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Abstract. Disturbances can have strong impacts on the dynamics and structure of tropical forests. They often lead to increased 

tree mortality and affect their behaviour as carbon sinks. In the future, the intensity of disturbances, such as extreme weather 

events, fires, floods, and biotic agents, will probably even increase, with more serious consequences for tropical forests than 

we have already observed. However, impacts of altering disturbances on rates of forest biomass loss through tree mortality 

(hereinafter: biomass mortality) have been little described yet. This complicates progress in quantifying the effects of climate 15 

change on forests globally.  

This study aims to analyse the consequences of elevated tree mortality on forest dynamics and to provide a methodology that 

can reduce uncertainties in estimating biomass mortality rates at local and country level. We achieved this by linking benefits 

of individual-based forest modelling, statistical linear regression, and remote sensing. We applied an individual-based forest 

model to investigate the impact of varying disturbance regimes on the succession dynamic of a humid Terra Firma forest at 20 

the Paracou study site in French Guiana. By simulating increased tree mortality rates, we were able to investigate their influence 

on several forest attributes, namely biomass, leaf area index, forest height, gross primary production, net primary production, 

and biomass mortality. Based on simulations of leaf area index and forest height, we developed a linear multivariate regression 

model to project biomass mortality.  

Our findings demonstrate that severe disturbances altered the succession pattern of the forests in favour of fast-growing species, 25 

which changed gross primary production, but net primary production remained stable. We also observed a strong influence on 

biomass mortality rates as well as observed complex relationships between these rates and single forest attributes (leaf area 

index, forest height, and biomass). By combining leaf area index and forest height we obtained relationships that allow an 

estimation of the biomass mortality. Based on these findings, we mapped the biomass mortality for whole French Guiana. We 

found a nation-wide biomass mortality of 3 % per year (standard deviation = 1.4 % per year). 30 
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The approach we describe here, provides a novel methodology for quantifying the spatio-temporal distribution of biomass loss, 

which has recently been identified as particularly critical for monitoring mortality hotspots. Quantifying biomass mortality 

rates may help reducing uncertainties in the terrestrial component of the global carbon cycle. 

Keywords. FORMIND forest model, Paracou, French Guiana, basic mortality rate, biomass mortality map, biomass 

residence time, carbon turnover time, tree mortality monitoring 35 

1. Introduction 

Tropical forests represent an important pool in the global carbon cycle as they store about 55 % of the terrestrial carbon in 

their living biomass (471 ± 93 Pg C). They assimilate about 2.8 ± 0.7 Pg C per year (Pan et al., 2011). This carbon sink 

behaviour of tropical forests has considerably reduced the growth rate of atmospheric carbon dioxide (Friedlingstein et al., 

2019; Le Quéré et al., 2016). However, the assimilation capacity of carbon is affected by forest disturbances, which can cause 40 

rapid, extensive carbon loss (Pugh et al., 2019; Seidl et al., 2014). Increased tree mortality due to disturbances has been related 

to a reduction in the carbon sink of tropical forests (Brienen et al., 2015; Hubau et al., 2020). A number of recent studies 

discuss different climate-controlled mortality drivers, such as temperature (Clark et al., 2010), vapour pressure deficit 

(Trenberth et al., 2014), drought (Phillips et al., 2010), and wind throw (Marra et al., 2014). In addition, mechanical 

disturbances may also lead to tree mortality, for instance, insect calamities (Coley and Kursar, 2014), fires (Brando et al., 2014; 45 

Slik et al., 2010), and lianas (Ingwell et al., 2010; Wright et al., 2015). An expected higher frequency and intensity of the 

mortality drivers, may result in an increase in tree mortality and associated physiological mechanisms (McDowell et al., 2018). 

This is a major risk to climate mitigation efforts (e.g. REDD+), because reductions in carbon assimilation rates of tropical 

forests could counteract attempts to compensate for climate change by protecting tropical forest ecosystems (Gumpenberger 

et al., 2010; Le Page et al., 2013).  50 

Mortality is a complex process, because disturbances leading to tree mortality can be diverse. Forest disturbances may be 

abrupt or continuous and have abiotic or biotic, allogenic or autogenic, as well as extrinsic or intrinsic causes (Franklin et al., 

1987; McDowell et al., 2018). Furthermore, drivers of tree mortality often occur in combination, so the primary factors of 

death are not obvious (Franklin et al., 1987; McDowell et al., 2018). Tree mortality leads to temporal changes in stand structure, 

tree species composition, and releases of resources, in particular biomass (Franklin et al., 1987). Consequently, tree death 55 

affects important forest demographic processes, e.g. tree growth and recruitment, which are influenced on the one hand by 

species-specific competition strategies (Snell et al., 2014) and on the other hand by environmental and competitive factors 

(e.g. light availability) (Kuptz et al., 2010; Poorter, 1999; Uriarte et al., 2004). The influence on forest demographic processes 

is determined by disturbance intensity, which can range from temporary loss of vitality to mortality (Kindig and Stoddart, 

