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Abstract. Continental shelf regions in the ocean play an important role in the global cycling of carbon and nutrients but their 

responses to global change are understudied. Global Earth System Models (ESM), as essential tools for building understanding 

of ocean biogeochemistry, are used extensively and routinely for projections of future climate states; however, their relatively 10 

coarse spatial resolution is likely not appropriate for accurately representing the complex patterns of circulation and elemental 

fluxes on the shelves along ocean margins. Here, we compared 29 ESMs used in the IPCC’s Assessment Rounds (AR) 5 and 

6 and a regional biogeochemical model for the northwest North Atlantic (NWA) shelf to assess their ability to reproduce 

observations of temperature, nitrate, and chlorophyll. The NWA region is biologically productive, influenced by the large-

scale Gulf Stream and Labrador Current systems, and particularly sensitive to climate change. Most ESMs compare relatively 15 

poorly to observed nitrate and chlorophyll and show differences with observed temperature due to spatial mismatches in their 

large-scale circulation. Model-simulated nitrate and chlorophyll compare better with available observations in AR6 than in 

AR5, but none of the models performs equally well for all 3 parameters. The ensemble means of all ESMs, and of the five best 

performing ESMs, strongly underestimate observed chlorophyll and nitrate. The regional model has a much higher spatial 

resolution and reproduces the observations significantly better than any of the ESMs. It also simulates reasonably well 20 

vertically resolved observations from gliders and bi-monthly ship-based monitoring observations. A ranking of the ESMs 

suggests that the top 3 models are appropriate as boundary forcing for regional projections of future changes in the NWA 

region. 

1 Introduction 

Elemental fluxes along ocean margins, which are areas of complex physical and biogeochemical interactions, are important 25 

components of the global cycles of carbon (C) and nitrogen (N). For example, continental shelves host up to a third of oceanic 

primary production and over 40% of carbon burial in the ocean (Ducklow and McCallister, 2004; Muller-Karger, 2005; Walsh, 

1991). They also are important sites of sediment denitrification leading to a net removal of fixed nitrogen (Fennel et al., 2006; 

Seitzinger and Giblin, 1996). Many shelf regions are thought to be a significant sink for atmospheric CO2 (Cai et al., 2006; 
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Chen et al., 2013; Laruelle et al., 2018), including the eastern margin of North America (Fennel et al., 2019 and references 30 

therein), although there are significant discrepancies in available estimates. Despite their importance, the response of ocean 

margins to climate change is understudied relative to the open ocean. 

Future projections of ocean biogeochemistry rely heavily on Earth System Models (ESMs). These are state-of-the-art, 

comprehensive representations of the major earth system components (including atmosphere, ocean, and land surface) and are 

routinely used to perform climate scenario projections. The spatial resolution of the CMIP-class ESMs typically ranges from 35 

0.5 to 2˚ and is too coarse to resolve coastal ocean dynamics and interactions between shelf and the open ocean (Anav et al., 

2013; Bonan and Doney, 2018; Holt et al., 2017). This leads to uncertainty in future projections, not only for margin regions, 

and a global underestimation of the high primary productivity in coastal regions (Bopp et al., 2013; Schneider et al., 2008). 

Regional coupled circulation-biogeochemical models have been developed at much higher spatial resolution. These regional 

models have been used to investigate biogeochemical processes along ocean margins  (Fennel et al., 2006, 2013; Lachkar and 40 

Gruber, 2011; Peña et al., 2019; Siedlecki et al., 2015; Zhang et al., 2019) and project future states resulting from climate 

change (Gruber et al., 2012; Hermann et al., 2016; Holt et al., 2016; Laurent et al., 2018). The regional models allow for the 

temporal and spatial resolution necessary to resolve mesoscale processes and can be regionally calibrated (e.g., Kuhn and 

Fennel, 2019; Mattern and Edwards, 2017). However, the dynamics of a regional model is strongly determined by information 

imposed along the model’s open lateral boundaries, typically derived from a larger scale model, reanalysis product, or 45 

observation-based climatology. For future climate simulations, a regional model requires boundary information from future 

projections of large-scale models or ESMs. 

The northwest North Atlantic (NWA), located at the confluence of the subtropical and subpolar gyres, is particularly 

challenging to global ocean circulation models and highly sensitive to climate-induced modifications of the large-scale 

circulation, which are thought to be responsible for a multi-decadal deoxygenation trend in the region (Claret et al., 2018; 50 

Gilbert et al., 2010). While the CMIP models reasonably describe the large-scale climatological features of ocean physics in 

the NWA, the detailed current structure is poorly represented due to a mismatch in the location of the subtropical and subpolar 

gyres (Loder et al., 2015). The Gulf Stream usually extends too far north and the branch of the Labrador Current flowing 

southwest along the shelf edge tends to be missing (Lavoie et al., 2019; Loder et al., 2015). This leads to a warm bias in the 

NWA, a common feature among coarse resolution ESMs (Saba et al., 2016). The absence of the shelf-break current 55 

significantly impacts cross-shelf exchange with much larger shelf water residence times in a high-resolution regional model 

(Rutherford and Fennel 2018) compared to estimates from a global model (Bourgeois et al. 2016). These discrepancies have 

been attributed to the coarse resolution of the global models (Loder et al., 2015, Saba et al. 2016, Rutherford and Fennel 2018, 

Lavoie et al., 2019). 

Increased coastal model resolution can be achieved by downscaling large-scale or global models, the so-called parent models, 60 

to high-resolution regional models, the child models (see, e.g. Hermann et al. 2019, Holt et al. 2016, Laurent et al. 2018). For 

future projections, the obvious approach is to downscale ESMs. Since simulation of the fine-scale processes in the child model 

is strongly influenced by the parent model, it is important to assess the skill of ESMs in reproducing historical observations 
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prior to using them for downscaled future projections. Rickard et al. (2016) ranked ESMs based on their misfit with regional 

observations around New Zealand in order to discard models with significant errors and determine an ensemble of “best” 65 

models that can be used to study regional climate projections. Here, we take a similar approach. 

