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Abstract

A key challenge for biological oceanography is relating the physiological mechanisms controlling phytoplankton
growth to the spatial distribution of those phytoplankton. Physiological mechanisms are often isolated by varying
one driver of growth, such as nutrient or light, in a controlled laboratory setting producing what we call “intrinsic
relationships”. We contrast these with the “apparent relationships” which emerge in the environment in
climatological data. Although previous studies have found machine learning (ML) can find apparent relationships,
there has yet to be a systematic study examining when and why these apparent relationships diverge from the
underlying intrinsic relationships found in the lab, and how and why this may depend on the method applied. Here
we conduct a proof-of-concept study with three scenarios in which biomass is by construction a function of time-
averaged phytoplankton growth rate. In the first scenario, the inputs and outputs of the intrinsic and apparent
relationships vary over the same monthly timescales. In the second, the intrinsic relationships relate averages of
drivers that vary on hourly timescales to biomass, but the apparent relationships are sought between monthly
averages of these inputs and monthly averaged output. In the third scenario we apply ML to the output of an actual
Earth System Model (ESM). Our results demonstrated that when intrinsic and apparent relationships operate on the
same spatial and temporal timescale, Neural Network Ensembles (NNES) were able to extract the intrinsic
relationships when only provided information about the apparent relationships, while co-limitation and its inability
to extrapolate, resulted in Random Forests (RF) diverging from the true response. When intrinsic and apparent
relationships operated on different timescales (as little separation as hourly versus daily), NNEs fed with apparent
relationships in time-averaged data produced responses with the right shape but underestimated the biomass. This
was because when the intrinsic relationship was nonlinear, the response to a time-averaged input differed
systematically from the time-averaged response. Although the limitations found by NNEs were overestimated, they
were able to produce more realistic shapes of the actual relationships compared to Multiple Linear Regression.
Additionally, NNEs were able to model the interactions between predictors and their effects on biomass, allowing
for a qualitative assessment of the co-limitation patterns and the nutrient causing the most limitation. Future research

may be able to use this type of analysis for observational datasets and other ESMs to identify apparent relationships
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between biogeochemical variables (rather than spatiotemporal distributions only) and identify interactions and co-
limitations without having to perform (or at least performing fewer) growth experiments in a lab. From our study, it
appears that ML can extract useful information from ESM output and could likely do so for observational datasets,

as well.

1 Introduction

Phytoplankton growth can be limited by multiple environmental factors (Moore et al., 2013) such as macronutrients,
micronutrients, and light. Limiting macronutrients include nitrogen (Eppley et al., 1973; Ryther and Dunstan, 1971;
Vince and Valiela, 1973), phosphorus (Downing et al., 1999), and silicate (Brzezinski and Nelson, 1995; Dugdale et
al., 1995; Egge and Aksnes, 1992; Ku et al., 1995; Wong and Matear, 1999). Limiting micronutrients can include
iron (Boyd et al., 2007; Martin, 1990; Martin and Fitzwater, 1988), zinc, and cobalt (Hassler et al., 2012).
Additionally, limitations can interact with one another to produce co-limitations (Saito et al., 2008). Examples of
this include the possible interactions between the micronutrients iron, zinc, and cobalt (Hassler et al., 2012) and the
interaction between nitrogen and iron (Schoffman et al., 2016) such that local sources of nitrogen can have a strong
influence on the amount of iron needed by phytoplankton (Maldonado and Price, 1996; Price et al., 1991; Wang and
Dei, 2001). Spatial and temporal variations, such as mixed layer depth and temperature, affect such limitations, and

have been related to phytoplankton biomass using different functional relationships (Longhurst et al., 1995).

Limitations on phytoplankton growth are usually characterized in two ways — which we term intrinsic and apparent.
Intrinsic relationships are those where the effect of one driver (nutrient/light) at a time is observed, while all others
are held constant (often at levels where they are not limiting). An example of such intrinsic relationships is the
Michaels-Menten growth rate curves that emerge from laboratory experiments (Eppley and Thomas, 1969).
Apparent relationships are those which emerge in the observed environment. An example of apparent relationships
are those that emerge from satellite observations, which provide spatial distributions of phytoplankton on timescales
(say a month) much longer than the phytoplankton doubling time, which can be compared against monthly
distributions of nutrients. A significant challenge that remains is determining how intrinsic relationships found in the
laboratory scale up to the apparent relationships observed at the ecosystem scale (i.e., scaling the small to the large).
Differences may arise between the two because apparent relationships reflect both intrinsic growth and loss rates,
which are near balance over the long monthly timescales usually considered in climatological analyses. Biomass
concentrations may thus not reflect growth rates. Differences may also arise because different limitation factors may

not vary independently.

Earth System Models (ESMs) have proved valuable in linking intrinsic and apparent relationships. The intrinsic
relationships are programmed into ESMs as equations that are run forward in time, and the output is typically

provided as monthly averaged fields. The output of these ESMs is then compared against observed fields, such as
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chlorophyll and nutrients, and can be analyzed to find apparent relationships between the two. If the ESM output is
close to the observations we find in nature, we say that the ESM is performing well. However, as recently pointed
out by Loptien and Dietze (2019), ESMs can trade-off biases in physical parameters with biases in biogeochemical
parameters (i.e., they can arrive at the same answer for different reasons). Using two versions of the UVic 2.9 ESM,
they showed that they could increase mixing (thus bringing more nutrients to the surface) while simultaneously
allowing for this nutrient to be more efficiently cycled — producing similar distributions of surface properties.
However, the carbon uptake and oxygen concentrations predicted by the two models diverged under climate change.
Similarly, Sarmiento et al. (2004) showed that physical climate models would be expected to produce different
spatial distributions of physical biomes due to differences in patterns of upwelling and downwelling, as well as the
annual cycle of sea ice. These differences would then be expected to be reflected in differences in biogeochemical
cycling, independent of differences in the biological models. These studies highlight the importance of constraining

not just individual biogeochemical fields, but also their relationships with each other.

To help with constraining these fields, some researchers have turned to machine learning (ML) to help in uncovering
the dynamics of ESMs. ML techniques are capable of fitting a model to a dataset without any prior knowledge of the
system and without any of the biases that may come from researchers about what processes are most important. As
applied to ESMs, ML has mostly been used to constrain physics parameterizations, such as longwave radiation
(Belochitski et al., 2011; Chevallier et al., 1998) and atmospheric convection (Brenowitz and Bretherton, 2018;
Gentine et al., 2018; Krasnopolsky et al., 2010, 2013; O’Gorman and Dwyer, 2018; Rasp et al., 2018).

With regard to phytoplankton, ML has not been explicitly applied within ESMs but has been used on phytoplankton
observations (Bourel et al., 2017; Flombaum et al., 2020; Kruk and Segura, 2012; Mattei et al., 2018; Olden, 2000;
Rivero-Calle et al., 2015; Scardi, 1996, 2001; Scardi and Harding, 1999) and has used ESM output as input for a ML
model trained on phytoplankton observations (Flombaum et al., 2020). Rivero-Calle et al. (2015) used random forest
(RF) to identify the drivers of coccolithophore abundance in the North Atlantic through feature importance measures
and partial dependence plots. The authors were able to find an apparent relationship between coccolithophore
abundance and environmental levels of CO,, which was consistent with intrinsic relationships between
coccolithophore growth rates and ambient CO, reported from 41 laboratory studies. They also found consistency
between the apparent and intrinsic relationships between coccolithophores and temperature. While they were able to
find links between particular apparent relationships found with the RFs and intrinsic relationships between

laboratory studies, it remains unclear when and why this link breaks.

ML has been used to examine apparent relationships of phytoplankton in the environment (Flombaum et al., 2020;
Rivero-Calle et al., 2015; Scardi, 1996, 2001) and it is reasonable to assume that ML could find intrinsic
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relationships when provided a new independent dataset from laboratory growth experiments. However, it has yet to
be determined under what circumstances the apparent relationships captured by ML have significantly different

functional forms to the intrinsic relationships that actually control phytoplankton growth.

To investigate when and why the link between intrinsic and apparent relationships break, we try to answer two main

questions in this paper:

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are
most skillful in finding them?
2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic

relationships we expect?

In addressing the first question, we first needed to demonstrate that we had a ML method that would correctly
extract intrinsic relationships from apparent relationships. We constructed a simple model in which the biomass is
directly proportional to the time-smoothed growth rate. In this scenario, intrinsic and apparent relationships operated
on the same time and spatial scale and were only separated by a scaling factor, but the environmental drivers of
phytoplankton growth had realistic inter-relationships. Having a better handle on the results from the first question,
we were able to move onto the second question where we looked at where the link between intrinsic and apparent
relationships diverged. We modified the first scenario so that the apparent relationships use a time-averaged input
(similar to what would be used in observations), but the intrinsic relationships operate by smoothing growth rates
derived from hourly input. Finally, we conduct a proof-of-concept study with real output from the ESM used to
generate the inputs for scenarios 1 and 2, in which the biomass is a nonlinear function of the time-smoothed growth
rate.

2 Methods

The main points of each Scenario are summarized in Table 1 including information on the predictors, target variable,
equations used to calculate biomass, source file, and scenario description. For each of the three scenarios, three ML
methods were used (Multiple Linear Regression [MLR], Random Forests [RF], and Neural Network Ensembles
[NNE]).

2.1 Scenario 1: Closely related intrinsic and apparent relationships on the same timescale

In the first scenario, we wanted to determine how well different ML methods could extract intrinsic relationships

when only provided information on the apparent relationships and when the intrinsic and apparent relationships were
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operating on the same timescale. In this scenario, the apparent relationships between predictors and biomass were

simply the result of multiplying the intrinsic relationships between predictors and growth rate by a scaling constant.