2003) of individual trees, forest stands, and entire landscapes. Finally, disturbances are heterogeneously distributed, so that 60 

tree mortality can be scattered or clustered (Franklin et al., 1987). Often, it is difficult to quantify tree mortality and to assess 

the consequences of alterations on forest dynamics and structure.  

https://doi.org/10.5194/bg-2020-264
Preprint. Discussion started: 13 August 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

An approach to analyse impacts of disturbances is offered by individual-based forest modelling (Botkin et al., 1972; Bugmann, 

2001; Bugmann et al., 2019; Shugart, 2002; Shugart et al., 2015). They are parameterised with forest inventory data and allow 

investigations of forest growth dynamics over longer periods. By simulating tree growth, regeneration, competition, and 65 

mortality for each tree, these models can contribute in estimating biomass gain and loss (Hiltner et al., 2018). By using an 

individual- and process-based approach, the spatial heterogeneity within forest stands can be well represented in such models 

(Fischer et al., 2016; Hiltner et al., 2018; Rasche et al., 2011; Shugart et al., 2018). To estimate carbon budgets of forest stands 

and entire landscapes, a combination of forest models and remote sensing is necessary (Rödig et al., 2017; Shugart et al., 

2015). This combination may provide information on the spatial distribution of biomass loss due to tree mortality (hereafter: 70 

biomass mortality). 

The aim of this study is to investigate the impact of increased tree mortality on forest dynamics and to provide a framework 

for estimating biomass mortality rates on local and country scales. Here, we address the following research questions in detail: 

1. What are the consequences of increased tree mortality on the dynamics of several forest attributes (i.e., biomass, 

forest height, GPP, NPP, and LAI, biomass mortality rates) in tropical forests? 75 

2. How can biomass mortality rates for disturbed and undisturbed tropical forests be estimated using remote sensing 

products? 

We applied the forest model FORMIND (Fischer et al., 2016; Hiltner et al., 2018; Köhler and Huth, 2004) and analysed the 

succession patterns of several forest attributes, including aboveground biomass (hereafter: biomass), forest height, gross 

primary production (GPP), net primary production (NPP), leaf area index (LAI), and biomass mortality (mAGB) under different 80 

disturbance levels at the Paracou study site in French Guiana. The studied forests are characteristic for the country (Guitet et 

al., 2018), whose Terra Firma rainforests are generally dense and species rich, with 150–200 tree species per hectare (Gourlet-

Fleury et al., 2004; Grau et al., 2017; Piponiot et al., 2016a). We simulated long-term forest development in a set of scenarios 

with different disturbance intensities and compared the model outputs with a reference scenario reflecting natural forest 

growth. The reference scenario is based on a previous study, in which tree size distribution, functional species composition 85 

and biomass were compared with records from forest inventories (35 a, 65 ha) (Hiltner et al., 2018). We propose that biomass 

mortality is a function of competition for light, disturbance intensity, and the successional stage of the forest. For up-scaling 

rates of biomass mortality from stand to landscape level, we used simulated forest height and LAI as proxies for successional 

stage, disturbance intensity, and light availability. Therefore, remote sensing-derived maps of tree height (Simard et al., 2011) 

and LAI (Myneni et al., 2015) were linked with the individual-based forest model. 90 
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2. Materials and Methods 

 

Figure 1: Five work steps for deriving regional biomass mortality rates by linking a forest model and remote sensing. 1. Use a forest 

model to reproduce the natural succession dynamics locally as a reference. 2. Run the model to simulate the forest attributes leaf 

area index, forest height, and biomass mortality rate in a set of different disturbance scenarios. 3. Fit a regression model to the 95 
results of the simulation runs. 4. Apply the regression model to each pixel of the regional maps containing the values of the two forest 

attributes (here: leaf area index and forest height). 5. Derive a biomass mortality map. (Biomass mortality: rate of biomass loss due 

to tree mortality, LAI: leaf area index, height: forest height) 

2.1 Study region 

The study site Paracou (location: -52.923793°, 5.274018°) is located in French Guiana, 95 % of which is covered by humid 100 

lowland Terra Firma forests (Hammond, 2005; Stach et al., 2009). These forests are characteristic for the Guiana Shield (Grau 

et al., 2017). They are generally species-rich with an average of 150–200 tree species per hectare (Gourlet-Fleury et al., 2004) 

and are dense in biomass stock (Rödig et al., 2017; Saatchi et al., 2011). We assume that the Paracou forest stand analysed and 

simulated by Hiltner et al. (2018) is representative for the whole region of Terra Firma forests in French Guiana. 