Our objective is to assess the performance of a number of available ESMs in reproducing present conditions on the NWA shelf 

in contrast to a high-resolution regional model. More specifically, we compare 29 ESMs used in the two most recent IPCC 

Assessment Rounds (AR) as part of the Coupled Model Intercomparison Project 5 (CMIP5; Taylor et al., 2012) and its 

currently ongoing successor CMIP6 (Eyring et al., 2016). We carry out a systematic and quantitative assessment and ranking 70 

by comparing the CMIP5 and CMIP6 models against observed surface temperature, chlorophyll, and nitrate and perform the 

same comparisons for a regional biogeochemical model. The latter is the Atlantic Canada Model (ACM, Brennan et al., 2016; 

Rutherford and Fennel, 2018) with biogeochemistry (Bianucci et al., 2016; Kuhn and Fennel, 2019) and is intended for regional 

downscaling of ESM simulations in order to generate high-resolution future projections. For all models, we present statistical 

metrics based the mismatch of each model with climatological surface observations of temperature, nitrate, and chlorophyll 75 

and a ranking based on these metrics. The regional model is further evaluated against in-situ measurements, including high-

resolution cross-shelf glider transects. The comparison provides sufficient confidence for only a few ESMs that their historical 

simulations can be used for downscaled future projections in the NWA. The use of ESM ensembles is not recommended. The 

regional model clearly outperformed all the global models. 

2 Material and Methods 80 

2.1 Models 

2.1.1 Global models 

The CMIP5 and CMIP6 framework provides state-of-the-art climate model datasets from the previous (AR5) and current 

(AR6) IPCC Assessment Rounds (Eyring et al., 2016; Taylor et al., 2012). Of all the ESMs, those that include ocean 

biogeochemistry with monthly outputs of surface chlorophyll, nitrate, and temperature were included in our comparison. A 85 

total of 29 such ESMs were available (Table 1), 17 from CMIP5 (models 2–18, downloaded from the Earth System Grid 

Federation (ESGF) data repository at https://esgf-node.llnl.gov/search/cmip5/) and 12 from CMIP6 (models 19–30, 

downloaded from the ESGF data repository at https://esgf-node.llnl.gov/search/cmip6/). These models vary in their horizontal 

and vertical resolution and include a total of 13 different ocean biogeochemical models of varying levels of complexity (Table 

1 and references therein). 90 

We accessed the historical simulations which were forced by observed atmospheric composition and land cover changes over 

the period ~1850–2005 (CMIP5) and ~1850–2014 (CMIP6). Monthly, spatially resolved climatologies of surface chlorophyll, 

nitrate, and temperature were calculated over 30 years (1975–2005) from each ESM historical simulation. 
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2.1.2 Regional model 

The ACM is a high-resolution, regional configuration of the Regional Ocean Modeling System (ROMS, version 3.5; Haidvogel 95 

et al., 2008) for the NWA, nested within the larger ocean-ice model of Urrego-Blanco and Sheng (2012), that includes the Gulf 

of Maine, Scotian Shelf and Grand Banks (Figure 1). The coupled physical-biogeochemical model has 30 vertical layers and 

an average horizontal resolution of 9.5 km on the shelf (Table 1). Detailed descriptions and physical model validation are 

presented in Brennan et al. (2016) and Rutherford and Fennel (2018). The biogeochemical model is based on Fennel et al. 

(2006, 2008) but was expanded by splitting phytoplankton and zooplankton state variables into size-based functional groups, 100 

i.e. nano-micro-phytoplankton and micro-meso-zooplankton. The model was also modified by including temperature-

dependent biological rates for nutrient uptake, phytoplankton and zooplankton mortality, grazing and zooplankton egestion 

and excretion (see supporting text). The model has 10 state variables: nitrate, ammonium, and two size classes each for 

phytoplankton, chlorophyll, zooplankton and detritus (Figure 2). This ecosystem structure is of intermediate complexity similar 

to the model of Aumont et al. (2015), which is used in 6 of the ESMs included in our study. Model parameters were optimized 105 

by Kuhn (2017) and are listed in supporting Table S1. The model description and equations are available in the Supporting 

Information. 

Initial and open boundary conditions for nitrate (NO3) were defined from a monthly climatology (Kuhn, 2017) based on in-

situ observations and the World Ocean Atlas 2009 (Garcia et al., 2010). Other biological variables were set to 0.1 mmol N m-

3 with a phytoplankton-to-chlorophyll ratio of 0.76 mmol N (mg Chl)-1 (Bianucci et al., 2016). The model was initialized on 110 

January 1, 1999 and run through December 31, 2014. The first year was considered spin up. Monthly climatologies of surface 

chlorophyll, nitrate, and temperature were calculated for comparison with the ESMs. 

2.1.3 Model resolution 

The 30 models differ dramatically in their horizontal resolution and do not evenly cover the 3 regions of interest (Figure 3, 

Table 1). The regional ACM has a much higher resolution than any of the ESMs with about 16 times more horizontal grid 115 

cells than the highest resolution ESM and almost 300 times more than the lowest resolution ESM. Among the ESMs the highest 

resolution is achieved by models 16 and 28, which share the same grid. These two have more than twice the number of 

horizontal grid cells than the next highest resolution models (3, 18, 20–21). The lowest resolution ESMs are models 3 and 12–

14 with only 26 horizontal grid cells within the NWA shelf resulting in a coarse representation, particularly in the SS region. 

The median number of grid cells in the NWA shelf region is 72 and 102 for the CMIP5 and CMIP6 models, respectively, 120 

compared to 6875 in the ACM. 

2.2 Observations 

Three types of observations were used in the model intercomparison: 1) satellite surface chlorophyll observations from the 

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) as 8-day averaged maps at 1/12˚ resolution (1999–2010), 2) surface nitrate 
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from the World Ocean Atlas 2009 (WOA; Garcia et al., 2010) at 1˚ resolution, and 3) surface temperature from the Operational 125 

SST and Sea Ice Analysis (OSTIA) system (Donlon et al., 2012) at 1/20˚ resolution (2006–2016). Monthly climatologies were 

calculated for each of these. 