We designed a simple phytoplankton system in which biomass was a function of micronutrient, macronutrient, and
light limitations based on realistic inter-relationships between limitations (Eq. 1):

B =S, x min(Lyicros Limacro) X Lirr 1)

where B is the value for biomass (mol kg), S, is a scaling factor, and Lmicromacro,irr are the limitation terms for
micronutrient (micro), dissolved macronutrient (macro), and light (irradiance; irr), respectively. The scaling factor
(1.9x10°¢ mol kg™) was used, so the resulting biomass calculation was in units of mol kg. While simplistic, this is
actually the steady-state solution of a simple phytoplankton-zooplankton system when grazing scales as the product
of phytoplankton and zooplankton concentrations, and zooplankton mortality is quadratic in the zooplankton

concentration.

Each of the nutrient limitation terms (L, ;cr0 macro iN EQ. 1) were functions of Michaelis-Menten growth curves (Eqg.
2):

T Ky+N )

where Ly is the limitation term for the respective factor, N is the concentration of the nutrient, and Ky is the half-
saturation constant specific to each limitation. The light limitation was given by (Eqg. 3):

Irr
Lpr=1- e_(m)

©)

where Ly is the light limitation term, Irr is the light intensity, and K, is the light limitation constant. In terms of our
nomenclature, Eq. 1 defines the apparent relationship between nutrients, light, and biomass, such as might be found
in the environment, while Eq. 2 and 3 are the intrinsic relationships between nutrients/light and growth rate, such as

might be found in the laboratory or coded in an ESM.

For the concentrations of each factor (N in Eq. 2), we took the monthly averaged value for every lat/lon pair (i.e., 12
monthly values for each lat/lon pair) from the Earth System Model ESM2Mc (Galbraith et al., 2011). ESM2Mc is a
fully coupled atmosphere, ocean, sea ice model into which is embedded an ocean biogeochemical cycling module.
Known as BLING (Biogeochemistry with Light, Iron, Nutrients, and Gases; Galbraith et al., 2010), this module
carries a macronutrient, a micronutrient, and light as predictive variables and uses them to predict biomass using a

highly parameterized ecosystem (described in more detail below). The half-saturation coefficients (Ky in Eq. 2) for
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the macronutrient and micronutrient were also borrowed from BLING with values of 1x107 mol kg and 2x102°
mol kg2, respectively. The light-limitation coefficient K was set at 34.3 W m which was the global mean for the

light limitation factor in the ESM2Mc simulation used later in this paper.

The final dataset consisted of three input/predictor variables and one target term with a total of 77,328 observations.
The input variables given to each of three ML methods (Multiple Linear Regression [MLR], Random Forests [RF],
and Neural Network Ensembles [NNE], described in more detail below) were the concentrations (not the limitation
terms) for the micronutrient, macronutrient, and light. The target variable was the biomass we calculated from Eq. 1-

3. The same three ML methods were applied to all three Scenarios.

The dataset was then randomly split into training and testing datasets, with 60% of the observations going to the
training dataset and the remainder going to the testing dataset. This provided a standard way to test the
generalizability of each ML method by presenting them with new observations from the test dataset and ensuring the
models did not overfit the data. The input and output values for the training dataset were used to train a model for
each ML method. Once each method was trained, we provided the trained models with the input values of the testing
dataset to acquire their respective predictions. These predictions were then compared to the actual output values of
the test dataset. To assess model performance, we calculated the coefficient of determination (R?) and the root mean

squared error (RMSE) between the ML predictions and the actual output values for the training and testing datasets.

Following this, a sensitivity analysis was performed on the trained ML models. We allowed one predictor to vary
across its min-max range while holding the other two input variables at specific percentile values. This was repeated
for each predictor. This allowed us to isolate the impact of each predictor on the biomass — creating “cross-sections”
of the dataset where only one variable changed at a time. For comparison, these values were also run through Eqg. 1-
3 to calculate the true response of how the simple phytoplankton model would behave. This allowed us to view
which of the models most closely reproduced the underlying intrinsic relationships of the simple phytoplankton

model.

For our main sensitivity analyses, we chose to hold the predictors that were not being varied at their respective 25™,

501, and 75™ percentile values. We chose to use these particular percentile values for several reasons:

1. Itallowed us to avoid the extreme percentiles (1% and 99™). As we approach these extremes, the uncertainty
in the predictions grows quite rapidly because of the lack of training samples within that domain space of
the dataset. For example, there are no observations which satisfy the conditions of being in the 99"
percentile of two variables simultaneously. This extreme distance outside of the training domain generally
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leads to standard deviations in predictions that are too large to provide a substantial level of certainty about
the ML model’s predictions.

2. Similar to the idea that we can avoid the extremes, we also chose these values as they are quite typical
values for the edges of box plots. Generally, values within the range of the 25" to 75™ percentiles are not
considered outliers. Along those lines, we wanted to examine the conditions in a domain space that are
likely to be found in actual observational datasets, with the reasoning that if there was high uncertainty in
the ML predictions at these more moderate levels, there would be even higher uncertainty towards the

extremes.

This method of sensitivity analysis contrasts with partial dependence plots (PDPs), which are commonly used in ML
visualization. PDPs show the marginal effect that predictors have on the outcome. They consider every combination
of the values for a predictor of interest and all values of the other predictors, essentially covering all combinations of
the predictors. The predictions of a model are then averaged and show the marginal effect of a predictor on the
outcome — creating responses moderately comparable to averaged cross-sections. Because of this averaged response,
PDPs may hide significant effects from subgroups within a dataset. A sensitivity analysis avoids this disadvantage
by allowing separate visualization of subgroup relationships. For example, if macronutrient is the

primary limiter over half of the domain, but not limiting at all over the other half, PDPs of the biomass dependence
on micronutrient will reflect this macronutrient limitation, while a sensitivity analysis at the 75™ percentile of

macronutrient will not.

Using the predictions produced from the sensitivity analyses, we also computed the half-saturation constants for
each curve. A limitation of observational data is the frequency of sampling, which limits the ability to estimate half-
saturation coefficients without performing growth experiments in a lab. Calculating the half-saturation constants
from the sensitivity analysis predictions allowed us to investigate if ML methods could provide a quantitative
estimate from the raw observational data. The half-saturation constants were determined by fitting a non-linear

regression model to each sensitivity analysis curve matching the form of a Michaelis-Menten curve (Eq. 4):

a N

B =
a, +N

(4)

where B corresponds to the biomass predictions from the sensitivity analyses, N represents the nutrient
concentrations from the sensitivity analyses, and a1 and o, are the constants that are being estimated by the non-
linear regression model. The constant a, was taken as the estimation of the half-saturation coefficient for each

sensitivity analysis curve.
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Since co-limitations can affect the calculation of half-saturation coefficients, we also created interaction plots. This
is useful because trying to calculate the half-saturation constant based on a nutrient curve that is experiencing
limitation by another nutrient could cause the calculation to be underestimated. The interaction plots are a form of
sensitivity analysis where two predictor variables are varied across their min-max range, rather than one. This
produces a mesh of predictor pairs covering the range of possible combinations of two predictors. With these
interaction plots, it was possible to visualize the interaction of two variables and their combined effect on the target
variable. For each pair of predictors that were varying, we set the other predictor that was not varying to its 50"
percentile (median) value. As with the sensitivity analysis for single predictors, these predictor values were run
through Eqg. 1-3 so a comparison could be made as to which method most closely reproduced the true variable
interactions.

2.2 Scenario 2: Distantly related intrinsic and apparent relationships on different timescales

In Scenario 1, the intrinsic relationships between environmental conditions and growth rate and apparent
relationships between environmental conditions and biomass differed only by a scale factor and operated at the same
timescale. In reality, input variables (such as light) vary on hourly timescales so that growth rates vary on similar
timescales. Biomass reflects the average of this growth rate over many hours to days, while satellite observations
and ESM model output are often only available on monthly averaged timescales. So the reality is that even if a
system is controlled by intrinsic relationships, the apparent relationships gained from climatological variables on
long timescales will not reproduce these intrinsic relationships since the average light (irradiance) limitation is not

equal to the limitation given the averaged light value (Eqg. 5).

T 7
m = (1 — e_(m)) *+1-— e_(KIrr) (5)

where the overbar denotes a time-average, and Irr stands for irradiance (light). For Scenario 2, we wanted to
investigate how such time averaging biased our estimation of the intrinsic relationships from the apparent ones; i.e.,
how does the link between the intrinsic and apparent relationships change with different amounts of averaging over

time?

For the short timescale intrinsic relationships, we took daily inputs for the three predictor variables for one year from
the ESM2Mc model. We further reduced the timescale from days to hours to introduce daily variability for the

irradiance variable relative to the latitude, longitude, and time of year (Eq. 6).

12mlrrg,; n(t—t i
Irrg () = dally sin( ( sunrise)

T > when 0 < t < Tpqy, (6)
Day

TD ay
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where Irrn is the hourly interpolated value of irradiance, Irrgaiy is the daily-mean value of irradiance, t is the hour of
the day being interpolated, tsunise IS the hour of sunrise, and Tpay is the total length of the day. The resulting curve
preserves the day-to-day variation in the daily mean irradiance due to clouds and allows a realistic variation over the
course of the day. The hourly values for the micronutrient and macronutrient were assigned using a standard
interpolation between each of the daily values. Thus, light was the only predictor variable that varied hourly. These
hourly interpolated values were then used to calculate an “hourly biomass” from Eq. 1-3. Note that we are not
claiming real-world biomass would be zero at night but assume that on a long enough timescale, it should approach

the average of the hourly biomass.

To simulate apparent relationships, we smoothed the hourly values for both biomass and the input variables into
daily, weekly, and monthly averages for each lat/lon point. To reiterate, the intrinsic and apparent relationships in
Scenario 2 differed in timescales, but not in spatial scales. Each dataset was then analyzed following steps similar to
those outlined in Scenario 1; constructing training and testing datasets, using the same variables as inputs to predict
the output (biomass), and using the same ML methods. To assess each method’s performance, we calculated the R?
value and the RMSE between the predictions and observations for the training and testing datasets. We also
performed a sensitivity analysis, calculated half-saturation constants, and created interaction plots similar to those

described above.

