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Supplements 

 

Figure S 1: Development of (a) gross primary production and (b) net primary production of the total stand and three succession 

types for Terra Firma forests in French Guiana. The disturbance intensity of 1.29% indicates natural forest growth in the baseline 15 
scenario. (GPP: gross primary production, NPP: net primary production, ODM: organic dry matter). 
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Figure S 2: Goodness of the multivariate linear regression model fit (eq. 6). (a) Frequency distributions of simulated versus fitted 

biomass mortality rates (mAGB). The dashed line indicates the arithmetic mean of both distributions. (b) Test for normally distributed 20 
residuals of mAGB around the expectation value (Ε(mAGB)) indicated by the dashed line. (c) Test for homoscedasticity of the residuals 

over fitted mAGB. 
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Figure S 3: Input maps for deriving biomass mortality rates for Terra Firma forests in French Guiana at ~ 2 km resolution using 25 
linear regression modelling (eq. 6). (a) ‘Simard’ map of forest height (Simard et al., 2011) and (b) map of leaf area index derived 

using data from the MCD15A2H Version 6 Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4 in a pixel size of 500 

m and averaged then LAI values between 2005-05-20 and 2005-06-23 (Myneni et al., 2015; cf. chap. 2.4). (Projection: WGS-84, EPSG: 

4326). 
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Figure S 4: (left) Map of biomass residence time distribution and (right) its histogram in Terra Firma forest of French Guiana at ~2 

km resolution. To estimate biomass residence time, remote sensing was combined with a forest model that simulated the forest 

succession. The black square indicates the location of the Paracou site. Leaf area index and forest height were used as proxy variables 35 
for the underlying multivariate linear regression. (Projection: WGS-84, EPSG: 4326, τ: biomass residence time (cf. eq. 4)). 
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Figure S 5: Heat map of biomass mortality rates according to the underlying multivariate regression model (cf. eq. 6) on the basis 

of its proxy variables leaf area index and forest height. Black dots represent the training data simulated using the forest model 40 
FORMIND. (LAI: leaf area index). 

 

Table S 1: Software used. 

To process the simulation data of FORMIND v3.2 as well as the forest height map and LAI map (Myneni et al., 2015; Simard 

et al., 2011), version 3.6.2 of the R statistical software (R Core Team, 2019) with the packages 'tidyverse' v1.2.1 (Wickham et 45 

al., 2019), ‘viridis’ (Garnier, 2018), ‘broom’ (Robinson and Hayes, 2020), ‘ggpubr’ (Kassambara, 2020), ‘data.table’ (Dowle 

and Srinivasan, 2019), ‘gdalUtils’ (Greenberg and Mattiuzzi, 2020), ‘rgeos’ (Bivand and Rundel, 2019), and ‘raster’ (Hijmans, 

2020) were used. The FORMIND forest model can be downloaded for free at www.formind.org. 
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