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 49 

Abstract. In the current era of rapid climate change, accurate characterization of climate-50 

relevant gas dynamics - namely production, consumption and net emissions - is required for all 51 

biomes, especially those ecosystems most susceptible to the impact of change.  Marine 52 

environments include regions that act as net sources or sinks for numerous climate-active trace 53 

gases including methane (CH4) and nitrous oxide (N2O).  The temporal and spatial distributions 54 

of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical 55 

processes.  To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling 56 

requires a combination of traditional scientific disciplines including oceanography, 57 

microbiology, and numerical modeling.  Fundamental to these efforts is ensuring that the 58 

datasets produced by independent scientists are comparable and interoperable.  Equally critical is 59 

transparent communication within the research community about the technical improvements 60 

required to increase our collective understanding of marine CH4 and N2O.  An Ocean Carbon & 61 

Biogeochemistry (OCB) sponsored workshop was organized to enhance dialogue and 62 

collaborations pertaining to marine CH4 and N2O.  Here, we summarize the outcomes from the 63 

workshop to describe the challenges and opportunities for near-future CH4 and N2O research in 64 

the marine environment. 65 
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 66 

 67 

1. Background 68 

The most abundant greenhouse gases in the troposphere, excluding water vapor, are carbon 69 

dioxide (CO2), methane (CH4), and nitrous oxide (N2O).  Together they account for more than 70 

80% of the total radiative forcing (IPCC, 2013) and their current tropospheric mole fractions and 71 

rates of increase are unprecedented in recent Earth history (Ciais et al., 2013; Burke et al., 2020; 72 

Fig. 1a and 1b).  While CO2 is the most abundant of the three greenhouse gases, CH4 and N2O 73 

both have a higher warming potential than CO2 (Montzka et al., 2011).  To accurately constrain 74 

the contribution of CH4 and N2O to Earth’s radiation budget and their representation in 75 

predictive models requires their sources and sinks to be quantified with high resolution at the 76 

global scale. 77 

The oceans are a fundamental component of the global climate system and are a net source of 78 

tropospheric CH4 and N2O at the global scale, although local to regional budgets may include 79 

both source and sink components.  There are far fewer marine measurements of dissolved CH4 80 

and N2O than of dissolved CO2 and while there is substantial international coordination with 81 

regard to CO2 analysis, calibration and data reporting, no such coordination yet exists for CH4 82 

and N2O (Wilson et al. 2018).  Given the increasing prominence of climate change on scientific 83 

and societal agendas, greater coordination among the marine CH4 and N2O scientific community 84 

to provide more targeted measurements and increase the quality and interoperability of CH4 and 85 

N2O observations is particularly timely.   86 

Despite the lack of an international coordinating framework, there have been important 87 

advances in our understanding of marine CH4 and N2O in numerous research disciplines, ranging 88 

from cellular metabolism and model microbial systems to large-scale modeling.  For example, 89 

recent work identified novel microorganisms and metabolic pathways in the production of N2O 90 

(Trimmer et al., 2016; Caranto and Lancaster, 2017) and CH4 (Repeta et al. 2016; Bižić et al., 91 

2020).  Earth system models now incorporate improved N2O parameterizations to better resolve 92 

the ocean’s role in the global N2O cycle (Battaglia and Joos, 2018).  New techniques enable the 93 

discrimination of ancient and modern dissolved CH4 (Sparrow et al., 2018) and the transfer of 94 

CH4-derived carbon to other carbon pools (Pohlman et al., 2011; Garcia-Tigreros and Kessler, 95 

2018).  Other technological and analytical advances include improved near-continuous 96 
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spectroscopic analysis that yield greater sampling resolution in surface waters (e.g. Gülzow et 97 

al., 2011; Arévalo-Martínez et al., 2013; Erler et al., 2015) and the deployment of analytical 98 

devices on robotic vehicles (Nicholson et al., 2018).   99 

These scientific advances and an improvement in the quantity and quality of CH4 and N2O 100 

observations are timely given that large areas of both the open and coastal ocean remain under-101 

sampled (Fig. 1c and 1d).  Limited observations contribute to uncertainty in marine CH4 and 102 

N2O inventories, their rates of production and consumption, and their emissions.  The uncertainty 103 

associated with CH4 and N2O inventories is particularly problematic given that the marine 104 

environment is susceptible to an accelerating rate of anthropogenic change that will continue to 105 

modify the global cycles of carbon and nitrogen into the future.  Environmental impacts on 106 

marine CH4 and N2O distributions include increasing seawater temperatures, decreasing 107 

concentrations of dissolved oxygen (O2), acidification, retreat of ice and mobilization of carbon 108 

substrates from former permafrost, altering coastal run-off, and eutrophication (IPCC, 2019).  109 

These impacts will undoubtedly alter future CH4 and N2O exchange with the atmosphere, but the 110 

directions and magnitudes of these modified fluxes remains insufficiently understood.   111 

The need to resolve the marine CH4 and N2O inventories prompted an evaluation of the 112 

collective ability of the international scientific community to accurately determine the 113 

distribution and emissions of CH4 and N2O, and the determining physical-biogeochemical 114 

factors.  This became the focus of a marine CH4 and N2O workshop hosted by the Ocean Carbon 115 

and Biogeochemistry (OCB) program at Lake Arrowhead, California in October 2018.  The 116 

workshop considered CH4 and N2O equally on the same agenda, even though nearly all field, 117 

laboratory, and modeling studies examine these trace gases separately.  The rationale for this 118 

dual approach is that CH4 and N2O share common considerations of the physical, chemical, and 119 

microbial processes that dictate their water-column distributions (Bakker et al., 2014; Bodelier 120 

and Steenbergh, 2014).  In addition, many of the analytical procedures for quantifying CH4 and 121 