2.3 Scenario 3: BLING biogeochemical model

As a demonstration of their capabilities, the ML methods were also applied directly to monthly averaged output
from the BLING model itself using the same predictors in Scenarios 1 and 2, but using the biomass calculated from
the actual BLING model. As described in Galbraith et al. (2010), BLING is a biogeochemical model where biomass
is diagnosed as a non-linear function of the growth rate smoothed in time. The growth rates, in turn, have the same

functional form as in Scenarios 1 and 2, namely (Eq. 7):

N N Irr

= el T emin e Rt ) * (1P (7)) @
where the first exponential parameterizes temperature-dependent growth following Eppley (1972), Nyyacromicro are
the macronutrient and micronutrient concentrations, Ky,qcr0 micro@re the half-saturation coefficients for the
macronutrient and micronutrient, Irr is the irradiance, and Irr; is a scaling for light limitation. An important
difference (to which we will return later in the manuscript) is that the light limitation term is calculated using a
variable Chl:C ratio following the theory of Geider et al. (1997). The variation of the Chl:C ratio would correspond
to a K, in Scenarios 1 and 2 which adjusts in response to both changes in irradiance (if nutrient is low) or changes
in nutrient (if irradiance is high), as well as changes in temperature. Given the resulting growth rate u the total

biomass then asymptotes towards (Eq. 8)
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where 1 = A, exp(k = T) is a grazing rate, the tilde denotes an average over a few days and S, is the biomass
constant that we saw in the previous two scenarios. Note that because grazing and growth have the same temperature
dependence, the biomass then ends up depending on the nutrients and light in a manner very similar to Scenarios 1
and 2. Growth rates and biomass are then combined to drive the uptake and water-column cycling of micronutrient
and macronutrient within a coarse-resolution version of the GFDL ESM2M fully coupled model (Galbraith et al.,
2011), denoted as ESM2Mc.

As described in Galbraith et al. (2011) and Bahl et al. (2019), ESM2Mc produces relatively realistic spatial
distributions of nutrients, oxygen, and radiocarbon. Although simpler in its configuration relative to models such as
TOPAZ (Tracers of Ocean Productivity with Allometric Zooplankton; Dunne et al., 2013), it has been demonstrated
that in a higher-resolution physical model BLING produces simulations of mean nutrients, anthropogenic carbon
uptake, and oceanic deoxygenation under global warming that are almost identical to such complicated models
(Galbraith et al., 2015).

We chose to use BLING for three main reasons. The first is that we know it produces robust apparent relationships
between nutrients, light, and biomass by construction — although these relationships can be relatively complicated —
particularly insofar as iron and light co-limitation is involved (Galbraith et al., 2010). As such, it represents a
reasonable challenge for a ML method to recover such non-linear relationships. The second is that we know how
these relationships are determined by the underlying intrinsic relationships between limiting factors and growth.
Models with more complicated ecosystems (including explicit zooplankton and grazing interactions between
functional groups) may exhibit more complicated time-dependence that would confuse such a straightforward
linkage between phytoplankton growth limitation and biomass. The third is that despite its simplicity, the model has
relatively realistic annual mean distributions of surface nutrients, iron, and chlorophyll, and under global warming, it
simulates changes in oxygen and anthropogenic carbon uptake that are similar to much more complicated ESMs
(Galbraith et al., 2015).

2.4 ML Algorithms

We chose to use Random Forests (RFs) and Neural Network Ensembles (NNES) in this manuscript. Although other
ML methods exist, the list of possible choices is rather long. It was decided that the number of ML algorithms being
compared would be limited to RFs and NNEs, given their popularity in studying ecological systems. Additionally,

we chose to compare the performance of the ML techniques to the performance of Multiple Linear Regression
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(MLR), which allows us to quantify the importance of nonlinearity. It should be noted that we are not trying to
suggest that MLR is always ineffective for studying ecological systems. MLR is a very useful and informative
approach for studying linear relationships within marine ecological systems (Chase et al., 2007; Harding et al., 2015;
Kruk et al., 2011).

2.4.1 Random Forests

RFs are an ensemble ML method utilizing many decision trees to turn “weak learners” into a single “strong learner”
by averaging multiple outputs (Breiman, 2001). In general, RFs work by sampling (with replacement) about two-
thirds of a dataset and constructing a decision tree. This process is known as bootstrap aggregation. At each split, the
random forest takes a random subset of the predictors and examines which variable can be used to split a given set
of points into two maximally distinct groups. This use of random predictor subsets helps to ensure the model is not
overfitting the data. The process of splitting the data is repeated until an optimal tree is constructed or until the
stopping criteria are met, such as a set number of observations in every branch (then called a leaf / final node). The
process of constructing a tree is then repeated a specified number of times, which results in a group (i.e., “forest”) of
decision trees. Random forests can also be used to construct regression trees in which a new set of observations
traverse each decision tree with its associated predictor values and the result from each tree is aggregated into an

averaged value.

Here, we used the same parameters for RF in the three scenarios to allow for a direct comparison between the
scenarios and to minimize the possible avenues for errors. Each RF scenario was implemented using the TreeBagger
function in Matlab 2019b, where 500 decision trees were constructed with each terminal node resulting in a
minimum of five observations per node. An optimization was performed to decide the number of decision trees that
minimized the error while still having a relatively short runtime of only several minutes. For additional details about

the construction and training of the RFs, please see Appendix B.

2.4.2 Neural Network Ensembles

Neural networks (NNs) are another type of ML that has become increasingly popular in ecological applications
(Flombaum et al., 2020; Franceschini et al., 2019; Guégan et al., 1998; Lek et al., 1996a, 1996b; Mattei et al., 2018;
Olden, 2000; Ozesmi and Ozesmi, 1999; Scardi, 1996, 2001; Scardi and Harding, 1999). Scardi (1996) used NNs to
model phytoplankton primary production in the Chesapeake and Delaware Bays. Lek et al. (1996b) demonstrated
the ability of NNs to explain trout abundance using several environmental variables through the use of the
“profiling” method, a type of variable importance metric that averages the results of multiple sensitivity analyses to

acquire the importance of each variable across its range of values.
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Feed-forward NNs consist of nodes connected by weights and biases with one input layer, (usually) at least one
hidden layer, and one output layer. The nodes of the input layer correspond to the input values of the predictor
variables, and the hidden and output layer nodes each contain an activation function. Each node from one layer is
connected to all other nodes before and after it. The values from the input layer are transformed by the weights and
biases connecting the input layer to the hidden layer, put through the activation function of the hidden layer,
modified by the weights and biases connecting the hidden layer to the output layer, and finally entered into the final

activation function of the output node.

The output (predictions) from this forward pass through the network is compared to the actual values, and the error
is calculated. This error is then used to update the weights with a backward pass through the network using
backpropagation. The process is repeated a specified number of times or until some optimal stopping criteria are
met, such as error minimization or validation checks where the error has increased a specified number of times. For

a more in-depth discussion of NNs, see Schmidhuber (2015).

For this particular study, we use neural network ensembles (NNEs), which are a collection of NNs (each of which
uses a subsample of the data) whose predictions are averaged into a single prediction. It has been demonstrated that
NNEs can outperform single NNs and increase the performance of a model by reducing the generalization error
(Hansen and Salamon, 1990).

To minimize the differences between scenarios, we used the same framework for the NNs in each scenario. Each
NN consisted of three input nodes (one for each of the predictor variables), 25 nodes in the hidden layer, and one
output node. The activation function within the hidden nodes was a hyperbolic tangent sigmoid function, and the
activation function within the output node used a linear function. The stopping criteria for each NN was set as a
validation check, such that the training stopped when the error between the predictions and observations increased
for six consecutive epochs. An optimization was performed to decide the number of nodes in the hidden layer that
minimized the error while maintaining a short training time. A sensitivity analysis was also performed using
different activation functions to ensure the choice of activation function had minimal effect on the outcome.
Furthermore, another sensitivity analysis was performed to ensure additional hidden layers were not necessary. The

details of the optimization and sensitivity analyses to determine the NN parameters can be found in Appendix B.

Each NNE consisted of ten individual NNs, and each NN was trained using the feedforwardnet function in Matlab
2019b.
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Each variable was scaled between -1 and 1 based on its respective maximum and minimum (Eg. 9).

Vs = M (Vy — miny) + ming 9)
maxy —min gy
where V is the value of the variable being scaled, S stands for the scaled value (min is -1 and max is 1), and U
represents the unscaled value. This step ensures that no values are too close to the limits of the hyperbolic tangent
sigmoid activation function, which would significantly increase the training time of each NN. Additionally, this
normalization ensures that each predictor falls within a similar range, so more weight is not provided to variables
with larger ranges. Although scaling is not necessary for RF and MLR, the scalings used for the NNE were still
applied to each method for consistency. The results presented in this paper were then transformed back to their
original scales to avoid confusion from scaling (Eqg. 10).
maxy — miny

VU = m (VS - mins) + minu (10)

Where the letters represent the same values as in Eqg. 9.

3 Results and Discussion

3.1 Scenario 1: Closely related intrinsic and apparent relationships on the same timescale

In the first scenario, our main objective was to determine if ML methods could extract intrinsic relationships when
given information on the apparent relationships and reasonable spatiotemporal distributions of co-limitation when

the intrinsic and apparent relationships were operating on the same timescale.

In Scenario 1, the RF and NNE both outperformed the MLR as demonstrated by higher R? values and lower RMSE
(Table 2). The MLR captured just under half of the variance (R? = 0.44-0.45; Table 2), while the RF and NNE
essentially captured all of it (R? > 0.99; Table 2). The decreased performance of the MLR is not inherently
surprising, given the non-linearity of the underlying model, but it does demonstrate that the range of nutrients and
light produced as inputs by ESM2Mc are capable of producing a non-linear response. Additionally, each method
showed similar performances between the training and testing datasets suggesting adequate capture of the model
dynamics in both datasets.