In addition, the regional model was validated using high-resolution in-situ observations from the Atlantic Zone Monitoring 

Program (AZMP, http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html) and glider transects along 

the Halifax Line between 2011 and 2016 (Ross et al., 2017). Transect data from AZMP and gliders were seasonally averaged 130 

along the Halifax Line (Figure 1). 

2.3 Comparison metrics 

For comparison with the observations, each model was mapped onto the SeaWiFS, WOA and OSTIA grids. Since some areas, 

such as the nearshore and the Bay of Fundy, are covered by only a few models, grid cells that are active in less than 85% of 

all models were excluded from the analysis to avoid biases. In the low-resolution WOA climatology, the months November to 135 

January were excluded because poor data availability in these months resulted in unrealistic patterns. 

Three zones were defined for a high-level comparison with the observations: the Gulf of Maine (GoM), Scotian Shelf (SS), 

and Grand Banks (GB) (Figure 1). Subsequently, the term NWA shelf refers to the region covered by all 3 zones (GoM, SS 

and GB). 

Following the method of Rickard et al. (2016), a score 𝑆 is calculated for each model variable, 𝜐 (i.e., surface temperature, 140 

chlorophyll, and nitrate), for each month, 𝑡, in the climatology as the sum of the centered Root Mean Square Difference 

(RMSD) and bias between the observations (𝑥) and the model (𝑦), such that: 

𝑆(𝑡, 𝜐) = *
1
𝑛-.(𝑥!(𝑡, 𝜐) − 𝑥̅(𝑡, 𝜐)) − (𝑦!(𝑡, 𝜐) − 𝑦1(𝑡, 𝜐))2

"
#

!$%

+
1
𝑛 4-

(𝑥!(𝑡, 𝜐) − 𝑦!(𝑡, 𝜐))
#

!$%

4 

where the index 𝑖 refers to a grid cell and 𝑛 is the total number of grid cells within the NWA shelf. The lower the score the 

better the match between model and observations. Annual mean scores 𝑆̅(𝜐) were calculated for each model variable by 145 

averaging over t. For each variable, the models were ranked based on their annual mean score. The overall rank was determined 

by ranking models by the averages of their ranks for surface temperature, chlorophyll, and nitrate. For models with equal 

averages the ranking was determined by the average of chlorophyll and nitrate ranks. 

To facilitate the comparison with observations, the ESMs were grouped into CMIP5 and CMIP6 and the ensemble means of 

all models and of the 5 highest ranked models were calculated for each group. 150 

3 Results 

Models and model ensembles are first compared with observations to assess their ability to reproduce the annual cycles of 

surface temperature, chlorophyll and nitrate in the NWA region. Error statistics are then analyzed to understand how the models 
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deviate from each observed variable and subsequently used to calculate the scores and then rank the models. Finally, additional, 

high-resolution comparisons between models and observations are presented to further assess the regional model’s 155 

performance. 

3.1 Model-data comparisons 

First, we compare the spatially averaged climatological surface temperature (Figure 4Figure 5a-c), chlorophyll (Figure 4Figure 

5d-f) and nitrate (Figure 4Figure 5g-i) in our 3 regions of interest. The ESMs reasonably reproduce the annual cycle of surface 

temperature, but the annual cycles of chlorophyll and nitrate are not simulated well in any of them (see supporting Figures S1- 160 

S5) and the range of simulated biological properties is large. 

Temperature is relatively consistent between model ensembles (Figure 4a–c), but with large variability between models (Figure 

5a–c). An annual, positive bias occurs in the GM (bias = +2.28˚C, Figure 4a), whereas winter temperatures are overestimated 

on the SS and GB (bias = +2.32 and +1.26˚C respectively, Figure 4a–c) and underestimated in summer on GB (bias = +2.32 

and –1.93˚C, Figure 4f). 165 

For surface chlorophyll, there is a large discrepancy between the model ensembles and observations (Figure 4d–f). Inter-model 

differences are largest for the time of maxima and magnitude of the spring and fall blooms (Figure 5d–f, supporting Figures 

S1- S5). Standard deviations for the magnitude of the spring bloom are large among ESMs in the 3 zones (SD=0.6, 0.81 and 

0.83 mg m-3 in GoM, SS and GB, respectively). The maxima of the spring bloom also varies significantly in time among the 

models, with a standard deviation among ESMs for the time of maxima of the bloom of about 1.5 months (SD=1.15, 1.59 and 170 

1.62 months in GoM, SS and GB, respectively). Most models in the CMIP5 group do not simulate a fall bloom, hence none is 

present in the ESM ensemble mean, but rather a fall/winter increase in chlorophyll concentrations. Among the CMIP6 group, 

only models 23–25 generate a fall bloom (see supporting Figures S4–S5). Overall, the ESMs underestimate annual surface 

chlorophyll concentrations (bias = –0.93, –0.49 and –0.29 mg m-3 for GM, SS and GB, respectively, Figure 4a-c). The 

chlorophyll bias is about 20% smaller in the CMIP6 group compared to CMIP5. 175 

There are also large discrepancies between the model ensembles and observations for nitrate (Figure 4g–i), particularly in the 

CMIP5 group. The variability in nitrate concentrations among the ESMs is also large (SD = 2.80 mmol m-3) but smaller by 

29% in the CMIP6 group. Most of the models reproduce the seasonal variability of surface nitrate (Figure 5g–i, supporting 

Figures S1–S5); however, the CMIP5 models tend to underestimate fall-winter concentrations (winter bias = –1.28 mmol m-3), 

whereas the CMIP6 model group performs better but with some mismatches in the timing of the seasonal changes (spring, 180 

fall). A few models markedly overestimate surface nitrate concentrations in the NWA shelf regions (see supporting Figures 

S1, S3–5), including within the CMIP6 group. Supporting Figures S6–S9 provide an illustration of the model variability for 

chlorophyll and nitrate in March (Figures S6 and S7) and October (Figures S8 and S9), i.e. around the time of the spring and 

fall blooms respectively. 