N2O and the subsequent data quality assurances share many common requirements.  The 122 

opportunity to bring a large research community together to increase dialogue and encourage the 123 

cross-fertilization of ideas was thus considered very valuable.  This article articulates the 124 

workshop outcomes framed in the context of current marine CH4 and N2O research and explores 125 

future research opportunities and challenges. 126 

 127 
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2. Coordination of oceanic CH4 and N2O measurements 128 

Our understanding of the temporal and spatial distributions of oceanic CH4 and N2O derives 129 

from over five decades of open ocean and coastal observations, including targeted expeditions, 130 

repeat hydrographic surveys, and time-series monitoring, each of which has been crucial to the 131 

development of our current knowledge (Fig. 2).  Targeted programs have enabled invaluable 132 

insights into the role of oxygen deficient zones in N2O cycling (Babbin et al., 2015; Bourbonnais 133 

et al., 2017; Frey et al., 2020) and the exploration of CH4-rich seeps and vents (Foucher et al., 134 

2009; Suess, 2010; Boetius and Wenzhöfer, 2013).  Basin-scale repeat hydrographic surveys 135 

(e.g.  the international GO-SHIP program) have facilitated extensive water-column mapping to 136 

identify relevant water masses and evaluate ventilation rates (Fig. 2d) (de la Paz et al., 2017).   137 

Other oceanic surveys have focused exclusively on surface sampling, using continuous 138 

equilibrator systems connected to various gas analyzers to yield high-resolution surface 139 

concentration fields of CH4 and N2O (Gülzow et al., 2013; Erler et al., 2015; Kodovska et al., 140 

2016; Thornton et al., 2016a; Pohlman et al., 2017).   In contrast, sustained long-term time-series 141 

measurements of CH4 and N2O at fixed monitoring stations are relatively few, but they span a 142 

range of latitudes and biogeochemical provinces (Fig. 2a and 2b).  The time-series observations 143 

provide the contextual background for seasonal and interannual variation that allow long-term 144 

temporal trends and episodic events to be identified and evaluated (Farías et al., 2015; Wilson et 145 

al., 2017; Ma et al., 2019).  Overall, the majority of measurements enable the variability in 146 

marine CH4 and N2O to be quantified at the mesoscale or greater (i.e. from hundreds of 147 

kilometers to ocean basins), with monthly to annual resolution, but there are substantially fewer 148 

datasets at the sub-mesoscale level (i.e. <10 km and hours to days) (Fig. 3).  A major reason for 149 

the limited sampling at the sub-mesoscale level is that it necessitates high-resolution 150 

measurements to resolve the heterogeneous variability that exists at these time-space scales.  151 

Such analyses have only recently become technically feasible (discussed in more detail in 152 

Section 6). 153 

Until recently there has been no formal coordination of observations across the CH4 and N2O 154 

scientific community.  In response to this, a Scientific Committee on Oceanic Research (SCOR) 155 

Working Group was initiated in 2014 entitled: ‘Dissolved N2O and CH4: Working towards a 156 

global network of ocean time series measurements’.  A major goal of the SCOR Working Group 157 

was to unite the international community in joint activities conceived to improve and inform 158 
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seagoing CH4 and N2O analyses.  An important activity was the preparation and distribution of 159 

common, combined gaseous CH4 and N2O standards to twelve international laboratories, with 160 

the aim of improving and standardizing calibration (Bullister et al., 2017).  A subsequent inter-161 

comparison of discrete seawater samples included the use of these standards and revealed the 162 

variability between laboratories.   While there were some encouraging results from the 163 

intercomparison, such as the agreement between individual laboratories using contrasting 164 

techniques, overall a large range was observed in CH4 and N2O concentration data generated by 165 

the participating laboratories (Wilson et al., 2018).  Such analytical discrepancies weaken our 166 

collective ability as a community to evaluate temporal-spatial variability in marine CH4 and N2O.  167 

The discrepancies also highlighted the need for Standard Operating Protocols (SOPs) for CH4 168 

and N2O analyses to facilitate standardization of sampling, measurement, and calibration, as well 169 

as the reporting of data and accompanying metadata in common repositories.  The SOPs are 170 

currently in preparation with intended publication on the Ocean Best Practices network.  171 

A data repository for oceanic CH4 and N2O data known as the MarinE MEthane and NiTrous 172 

Oxide database (MEMENTO) was established in 2009 (Bange et al., 2009; Kock and Bange, 173 

2015).  MEMENTO is now sufficiently mature to support descriptions of the broad-scale surface 174 

distributions of CH4 and N2O (e.g. Suntharalingam et al., 2012; Zamora and Oschlies, 2014; 175 

Buitenhuis et al., 2018; Battaglia and Joos, 2018).  Machine-learning mapping also recently 176 

identified the various contributions of physical and biogeochemical predictor variables for CH4 177 

(e.g. depth, primary production; Weber et al., 2019; Fig 4b) and N2O distributions (e.g. 178 

chlorophyll, sea surface temperature, apparent oxygen utilization, and mixed-layer depth; Yang 179 

et al., 2020; Fig. 4a).  The application of gas transfer algorithms to the extrapolated oceanic CH4 180 

and N2O distributions helped decrease the uncertainty in estimates of global air-sea exchange 181 

fluxes (Fig. 4c), thereby fulfilling one of the key goals of MEMENTO (Bange et al., 2009).  Net 182 

global open ocean emissions of N2O are now similarly estimated at 3–5 Tg N yr
-1

 by both Yang 183 

et al. (2020) and the Global Nitrous Oxide Project (Tian et al., 2020).  In comparison, net global 184 

ocean CH4 emissions from machine-learning mapping were estimated at 6–12 Tg CH4 yr
-1