From the spatial distributions and error plots of the true response and the predictions from each method, it can be
observed that the RF and NNE showed the closest agreement with the true response (Fig. 1). The NNE showed the
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lowest error and closest agreement with the true response (Fig. 1 g), followed closely by the RF with slightly higher
errors (Fig. 1 f). Additionally, the RF and NNE were able to reproduce the biomass patterns in the Equatorial
Atlantic and Pacific, along with the low biomass concentrations at higher latitudes (Fig. 1 a, c, d). Although MLR
was able to reproduce the general trend of the highest biomass in the low latitudes and low biomass in the high
latitudes, it was not able to predict higher biomass values (Fig. 1 b) and it exhibited the highest errors of the three
methods (Fig. 1 e).

In addition to examining whether the different ML methods matched the correct response, we also interrogated these
methods to look at how different predictors contributed to the answer, and whether these contributions matched the
intrinsic relationships between the predictors and biomass as we had put into the model (Fig. 2). The MLR (red
dashed lines) showed very little response to changes in macronutrient (Fig. 2 a, d, g), an unrealistic negative
response to increases in micronutrient (Fig. 2 b, e, h), and a reasonable (albeit linear) match to the light response
(Fig. 2 ¢, f, i). By contrast, the response to any predictor for the NNE (green dashed lines) showed agreement with
the true response of the model (black lines) in all circumstances, insofar as the true response was always within the
standard deviation of the NNE predictions (Fig. 2).

The RF prediction of the response to a given predictor (blue dashed lines) showed agreement with the true response
when the other predictors were fixed at the lower percentiles (Fig. 2 a-c), but began deviating in the higher
percentiles (Fig. 2 d-i). This was likely due to the range of the training dataset and how RFs acquire their
predictions. When presented with predictor information, RFs rely on the information contained within their training
data. If they are presented with predictor information that goes outside the range of the dataspace of the training set,
RFs will provide a prediction based within the range of the training set. When performing the sensitivity analysis,
the values of the predictors in the higher percentiles were outside the range of the training dataset. For example, RF
deviates from the true response as the concentration of the macronutrient increases — actually decreasing as nutrient
increases despite the fact that such a result is not programmed into the underlying model (Fig. 2 g). Although there
may be observations in the training dataset where the light and micronutrient are at their 75" percentile values when
the macronutrient is low, there likely are not any observations where high levels of the macronutrient, micronutrient,
and light are co-occurring. Without any observations meeting that criteria, the RF provided the highest prediction it

could based on the training information.

In contrast to the RF’s inability to extrapolate outside the training range, the NNE showed its capability to make
predictions on observations on which it was not trained (Fig. 2). Note, however, that while we have programmed
Michaelis-Menten intrinsic dependencies for individual limitations into our model, we did not get Michaelis-Menten

type curves back for macro- and micronutrients when the other variables were set at low percentiles (Fig. 2 a-c). The
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reason is that Liebig’s law of the minimum applies to the two nutrient limitations. When the micronutrient is low, it

prevents the entire Michaelis-Menten curve for the macronutrient from being seen.

Although the NNEs captured the true intrinsic relationships, we could not interpret these curves without
remembering that multiple limitations affect biomass. For example, when we computed an estimated half-saturation
for the nutrient curves in the top row of Fig. 2, we calculated values for K, that were far lower than the actual ones
specified in the model (Table 3). The estimated half-saturation when other predictors were held at their 25t
percentile for the micro- and macronutrient were underestimated by one and two orders of magnitude, respectively.
When higher percentiles were used (Table 4), the estimated half-saturation was overestimated for some predictors
and underestimated for others. At the 99" percentile, the macronutrient half-saturation was underestimated by 49%
and micronutrient and light were overestimated by 77% and 36%, respectively (Table 4). It is possible that even at
the higher percentiles, micronutrient was still exerting some limitation on the macronutrient curve which would
explain why the estimate for the macronutrient half-saturation was underestimated. However, this does not explain
why the estimations for the micronutrient and light half-saturations were overestimated by so much. Although the
ability to calculate half-saturation coefficients from the sensitivity analysis curves seemed to be a way to quantify
the accuracy of the ML predictions, co-limitations lead to high uncertainties in the estimates. While mathematically
obvious, this result has implications for attempts to extract (and interpret) Ky from observational datasets, such that
one would expect colimitation to produce a systematic underestimation of Ky.

In an effort to visualize the co-limitations and to investigate the extent to which any of the methods could reproduce
these interactions, we examined the interaction plots (Fig. 3). MLR expectedly predicted linear relationships in
which higher concentration pairs of irradiance/macronutrient and irradiance/micronutrient lead to higher biomass
(Fig. 3 h, i), but it incorrectly predicted the interaction between the micro- and macronutrient such that decreasing
concentrations of macronutrient lead to higher biomass (Fig. 3 g). Note that the x and y axes in Fig. 3g were
switched relative to the other subplot axes, which was necessary to visualize the interaction. RF incorrectly
predicted the highest concentrations of biomass at moderate levels of the micro- and macronutrient in their
interactions with irradiance (Fig. 3 k, I). RF again incorrectly predicted the greatest biomass in the
micro/macronutrient interaction occurring at low levels of micronutrient across most levels of macronutrient (Fig. 3
j)- The NNE was the only method that was able to reproduce the interactions of the model (Fig. 3 d-f, m-o).
Although the NNE overestimated the biomass prediction when concentrations were high for both predictors in the
irradiance/micronutrient and irradiance/macronutrient interactions (Fig. 3 e, f, n, 0), these were also the areas of the
dataspace without any observations to constrain the NNE (Fig. 3 b, c). Similar to the sensitivity analyses for single

predictors, the NNE was capable of extrapolating outside the range of the training dataset while RF was not.
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The NNE interaction plots (Fig. 3 m-0) bear resemblance to the co-limitation plots seen in Fig. 2 of Saito et al.
(2008) and allowed for a qualitative comparison of the type of co-limitation that two predictors have on the target
variable. For example, the micro/macronutrient interaction in Fig. 3m shows the same type of response as would be
expected in Liebig minimizing (Saito et al., 2008 Fig. 2C). This result is what we would expect given that the
equations for Scenario 1 (Eq. 1-3) were Liebig minimizing by construction between the macro- and micronutrient.
Additionally, Liebig minimizing can be seen in the pattern displayed in the interaction plot of the true expected
response (Fig. 3 d).

The interactions of macronutrient/irradiance (Fig. 3 n) and micronutrient/irradiance (Fig. 3 o) mirrored the co-
limitation pattern of Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B) where neither predictor was
limiting and the effects of the two predictors have a multiplicative effect on the target variable. This was again
consistent with the equations that govern Scenario 1 (Eq. 1-3). In Eq. 1, the irradiance limitation was only multiplied
by the lesser limitation of the macro- and micronutrient and did not show a pattern of Liebig minimizing. It was
interesting that the macronutrient/irradiance interaction (Fig. 3 n) almost appeared to display a pattern of no co-
limitation (Saito et al., 2008 Fig. 2A), but this stark increase in the biomass past low concentrations of the
macronutrient can be partially explained by the contour plot of observations (Fig. 3 b; please see Fig. C1 in
Appendix C for individual box plots of the predictor and target variables). The majority of observations where
macronutrient concentrations were low had a correspondingly high value for irradiance. Additionally, when the
macronutrient passed a certain concentration (which happened to be very low in these conditions), the micronutrient

became the limiting nutrient, such that light was the only variable that then affected the biomass (data not shown).

With respect to our main objective for Scenario 1, it was evident that only the NNE was able to extract the intrinsic
relationships from information on the apparent relationships. This was due in large part to its capability of
extrapolating outside the range of the training dataset, whereas RFs were constrained by training data, and MLR was
limited by its inherent linearity and simplicity. Furthermore, the attempts to quantify the half-saturation coefficients
from the sensitivity analysis curves proved unreliable because of nutrient co-limitations. However, we were able to
use interaction plots to qualitatively describe the type of co-limitation occurring between each pair of predictors and
support the result from the single predictor sensitivity analyses that micronutrient was most limiting in many
situations.

3.2 Scenario 2: Distantly related intrinsic and apparent relationships on different timescales

In Scenario 1, the intrinsic and apparent relationships were simply related by a scaling factor. In practice, the
relationships are more difficult to connect to each other. For the second scenario, both the output biomass and

predictors (light, macronutrient, and micronutrient) were averaged over daily, weekly, and monthly timescales. Our
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main objective was to investigate how the link between intrinsic and apparent relationships changed when using

climatologically averaged data — as is generally the case for observational studies.

As in Scenario 1, the RF and NNE outperformed the MLR based on the performance metrics for the daily, weekly,
and monthly time-averaged scenarios (Table 2), with linear models only able to explain about 30% of the variance.
The comparable performances between the training and testing datasets suggested a sufficient sampling of the data
for each method to capture the dynamics of the underlying model.

Examining the monthly apparent relationships found for each method and comparing them to the true intrinsic
relationships showed that none of the methods were able to reproduce the true intrinsic relationships — in general
systematically underestimating biomass at high levels of light and nutrient (Fig. 4). The one exception was the 25"
percentile plot of the micronutrient (Fig. 4b). The underestimation was consistent across the different timescales,
and the sensitivity analysis showed little difference in the predicted relationships between the daily, weekly, and
monthly averaged timescales for the NNEs (Fig. 5). Because the NNEs showed the closest approximations to the
correct shape and magnitude of the curves compared to RF and MLR (Fig. 4), the remaining analysis of Scenario 2

is mainly focused on NNEs.