2.2 Forest model FORMIND 105 

2.2.1 Model description 

Our assessments were based on the Paracou version (Hiltner et al., 2018) of the forest model FORMIND v3.2 (Fischer et al., 

2016) to analyse the forest dynamics under impacts of different levels of disturbance. FORMIND is an individual-based forest 

model that describes the vertical and horizontal forest structure and forest dynamics in squared patches of 400 m2. The entire 

simulation area (here: 16 ha) consists of those patches.  110 

Based on forest inventory data, every tree with a stem diameter at breast height (DBH) ≥ 0.1 m was simulated considering the 

following main processes at annual time steps: tree growth, regeneration, mortality, and competition for light and space. The 

biomass gain of a tree resulted from the difference between photosynthetic production and respiratory losses (Fischer et al., 

2016; Hiltner et al., 2018). In the model, tree mortality is a key driver of forest dynamics. Tree mortality increased, if the space 

for canopy expansion was limited depending on a tree’s position within the forest stand (self-thinning by crowding), if tree 115 

growth was reduced (growth-dependent), and surrounding trees could die after large trees had fallen (gap formation). Finally, 

each tree was subject to a basic mortality rate, which is stochastic. Here, we modified the basic mortality rate to assess different 
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disturbance intensities. Possible factors altering mortality rates include environmental drivers, such as extreme climate events, 

forest fires, wind-throw, and disease. Disturbance intensity was defined as a basic mortality rate of individual trees at stand 

level with an arbitrarily distributed spatial disturbance pattern.  120 

According to Hiltner et al. (2018), all tree species at Paracou were classified into plant function types (PFT) according to 

species-specific traits, i.e. maximum increment rates of DBH and maximum tree height. We simulated PFTs grouped into three 

successional types according to their light demand: light-requiring pioneer species, species with intermediate light 

requirements, and shade-tolerant climax species (Hiltner et al., 2018). A detailed model description can be found in Fischer et 

al. (2016) and Hiltner et al. (2018) and online at www.formind.org. 125 

2.2.2 Simulation setting 

In order to investigate the effects of different disturbance levels on the dynamics of various forest attributes, we developed 

nine simulation scenarios with varying basic mortality (Fig. 1): One baseline scenario representing the natural forest 

development at Paracou with a PFT-specific (p) basic mortality rate (mp), as well as eight scenarios differing in mp. To obtain 

mp, the baseline's basic mortality rate per PFT (mp.bl) was multiplied by a factor (f) for each scenario (sc) so that: 130 

𝑚𝑝,𝑠𝑐 =  𝑓 ∙ 𝑚𝑝,𝑏𝑙 , with 𝑓 ∈ {
1

5
,

1

4
,

1

3
,

1

2
, 2, 3, 4, 5} (1). 

This resulted in different forest disturbance intensities on stand level per simulated scenario (Tab. 1). The scenario with f = 1, 

represented the baseline scenario. From this scenario, simulation results of biomass and tree size distribution at equilibrium 

were thoroughly compared with forest inventory data (over 35 years and 65 ha) by Hiltner et al. (2018).  

All simulations used an annual time step that started in year 0 on bare ground and ended after 300 years. In the baseline scenario 135 

a forest stand reached its equilibrium after 210 years.  

From the model output, we analysed the development of multiple forest attributes such as aboveground biomass (AGB), LAI, 

and forest height (mean height of the tallest three trees per 40 m x 40 m; Rödig et al., 2017; Simard et al., 2011), gross primary 

production (GPP), net primary production (NPP), and rate of biomass loss due to tree mortality (mAGB) which we defined as 

proportion of dead biomass (AGBdead) to total AGB (AGBtotal): 140 

𝑚𝐴𝐺𝐵 =  𝐴𝐺𝐵𝑑𝑒𝑎𝑑 ∙ 𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙
−1  (2). 

In addition, we have computed the time period until each forest attribute has reached the stable state (hereafter: equilibrium 

time) as well as the mean biomass residence times (𝜏), with 𝜏 averaged over all successional stages (simulated years 0–300). 

According to Carvalhais et al. (2014), 𝜏 can be defined as the ratio of biomass stock and outflux of biomass. However, biomass 

outflux is not yet observable over large spatial scales (Thurner et al., 2016). Therefore, it was defined that biomass outflux 145 

equals biomass influx for forests in equilibrium (Carvalhais et al., 2014). Transferred to our study, the stock corresponds to 
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the total biomass (AGBtotal), influx to GPP, and outflux to dead biomass (AGBdead). Therefore, the following holds true for 

forests in equilibrium:  

𝜏 = 𝑠𝑡𝑜𝑐𝑘 ∙ 𝑓𝑙𝑢𝑥−1 =  𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝐺𝑃𝑃−1 =  𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝐴𝐺𝐵𝑑𝑒𝑎𝑑
−1   (3). 

To compare the approach of Carvalhais et al. (2014) with this study, 𝜏 can be calculated from equations 2 and 3 as the reciprocal 150 

of the biomass mortality rate: 

𝜏 = 1 ∙ 𝑚𝐴𝐺𝐵
−1   for mAGB > 0 (4). 

Using equation 4, we calculated 𝜏 by taking forest succession into account. 

Table 1: Average forest disturbance intensities per simulation scenario plus specification (see eq. 1). 