 185 

(Weber et al., 2019), compared to 9–22 Tg CH4 yr
-1

 in the most up-to-date CH4 synthesis 186 

(Saunois et al., 2020).  However, the narrower range for machine-learning derived CH4 187 

emissions retains high uncertainty in regions such as the Arctic, where emissions are highly 188 

heterogeneous and compounded by seasonal ice cover.  Identifying the causes for uncertainty in 189 
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high emission regions will greatly aid future sampling campaigns, as is discussed in the 190 

following sections. 191 

 192 

3. Methane in marine environments 193 

In the surface waters of tropical and temperate oceans, a number of factors contribute to the 194 

low supersaturation of CH4 including direct aerobic production arising from the degradation of 195 

methylated sulfur compounds by phytoplankton (Klintzsch et al., 2019) and methyl phosphonate 196 

in phosphorus-depleted waters (Karl et al. 2008, Sosa et al., 2020), indirect production via 197 

grazing (Schmale et al., 2018) and abiotic photoproduction (Li et al., 2020).  A recent study 198 

demonstrated that CH4 production by cyanobacteria is linked to general cell metabolism and 199 

does not rely on the presence of methylated precursor compounds (Bižić et al., 2020).  Deep 200 

within the ocean’s pelagic interior, CH4 is weakly undersaturated reflecting depletion via 201 

microbial oxidation (Reeburgh 2007; Weber et al., 2019).  Towards the coastline, CH4 202 

supersaturation increases by orders of magnitude (Figure 5b), reflecting terrestrial inputs (e.g. 203 

river and groundwater), increased organic matter loading (Borges et al., 2018), and CH4 204 

diffusion and ebullition from shallow anoxic methane rich sediments (Zhang et al., 2008; Borges 205 

et al., 2016; Upstill-Goddard and Barnes, 2016).  Supersaturation of CH4 occurs frequently in the 206 

Arctic Ocean and its relatively shallow marginal seas with the most extreme values observed in 207 

the Eurasian Arctic (e.g. Shakhova et al., 2010; Damm et al., 2015; Kosmach et al., 2015; 208 

Thornton et al, 2016a; Lorensen et al., 2016; Fenwick et al., 2017; Lapham et al., 2017).  209 

Terrestrial and subsea permafrost are potential CH4 sources to shelf waters in addition to CH4 210 

hydrates that are found in marginal shelves globally (Ruppel and Kessler, 2017).  Large point 211 

source CH4 emissions, such as seafloor gas seeps can be large sources to the atmosphere in small 212 

localized areas (e.g. Thornton et al., 2020), but these sites remain particularly difficult to 213 

parameterize in models.  This reflects limited observations and a poor understanding of their 214 

spatial distributions, the driving mechanisms, and the wider context within the carbon cycle.  For 215 

example, the upwelling of cold, nutrient-rich water that accompanies CH4 ascending the water 216 

column stimulates CO2 consumption by photosynthesizing phytoplankton, rendering such CH4 217 

seeps an overall net sink for climate-forcing gases (Pohlman et al., 2017).  Recent work using 218 

thermal infrared satellite retrievals indicates increased high-latitude oceanic CH4 release in late 219 

autumn, coincident with pycnocline breakdown and a deepening of the ocean mixed layer depth 220 
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thereby bringing deep CH4 to the surface (Yurganov et al., 2019).  This is especially notable in 221 

the Kara and Barents Seas, but the remote observations have not yet been confirmed by surface 222 

ocean measurements which are difficult and therefore rare, except during the Arctic summer. 223 

Seabed CH4 emissions are hypothesized to increase in a warming ocean through the 224 

decomposition of gas hydrates, the degradation of subsea permafrost under some high-latitude 225 

seas, and the increased biodegradation of sediment carbon (Romanovskii et al., 2005; Biastoch et 226 

al., 2011; Lapham et al., 2013; Ruppel and Kessler, 2017; Borges et al., 2019).  Effort is thus 227 

focused on quantifying the fraction of CH4 generated in or released from marine sediments that 228 

ultimately enters the atmosphere, particularly on shallow continental shelves and in coastal 229 

ecosystems.  Natural stable isotopes have been used to inform spatial and temporal changes in 230 

dissolved CH4 concentrations (e.g. Pack et al., 2011; Mau et al., 2012; Weinstein et al., 2016; 231 

Leonte et al., 2017; Chan et al., 2019) and incubation experiments with added stable isotopes and 232 

radiotracers have helped elucidate how oxidation (anaerobically in sediments and aerobically in 233 

the water column), ebullition (where CH4 pore water partial pressure exceeds sediment 234 

hydrostatic pressure), and subsequent bubble dissolution in the water column interact to mitigate 235 