The underestimation was not entirely unexpected. The averaging of the hourly values into daily, weekly, and
monthly timescales quickly lead to a loss of variability (Fig. 6), especially for light (Fig. 6c). A large portion of the
variability was lost in the irradiance variable going from hourly to daily (Fig. 6¢). The loss of variability meant that
the light limitation computed from the averaged light was systematically higher than the averaged light limitation.
To match the observed biomass, the asymptotic biomass at high light would have to be systematically lower (see
Appendix A for the mathematical proof). Differences were much smaller for macronutrient and micronutrient as
they varied much less over the course of a month in our dataset. Our results emphasize that when comparing
apparent relationships in the environment to intrinsic relationships from the laboratory, it is essential to take into
account which timescales of variability that averaging has removed. Insofar as most variability is at hourly time
scales, daily-, weekly-, and monthly-averaged data will produce very similar apparent relationships (Fig. 5). But if

there was a strong week-to-week variability in some predictor, this may not be the case.

To understand how the apparent relationships were changing across different timescales, we averaged the hourly
dataset over a range of hourly timespans. Specifically, we averaged over the timescales of 1-hour (original hourly
set), 2, 3,4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. This new set of averaged timescales was

then used to train NNEs with one NNE corresponding to each averaged timescale. We then performed sensitivity
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analyses on each of the trained NNEs to see the apparent relationships for each averaged timescale and set the
percentile vales for the other variables at their 50™ percentile (median). For more details about this method, please
see Appendix D. To visualize all the timescales at once, we plotted them on surface plots (Fig. 7). The greatest
changes in the apparent relationships occurred in the first 24 hours (Fig. 7 b, d, f). Furthermore, when focused on the
first 24 hours, the apparent relationships below 12 hours were relatively close to the hourly apparent relationships
(Fig. 7 a, ¢, e) suggesting that a large portion of the variability may have been lost between the 12- to 24-hour
averaged datasets. It may be possible to use this type of diagnostics test to find the sampling frequency which would
be needed to recover true relationships in other datasets or to see how relationships change over different timescales.
Although we only averaged time in Scenario 2, this diagnostics test could also be applied to datasets that are

averaged in space only or in space and time.

Even though in Scenario 1 we showed estimating the half-saturation coefficients from the sensitivity analysis curves
can be unreliable, we felt that it could be helpful to include them in this manuscript so other researchers who may
have a similar idea in the future can be cautioned against it. It was not surprising that the estimated half-saturation
coefficients for Scenario 2 were also incorrect (Tables 3 and 4). The inaccuracies in Scenario 2 though were likely
the result of co-limitations and averaging, whereas Scenario 1 only dealt with co-limitations. Furthermore, even
though the predicted curves for the daily, weekly, and monthly NNEs were relatively similar (Fig. 5), the estimated
half-saturations varied quite a bit between them (Table 3). This was even more pronounced for the half-saturation
estimates at the 97", 98, and 99 percentiles (Table 4). For example, the estimated half-saturation for light from the

daily-NNE at these upper percentiles was an entire order of magnitude higher than the actual value (Table 4).

As with Scenario 1, we visualized the variable interactions in Scenario 2 with interaction plots and compared these
to the colimitation plots in Fig. 2 of Saito et al. (2008). As we observed in Scenario 1, the interaction plots showed
that when the NNEs were tasked with making predictions outside the range of their dataset, their predictions could
be drastically over or underestimated (Fig. 8 d-I) because no observations existed in that space to constrain the
NNEs (Fig. 9). For example, in the irradiance/micronutrient plot (Fig. 8 I) when high irradiance coincided with high
micronutrient concentrations, the NNE predicted a rapid increase in the biomass prediction. From Fig. 9i, which
shows the density plot of the observations for irradiance and micronutrient, it can be seen that this same area was far

outside the range of the dataset where there were no observations to constrain the NNE.

Each of the NNEs for the daily, weekly, and monthly-averaged datasets showed similar co-limitation patterns (Fig. 8
d-1) which also agreed with the patterns of the true interactions (Fig. 8 a-c). The macronutrient/micronutrient
interaction plots (Fig. 8 d, g, j) exhibited a pattern of Liebig minimizing as shown in Fig. 2C of Saito et al. (2008).

The irradiance/macronutrient (Fig. 8 e, h, k) and irradiance/micronutrient (Fig. 8 f, i, ) interaction plots show a co-
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limitation pattern consistent with Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). These interaction
patterns are the same interaction patterns observed in Scenario 1. Once again, these patterns would be expected
because the equations contain these patterns, by construction. Surprisingly, these patterns held across time-averaging
even as great as one month (720 hours). Although the monthly interaction underestimated the biomass, the general
pattern, non-linearity, and interaction of the variables remained consistent across the different timescales. This could
imply that the use of monthly-mean observations could still allow researchers to identify interactions that hold true

at timescales as small as one hour.

Regarding our main objective for Scenario 2 to understand how the link between intrinsic and apparent relationships
changed, only the NNEs were able to provide reliable information. The sensitivity analysis with individual
predictors showed that variability could be lost in the span of a single day when considering information on hourly
timescales. This caused an underestimation of the biomass values for timescales that were averaged over ranges
greater than and equal to 24 hours. However, it was possible to visualize how the relationships changed from the
hourly data to the 720-hour (monthly) data by training NNEs on different timescales of the data. Additionally, the
interaction patterns observed in Scenario 1 where the intrinsic and apparent relationships were closely related were
also observed in the interaction patterns of Scenario 2 where the intrinsic and apparent relationships were distantly
related. This suggested that it may be possible to capture variable interactions occurring at small timescales, even

when data is sampled at a frequency as infrequent as once per month.

3.3 Scenario 3: BLING biogeochemical model

When run in the full ESM, the BLING biogeochemistry does end up producing surface biomass which is a strong
function of the growth rate (Fig. 10a) with a non-linear relationship as in Eq. 8. As the growth rate, in turn, is given
by Eq. 7, we can also examine how the monthly mean limitation terms for nutrient and light compare with the means
given by computing the limitations with monthly mean values of nutrients, Irr, and Irr;,. As shown in Fig. 10b, the
nutrient limitation is relatively well captured using the monthly mean values, although there is a tendency for the
monthly means to underestimate moderate values of nutrient limitation. Further analysis shows that this is due to the
interaction between micro- and macronutrient limitation — with the average of the minimum limitation being
somewhat higher than the minimum of the average limitation. However, using the actual monthly mean values of

Irr, and Irr, (Fig. 10c) causes the light limitation to be systematically biased high.

To demonstrate their capabilities, NNEs were applied directly to the monthly averaged output of one of the BLING
simulations. The main purpose of the final scenario was to demonstrate the capabilities of NNEs when applied to
actual ESM output with the reasoning that if it was unable to provide useful information on BLING (in which, by

definition, the biomass and limitations are closely related), it would also fail on more complex models.
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Scenario 3 showed similar results to those of Scenarios 1 and 2, with respect to the performance metrics of the
training and testing datasets (Table 2), the inaccuracy of the estimated half-saturation coefficients (Tables 3 and 4),
and deviations in the interaction plots where no observations occur (Fig. 12). The performance metrics for Scenario
3 showed performances between the training and testing datasets indicating sufficient sampling of the data (Table 2).
Additionally, the half-saturation coefficients were included here (Tables 3 and 4) for the same reasons as stated in
Section 3.2 for Scenario 2. The largest deviation in the interaction plots occurred in the macronutrient/irradiance plot
when both macronutrient and light concentrations were near their maximum (Fig. 12 e). However, this was not
surprising since no observations existed in that range to constrain the NNE (Fig. 12 b; please see Fig. C2 in

Appendix C for individual box plots of the predictor and target variables).

In the sensitivity analysis, the macronutrient and light plots (Fig. 11 a, ¢, d, f, g, i) exhibited curves consistent with
colimitation where the curves reached an asymptote at a relatively low concentration. Although this value increased
with the increasing percentiles, the asymptotic value was rather low when compared to the curves in the
micronutrient plots (Fig. 11 b, e, h). For example, the predicted curves for the macronutrient (Fig. 11 green line)
relative to the observations (Fig. 11 gray contours) showed that higher biomass values were possible even when
micronutrient and irradiance were at their 75" percentile values and increases in the macronutrient did not yield
higher biomass (Fig. 11 a, d, g). Since the light curves (Fig. 11 c, f, i) showed the same trend as the macronutrient,
this suggests that the micronutrient was limiting in those circumstances. This is supported by the micronutrient
curves in which the asymptotic values occurred at relatively higher concentrations of the micronutrient (Fig. 11 b, e,
h). The predicted biomass for the micronutrient curves exceeded the highest observation even in the 50" percentile
plot (Fig. 11 e). Furthermore, the interaction plots supported this where only interactions with increasing
micronutrient saw increases in biomass (Fig. 12 d and f), while the macronutrient/irradiance plot (in which
micronutrient was held fixed) quickly plateaued (Fig. 12 e). Conceptually this makes sense since the micronutrient
limitation in the BLING model hinders growth, but also limits the efficiency of light-harvesting (Galbraith et al.,
2010). This result of micronutrient limitation was consistent with the other Scenarios and was not unexpected. The
equations governing Scenarios 1 and 2 (Eg. 1-3) were similar to the equation governing BLING (Eq. 7). So,

micronutrient limitation being present across all three Scenarios was consistent with what would be expected.

The interaction plots for Scenario 3 (Fig. 12 d-f) all appear to show a co-limitation pattern consistent with
Independent Multiplicative Nutrients (Saito et al., 2008 Fig. 2B). This agrees with the patterns of the previous
Scenarios, except for the micro/macronutrient interaction. In Scenarios 1 and 2, the micro/macronutrient interaction
showed a pattern matching Liebig minimizing, while Scenario 3 suggested Independent Multiplicative Nutrients.

This result would not have been expected from simply looking at the structure of the equations but arises in part
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from the coupling between the nutrient and light limitations.

Since the objective of Scenario 3 was to apply what we learned in Scenarios 1 and 2 to output from an actual
biogeochemical model, we believe we have demonstrated the capabilities of the information one can extract.
Although the quantitative method of estimating the half-saturation coefficients proved unreliable, the qualitative
information was informative. This includes information on limitations and interactions between variables, along

with the ability to understand the level of variability explained by a given set of predictors.