Factor f Average disturbance intensity 𝑚𝑝,𝑠𝑐 (a-1) Specification 

1  0.0129 Baseline 

1/5 0.00258 Low impact 

1/4 0.003225  

1/3 0.0042957  

1/2 0.00645  

2 0.0258  

3 0.0387  

4 0.0516  

5 0.0645 High impact 

2.3 Estimation of biomass mortality from remote sensing data 155 

To estimate the rate of biomass mortality, we decided to work with common forest attributes, which are available as remote 

sensing products. All training data of the forest attributes LAI and forest height were obtained as model outputs of the 

simulation experiments with the FORMIND forest model for the Paracou site (Fig. 1; cf. chap. 2.2). We assume that the rate 

of biomass mortality depends on the successional stage of the forests and disturbance level. We tested different statistical 

models for combinations of the proxy variables LAI and forest height. The best guess is a multivariate linear model, which 160 

was used to describe variations in mAGB as a function of the two proxy variables.  

We estimated mAGB [a-1] as follows: 

𝑚𝐴𝐺𝐵 = 𝛽𝐻 ∙ 𝐻 + 𝛽𝐿 ∙ 𝐿 + 𝜀 (5),  

where H is the forest height [m], L the LAI, 𝜀 the error term, and 𝛽𝑖 are the regression coefficients of the ith forest attribute. 

The intercept was set to 0, as the biomass mortality rate is expected to be 0 when both LAI and forest height equal 0. 165 
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2.4 Establishment of the biomass mortality map 

2.4.1 Input maps 

To estimate forest height, we used a global map in the geographical projection WGS-84 with approximately 1 km pixel size 

(Simard et al., 2011;  Fig. S3.a). To create a LAI map, we used data from the MCD15A2H Version 6 Moderate Resolution 

Imaging Spectroradiometer (MODIS) Level 4 with a pixel size of 500 m, and averaged the LAI values between 2005-05-20 170 

and 2005-06-23 (Myneni et al., 2015). We harmonised and stacked the two input maps by first projecting the LAI map onto 

the coordinate reference system of the forest height map using the Geospatial Data Abstraction Library for French Guiana 

(www.gdal.org). The resampling was conducted with the bilinear method. The spatial aggregation of the LAI map (Fig. S3.b) 

was performed by calculating the mean value of pixels whose centre lay within a 1-km cell of the forest height map.  

2.4.2 Output map 175 

The biomass mortality rates of French Guiana were estimated for each pixel by applying the multivariate linear regression 

model (eq. 5 and 6) to the two input maps (Fig. 1). The biomass mortality values were then averaged over a pixel size of 2 

km2. Our regression model estimated negative biomass mortality rates for a small portion of pixels, which were excluded from 

the biomass mortality map. This was mainly the case for pixels without forest cover according to a land use map published by 

Stach et al. (2009). Please refer to supplements Tab. S1 for the computer software used in this study. 180 

3 Results 

3.1 Influence of increased tree mortality on the forest succession dynamics 

In order to analyse the influence of varying disturbance intensities, we simulated the succession dynamics, which was affected 

by competition between individual trees (succession types; Fig. 2). Here, we show that four successional phases can be 

differentiated based on the development of the total stand biomass (Fig. 2). After 40 years of forest succession, the stand 185 

biomass peaked at 500 tODM ha-1. The peak in stand biomass was caused by a high GPP of the pioneer species (GPPpioneer = 83 

tODM ha-1; Fig. S1.a). This defined the first phase for the years 0 to 40. After the ignition stage, the stand biomass fell slightly 

until year 100 (Fig. 2) because of the rapidly declining pioneer biomass (stem exclusion phase), while the biomass of other 

species increased. After 100 years, the stand biomass stabilised around 420 tODM ha-1a-1 (average over years 100–300). The 

steady state of the functional species composition was reached after 210 years (Fig. 2). In the last phase (gap dynamics), climax 190 

species and species with intermediate light requirements fixed five times more carbon in biomass than pioneer species (GPP; 

Fig. S1.a).  
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Figure 2: The baseline scenario’s aboveground biomass per successional type as fraction of total biomass for Paracou’s Terra Firma 

forest in French Guiana. Dashed lines separate different phases of forest succession. (AGB: aboveground biomass, ODM: organic 195 
dry matter). 

 

Our simulation results reveal a sensitive response of biomass mortality to increased disturbance intensities (Fig. 3.a). At higher 

disturbance intensity, a higher biomass mortality with greater variance emerged. At the highest disturbance level, a peak in 

biomass mortality rate occurred around 0.12 a-1 during the early phase of forest succession, before levelling off at a value of 200 

0.08 a-1 in the stable state (Fig. 3.a). Due to the higher biomass mortality, the light climate in the forest stand changed (Fig. 