CH4 emissions to air (Steinle et al., 2015; Jordan et al., 2020).  The information deriving from 236 

these various approaches is inherently different but complementary.  Isotope tracer incubations 237 

provide snapshots of rates specific to the methanotrophic community and CH4 concentration at 238 

the time of sampling, whereas concentrations and isotopic gradients are used to infer in situ rates 239 

integrated over space and time.  A recent study deployed a remotely operated vehicle to examine 240 

the isotopic fractionation of CH4 during bubble ascent and used this to constrain the extent of 241 

bubble dissolution (Leonte et al., 2018).  This work demonstrated an experimental approach 242 

established for broadly constraining water column CH4 cycling directly from a surface research 243 

vessel.   244 

Despite the range of analytical and experimental approaches available, determining whether 245 

the origin of the emitted CH4 is seafloor release or aerobic production in the upper water column 246 

remains problematic.  To date there is no straightforward way to routinely distinguish between 247 

seafloor derived and water column generated CH4 for all locations.  Even so, stable carbon and 248 

hydrogen isotope measurements (i.e. δ
13

C-CH4 and δ
2
H-CH4) combined with ancillary data may 249 

provide valuable source information.  For example, combining these measurements with the ratio 250 

of CH4 to higher order hydrocarbons (e.g. ethene (C2H4) and ethane (C2H6)) can be used to infer 251 
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for example, whether the origin of the CH4 is thermogenic, sub-seafloor, or biogenic within the 252 

water column (Whiticar, 1999; Pohlman et al., 2009; Lan et al., 2019).  Continuous shipboard 253 

measurement of CH4 isotopes in surface water (e.g. Pohlman et al., 2017) and in the atmospheric 254 

boundary layer (Pankratova  et al., 2019; Berchet et al., 2020) are now possible and they have 255 

been used in combination with atmospheric inversion models to characterize and discriminate 256 

marine-emitted CH4 from other sources (Berchet et al., 2020).  Application of this method to 257 

land-based monitoring stations appears promising for apportioning CH4 emissions from various 258 

marine regions and sources (Thonat et al., 2019).  Additionally, in regions where aerobic CH4 259 

oxidation is substantial, the resulting isotopic fractionation generates measurable vertical and/or 260 

horizontal seawater gradients that can also be used to identify contrasting biogenic CH4 sources 261 

(Leonte et al., 2020).  However, the general overlap in isotope compositions of sediment CH4 262 

(e.g. Thornton et al., 2016b; Sapart et al., 2017) can complicate purely isotope-based 263 

determinations of sources. 264 

Measurements of the natural radiocarbon content of dissolved oceanic CH4, while being 265 

highly specialized and requiring substantial amounts of ship time and processing (Kessler and 266 

Reeburgh, 2005; Sparrow and Kessler, 2017), provide valuable source information because the 267 

14
C-CH4 measurements are normalized to the same 

13
C value and are unaffected by the extent 268 

of oxidation.  The bubbles sampled from hydrate and active seafloor seeps are largely devoid of 269 

radiocarbon (Pohlman et al., 2009; Kessler et al., 2008; Douglas et al., 2016).  However, CH4 in 270 

sediments can also be derived from more modern or recently deposited organic material and an 271 

exact determination of individual contributions is hard to achieve (Kessler et al., 2008; Sparrow 272 

et al., 2018).  The powerful insights made by radiocarbon-CH4 investigations would be further 273 

strengthened by concurrent sampling of other analytes that offer CH4 source information, such as 274 

clumped isotopes.  Isotope clumping, the co-occurrence of two or more of the less abundant 275 

isotopes in a molecule (e.g. 
13

C and 
2
H or 

1
H and 

2
H), provides unique information on marine 276 

CH4 sources (Stolper et al., 2014;  Wang et al, 2015; Douglas et al., 2017; Young et al., 2017; 277 

Labidi et al., 2020).  In this approach, the isotopic deviations in samples from their random 278 

probability distributions can give insight into formation temperature and the extent of 279 

biochemical disequilibrium.  However, the sample size required for a clumped isotope analysis 280 

in the oceanic environment away from areas of seafloor emission is large and exceeds the 281 

already demanding volume requirements for 
14

C analyses by 1–2 orders of magnitude (Douglas 282 
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et al., 2017).  While the requirement of large sample size and lengthy measurement time 283 

currently preclude their more widespread application, clumped isotope measurements offer 284 

future promise in refining our understanding of the processes of marine CH4 production and 285 

consumption. 286 

 287 

4. Nitrous oxide in marine environments  288 

The large-scale spatial distribution of N2O in the global ocean is reasonably well-established.  289 

The highest open ocean N2O values are in upwelling environments, where concentrations extend 290 

up to micromolar levels (Arévalo-Martínez et al., 2015) and production rates can be as high as 291 

120 nM d
-1

 (Frey et al., 2020).  The highly elevated N2O concentrations can be proximal to 292 

regions with some of the lowest recorded N2O concentrations, in the cores of O2 deficient zones.  293 

This coexistence of the highest and lowest observed N2O concentrations over vertical distances 294 

of tens of meters make upwelling regions a focal point for N2O research, particularly since O2 295 

deficient ocean zones are increasing in size (Stramma et al., 2011).  In contrast, in the surface 296 

waters of the expansive oligotrophic ocean gyres, N2O is weakly supersaturated (103-105%) 297 

with respect to atmospheric equilibrium (Weiss et al., 1992; Wilson et al., 2017, Charpentier et 298 

al., 2010).  Nitrous oxide becomes more highly saturated in the surface waters of equatorial 299 

upwelling regions due to the upward advection of N2O-rich waters (Arévalo‐Martínez et al., 300 

2017).  For the Arctic Ocean, the data indicate low net N2O emissions, with some areas acting as 301 

net N2O sources and others as N2O sinks (Fenwick et al., 2017, Zhang et al., 2015). 302 

Several parameters control net N2O emissions from the ocean, including temperature, 303 

salinity, dissolved O2, apparent oxygen utilization (AOU), nutrients, and microbial community 304 

abundance and composition.  A recent modeling study trained with just three of these variables 305 