4 Conclusions

Although researchers have been able to find apparent relationships for phytoplankton in environmental datasets, it
remained unclear why and when the environmental apparent relationships were no longer equal to the intrinsic
relationships that control phytoplankton growth. Our main objective in this manuscript was to understand when and

why the link between intrinsic and apparent relationships would break by answering two questions:

1. Can ML techniques find the correct underlying intrinsic relationships and, if so, what methods are most
skillful in finding them?
2. How do you interpret the apparent relationships that emerge when they diverge from the intrinsic

relationships we expect?

In addressing the first question, we observed that NNEs were far superior to RFs and MLR at extracting the intrinsic
relationships using information on the apparent relationships when the intrinsic and apparent relationships were
closely related. RFs were unable to match the relationships because of their inherent inability to extrapolate outside
the range of their training data. Additionally, even though NNEs matched the true relationships well, we were
unable to quantify half-saturation coefficient estimates from the sensitivity analysis curves because of co-limitations
between the predictors. However, we were able to show that one can use interaction plots to qualitatively visualize

the type of co-limitations occurring between two predictors and identify the variables causing limitations.

Regarding the second question, we demonstrated that time-averaging can lead to a loss of variability in the dataset
which, in turn, can greatly affect the predicted relationships one can extract. For our particular system, we found
averaging over large timespans caused underestimation of the predicted relationships (as shown in Appendix A, this
will generally be the case for relationships which are concave downward — the opposite will be true for relationships
that are concave upward). However, we showed that it was possible to visualize how the relationships were

changing from intrinsic to apparent relationships by training NNEs on different averaged timescales of the data.
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Furthermore, we showed that the general trends, variable interactions, and nutrient limitations occurring when the
intrinsic and apparent relationships were closely linked (as in Scenario 1) could propagate through to situations

when the intrinsic and apparent relationships operated over different timescales (Scenario 2).

As a proof-of-concept, we also showed that it was possible to extract information from the output of a

biogeochemical model (Scenario 3) using the information and techniques we employed in Scenarios 1 and 2.

This study suffers from two major limitations: the number of ML algorithms we investigated and the number of
predictor variables included for each scenario. We limited the number of ML algorithms and predictors for
simplicity and easier visualization of the sensitivity analyses. In the real world, phytoplankton may be limited by
more physical and biological processes, making the visualization of the sensitivity analyses impractical due to the
sheer number of possible interactions that would have to be considered. In cases such as those, it would be beneficial
to perform some form of importance analysis or dimensionality reduction to remove insignificant predictor

variables, after which sensitivity analyses could be done on the remaining predictors.

The results of this study have several potential applications for oceanographers, including marine ecologists and
Earth System modelers. For example, using output from biogeochemical models or observations from environmental

datasets, researchers may now be able to:

1. Identify important interactions and colimitations occurring between variables.

2. Discern the type of colimitation occurring between nutrients.

3. Find nutrient limitations without having to perform (or at least being able to conduct fewer) nutrient growth
experiments in a lab.

4. Identify apparent relationships between biogeochemical variables, instead of using only spatiotemporal
distributions.

5. Understand how variable relationships change over different spatial and temporal scales.

Some potential future applications relevant to the results we show here include:

1. Using these techniques to find and compare the apparent relationships of different ESMs. This would allow
the researcher to more specifically identify why different ESMs produce different results.

2. Apply these methods to compare the apparent relationships in observational data and ESM output. This
would allow for finer tuning of ESM parameters and relationships, instead of only matching ESM spatial

distributions to those of observational distributions.
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Preliminary work on both applications shows them to have promising results. We will report on these in future

manuscripts.
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Appendix A

Illustration of why time variation causes underestimation of the dependence of biomass on a limiter

Irr Irr + Irr’
B=S**(1—exp<—KI >>=S** 1—exp —T (A1)
rr rr

where the overbar refers to a time-average and the prime to a variation from this time average. Insofar as the

variations are small.

Irr +Irr' 1 (Irr + Irr' ? Irr + Irr’ 1 Irr +Irr’
B xS, L —s I (2 (A2)
Klrr 2 Klrr [TTk 2 KIrr

Averaging yields

Bas {W (1 Irr )} Irr'? < (1 ( W)) (A3)
= Oy * - - * —exp| —
Klrr 2Klrr ZKITT‘ KIrr

so that if we are trying to fit a curve of the form

_ I
B ~ save {1 —exp (— T )} (A4)
Klrr

We would expect that S#¢ < S,.
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Appendix B

This appendix provides additional details of the training and construction of the RFs and NNEs that may not have

been included in the main text of the manuscript.

Appendix B1: Random Forests

The RFs were implemented in Matlab 2019b using the TreeBagger function. Each RF used three predictors:
macronutrient, micronutrient, and irradiance. The target variable was phytoplankton biomass. At each split, one
random predictor variable was chosen from which two maximally distinct groups were determined. The splits
continued until each terminal node contained a minimum of 5 observations. For reproducible results, the random
number generator was set to “twister” with an integer of “123”. A total of 500 decision trees were constructed for
each RF. This number was chosen because we wanted a sufficient number of trees to minimize the error and still be
able to run the training in a relatively short span of time on a standard computer/laptop. The Out-of-Bag (OOB)
error for each trained RF can be seen in Fig. B1. Past about 100 trees, the OOB error reaches an asymptote, such that
more trees do not decrease the error. We chose to keep the number of trees at 500 because this helped to ensure
generalization in the RF. Additionally, it did not significantly increase the training time and it allowed for the RF

structure to be the same across all the Scenarios.

Each variable was scaled between -1 and 1 corresponding to each variable’s respective minimum and maximum,
respectively (Eq. 9). These scalings were applied for use specifically in the NNEs, but for consistency they were also
applied to the MLR and RF. The values of the variables and predictions of each method were unscaled for analysis
(Eg. 10).
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Figure B1: The Out-of-Bag (OOB) error for the trained RFs of each Scenario. The OOB error is shown as a function
of the number of trees for each RF (500 decision trees for each one). The y-axis for each plot is on a log scale.

Additionally, the plot for Scenario 2 shows the OOB error curves for each of the time-averaged datasets (daily,

weekly, monthly).
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Appendix B2: Neural Network Ensembles

The NNEs consisted of ten individual NNs and each NN was trained using the feedforwardnet function in Matlab
2019b.

The framework of each NN had three input nodes, 25 nodes in a single hidden layer, and one output node. The
activation function for the hidden nodes was a hyperbolic tangent sigmoid function and the output node activation
function was a simple linear function. The training dataset was used in the training of each NN, which consisted of
60% of the total observations in the entire dataset. For the training of each individual NN, Matlab further randomly
partitioned the training dataset into its own training subset, validation subset, and testing subset. A total of 70% of
the observations from the training dataset went to the training subset, 15% went to the validation subset, and 15%
went to the testing subset. To ensure that each NN was trained on different observations, distinct combinations of
observations went into each subset for the training of each NN. This was done using a different number for the
random number seed before the start of training for each NN. The random number seed ahead of each NN was set to
the respective number of the NN. For example, the random number seed for the first NN was set to 1, the seed for
the second NN was set to 2, etc. This random number seed ensured that the observations from the training dataset
were being partitioned into different training, validation, and testing subsets for each individual NN. The stopping

criteria for each NN was a validation check, so training stopped when the error increased for six consecutive epochs.

The sensitivity analysis used to determine the optimal number of nodes in a single layer NNE for the daily, weekly,
and monthly averaged datasets for Scenario 2 can be seen in Table B1. Separate NNEs were trained for each of the
time-averaged datasets (daily, weekly, monthly) for each set of nodes. For example, separate NNEs were trained for
the daily-averaged dataset with 1 node, the weekly-averaged dataset with 1 node, and the monthly-averaged dataset
with one node. Each NNE maintained the same construction as those specified in the manuscript (10 individual
NNs) and kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made
predictions on the testing dataset and the R? values were calculated based on the comparison between those
predictions and the actual values of the testing dataset. These values are recorded in Table B1. From the
performance metrics, it was decided that 25 nodes provided a sufficient level of performance while also maintaining

a reasonable time for training.

The sensitivity analysis determining if an additional hidden layer increased the performance of the time-averaged
datasets in Scenario 2 can be seen in Table B2. Each NNE consisted of ten individual NNs. The NNs were trained
according to the same criteria specified in the manuscript. The inclusion of an additional hidden layer did not

significantly increase the performance of the NNEs, but it did significantly increase the time needed for training the
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NNs. We decided to use only one hidden layer since the performance did not increase significantly and to keep the

training time within a reasonable timeframe.

The sensitivity analysis assessing different activation functions in the nodes of the hidden layer for the time-
averaged datasets of Scenario 2 can be seen in Table B3. Each NNE contained ten individual NNs. The NNs kept
the same training criteria specified in the manuscript. We tested a total of seven activation functions: hyperbolic
tangent (symmetric) sigmoid, logarithmic sigmoid, inverse, positive linear (ReLU), linear, soft max, and radial basis.
The linear and inverse activation functions showed the poorest performance. The performance metrics were
comparable for the other activation functions. We decided to use the hyperbolic tangent (symmetric) sigmoid

activation function for the nodes in the hidden layer.
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Table B1: The R? values for the diagnostic test used to determine how the number of nodes in the hidden layer of a
single layer neural network affected the performance of the time-averaged datasets of Scenario 2. The target variable
795 was biomass (mol kg?). A separate NNE was trained for each of the time-averaged datasets (daily, weekly,
monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 1 node was trained, a unique
NNE for the weekly averaged dataset with 1 node was trained, etc.). Each NNE contained 10 individual NNs and
kept the same training and stopping specifications outlined in the manuscript. The trained NNEs made predictions
on the testing dataset and the R? values were calculated based on the comparison between those predictions and the

800 actual values of the testing dataset.