The regional ACM well reproduces the annual cycle of surface temperature (Figure 4a-c), chlorophyll (Figure 4d-f) and nitrate 185 

(Figure 4g-i) in the three regions. The model correctly simulates the overall magnitude of temperature and chlorophyll biomass, 
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the timing of the maxima of spring and fall blooms and the latitudinal gradients in temperature, chlorophyll and nitrate, 

although the magnitude of the spring bloom in the GM and GB regions is underestimated. 

3.2 Model statistics 

Error statistics, i.e. RMSD and bias, are now analyzed and used to calculate the model scores. The distribution and relationships 190 

between scores are explored and then the ranks calculated. 

The RMSD between the spatially averaged climatological observations and models are not consistent between variables, as 

indicated by the increasing temperature RMSD in Figure 6. However, temperature and chlorophyll RMSD are correlated (r = 

0.51, p = 0.0043). For temperature, models 3, 20–21, and 24–25 have the largest discrepancy with observations and some 

clearly represent better the annual cycle than others. For chlorophyll, the largest discrepancies with observations are in models 195 

4, 8 14 and 19–21, but overall chlorophyll RMSD are relatively large and homogeneous, except for a few models that have 

lower RMSD (e.g. models 22–23). Interestingly, the magnitude of the spring bloom in model 18 (CMIP5 group) is somewhat 

close to the observations. However, the time shift of the bloom (May–June) results in a poor agreement with observations. The 

mismatch between observed and simulated nitrate is much higher for models 5, 7, 18 and 29 and some models are much better 

at representing the observed annual cycle (Figure 6). The models with lowest RMSD for all 3 parameters are models 22–23 200 

(CMIP6 group). The RMSDs of the ACM are about a third of the average RMSD of the ESMs for both chlorophyll (ESM 

RMSDs are ×2.0–4.1 that of the ACM) and nitrate (×1.4–11.4) and a quarter for temperature (×1.1–10.4). 

Model scores (see Sect. 2.3) represent the spatial and temporal mismatch within the NWA shelf region (Figure 7). In general, 

the scores provide similar results as the RMSDs in Figure 6, although groups tend to emerge from the score calculation. As 

observed previously in Figure 6, the scores of ESMs have a much larger range of variability for temperature (1.5–7.8) and 205 

nitrate (1.4–13.2) than for chlorophyll (0.81–1.42) due to the large mismatch observed with a few models (Figure 7, supporting 

Figures S1–S5). For temperature, 4 of the 6 poorest (largest) scores (> 4.5) are in the CMIP6 group. They all markedly 

overestimate temperature, especially in the GM (see supporting Figures S1, S4–S5). The range of variability in chlorophyll 

scores did not reduce from CMIP5 to CMIP6 and given the improvement of a few CMIP6 models (i.e. 22 and 23), the range 

is larger in the CMIP6 group (0.8–1.4, Figure 7, right panel) than in the CMIP5 group (1–1.4, Figure 7, left panel). With the 210 

exception of model 29, which has a very poor (high) score for nitrate, the range of variability in nitrate is reduced in the CMIP6 

group. In total, 5 models (3, 5, 7, 18, 29) have very poor scores for nitrate (> 4) strongly overestimating surface nitrate, except 

for model 3 in the Gulf of Maine (see supporting Figure S1). The remaining models have more homogeneous nitrate scores 

(Figure 7) with the best (lowest) scores in models 25, 24, 9 and 6 (Table 2). Models that underestimate nitrate (2, 8, 14 and 19, 

see supporting Figures S1–S4) have a better score because they match the low nitrate observations in late spring–summer 215 

(Table 2). Overall, ACM has the best scores, 𝑆̅(𝜐), for temperature (1.14), chlorophyll (0.64) and nitrate (1.27). 

Among the 3 variables, and including the regional model, we found a correlation between the scores of chlorophyll and 

temperature (r = 0.53, p = 0.0025), but not between nitrate and chlorophyll (r = 0.03, p = 0.88) or nitrate and temperature (r = 

0.06, p = 0.74). As can be seen in Figure 6, the ESMs with a poor representation of nitrate are not necessarily performing 
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poorly with respect to chlorophyll or temperature. Model 7 for instance has the poorest score for nitrate and a relatively poor 220 

score for temperature but the best score of the CMIP5 group for chlorophyll (Figure 7, left panel). In fact, only models 3 and 

18 have poor scores for all variables. Similarly, models 24 and 25 have the best scores for chlorophyll among the ESMs but 

are among the worst for temperature. On average, models have worse scores in the GM (3.97, 1.73, 3.15) than on the SS (3.35, 

0.94, 2.22) and GB (2.53, 0.72, 2.46) for temperature, chlorophyll and nitrate, respectively.  

Overall, 4 groups emerge on the chlorophyll-nitrate space in Figure 7. This grouping is somewhat arbitrary but follows the 225 

general ranking presented in Figure 8, with a few exceptions. Group A includes the 14 best models (6 CMIP5 and 8 CMIP6) 

except for model 9 and 30 whose ranking is degraded due to poor representation of temperature. Group B includes the 4 

intermediate-score models (15, 16, 17, 2). Group C includes the 8 models with poor chlorophyll scores (5 CMIP5 and 3 CMIP6) 

and Group D the 5 models with poor nitrate scores (4 CMIP5 and 1 CMIP6). Most of the models with poor scores for 

temperature are included in Group C, i.e. with the poor chlorophyll scores. 230 

The overall model ranking (average of chlorophyll, nitrate and temperature ranks) indicates the gap between ACM and ESMs, 

as well as within ESMs (Figure 8). As expected, ACM ranks first, following the best scores for both chlorophyll and nitrate. 