(chlorophyll, O2, and AOU) accounted for 60% of the observed variability in oceanic N2O 306 

concentrations (Yang et al., 2020; Fig. 5a), highlighting the importance of N2O in productive 307 

upwelling systems.  Correlations between N2O and environmental variables provide some insight 308 

into the factors controlling its distribution, but they provide no information about the 309 

microorganisms or metabolic pathways involved.  Microbial production of N2O occurs during 310 

the metabolic processes of nitrification and denitrification (Stein and Yung, 2003).  To determine 311 

which process dominates N2O production at any given location requires the application of 312 

multiple methodological approaches, ideally in parallel.   313 
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One of the most commonly used approaches is the incubation of discrete water samples 314 

under in situ conditions with stable isotope (
15

N) addition such as 
15

N enriched NH4
+
, NO2

-
 or 315 

NO3
-
 to measure N2O production rates from nitrification and denitrification (e.g.  Ji et al., 2017).  316 

These approaches also provide insight into the microorganisms involved.  For example, N2O 317 

resulting from archaeal NH4
+
 oxidation is mostly formed from a combination of NH4

+
 and 318 

another N compound (e.g. NO2
-
) whereas bacteria produce N2O from NH4

+
 alone (Santoro et al., 319 

2011, Stieglmeier et al., 2014; Carini et al. 2018; Lancaster et al., 2018; Frey et al. 2020).   320 

Unfortunately, as with all incubation-based approaches 
15

N techniques are subject to bottle 321 

artifacts, and the strong dependence of N2O production and consumption on ambient O2 322 

increases the potential for contamination during the collection and manipulation of anoxic deep 323 

seawaters.  Incubation based rate measurements are also compromised by abiotic N2O 324 

production via chemodenitrification, specifically the reduction of NO2
-
 coupled to Fe

2+
 325 

oxidation, as observed in high Fe environments (Ostrom et al., 2016; Buchwald et al., 2016; 326 

Wankel et al., 2017).  These issues highlight the need for incubation techniques that mitigate the 327 

effect of experimental artifacts (Stewart et al., 2012).    328 

In addition to isotope addition and incubation, natural abundance water-column 329 

measurements of N2O concentrations, isotopes, and isotopomers yield valuable rate and process 330 

information. These measurements are free from experimental artifacts and can be used to 331 

integrate over appropriate temporal and spatial scales.  For example, nitrification in sunlit waters 332 

has been inferred from N2O distributions (Dore and Karl, 1996), and N2O production close to the 333 

ocean surface is a large contributor to the uncertainty in oceanic N2O emissions (Ward et al., 334 

1982; Zamora and Oeschlies, 2014).  Isotopomers are isomers having the same number of each 335 

isotope of each element but differing in their structural positions.  Nitrous oxide isotopomers are 336 

increasingly used, sometimes in combination with box models, to estimate the rates of different 337 

N2O production pathways, in the upwelling systems off southern Africa (Frame et al., 2014) and 338 

Peru (Bourbonnais et al., 2017).  There is however some disagreement about whether isotopomer 339 

signatures are robust indicators of the formation pathway (Yoshida and Toyoda, 2000; Sutka et 340 

al., 2006) or whether there is fractionation during production (Schmidt et al., 2004; Casciotti et 341 

al., 2018).  Greater clarity is therefore required in the use of N2O isotopes and isotopomers to 342 

infer metabolic pathways of N2O formation.  Notwithstanding this issue, field measurements of 343 

N2O isotopes and/or isotopomers have the potential to greatly increase current experimental 344 
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capabilities and robustness (Yu et al., 2020).  However, the development of spectroscopic gas 345 

analysis systems that have been so advantageous to CH4 research has been slower for N2O.  This 346 

is due to the higher costs and the increased complexity of the laser systems, although progress is 347 

being made to improve instrumental precision, and to decrease matrix effects and spectral 348 

interferences (e.g. Harris et al., 2019).  349 

A better understanding of the microorganisms responsible for N2O production and 350 

consumption is fundamental to deriving more accurate estimates of process rates. For example, 351 

the metabolic activity of ammonia oxidizing archaea can exceed that of ammonia oxidizing 352 

bacteria in the ocean (Santoro et al., 2010; Löscher et al., 2012; Fuchsman et al., 2017).  The 353 

differing sensitivities of these archaea and bacteria to dissolved O2 (Stahl and de la Torre, 2012; 354 

Hink et al., 2017) are a critical factor in evaluating the microbial response to changing 355 

environmental conditions, as shown for the terrestrial environment (Prosser at al., 2020).  356 

Therefore, to understand the impact of deoxygenation on oceanic N2O emission requires a better 357 

understanding of both archaeal and bacterial metabolisms and their environmental niches.  Field-358 

based sequencing not only characterizes the community but can highlight potential metabolic 359 

pathways when they might not otherwise be inferred.  For example, transcripts encoding for N2O 360 

consumption (nosZ) have repeatedly been identified in the oxic water column, despite 361 

denitrification being an anaerobic metabolic process (Wyman et al., 2013; Sun et al., 2017).  The 362 

transcription of nosZ has been also located in highly dynamic O2 permeable coastal sediments 363 

(Marchant et al., 2017).  Denitrification under aerobic conditions is attributed to fluctuations in 364 

O2, NO3
-
, organic matter and other parameters that affect the availability of electron donors and 365 

acceptors which ultimately influences whether a coastal environment is a net source or sink of 366 