R? Values
Daily Weekly Monthly
1 0.5533 0.5472 0.5624
2 0.7655 0.7705 0.7806
5 0.9283 0.9248 0.9363
10 0.9633 0.9628 0.9673
Number of
15 0.9676 0.9678 0.9713
Nodes
20 0.9693 0.9694 0.9727
25 0.9700 0.9702 0.9732
35 0.9709 0.9709 0.9737
50 0.9716 0.9715 0.9743
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Table B2: The R? values for the diagnostic test used to determine how the number of hidden layers and nodes within
individual neural networks affected the performance of the Scenario 2 time-averaged datasets. The target variable
was biomass (mol kg1). A separate NNE was trained for each of the time-averaged datasets (daily, weekly,
monthly) for each set of nodes (ex. A unique NNE for the daily-averaged dataset with 25 nodes was trained, a
unique NNE for the weekly averaged dataset with 25 nodes was trained, etc.). Each NNE contained 10 individual
neural networks and kept the same training and stopping specifications outlined in the manuscript. The trained
NNEs made predictions on the testing dataset and the R? values were calculated based on the comparison between
those predictions and the actual values of the testing dataset. The layers and number of nodes in the table are
specified as follows: # nodes in first layer - # nodes in second layer. If only one number is listed, this specifies the
number of nodes in the single hidden layer and that a second layer was not used.

R? Values
Daily Weekly Monthly
Layers and 25 0.9700 0.9702 0.9732
Number of 25-10 0.9722 0.9724 0.9750
Nodes 25-25 0.9726 0.9727 0.9756
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Table B3: The R? values for the diagnostic test used to assess how different activation functions in the hidden layer
affected the performance of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg'). A
separate NNE was trained for each of the time-averaged datasets (daily, weekly, monthly) for each activation

820 function (ex. A unique NNE for the daily-averaged dataset with the logarithmic sigmoid activation function was
trained, a unique NNE for the weekly averaged dataset with the logarithmic sigmoid activation function was trained,
etc.). Each NNE contained 10 individual neural networks and kept the same training and stopping specifications
outlined in the manuscript. The trained NNEs made predictions on the testing dataset and the R? values were

calculated based on the comparison between those predictions and the actual values of the testing dataset.

R? Values
Daily Weekly Monthly
Hyperbolic Tangent (Symmetric) Sigmoid 0.9681 0.9688 0.9722
Logarithmic Sigmoid 0.9679 0.9691 0.9722
. Inverse L01x10° 0.7921 0.2455
Activation (0.7236)*
Functions Positive Linear (ReLU) 0.9652 0.9671 0.9704
Linear 0.3104 0.3059 0.3125
Soft Max 0.9643 0.9649 0.9695
825 Radial Basis 0.9671 0.9688 0.9716

*The low R? value of the daily-averaged dataset for the Inverse activation function (1.01 x 10-°) was because the
first neural network of that NNE stopped training after only 1 epoch due to the momentum parameter (“mu” in
Matlab) reaching its maximum value. This significantly decreased the R? performance of that particular NNE.
Removing the first neural network from that NNE increased the R? value to 0.7236.
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Figure C1: Boxplots showing the variability in the predictor and target variables of Scenario 1. The dataset consisted

of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c)

irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50%"

percentile), the box edges are the 25" and 75" percentile values, and the whiskers are the minimum and maximum

values.

32



%107 x10°°
a = : =
2 i

— } ~25
25t | 2

S : 3 27

£ | £

a— ;— i

é 1 '5 1.5

5 3

5 s

o

805+ S

= 205/

o
o

%107

Q.
|

c 100 _‘—

B8
80 -
E 225
=S - S
< 60 I
g £z
%]
5 20} @ 15
© S
@ o
£ o 1
201
0.5
——1
[ 1
0 == 0 —

840 Figure C2: Boxplots showing the variability in the predictor and target variables of Scenario 3. The dataset consisted
of monthly averaged variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c)
irradiance. The target variable was phytoplankton (d) biomass. The red line corresponds to the median (50"
percentile), the box edges are the 251 and 75™ percentile values, and the whiskers are the minimum and maximum

values.
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Appendix D

This appendix provides details about the method used to visualize how the apparent relationships in Scenario 2 were

changing from the hourly timescale through to the monthly averaged timescale.

To capture the apparent relationships ranging from the hourly to monthly averaged timescales, we averaged the
hourly dataset over a range of timespans. Specifically, we averaged over the timespans of 1-hour (original hourly
dataset), 2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly) hours. The timescales had to be multiples of,
or divisible by, 24 hours. Hours that did not meet these criteria would mean that hours from one day would be
averaged with hours from another day. For example, using a 7-hour timespan for averaging would have meant that

the last three hours of Day 1 were being averaged with the first four hours of Day 2.

We trained one NNE for each of the averaged timescales. Each NNE contained ten individual NNs. The NNs kept

the same training criteria specified in the manuscript.

After training the NNEs, we performed a sensitivity analysis on each of them to visualize the predicted apparent
relationships. The percentile values for variables that were not varying were set at their 50 percentile (median)
values. We then plotted all the predicted curves on a single surface plot so we could view the relationships of all the
timescales at once. Additionally, because the greatest variability was lost in the first 24 hours, we also focused on

the apparent relationships for the timespans that were less than or equal to 24 hours.
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Code and Data Availability

The Matlab scripts for the construction of the figures and tables, the scripts for training and testing the MLR, RF,
and NNE algorithms, and the source files for each scenario are available in the Zenodo data repository
(https://doi.org/10.5281/zen0d0.3932387, Holder and Gnanadesikan, 2020).
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Tables

Table 1:; Details for each Scenario that include the predictor variables, the target variable, the equations used to

calculate biomass, the type of source file used to acquire the values for the predictors, and a short description with

important details about each scenario.

Scenario Predictors Target
. 1.
. Mzi\cronutr-lent (mol kg-l), Biomass
Micronutrient (mol kg™); (mol kg™)
Irradiance (W m?)
. -1y
, Menxcronutr-lent (mol kg-l), Biomass
Micronutrient (mol kg™); (mol kg™)
Irradiance (W m?)
. 1.
, Menxcronutrnlent (mol kg_l), Biomass
Micronutrient (mol kg™); (mol kg™)
Irradiance (W m?)

Equations Used

1,23

1,236

7,8
(Equations within BLING
used to determine the
biomass)

Source File Description

Scenario Description

1) Nutrient distributions (predictors) from BLING
were run through Eq. 1, 2, and 3 to calculate
the biomass (target)

Monthly Output from BLING  2) The true relationships were calculated by using

Daily Output from BLING

Monthly Output from BLING

43

the range of the values for the predictors and
calculating the biomass based on Eq. 1, 2, and 3

1) Hourly values for the predictors were
interpolated using the Daily Output of BLING
1a) The macronutrient and micronutrient
hourly values were calculated using a
standard interpolation between the daily
points.

1b) The irradiance hourly values were
calculated from Eq. 6 using the value of
the BLING daily input, hour of day, time of
year, and location.

2) Hourly values of the predictors were fed to Eq.
1, 2, and 3 to calculate hourly values for the
biomass (target)

3) Daily-averaged values were calculated by
averaging 24 hours for each location through
one year

4) Weekly-averaged values were calculated by
averaging 168 hour blocks of time for each
location through the year

5) Monthly-averaged values were calculated by
averaging the number of hours in each month
(days per month * 24) for each location through
the year

6) The true relationships were calculated by using
the range of the hourly values for the predictors
and calculating the biomass based on Eqg. 1, 2,
and 3

1) Nutrient distributions from the BLING Output
were used as the predictors; Biomass from the
BLING Output itself was used as the target



1094  Table 2: Performance metrics (Coefficient of Determination [R?] and Root Mean Squared Error [RMSE]) for the

1095 training and testing datasets of each Scenario and the respective ML method (MLR — Multiple Linear Regression;

1096 RF — Random Forest; NNE — Neural Network Ensemble). Scenario 2 had three time-averaged datasets (daily,

1097  weekly, and monthly). The target variable for all Scenarios was phytoplankton biomass.

Scenario 1
Daily
Scenario 2 | Weekly
Monthly
Scenario 3
1098
1099

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

MLR
RF
NNE

44

Training Data Testing Data
R-squared RMSE R-squared RMSE
0.4528 1.32x107 0.4471 1.33x10”
0.9989 6.46 x 10°° 0.9977 9.15 x10°
0.9999 1.70 x 10°° 0.9999 1.73x10°
0.3160 8.75x10°® 0.3104 8.82x10°®
0.9841 1.35x10® 0.9684 1.90 x 108
0.9686 1.88x10°® 0.9681 1.90 x 10°®
0.3054 8.35 x 1078 0.3059 8.31x10°%
0.9835 1.30 x 108 0.9687 1.78 x 108
0.9680 1.79 x 10°® 0.9688 1.76 x 10°®
0.3022 8.07x 10 0.3125 8.01x10°%
0.9859 1.16 x 108 0.9729 1.60 x 108
0.9722 1.61x10°® 0.9722 1.61x10°®
0.0672 2.55x108 0.0691 253x10°
0.9727 4.49x10° 0.9445 6.26 x 10
0.9417 6.38 x 10°° 0.9386 6.50 x 10°°



1100  Table 3: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient,
1101 micronutrient, and light) based on the 251, 501, and 75" percentiles. The percentiles correspond to the values at
1102  which the other predictors were set (ex. For the 25" Percentile Macronutrient value, the macronutrient varied across
1103 its min-max range while micronutrient and light were set at their respective 25" percentile values). The coefficients
1104  were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of

1105  the form in Eq. 4, where o, was the estimate for each half-saturation coefficient.