The gap between ACM and model 22 (the best overall ESM) indicates that none of the ESM performs best for both chlorophyll 

and nitrate. This is also shown by the large range in individual ranks (dark grey lines in Figure 8) in most models. Group A 

includes the 5 best ranking models, all from CMIP6 (22, 28, 25, 24, 23, respectively). The most consistent in term of 235 

chlorophyll and nitrate ranking is model 28, the other ones having a relatively large spread. The best ranked CMIP5 models 

are 10 and 13. On the other side of the spectrum models 20, 3, 21 and 18 (Groups C and D) have the poorest ranks because of 

their consistently poor scores for chlorophyll and nitrate. Despite their poor performance with respect to nitrate, models 7 and 

29 are ranked within the mid-range of the ESMs because they are among the best ESMs with respect to chlorophyll (rank 4 

and 8, respectively). 240 

3.3 Additional model-data comparisons for regional ACM 

While the resolution of the ESMs does not allow for a comparison at smaller spatial scales, we further compare the regional 

ACM to cross-shelf transects and station observations (Figure 9) along the Halifax Line (see Figure 1). The ACM reproduces 

the seasonal variation and the vertical gradient in chlorophyll and nitrate along the transect (Figure 9), although the simulated 

distributions are smoother than the glider observations. The summer subsurface chlorophyll maximum is located at the 245 

appropriate depth (28 m simulated versus 32 m observed, on average). The ACM somewhat underestimates the depth of the 

nitracline in the offshore waters (34 m versus 43 m, 𝑥 > 150 km) and overestimates surface nitrate in spring and fall, as seen 

in Figure 4. 

Station 2, which is located nearshore on the Halifax Line (see Figure 1),  provides additional, vertically resolved information 

with high temporal resolution that is useful for model validation (Figure 10). At this location, the ACM reproduces the annual 250 

cycle of chlorophyll and nitrate. Surface and subsurface nitrate and chlorophyll are qualitatively reproduced in all seasons 
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except during the spring bloom, which is more pronounced and reaches deeper in the observations, although the magnitude 

and vertical distribution of chlorophyll concentration agree well with the glider observations at this time.  

A quantitative, point-to-point comparison of the ACM with the time series and glider observations along the Halifax Line 

(Figure 9) and at Station 2 (Figure 10) is provided in Table 3. The comparison indicates relatively high correlations between 255 

the ACM and time series of chlorophyll (0.68–0.78) and nitrate (0.83–0.92) along the Halifax Line as well as glider 

measurements of chlorophyll (0.85–0.94) for all seasons. Correlations are high as well at Station 2 for nitrate time series and 

glider measurements of chlorophyll. The largest discrepancies with observations are found with the time series of chlorophyll 

in spring. These results, indicate an overall good skill of the model to reproduce the seasonal, vertically resolved observations 

on the Scotian Shelf. 260 

4 Discussion 

4.1 Overall model performance 

There are significant discrepancies with observations and a large variability among ESMs in the representation of surface 

temperature, chlorophyll and nitrate in the NWA shelf (Table 2, Figure 6 and supporting Figures S1–S5). A warm bias resulting 

from a mismatch in the location of the Gulf Stream was present in most models, in line with the previous results of Loder et 265 

al. (2015) and Saba et al. (2016). Chlorophyll concentration was also systematically underestimated. The spring and fall 

blooms, which are characteristic annual features of the NWA region (Greenan et al., 2004, 2008) were absent in some and 

most models, respectively. The correlation between temperature and chlorophyll scores indicated that errors in surface 

chlorophyll concentration were likely driven by the misrepresentation of the general circulation and, more generally, of ocean 

physics. 270 

Following Rickard et al. (2016), who used a similar ranking procedure, the 29 ESMs can be divided into an inner and an outer 

model ensemble. The outer ensemble includes 17 models that clearly misrepresent surface conditions in the NWA shelf 

(models 2–5, 7–8, 11, 14–16, 18–21, 24–25 and 29) and were selected as follows. The 8 models with lowest ranks (2–4, 8, 18–

21) were included because they consistently misrepresent surface fields on the NWA shelf. Five of those were different 

generations (CMIP5 and CMIP6) of the same model, i.e. CanESM (2, 19) and CESM (3, 20–21). Their large scores imply that 275 

CanESM and CESM have fundamental issues with representing biogeochemistry in the NWA. Models 15–16 and 24–25 were 

also included in the outer ensemble because of their misrepresentation of surface nitrate and temperature, respectively. Since 

nitrate scores neither correlate with chlorophyll nor temperature, the mismatch with nitrate observations is likely related to 

intrinsic biogeochemical model behaviour rather than to a mismatch in circulation. Models with persistent positive or negative 

biases in surface nitrate (4–5, 7–8, 11, 14, 19 and 29, Figures S1–S5) were selected because they misrepresent the seasonal 280 

nitrate dynamics and therefore the other biogeochemical variables driven by nitrate are questionable.  

The inner ensemble includes 12 models (6, 9–10, 12–13, 17, 22–23, 26–28, 30). Can those be used as a multi-model (optimal) 

ensemble to characterize the future state of the NWA shelf region? Unfortunately, we found that an ensemble mean of these 
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models, and even of the best five models, poorly represents historical surface fields due to the large variability within the 

ensemble (Figure 5) and the biases in the ensemble surface temperature and chlorophyll concentration (Figure 4). 285 

The regional model clearly outperformed the ESMs in our assessment, with a consistent representation of the surface and 

subsurface fields in all shelf areas. The high spatial resolution of the regional model also allowed for a fine scale model 

validation that was not possible for the ESMs. The complementary glider transects and time series stations provide a high-

resolution dataset of in-situ chlorophyll and nitrate concentrations and shows that the regional model resolves seasonal and 

vertical variation in chlorophyll and nitrate on the Scotian Shelf, something that none of the ESMs were able to reproduce. 290 

4.2 Impact of spatial resolution 

In general, the coarse horizontal resolution of the ESMs affects the representation of the NWA region in comparison to the 

regional model, particularly on the relatively narrow Scotian Shelf. The poor representation of coastal areas is a known 

limitation of global models (Holt et al., 2017) and results in a global underestimation of primary productivity in these regions 