N2O, as discussed in the next section.    367 

 368 

5. CH4 and N2O in shallow marine environments 369 

Coastal and other shallow (<50 m) marine systems are globally relevant CH4 and N2O source 370 

regions.  However, their emission rates to the atmosphere are weakly constrained in comparison 371 

with the open ocean.  Several factors contribute to the uncertainty, including the high diversity of 372 

coastal and shallow marine ecosystems and lack of consistency in adequately defining them, 373 

locally heterogeneous conditions causing strong spatial and temporal concentration gradients, 374 

highly uncertain spatial distribution of CH4 seeps, a bias towards studies in the northern 375 
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hemisphere, and incomplete or sometimes inappropriate sampling strategies (Al-Haj and 376 

Fulweiler, 2020).  Until these issues are resolved it will remain difficult to adequately define the 377 

contribution from shallow marine systems to global CH4 and N2O budgets.  An important 378 

illustration of this is reflected in the prevailing view that large geological sources (e.g. seeps, 379 

mud volcanoes, and hydrates) are the main contributors to marine CH4 emissions (Ciais et al., 380 

2013).  The most recent modeled estimate of global marine CH4 emissions (6–12 Tg CH4 yr
-1

) 381 

reported that near-shore environments (depths of 0–50 m) contribute a large and highly uncertain 382 

diffusive flux (Weber et al., 2019).  A study of coastal ecosystems, in this case defined as shelf, 383 

estuarine, and tidally influenced rivers, estimated them to contribute 7 Tg CH4 yr
-1

 (Anderson et 384 

al., 2010) while another estimated 1–7 Tg CH4 yr
-1

 for estuaries alone (Borges and Abril, 2011).  385 

Similar uncertainties exist for N2O.  Estimates of coastal N2O emissions (which include coastal, 386 

estuarine, and riverine sources) range from 0.1–2.9 Tg N yr
-1

 (Ciais et al., 2013), although a 387 

recent review of N2O production across a range of estuarine habitats placed N2O fluxes at the 388 

lower end of these estimates (0.17–0.95 Tg N yr
-1

) (Murray et al., 2015).  Based on these data, 389 

coastal systems account for around one third of total marine N2O emissions (Yang et al., 2020).   390 

The direct quantification of CH4 and N2O emissions from shallow coastal ecosystems has 391 

historically involved using gas concentrations measured in discrete water and air samples 392 

combined with a gas transfer velocity (kw).  For the coastal and open ocean, the dominant driver 393 

of gas exchange is wind speed (e.g. Nightingale et al., 2000; Wanninkhof, 2014) whereas in 394 

nearshore, shallow water environments the interaction of water, depth, and tidal current speeds 395 

may be a major contributor to near surface turbulence.  Several kw parameterizations are now in 396 

use for coastal waters (e.g. Raymond and Cole 2001; Kremer et al., 2003; Zappa et al., 2003; 397 

Borges and Abril, 2011; Ho et al. 2011; Rosentreter et al., 2017; Jeffrey et al., 2018) which 398 

increases the uncertainties associated with CH4 and N2O emissions.  For example, a fivefold 399 

variation in CH4 emissions from a single system occurred when applying different 400 

parameterizations to the measured gradients in CH4 (Ferrón et al., 2007).  401 

To constrain emissions over small areas, continuous air-sea fluxes can be measured using 402 

free-floating chambers (e.g. Bahlmann et al., 2015; Rosentreter et al., 2018; Yang et al., 2018; 403 

Murray et al., 2020), but issues related to turbulence modification may still generate flux artifacts 404 

(Upstill-Goddard, 2006).  To overcome these problems in the future, a greater reliance on direct 405 

and robust continuous techniques for air-sea flux measurement, such as eddy covariance (e.g. 406 
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Podgrajsek et al., 2016), that avoid any need for kw, will be necessary.  Eddy-covariance 407 

measurements also capture both diffusive and ebullitive flux components (Thornton et al., 2020).  408 

Combining this approach with new analytical techniques such as cavity enhanced absorption 409 

spectroscopy (CEAS) and non-dispersive infrared (NDIR) should continue to improve the 410 

quality of CH4 and N2O flux estimates (McDermitt et al., 2011; Nemitz et al., 2018; Maher et al., 411 

2019).  Indeed, eddy flux towers aboard ships (Thornton et al., 2020) and in coastal locations 412 

(Yang et al., 2016; Gutiérrez-Loza et al., 2019) are now being equipped with CH4 413 

instrumentation that enables the integration of CH4 fluxes over large areas.  There are fewer N2O 414 

flux estimates made with CEAS and NDIR and the implementation of N2O sensors on eddy flux 415 

towers remains limited.  Recently, N2O emissions from Eastern Boundary Upwelling Systems 416 

were quantified using inversion modeling based on atmospheric measurements from coastal 417 

monitoring stations highlighting the potential of this approach to constrain N2O emissions from 418 

remote oceanographic regions that have significant spatial and temporal heterogeneity (Ganesan 419 

et al., 2020; Babbin et al., 2020).  Inverse modeling of atmospheric measurements was also 420 

recently used to constrain CH4 emissions from the East Siberian Arctic Shelf (Tohjima et al., 421 

2020)  422 

Coastal measurements of CH4 and N2O also require the collection of ancillary data such as 423 

water-column depth, tidal motions (Rosentreter et al., 2018; Huang et al., 2019; Pfeiffer-Hebert 424 

et al., 2019), and other information relating to diel processes (Maher et al., 2016).  Such data are 425 

important because for example, the magnitude of CH4 and N2O fluxes vary over a diel period 426 

depending on the redox environment as a result of tidal effects and changes in inorganic N and 427 

O2 availability (Seitzinger and Kroeze, 1998; Call et al., 2015; Vieillard and Fulweiler, 2014; 428 

Maher et al., 2015; Murray et al., 2015; Foster and Fulweiler, 2019).  The magnitude of CH4 and 429 

