectrum to red indicate many observations. 1192 
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 1194 

Figure 10: Scatter plots from the BLING model (a: surface biomass vs. temperature-normalized growth rate; b: 1195 

monthly-averaged nutrients vs. mean nutrient limitation; c: monthly-averaged Irr, Irrk vs. mean light limitation). 1196 
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 1198 

Figure 11: Sensitivity analysis for Scenario 3 showing the predicted relationships for the NNE. The columns 1199 

correspond to the predictors and the rows correspond with the percentile value at which the other predictors were set 1200 

(ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held at their 1201 

25th percentile values, respectively). The green dashed line shows the apparent relationships predicted by the NNE. 1202 

The predicted relationships are the average of the individual predictions for each NN. The gray regions around the 1203 

NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in the 10 individual 1204 

NN predictions of the NNE). The contour plot behind the predicted relationships show the observations for each 1205 

predictor against the biomass. Lighter colors signify a higher density of observations, while darker colors correspond 1206 

to fewer observations.  1207 
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 1208 

Figure 12: Contour and interaction plots for Scenario 3. The contour plots show the density of observations for each 1209 

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate 1210 

many observations. The interaction plots (d-f) show the biomass values for different combinations of the predictors 1211 

on each x and y axis. The predictor that was not varying was set at its 50th percentile (median) value (ex. Subplot d 1212 

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held 1213 

fixed at its 50th percentile value). The interaction plots show the predicted interactions based on the NNE. The 1214 

predicted relationships are the average of the individual predictions for each NN. 1215 
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