(Bopp et al., 2013; Schneider et al., 2008).  295 

There is no correlation between grid resolution and ESM rank (Figure 11) despite the fact that the best ranked ESM (MPI-

ESM1-2-HR) has also the highest resolution (Table 1Table 2). This result shows that higher grid resolution, as called for by 

Lavoie et al. (2013) for the NWA and by McKiver et al. (2015) for the global ocean, is not a guarantee for improved model 

performance. In fact, some very coarse resolution models from the CMIP5 group were ranked as well or better than the other 

models and models with the second highest resolution (3, 18, 20–21) had all low ranks. The improved ranks at constant (e.g. 300 

models 22, 24, 25, 28) and even lower (model 29) ocean grid resolution in the CMIP6 group (Table 2, Figure 12) was also an 

indication that the discrepancies with observations, and the improvement in the CMIP6 models (see below), were not associated 

with the ocean grid resolution but rather resulted from the physical and biogeochemical setup of the models. Another hint at 

the lack of relationship between resolution and model rank is the similar ranking of the two MPI models in the CMIP5 group, 

MPI-ESM-LR and MPI-ESM-MR, despite an important difference in model grid resolution (Figure 8). Much higher resolution 305 

will be necessary to refine the projections in coastal areas (e.g., Holt et al. (2017), Saba et al. (2016)), which is not currently 

computationally feasible in ESMs (Holt et al., 2009, 2017). 

4.3 Impact of biogeochemical model structure 

Although model performance is likely influenced by the biogeochemical model structure, we did not find a clear relationship 

between biogeochemical model and performance. While the inner and outer ensembles share only 4 biogeochemical models 310 

(PISCES, HAMOCC, TOPAZ2, NOBM) out of 13, there was no indication of consistently better performance for the 

biogeochemical models in the inner ensemble. For example, models using similar ocean biogeochemistry (e.g., PISCES: 5, 

12–14, 22, 26, and HAMOCC: 15–16, 18, 28–29) had very different ranks, with no obvious relationship between overall model 

rank and the ocean biogeochemical model component. Moreover, 4 biogeochemical models were represented in the 5 best 

ranked ESMs, similar to previous findings by Rickard et al. (2016). 315 
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4.4 Improvement from CMIP5 to CMIP6 

Model performance improved in the new CMIP generation, but not uniformly across models and variables. The 4 best ranked 

ESMs were from the CMIP6 group, although the average rank was not very different between the two groups, i.e. R8 = 17.4 

and 14.0 for CMIP5 and CMIP6, respectively (Figure 8, Table 2). The change in performance between the two generations of 

models can be assessed by evaluating the subset of models that are available for CMIP5 and CMIP6. There are nine such 320 

models (Figure 12). All CMIP6 models have improved overall ranks, indicating better performance (Figure 12). The overall 

improvement was large only for models that had average to low ranks in the CMIP5 group (ranks 15–22, x-axis in Figure 12). 

Temperature did not improve except for GFDL-ESM2M and degraded in some cases. The change in ranking is therefore 

mainly associated with better surface fields for chlorophyll and nitrate. This is particularly the case for model pairs 3, 5, 6 and 

8, which ranked much better for chlorophyll (+8.2) and nitrate (+12.7) in the CMIP6 group (Figure 12). The chlorophyll rank 325 

in model pair 4 improved significantly (+18) but this improvement was counteracted by degraded temperature and nitrate 

ranks. The lack of improvement in surface temperature indicates that the temperature bias detected in the CMIP5 group was 

not solved in CMIP6, as seen in Figure 4. 

We can only speculate about the source of improvement in the CMIP6 models. Kwiatkowski et al. (2020) recently showed 

that projected surface temperature, nitrate and net primary production differ significantly in CMIP5 and CMIP6 model 330 

ensembles. Higher climate sensitivity in CMIP6 models partly explain this difference but the source of change in primary 

production was not resolved. In the historical simulations, better surface chlorophyll and nitrate fields in CNRM-ESM2-1 may 

be associated with the transition from a climate model with ocean biogeochemistry to a fully coupled ESM, even though such 

transition may degrade historical simulations due to the replacement of observations by prognostic schemes that are poorly 

constrained (Séférian et al., 2019). Updated land and ocean biogeochemistry may have improved the representation of surface 335 

chlorophyll and nitrate in MPI-ESM1-2-HR (Müller et al., 2018), whereas the improvement in surface temperature and nitrate 

fields from GFDL-ESM2M to GFDL-ESM4 seem to be associated with the physical ocean component of the model, given 

that GFDL-ESM2G already performed well in the CMIP5 group. Danabasoglu et al. (2020) found a significant improvement 

for CESM2 at the global scale but a poor representation of the Gulf Stream–North Atlantic Current system, resulting in a large 

surface temperature bias. This is in line with our assessment for the NWA shelf where both physical and biological parameters 340 

had poor scores and the model was not found appropriate for shelf studies in the NWA. 

4.5 Other coastal regions 

Our results may also apply for other coastal regions, given the poor representation of coastal areas in ESMs, but the details are 

probably region specific. Discrepancies with observations in the NWA are partly driven by poor representation of large-scale 

circulation features such as the Gulf Stream and Labrador Current in most of the models. The representation of large-scale 345 

currents may improve (or worsen) in other regions, resulting in a different ranking there. For example, Rickard et al. (2016) 

found a different model selection in the inner model ensemble around New Zealand. Seven (out of 11) of their inner ensemble 
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models (models 2–5, 7–8, 14) are not included in our inner ensemble. Model 3, perhaps the best model in their assessment, 

ranked 29 out of 30 in the NWA shelf region (Figure 8, supporting Figure S1). The representation of the dynamic NWA 

circulation is a known issue in ESMs and further regional comparisons will be necessary to assess if our results are 350 

representative for the global coastal ocean. 

5 Conclusions 

We evaluated the CMIP5 and CMIP6 ESMs with biogeochemistry for the NWA shelf. Arguably, only 3 models (CNRM-

ESM2-1, GFDL-ESM4 and MPI-ESM1-2-HR), all from CMIP6, provided sufficient confidence in their historical simulations. 