N2O fluxes also varies over longer temporal scales (seasonally to yearly) due to additional 430 

factors such as groundwater inputs, adjacent land-use, dissolved O2, organic matter content and 431 

quality, and macrofaunal distributions (Barnes and Upstill-Goddard, 2011; Upstill-Goddard and 432 

Barnes, 2016; Gelesh et al., 2016; Bonaglia et al., 2017; Borges et al., 2018; Wells et al., 2018; 433 

Ray et al., 2019; Al-Haj and Fulweiler, 2020; Reading et al., 2020).  To determine the 434 

contributing factors and resolve the spatial distributions, mobile sampling platforms such as 435 

small vessels (Müller et al., 2016; Brase et al., 2017; Tait et al., 2017), and autonomous vehicles 436 

(Manning et al., 2019) are essential.  Recent improvements in gas sensors and in technology such 437 
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as sonar and ebullition sensors will further increase our ability to measure dynamic fluxes 438 

(Maher et al., 2019; Lohrberg et al., 2020).  Improvements to the quality and quantity of CH4 and 439 

N2O measurements in coastal systems will enable the development of iterative forecast models, 440 

further improving estimates of global coastal CH4 and N2O fluxes. 441 

 442 

6. Leveraging culture studies to further our ecosystem understanding 443 

A more complete understanding of marine CH4 and N2O necessitates closer integration between 444 

biogeochemistry, model requirements, and targeted microbiological studies involving both single 445 

microorganism isolates and enrichment cultures.  Marine CH4 and N2O budgets deriving from 446 

both ‘bottom-up’ (e.g. emissions inventories, ocean and terrestrial process models) and ‘top-447 

down’ (e.g. inverse analyses of atmospheric trace-gas measurements) approaches would greatly 448 

benefit from more highly constrained metabolic processes.  Specifically, this includes rates of 449 

CH4 or N2O production and consumption for key model microorganisms, and the kinetic 450 

parameters associated with these metabolic rates.  Reliable inventories of key microbially 451 

mediated process rates will improve the robustness of Earth System models used for predicting 452 

climate-mediated changes to marine CH4 and N2O emissions. 453 

For N2O, laboratory studies quantifying microbial process rates, such as for nitrification and 454 

denitrification, are relatively few (e.g. Frame and Casciotti 2010; Santoro et al. 2011; Löscher et 455 

al. 2012; Ji et al. 2015; Qin et al., 2017). Consequently, models largely continue to use process 456 

rates optimized using water column concentrations of N2O, O2, and related nitrogen cycle 457 

quantities (e.g. Battaglia and Joos, 2018; Buitenhuis et al., 2018; Landolfi et al., 2017).  Future 458 

model parameterizations for N2O will require information on the variability of microbial process 459 

yields derived from culture studies with controlled varying conditions of O2 (Goreau et al. 1980, 460 

Frame and Casciotti 2010, Löscher et al. 2012; Ji et al., 2018), pH (Breider et al., 2019; Hopkins 461 

et al. 2020), temperature, and nutrients.  Automated incubation systems have measured N2O 462 

production kinetics and yield as functions of the concentrations of O2 and total ammonia nitrogen 463 

(Molstad et al., 2007; Hink et al., 2017).  Quantifying the physiology of relevant microorganisms 464 

and connecting them to environmental characteristics will provide insights into why, for 465 

example, some shallow marine habitats act as N2O sinks while others are N2O sources, or how 466 

N2O is produced in well oxygenated open-ocean waters, as compared to oxygen deficient zones.  467 
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For CH4, a key requirement to relate in situ CH4 production with transport to atmospheric 468 

emissions is our ability to accurately determine rates of CH4 oxidation.  Fundamental issues 469 

include the challenges of cultivating methanotrophs and of replicating environmental conditions 470 

such as pressure and the chemistry of CH4 gas bubbles.  The increased emphasis on CH4 471 

dynamics in shallow water environments highlighted in Section 5, must be supported by culture-472 

based measurements of CH4 oxidation that control for temperature, O2 and other important 473 

variables.  In comparison to CH4 oxidation, culture-based studies are used increasingly to 474 

identify organisms capable of aerobic CH4 production and their underlying metabolic pathways 475 

(Carini et al., 2014; Klintzsch et al; 2019; Bižić et al., 2020).  476 

Specific cellular yields and consumption rates of CH4 and N2O are not the sole objective of 477 

culturing experiments.  Cultivation of microorganisms involved in CH4 and N2O production and 478 

consumption provides vital information into the physiology, metabolism, and interactions of 479 

environmentally relevant clades.  When combined with genomic approaches, insights can 480 

therefore be gained into the diversity and global distribution of organisms involved in CH4 and 481 

N2O cycling. For CH4 some unexpected physiologies have been revealed (Ettwig et al., 2010; 482 

Haroon et al., 2013; Ettwig et al., 2016), which has directed research into sources and sinks of 483 

CH4 in the natural environment.  Similarly, our understanding of how and when ammonia 484 

oxidizers produce N2O has been facilitated by studies of cultured nitrifiers and detailed analysis 485 

of their biochemistry (Stahl and de la Torre, 2012; Caranto and Lancaster, 2017).  Recent 486 

combinations of cultivation studies with environmental genomics, albeit largely for terrestrial 487 

systems, have revealed a variety of denitrifiers, many of which are only involved in specific 488 

denitrification steps (Ganesh et al., 2014; Lycus et al, 2017;  Hallin et al, 2018; Marchant et al., 489 