NNE

Macronutrient Micronutrient Light

True Value 1.00 x 107 2.00 x 1010 34.30

25th Percentile 6.27 x 10° 1.29 x 10°° 38.91

Scenario 1 50th Percentile 1.04 x 108 1.44 x 1010 38.26

75th Percentile 1.88 x 108 286 x 1010 40.09

25th Percentile 987 x 10° -9.85 x 1011 22.04

Daily 50th Percentile 3.22 x 108 1.88 x 1010 23.20

75th Percentile 4.89 x 10 3.51 x 10710 20.09

25th Percentile 1.08 x 10°8 -6.48 x 1010 26.18

Scenario 2 | Weekly | 50th Percentile 3.78x 10% 1.92 x 107° 25.50

75th Percentile 6.36 x 10° 1.11 x 10°° 18.49

25th Percentile 7.64 x 10° -6.90 x 1010 23.13

Monthly | 50th Percentile 3.26 x 10 1.63 x 1010 19.37

75th Percentile 1.38 x 10”7 1.04 x 10° 21.89

25th Percentile 3.50 x 10 6.84 x 10° 1.85

Scenario 3 50th Percentile 8.89 x 10°® 6.94 x 10°1° 5.80

1106 75th Percentile 1.64 x 10" 2.41x 10° 7.78
1107
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1108  Table 4: The true value and estimated half-saturation coefficients for each Scenario and predictor (macronutrient,
1109 micronutrient, and light) based on the 971", 98", and 99" percentiles. The percentiles correspond to the values at
1110  which the other predictors were set (ex. For the 97" Percentile Macronutrient value, the macronutrient varied across
1111 its min-max range while micronutrient and light were set at their respective 97™ percentile values). The coefficients

1112 were estimated using a non-linear regression function to fit a curve to the predictions in the sensitivity analyses of

1113

the form in Eq. 4, where o, was the estimate for each half-saturation coefficient.

NNE

Macronutrient Micronutrient Light

True Value 1.00 x 107 2.00 x 1010 34.30

97th Percentile 4.33x 108 4.73 x 10710 39.48

Scenario 1 98th Percentile 4.85x 10 4.68 x 107° 42.11

99th Percentile 6.06 x 10 4.49 x 10710 49.43

97th Percentile 228 x 107 4.10 x 10710 217.3

Daily 98th Percentile 2.99x 107 4.02 x 10710 254.0

99th Percentile 3.93x 107 3.90 x 10710 276.2

97th Percentile 2.590 x 107 7.23x 1010 68.86

Scenario 2 | Weekly | 98th Percentile 3.39x 107 6.33 x 10™1° 70.56

99th Percentile 4.28 x 107 519 x 1010 70.32

97th Percentile 3.56 x 107 9.04 x 1010 85.22

Monthly | 98th Percentile 3.96 x 107 9.16 x 1010 82.73

99th Percentile 517 x 107 9.55x 1010 82.61

97th Percentile 5.19 x 107 2.00 x 10° 54.00

Scenario 3 08th Percentile 7.02 x 107 1.89 x 10° 76.48

1114 99th Percentile 1.01 x 10°® 1.74 x 10°° 86.21
1115
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Figure 1: The contour plots in the top row show the yearly-averaged biomass of Scenario 1 for the true response (a)
and the associated predictions from MLR (b), RF (c), and NNE (d). The biomass was measured in units of mol kg,

The contour plots in the bottom row show the Logio Absolute Error between the true response and the predictions

from MLR (e), RF (f), and NNE (g).
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Figure 2: Sensitivity analysis for Scenario 1 showing the true and predicted relationships for each ML method. The
columns correspond to the predictors and the rows correspond with the percentile value at which the other predictors
were set (ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held
at their 25" percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq.
1-3. The dashed lines show the predicted apparent relationships for each method (MLR — red; RF — blue; NNE —
green). The RF and NNE predicted relationships are the average of the individual predictions for each method. The
colored regions around the RF and NNE dashed lines show one standard deviation in the predictions (ex. One
standard deviation in the 10 individual NN predictions of the NNE).
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Figure 3: Contour and interaction plots for Scenario 1. The contour plots show the density of observations for each

set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate

many observations. The interaction plots (d-0) show the biomass values for different combinations of the predictors

on each x and y axis. The predictor that was not varying was set at its 50" percentile (median) value (ex. Subplot d

allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held

fixed at its 50™ percentile value). The top three interaction plots (d-f) show the true interactions calculated from Eq.
1-3. The remaining interaction plots show the predicted interactions for MLR (g-i), RF (j-1), and NNE (m-0). Note
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1142  that the x and y axes for subplot g were switched so that the interaction could be visualized. The RF and NNE

1143 predicted relationships are the average of the individual predictions for each method.

1144
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Figure 4: Sensitivity analysis for Scenario 2 showing the true and predicted relationships for each ML method. The
columns correspond to the predictors and the rows correspond with the percentile value at which the other predictors
were set (ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held
at their 25" percentile values, respectively). The black line shows the true intrinsic relationship calculated from Eq.
1-3. The dashed lines show the predicted monthly apparent relationships for each method (MLR — red; RF — blue;
NNE — green). The RF and NNE predicted relationships are the average of the individual predictions for each
method. The colored regions around the RF and NNE dashed lines show one standard deviation in the predictions
(ex. One standard deviation in the 10 individual NN predictions of the NNE).
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Figure 5: Sensitivity analysis for Scenario 2 showing the true and predicted NNE relationships for the different time-

averaged datasets. The columns correspond to the predictors and the rows correspond with the percentile value at

which the other predictors were set (ex. Subplot a varies the macronutrient across its min-max range, while the

micronutrient and light are held at their 25™ percentile values, respectively). The black line shows the true intrinsic

relationship calculated from Eq. 1-3. The dashed lines show the predicted apparent relationships for each time-

averaged dataset (Daily — red; Weekly — blue; Monthly — green). The conditions for the sensitivity analysis were

based on the values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-

averaged datasets so that a direct comparison could be made between the predictions of the respective NNEs. The

predicted relationships are the average of the individual predictions for each time-averaged NNE, respectively. The

colored regions around the NNE dashed lines show one standard deviation in the predictions (ex. One standard

deviation in the 10 individual NN predictions of each NNE).
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1168

1169  Figure 6: Boxplots showing the variability in the predictor and target variables of Scenario 2 for the various time-
1170  averaged datasets. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target
1171  variable was phytoplankton (d) biomass. The red line corresponds to the median (50 percentile), the box edges are

1172 the 25" and 75" percentile values, and the whiskers are the minimum and maximum values.
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1175  Figure 7: Surface plots showing the apparent relationships found across different averaged timescales for Scenario 2.
1176  The timescales range from 1 hour (original hourly set) up to 720 hours (monthly). The three plots on the right (b, d,
1177  f) show the relationships across the entire range of timescales (1 through 720 hours). The three plots on the left (a, c,
1178  e) show the timescales at and below 24 hours. The top plots show the relationships for the macronutrient (a, b), the
1179  middle plots show the relationships for the micronutrient (c, d), and the bottom plots show the relationships for

1180 irradiance (e, f). Variables not varying across their range were set at their 50" percentile (median) value. The

54



1181 conditions of the sensitivity analyses were based on the conditions of the monthly averaged (720-hour) dataset. It
1182  was necessary to give the same conditions to the all the time-averaged datasets so that a direct comparison could be
1183 made between the predictions of the respective NNEs. The predicted relationships are the average of the individual

1184  predictions for each time-averaged NNE.

1185
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Figure 8: Interaction plots for Scenario 2. The interaction plots show the biomass values for different combinations
of the predictors on each x and y axis. The predictor that was not varying was set at its 50th percentile (median)
value (ex. Subplot d allows the micro- and macronutrient to vary across their respective min-max ranges, while the
irradiance is held fixed at its 50th percentile value). The top three interaction plots (a-c) show the true interactions
calculated from Eq. 1-3. The remaining interaction plots show the predicted interactions for the time-averaged
datasets: daily (d-f), weekly (g-i), and monthly (j-1). The conditions for the sensitivity analysis were based on the
values from the monthly averaged dataset. It was necessary to give the same conditions to all the time-averaged
datasets so that a direct comparison could be made between the predictions of the respective NNEs. The predicted

relationships are the average of the individual predictions for each time-averaged NNE.
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Figure 9: Contour plots of Scenario 2 for the time-averaged datasets: daily (a-c), weekly (d-f), and monthly (g-i).

The contour plots show the density of observations for each set of predictors where blue signifies very few

observations and colors moving up the spectrum to red indicate many observations.
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Figure 10: Scatter plots from the BLING model (a: surface biomass vs. temperature-normalized growth rate; b:

monthly-averaged nutrients vs. mean nutrient limitation; c: monthly-averaged Irr, Irr vs. mean light limitation).
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Figure 11: Sensitivity analysis for Scenario 3 showing the predicted relationships for the NNE. The columns
correspond to the predictors and the rows correspond with the percentile value at which the other predictors were set
(ex. Subplot a varies the macronutrient across its min-max range, while the micronutrient and light are held at their
25" percentile values, respectively). The green dashed line shows the apparent relationships predicted by the NNE.
The predicted relationships are the average of the individual predictions for each NN. The colored regions around
the NNE dashed lines show one standard deviation in the predictions (ex. One standard deviation in the 10
individual NN predictions of the NNE). The contour plot behind the predicted relationships show the observations
for each predictor against the biomass. Lighter colors signify a higher density of observations, while darker regions

correspond to fewer observations.
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Figure 12: Contour and interaction plots for Scenario 3. The contour plots show the density of observations for each
set of predictors (a-c) where blue signifies very few observations and colors moving up the spectrum to red indicate
many observations. The interaction plots (d-f) show the biomass values for different combinations of the predictors
on each x and y axis. The predictor that was not varying was set at its 50" percentile (median) value (ex. Subplot d
allows the micro- and macronutrient to vary across their respective min-max ranges, while the irradiance is held
fixed at its 50" percentile value). The interaction plots show the predicted interactions based on the NNE. The
predicted relationships are the average of the individual predictions for each NN.
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