We caution against using model ensembles, either directly or in downscaling future projections for the NWA shelf. The 355 

regional model (ACM) clearly outperformed the global models and is a good candidate for downscaled projections in 

combination with one of the top ranked ESMs. Further refinement in the ACM should focus on the mechanisms that determine 

the magnitude of the spring bloom. 

Similar comparisons should be carried out in coastal areas before using CMIP model projections. While it is not clear how the 

presented model ranking will hold in other regions, it is highly likely that some models do not perform well in coastal areas 360 

generally and should not be used for regional investigations. 

Given the lack of a direct relationship between model skill and horizontal resolution, it is unlikely that feasible grid refinement 

will significantly improve model performance in the NWA region. The improvement in scores from CMIP5 to CMIP6 shows 

that refining ocean biogeochemical components can improve the model performance. 
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Table 1. Information about the regional model and the 29 ESM models. For the CMIP5 models (2–18) the r1i1p1 ensemble was used. 630 
For the CMIP6 model (19–30) the r1i1p1f1 ensemble was used on the native grid when available, except for CNRM-ESM2-1, 
MIROC-ES2L and UKESM1-0-LL (r1i1p1f2), GFDL-CM4, GFDL-ESM4 and NorESM2-LM (regridded), and GISS-E2-1-G 
(r101i1p1f1). 

Model 
Shelf resolution Ocean BGC 

component References 
(n cells) 

Name ID GM SS GB   

ACM 1 1780 1366 3729 BIO_FENNEL Brennan et al. (2016); Fennel et al. 
(2006) 

CanESM2 2 11 14 29 CMOC Arora et al. (2011); Christian et al. 
(2010) 

CESM1-BGC 3 41 33 91 BEC Lindsay et al. (2014); Moore et al. 
(2013) 

CMCC-CESM 4 8 5 13 PELAGOS Vichi et al. (2007a, 2007b, 2011) 

CNRM-CM5 5 27 20 55 PISCES Aumont and Bopp (2006); Voldoire 
et al. (2013) 

GFDL-ESM2-G 6 20 15 39 TOPAZ2 Dunne (2013); Dunne et al. (2012, 
2013) GFDL-ESM2-M 7 

GISS-E2-H-CC 8 19 14 39 NOBM Romanou et al. (2013) Schmidt et 
al. (2014) GISS-E2-R-CC 9 15 12 29 

HadGEM2-CC 10 18 15 39 Diat-HadOCC Collins et al., (2011); Palmer and 
Totterdell (2001) HadGEM2-ES 11 

IPSL-CM5A-LR 12 
8 5 13 PISCES Aumont and Bopp (2006); Dufresne 

et al. (2013) IPSL-CM5A-MR 13 
IPSL-CM5B-LR 14 
MPI-ESM-LR 15 23 23 73 HAMOCC 5.2 Giorgetta et al. (2013); Ilyina et al. 

2013) MPI-ESM-MR 16 136 87 193 
MRI-ESM1 17 40 29 80 MRI.COM3 Adachi et al. (2013) 

NorESM1-ME 18 41 33 91 HAMOCC 5.1 Tjiputra et al. (2013) 

CanESM5 19 27 20 55 CMOC Swart et al. (2019) 

CESM2 20 41 33 91 MARBL Danabasoglu et al. (2020) 
CESM2-WACCM 21 

CNRM-ESM2-1 22 27 20 55 PISCES Aumont et al. (2015); Séférian et al. 
(2019) 

GFDL-ESM4 23 20 15 39 COBALTv2 Dunne et al. (submitted) 
GISS-E2-1-G 24 

15 12 29 NOBM Rousseaux and Gregg (2015) 
GISS-E2-1-G-CC 25 

IPSL-CM6A-LR 26 27 20 55 PISCES Aumont et al. (2015); Boucher et al. 
(2020) 

MIROC-ES2L 27 20 18 43 OECO2 Hajima et al. (2019) 

MPI-ESM1-2-HR 28 136 87 193 HAMOCC Müller et al. (2018) 
NorESM2-LM 29 25 20 57 HAMOCC Müller et al. (2018) 
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UKESM1-0-LL 30 27 20 55 MEDUSA2 Sellar et al. (2019); Yool et al. 
(2013) 
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Table 2. Annual model scores and ranking. 635 