3.c). The pioneer species were able to establish quickly in gaps. Hence, the GPP of the pioneer species was highest among all 

species groups (Fig. S1.a), which also affected the productivity of the total stand (Fig. 3.d – 3.e). Please note that despite 

distinctly higher GPP in the case of higher rates of biomass mortality, NPP did not change for the different scenarios (Fig. 3.f). 

Thus, disturbance intensity had a strong influence on species composition (e.g. higher pioneer GPP; supplements Fig. S1.a), 205 

which led to lower values of LAI, biomass and mean forest height at the ecosystem level compared to the reference (Fig. 3.a 

– 3.c). In addition, from structural changes arose modified forest stand dynamics, with unique succession patterns depending 

on the intensity of disturbance. 
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Figure 3: Development of (a) biomass mortality rate, (b) aboveground biomass, (c) leaf area index LAI, (d) forest height, (e) gross 210 
primary production GPP, and (f) net primary production NPP of Terra Firma forest stands for different disturbance intensities. 

Grey lines indicate the entire set of disturbance scenarios under varying basic mortality rates. (Biomass mortality: rate of biomass 

loss due to tree mortality, ODM: organic dry matter). 

Furthermore, we analysed how disturbance intensity affects the time needed to reach the equilibrium (Fig. 4.b). GPP responded 

particularly sensitive and inversely proportional, showing a strong decrease with rising disturbance levels. In contrast, other 215 

forest attributes, such as biomass and NPP, had altogether shorter equilibrium times than GPP, increasing directly proportional 

to the disturbance intensity.  

Finally, we evaluated the effect of increasing tree mortality rates on the residence time of biomass (eq. 4) in forest stands taking 

forest succession into account (Fig. 4.c). The biomass residence time τ was halved at a five-time higher disturbance intensity 

compared to the baseline ( 𝜏(𝑓=1) = 34 a, 𝑠𝑑(𝑓=1) = 13 a; 𝜏(𝑓=5) = 14 a, 𝑠𝑑(𝑓=5) = 4 a ). Important forest properties are 220 

profoundly affected, if the functional species-composition, tree size distribution and dynamics of forests are changed.  
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Figure 4: Influence of disturbance intensity on Paracou’s Terra Firma forests on (a) the mature forests’ mean gross primary 

production and mean net primary production (averages over years 250 – 300), (b) the time until forest attributes reached the 225 
equilibrium and (c) the mean biomass residence times as reciprocal value of biomass mortality rates (cf. eq. 4; averages over years 

0 – 300). Dashed lines indicate the baseline scenario. (GPP: gross primary production, NPP: net primary production, H: forest 

height, LAI: leaf area index, AGB: aboveground biomass, ODM: organic dry matter). 

3.2 Estimation of mortality rates from forest attributes  

In a further analysis, we assessed how biomass mortality can be derived from different proxy variables, such as mean forest 230 

height, biomass, and leaf area index. We tested the relationships between several single forest attributes and biomass mortality, 

but did not find a simple relationship (Fig. 5). The relationships are strongly influenced by forest succession. Biomass mortality 

rates showed a widely scattered range of values and thus unclear relationships to all forest attributes during the initiation stage 

(Fig. 5). For instance, the LAI of less disturbed old-growth forests (i.e. LAI = 4 during gap dynamics stage) indicated similar 

biomass mortality rates as for forests in an early stage of succession.  235 

 

Figure 5: Simulated biomass mortality as a function of (a) forest height, (b) leaf area index, and (c) aboveground biomass of Terra 

Firma forests in Paracou. Colours indicate the succession phases (cf. Fig. 2). (biomass: aboveground biomass, LAI: leaf area index, 

biomass mortality: rate of biomass loss due to tree mortality). 

 240 

When combined in a multivariate linear regression model, however, the training data of LAI and forest height explained the 

biomass mortality rates of forests quite well (R2 = 0. 9484, RMSE = 0. 0106, p-value < 0.001; Fig. 6; Tab. 2, Fig. S2.a). The 
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obtained residuals were normally distributed around the expected value (Ε (mAGB) = 0.0; Fig. S2.b) and, depending on the fitted 

biomass mortality rates, they were homoscedastic with almost no trend (Fig. S2.c). The LAI influences negatively (𝛽2 = -

0.0341) and thus has the highest weight, followed by positively correlated forest height (𝛽1 = 0.0045). The obtained linear 245 

regression model for differently disturbed forests is given as follows: 

𝑚𝐴𝐺𝐵 = 0.0045 ∙ 𝐻 − 0.0341 ∙ 𝐿 + 𝜀  (6). 

GPP and NPP were not included in the multivariate linear model, because they did not improve the estimation of the biomass 

mortality rate.  

 250 

Figure 6:  Biomass mortality (rates of biomass loss due to tree mortality) estimated from forest height and LAI (equation 6) using 

the FORMIND model. The blue line indicates the mean deviation of the estimated biomass mortality rates from the simulated ones. 

The grey dashed line shows the 1:1-line. For more results of the multivariate linear regression model fit see Tab. 2. 

Table 2: Results of multivariate linear regression model fit of mean forest height and LAI. The standard error is in parenthesis 

and p-value of *** < 0.001 (H: mean forest height, L: LAI, β: coefficients). 255 

Coefficients of 

explanatory variables 
Estimated coefficients 

𝛽𝐻 0.0045*** (3.8e-05)   
𝛽𝐿 -0.034076 *** (3.8e-04)   
Data base:  

adjusted R² 0.948402 

RMSE 0.010609 
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3.3 Spatial distribution of biomass mortality 

By combining simulation data with the maps of LAI and forest height from remote sensing (Myneni et al., 2015; Simard et al., 

2011), a biomass mortality map with a resolution of roughly 2 km2 was derived for French Guiana (Fig. 7). Based on this map, 

we obtained a mean biomass mortality rate of 0.030 a-1, (standard deviation of 0.014 a-1); this corresponds to an average 260 

biomass residence time τ of 41 years (sdτ = 19 a; cf. Fig. S4). The values of biomass mortality vary between regions with 

higher rates in the southern part and lower rates in the northern part of the country. The highest biomass mortality rates can be 

observed in the centre and at the south-western and eastern country borders (mAGB > 0.07). Such high values result from a 

combination of tall forest height together with low LAI (Fig. S5). In the region surrounding the Paracou study site, the biomass 

mortality rate has a value of 0.020 a-1, which corresponds well to the simulated mean biomass mortality under the baseline 265 

scenario (mAGB,bl = 0.031; sdbl = 0.007). 

   

Figure 7: (left) Map of biomass mortality distribution and (right) its histogram for forests of French Guiana at ~2 km resolution. To 

estimate these rates, remote sensing was combined with a forest model that simulated the forest succession. The black square 

indicates the location of the Paracou site. Leaf area index and forest height were used as proxy variables for the underlying 270 
multivariate linear regression. 
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4 Discussion 

4.1 Mechanism of tropical forests in dealing with increasing intensity of tree mortality 

In this study, we analysed succession dynamics in tropical forests in relation to tree mortality. It was possible to demonstrate 

that most of the analysed forest attributes (biomass, forest height, LAI, GPP, biomass mortality) had a specific response during 275 

succession. Moreover, we were able to show that biomass mortality rates are strongly affected by the succession dynamics, as 

well as by the disturbance intensity. For each disturbance scenario, the period until the stand’s equilibrium was reached differed 

in duration. Also, the mean residence time of biomass, i.e., the reciprocal value of biomass mortality (eq. 4), varied 

considerably. The reasons for the unique succession patterns of each forest attribute are multiple. Succession dynamics are 

influenced by assimilation rates (e.g. photosynthesis rate, light requirement) and physiognomic characteristics (e.g. maximum 280 

stem diameter increment rates, maximum height, and wood density), which are specific to each species group (Hiltner et al., 

2018). Functional traits are decisive in order to simulate the succession dynamics in forests, because they determine the 

competitiveness of species groups (Fischer, et al., 2018; Rüger et al., 2019).  

The relationship between succession and tree mortality was investigated in empirical studies to estimate the mortality in forests. 

Aubry-Kientz et al. (2013) introduced a method, which estimated the tree mortality probability of Terra Firma forests at 285 

Paracou. Similar to our results, they found that the tree mortality probability depends on successional stages of forests as well 

as functional traits of species, such as specific leaf area, wood density, stem diameter increment, and potential height.  

Interestingly, we observed nearly similar NPP values for different levels of tree mortality for forests in equilibrium. Erb et al. 

(2016) argued that NPP of vegetation is more or less independent from disturbance intensity, which is confirmed by our results. 

The observed stability of NPP under different disturbance regimes can be explained by shifts within the functional species 290 

composition of the forest stands. The pioneer species, which typically have lower wood density and lower potential height 

than slow-growing climax and intermediate species (Chave et al., 2009; Zanne et al., 2009) store less carbon in living biomass. 

Since pioneer species grow faster, they can bind as much carbon per time as slow growing climax species. Therefore, similar 

NPP values are obtained at stand level with higher disturbance intensity, although the individual trees show different growth 

behaviour. 295 

4.2 Performance of the regression model for estimating biomass mortality 

One of the main findings of this study is that the biomass mortality rates of Terra Firma forests can be estimated using simple 

relationships between the forest attributes. We selected forest attributes that provide information about forest structure and 

productivity, and that showed distinct succession patterns. On a tree level, Aubry-Kientz et al. (2013) used functional traits, 

such as potential tree height and specific leaf area, to estimate the probability of tree mortality. Based on large scale remote 300 

sensing observations tree height was identified as the strongest predictor of tree mortality, with large trees having twice the 
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mortality rate of small ones, while environmental drivers controlling the intensity of the height-mortality relationship (Stovall 

et al., 2019). These results suggest using forest height and LAI as proxy variables to estimate the mortality of forest stands.  