Ranked models Scores Ranks 

Name ID CMIP Temp. Chl-a  NO3 Temp. Chl-a NO3 R! R!bio Overall 

ACM 1 – 1.14 0.64 1.27 1 1 1 1.0 1.0 1 

MPI-ESM1-2-HR 28 6 2.05 1.03 1.75 4 7 6 5.7 6.5 2 

CNRM-ESM2-1 22 6 2.74 0.92 1.91 12 3 9 8.0 6.0 3 

GFDL-ESM4 23 6 2.49 0.81 2.10 9 2 13 8.0 7.5 4 

IPSL-CM6A-LR 26 6 2.47 1.09 1.94 8 12 10 10.0 11.0 5 

GFDL-ESM2G 6 5 2.12 1.17 1.67 5 20 5 10.0 12.5 6 

HadGEM2-CC 10 5 2.58 1.02 2.11 11 6 14 10.3 10.0 7 

IPSL-CM5A-MR 13 5 3.07 1.09 1.80 16 13 7 12.0 10.0 8 

IPSL-CM5A-LR 12 5 2.52 1.17 1.91 10 19 8 12.3 12.0 9 

GISS-E2-1-G-CC 25 6 4.66 1.08 1.44 25 11 2 12.7 13.5 10 

HadGEM2-ES 11 5 2.90 1.06 2.12 14 9 15 12.7 6.5 11 

GISS-E2-1-G 24 6 4.79 1.08 1.47 26 10 3 13.0 6.5 12 

MIROC-ES2L 27 6 3.14 1.02 2.17 18 5 17 13.3 11.0 13 

IPSL-CM5B-LR 14 5 1.51 1.36 2.03 2 26 12 13.3 19.0 14 

MPI-ESM-MR 16 5 2.14 1.09 2.57 6 14 21 13.7 17.5 15 

UKESM1-0-LL 30 6 3.08 1.15 1.96 17 17 11 15.0 14.0 16 

MPI-ESM-LR 15 5 2.38 1.10 3.12 7 15 24 15.3 19.5 17 

CNRM-CM5 5 5 1.78 1.11 6.54 3 16 27 15.3 21.5 18 

GISS-E2-R-CC 9 5 3.84 1.19 1.62 21 22 4 15.7 13.0 19 

MRI-ESM1 17 5 2.78 1.15 2.53 13 18 20 17.0 19.0 20 

NorESM2-LM 29 6 2.98 1.04 13.26 15 8 30 17.7 19.0 21 

GFDL-ESM2M 7 5 3.89 0.95 7.14 22 4 29 18.3 16.5 22 

GISS-E2-H-CC 8 5 3.64 1.35 2.29 19 25 18 20.7 21.5 23 

CanESM5 19 6 4.05 1.35 2.16 23 24 16 21.0 20.0 24 

CanESM2 2 5 4.20 1.18 3.14 24 21 25 23.3 23.0 25 

CMCC-CESM 4 5 5.18 1.40 2.39 27 29 19 25.0 24.0 26 

NorESM1-ME 18 5 3.71 1.40 6.99 20 28 28 25.3 28.0 27 

CESM2 20 6 5.40 1.38 2.61 28 27 22 25.7 24.5 28 

CESM1-BGC 3 5 7.84 1.29 4.21 30 23 26 26.3 24.5 29 

CESM2-WACCM 21 6 5.71 1.42 2.78 29 30 23 27.3 26.5 30 
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Table 3. Comparison statistics between ACM and AZMP and glider observations along the Halifax Line and at Station 2. 

 RMSD  Bias  Correlation coefficient 

Season* W S S F  W S S F  W S S F 

 Halifax Line 

Chlorophyll  (time series) 0.25 0.37 0.39 0.36  0.08 0.22 0.28 0.13  0.68 0.78 0.71 0.75 
Chlorophyll  (Glider) 0.22 0.42 0.25 0.22  -0.14 0.13 0.17 0.04  0.88 0.78 0.94 0.85 

Nitrate 2.99 2.73 2.13 1.77  0.76 2.03 0.74 1.27  0.90 0.83 0.85 0.92 

 Station 2 

Chlorophyll  (time series) 
0.26 1.74 0.52 0.30  0.05 

-
0.56 0.26 0.01  0.64 0.22 0.48 0.82 

Chlorophyll  (Glider) 
0.15 1.06 0.31 0.17  -0.03 

-
0.46 0.25 0.02  0.87 0.69 0.91 0.93 

Nitrate 0.96 1.57 1.58 1.37  1.19 1.62 0.26 0.58  0.85 0.86 0.91 0.94 
*Seasons are order sequentially and abbreviated as W (winter, Dec–Feb), S (spring, Mar–May), S (summer, Jun–Aug) and F (fall, Sep–
Nov). 
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Figure 1. Study area indicating the 3 averaging zones, the limits of the ROMS grid and the location of the Halifax Line stations 
(squares) used in the analysis. The white star is Station 2 and the grey lines the gliders track. 
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Figure 2. Schematic of the biogeochemical model used in ROMS. The state variables are small phytoplankton (PS) and chlorophyll 
(CHLS), large phytoplankton (PL) and chlorophyll (CHLL), small zooplankton (ZS), large zooplankton (ZL), slow-sinking small 
detritus (DS), fast-sinking large detritus (DL), nitrate (NO3), and ammonium (NH4). Dashed lines indicate sinking. Black dots 
represent the connections between paths. 
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Figure 3. Bathymetry of the regional model (top), the highest resolution ESM (middle) and lowest resolution ESM (bottom). 
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Figure 4. Observed, ROMS and ensemble means area averaged surface chlorophyll (a-c), nitrate (d-f) and temperature (g-i) in the 655 
3 NWA shelf regions. 
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Figure 5. Observed (black dots) and best ESMs area averaged surface chlorophyll (a-c), nitrate (d-f) and temperature (g-i) in the 3 
NWA shelf regions. The colored circles and squares indicate the CMIP5 and CMIP6 models, respectively. 660 
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Figure 6. Root mean square difference between monthly, regionally averaged observations and models. Model numbers refer to the 
IDs in Table 1. 
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Figure 7. Model scores for surface chlorophyll (x-axis), nitrate (y-axis) and temperature (color scale) for the CMIP5 group (A, left 
panel), the CMIP6 group (B, right panel) and the regional model. The grey ellipsoids indicate the groups A–D (see text) and are the 
same in panels A and B. 
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Figure 8. Model average (grey bars) and specific (dots) ranking. The final ranking is shown on the y-axis. The temperature rank for 
model 6 is hidden behind the nitrate rank (x = 5). 
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Figure 9. Comparison of gliders, AZMP and model seasonal climatologies of chlorophyll and nitrate along the Halifax line.  

https://doi.org/10.5194/bg-2020-265
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.



34 
 

 

 680 

Figure 10. Comparison of vertically-resolved time series of chlorophyll (top) and nitrate (bottom) at Station 2 from the regional 
model (background), the glider transects (small dots) and the bimonthly sampling (large dots). 
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Figure 11. Resolution of the 29 ESMs ordered by their overall rank (see Figure 8). 685 
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Figure 12. Comparison of the ranks of the former (x-axis) and current (y-axis) generations of ESMs. Blue dots indicate the overall 
ranks, the green dots the chlorophyll ranks and the orange dots the nitrate ranks. The numbers indicate the model (see legend). 
These numbers do not correspond to the original model IDs indicated in Table 1. The black line is the 1:1 line. Dots above this line 690 
indicate an improvement and dots below the line a worsening of the rank. Note that there were two CMIP5 GFDL models but only 
one in the CMIP6 group (model pairs 4 and 5). 

 

 

https://doi.org/10.5194/bg-2020-265
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.