Despite the simplicity of the regression model, including only two explanatory variables, its statistical performance proved to 

be robust (cf. eq. 6; Tab. 2, supplements Fig. S2). Thus, it was possible to derive biomass mortality from LAI and forest height 305 

for undisturbed and disturbed forests. It was important that the signs of the regression coefficients βi of our linear model 

plausibly reflected the observed relationships in the field. In the regression model, forest height is directly proportional and 

LAI indirectly proportional to the biomass mortality of the forest stands, e.g. tall forests with a low LAI result in higher biomass 

mortality rates (cf. Fig. S5).  

Using a forest model for deriving relationships between different forest attributes has several advantages: first, the simulation 310 

data of LAI and forest height were generated mechanistically, integrating a broad spectrum of information about forest 

dynamics emerging from different physiological processes. This can lead to a lower level of noise in the simulation data 

compared to observed field data. Nevertheless, forest models also include stochastic processes, e.g. for basic tree mortality 

(Bugmann, 2001; Fischer et al., 2016; Shugart, 2002). By using plant functional types for the simulation of forest dynamics, 

we reduced possible uncertainty in species traits. Simplifications allow a transferability of the used regression analysis to 315 

forests of similar succession dynamics and disturbance intensities as the simulated forests of Paracou. This also enabled the 

spatial extrapolation of biomass mortality rates to Terra Firma forests of whole French Guiana. With the approach pursued 

here, it is possible to derive regression models for estimating biomass mortality for other locations worldwide. It remains to 

be investigated whether LAI and forest height are also suitable for other forest types as explanatory variables of biomass 

mortality rates.   320 

4.3 Mapping of biomass mortality rates on a large scale  

We combined remote sensing maps of forest height (Simard et al., 2011) and LAI (Myneni et al., 2015) with forest modelling 

for deriving maps of biomass mortality rates for French Guiana. Capabilities for improved projection are indispensable in the 

context of man-made climate and land use changes (IPCC, 2014, 2018). Remote sensing by airborne and satellite-based 

instruments provides large-scale data on forests, such as forest height (Simard et al., 2011), as well as leaf area index (Myneni 325 

et al., 2015). However, remote sensing can measure only at certain time points, hence, the successional stage of forest variables 

is uncertain. Such forest dynamics can be simulated by individual- and process-based forest models. A combination of remote 

sensing data and forest models therefore has the potential to improve the prediction of large-scale ecosystem dynamics 

(Plummer, 2000; Shugart et al., 2015).  

Forests can be in different successional stages due to disturbance, which influences forest height and LAI (Dubayah et al., 330 

2010; Kim et al., 2017). In the forest height and LAI maps, disturbed regions can be detected, which have been identified as 

disturbed areas in other studies (Asner and Alencar, 2010; Piponiot et al., 2016a; Stach et al., 2009). For example, in flood 

plains of lakes and rivers, along the coast, near roads and settlements, or in secondary forests of French Guiana, where forest 
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height is on average lower than in primary forests (Piponiot et al., 2016a; Stach et al., 2009; forest height map after Simard et 

al. (2011) in Fig. S 3.a). Additionally, the crown structure of tropical forests, represented by LAI, decreases as a result of water 335 

deficit during drought (Asner and Alencar, 2010; Pfeifer et al., 2018; LAI map after Myneni et al. (2015) in Fig. S 3.b).  

4.4 Introduction of an alternative method to estimate biomass residence time 

Information on the carbon balance of forests is important to quantify the biomass accumulation rates in trees. Various studies 

estimated the residence time of biomass, which we defined here as the reciprocal value of biomass mortality, in forests 

worldwide (Carvalhais et al., 2014; Erb et al., 2016; Pugh et al., 2019). Carvalhais et al. (2014) were the first who estimated 340 

biomass residence times for forests in equilibrium from biomass and GPP (cf. eq.3: 𝜏 = 𝐴𝐺𝐵𝑡𝑜𝑡𝑎𝑙 ∙ 𝐺𝑃𝑃−1). For the French 

Guiana region, they estimated biomass residence times of around 20–40 years and discussed that disturbances can shorten the 

biomass residence time by increasing biomass mortality rates. Our study quantifies in how far disturbances lead to a higher 

biomass mortality and thus to a shorter biomass residence time. 

Erb et al. (2016) observed decreases of the biomass residence time caused by land use. They found residence times of 20–30 345 

years for the French Guiana region, which is similar to our results (Fig. S4). Pugh et al. (2019) showed that stand-replacing 

disturbances also affect the biomass residence times negatively, which means they become shorter. We found that biomass 

residence time is strongly affected by succession dynamics and disturbance intensity. For French Guiana, we found a mean 

biomass residence time of 41 years. We derived an alternative framework to estimate the residence time from biomass 

mortality, which allows both of them to be modelled in a simple way considering succession dynamics and disturbances. This 350 

method can be applied to forests in equilibrium, but also to forests in earlier stages of succession, which can emerge due to 

disturbances and logging.  

4.5 Outlook 

Our simulation results revealed complex relationships between tree mortality and biomass mortality. The growth stage of a 

tree evidently has an effect on tree mortality, which typically results in a U-shaped relationship of tree mortality as a function 355 

of tree size distribution in forests (Aubry-Kientz et al., 2013; Muller-Landau et al., 2006). With regard to tree age, it is more 

likely that the youngest and oldest trees will die (Aubry-Kientz et al., 2013; Rüger et al., 2011), e.g. due to intense competition 

for light and space between the juvenile trees in the understory and senescence of the old trees in the canopy layer. Such 

mortality processes are often represented in forest models (Bugmann et al., 2019). Although empirical mortality algorithms 

describing main causes of tree mortality and their effects on entire ecosystems mechanistically (e.g. self-thinning, dying of 360 

other trees by crushing, and growth dependent mortality) have already been developed, other causes of tree mortality with 

unclear signals are often summarised as stochastic processes (Bugmann et al., 2019; Hülsmann et al., 2017, 2018). In our 

study, biomass mortality at the stand level arose from different mortality processes at tree level (competition due to crowding, 

dying of other trees by crushing, growth-dependency, gap formation, and basic mortality); but includes also altered tree 
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mortality due to climate change effects and other external drivers. Compared to the U-shaped tree mortality distribution, the 365 

biomass mortality rates of a forest stand depended in a more complex way from different forest attributes (e.g. LAI, forest 

height). 

In our study, the effects of disturbance were represented in a simplified manner by modifying the basic mortality rate. In 

addition, we analysed disturbances that permanently increased the tree mortality rate in the forests. However, it is also needed 

to analyse effects of discrete or continuously changing disturbance patterns. Impacts of single discrete disturbance events (i.e. 370 

selective logging) on the dynamics of Terra Firma forests were studied by Hiltner et al. (2018). A follow-up study is in 

preparation, where repeated logging events are investigated under continuously changing air temperature and precipitation.  

It was also found that temporal patterns of regeneration can change after disturbances, e.g. due to modifications in seed 

mortality of specific tree species. Such changes influence competitive processes of trees within communities (Dantas de Paula 

et al., 2018). Here we did not consider the influence of disturbance on regeneration processes. This should be considered in 375 

future studies.  

With regard to up-scaling the biomass mortality rates, there are three important aspects: Firstly, it is important to verify the 

quality of the forest model parameterisation with field data, like it was done by Hiltner et al. (2018), who analysed biomass 

dynamics, tree size distribution, and functional species composition as well as compared model results with data from forest 

inventories of the Paracou study site. Secondly, a regression model predicting biomass mortality rates is valid only for a certain 380 

type of forest. In up-scaling biomass mortality rates from stand level to landscape level, we assumed the pre-dominance of the 

same type of forest, here the Terra Firma forests in French Guiana (Hammond, 2005). For this forest type, Stach et al. (2009) 

calculated a forest cover of 95 % of the country's land area. Thirdly, site parameters across entire landscapes can be 

heterogeneous, affecting forest dynamics and structure. Various studies demonstrated that natural environmental factors such 

as soil properties (Rödig et al., 2017), relief (Guitet et al., 2018), and climatic variations (Rödig et al., 2017; Wagner et al., 385 

2012), but also logging history (Hiltner et al., 2018; Piponiot et al., 2016b, 2019) can affect the succession dynamics of Terra 

Firma forests. In further investigations, it is recommendable to implement climatic or topographic parameters in order to 

further improve the approach developed here.  

5 Conclusions 

Here, we developed a framework for estimating biomass mortality in tropical forests. We analysed effects of tree mortality 390 

under different disturbance intensities and its relation to forest productivity, and biomass based on the example of Terra Firma 

forests of French Guiana. By quantifying such effects through simulation experiments, it was possible to derive a linear 

relationship between biomass mortality and other forest attributes. Our approach revealed a strong influence of succession 

dynamics or disturbance intensity on biomass mortality of forests. 
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We combined individual-based forest modelling with remote sensing, so that an upscaling from local forest stands to an entire 395 

landscape was enabled. The resulting map of biomass mortality rates indicates that more biomass is dying in the central, 

southern and eastern regions than in the northern parts of French Guiana. The forest areas in the north and north-east are more 

used for timber production, agricultural activities and housing (Bovolo et al., 2018; Stach et al., 2009), whereas the forest areas 

in the south are predominantly natural rainforests (Hammond, 2005).  

The approach we developed here can be easily transferred to other forest biomes using forest models that capture biome-400 

specific forest dynamics (e.g. for boreal and temperate forests) and available remote sensing products. Estimating the spatio-

temporal distribution of forests’ biomass mortality rates has recently been identified as particularly relevant for the monitoring 

of mortality hotspots (Hartmann et al., 2018). Moreover, an improved estimation of the residence times of carbon in forest 

stands is possible, so that uncertainties in the global carbon cycle (Friend et al., 2014) can be reduced. 
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