2018; Conthe et al, 2019).   490 

 491 

7. Outlook and priorities for marine CH4 and N2O measurements 492 

This perspectives article has assessed the collective ability of the scientific community to 493 

determine the spatial variability of marine CH4 and N2O distributions, the underlying 494 

mechanisms that determine this variability, and the resulting sea-to-air emissions.  Shallow 495 

marine environments and oxygen deficient zones are widely recognized as deserving of greater 496 

attention because they have high CH4 and N2O concentrations with inherently high uncertainties 497 

that complicate any assessment of their emissions to air (Bange et al., 1994; Bange et al., 1996; 498 
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Bakker et al., 2014; James et al., 2016; Borges et al., 2016; Tian et al., 2020).  Fortunately, recent 499 

technological advances that have increased our ability to conduct high-resolution measurements 500 

allow an optimistic outlook for making substantial progress in quantifying the CH4 and N2O 501 

budgets of these ecosystems.  Even so, the inherent complexity of shallow marine environments 502 

clearly warrants a strategically coordinated approach to optimize the value of future studies.  503 

Issues to consider include identifying the locations of complementary sampling sites, 504 

standardizing sampling strategies and techniques, and agreeing the use of common ancillary 505 

measurements that set the broad biogeochemical context (Bange et al., 2019).  In contrast to the 506 

open ocean, measurement campaigns in shallow water environments are amenable to the use of 507 

eddy covariance flux towers, and they have the potential to lever resources from existing 508 

observation networks, which in North America include the Long-Term Ecological Research 509 

network (LTER) and the National Estuarine Research Reserve (NERR) System (Novick et al., 510 

2018).  Indeed, such activities are already underway; an increasing number of flux towers are 511 

being equipped for CH4 measurements (Torn et al., 2019) and future efforts should focus on the 512 

inclusion of N2O (see Section 5).  513 

We are encouraged that the Global Carbon Project with its objective of developing a 514 

complete picture of the global carbon cycle including interactions and feedbacks has expanded to 515 

include CH4 (Saunois et al., 2020) and is now incorporating N2O (Tian et al., 2020).  These 516 

Projects compile the most recent data from peer-reviewed analyses of the sources and sinks of 517 

atmospheric CH4 and N2O from both natural and human activities.  For example, the aquatic 518 

components of the recent Global Carbon Project N2O budget reported emissions from the open 519 

ocean, inland waters, estuaries and coastal zones.  Low-oxygen oceanic regions associated with 520 

eastern-boundary upwelling zones, and the coastal ocean were identified as key regions with 521 

significant N2O variability requiring more detailed assessment via measurement campaigns and 522 

model analyses (Tian et al., 2020).  Contribution to the Global Carbon Project and similar 523 

initiatives will identify areas of synergistic CH4 and N2O research for oceanographers and other 524 

Earth observation scientists (Ganesan et al., 2019).  Furthermore, as highlighted in Section 6, 525 

field observations alone are insufficient to improve the robustness of Earth System models and 526 

leveraging laboratory-based microbial process studies is highly recommended.  527 
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The success of any coordinated CH4 and N2O research program relies heavily on having 528 

uniformly high confidence in the various resulting datasets and their interoperability, and we 529 

identify three key initiatives that are paramount to ensuring this:  530 

(i) The first is to develop and adopt Standard Operating Protocols (SOPs) to help obtain 531 

intercomparable CH4 and N2O datasets of the highest possible accuracy and precision.  532 

Currently, there is no community-defined level of analytical uncertainty to characterize high 533 

quality CH4 and N2O measurements.  However, attaining an analytical agreement between 534 

multiple laboratories of ≤1% is considered achievable for the repeat oceanographic surveys and 535 

time-series observations (Fig. 3).  For context, an analytical agreement of ≤1% would permit the 536 

ocean’s response to the increasing tropospheric CH4 and N2O mole fractions to be resolved on 537 

timescales of 10 and 5 years, respectively.  These values are based on the changes in surface 538 

ocean CH4 and N2O concentrations that are predicted to occur due to the ongoing increase in 539 

tropospheric CH4 and N2O mole fractions at a seawater temperature of 20°C and a salinity of 35 540 

g kg
-1

, and assuming all sources and sinks remaining constant.  In our recent marine CH4 and 541 

N2O inter comparison exercise we concluded that the diversity of analytical procedures 542 

employed by the participants was a major cause of high variability between the reported 543 

concentrations, highlighting an urgent requirement for CH4 and N2O SOPs (Wilson et al., 2018). 544 

Consequently, these SOPs are now being compiled, and they will be freely available via the 545 

Ocean Best Practices System.   546 

(ii) The second is increased regularity of intercomparison exercises through the periodic 547 

distribution of consensus material, i.e. water samples in which CH4 and N2O concentrations are 548 

known with high confidence, obtained by pooling analyses from several laboratories with 549 

demonstrated analytical capability.  These will help the scientific community to monitor data 550 

comparability and accuracy, particularly in the case of highly elevated concentrations of CH4 and 551 

N2O, i.e. those exceeding atmospheric equilibrium concentrations by at least an order of 552 

magnitude.   553 

(iii) The third activity builds on the previous initiative and calls for the production of Global 554 

Data Products for dissolved CH4 and N2O measurements.  To date, individual CH4 and N2O 555 

measurements are represented at the global scale by the MEMENTO database which has been 556 

very successful at compiling CH4 and N2O datasets and making them readily accessible to the 557 

modeling community.  However, the MEMENTO database does not currently include a Global 558 
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Data Product that includes publicly accessible quality controlled dissolved CH4 and N2O 559 

datasets.  The international marine carbon science community has widely embraced such an 560 

approach for fCO2, by submitting data to the Surface Ocean CO2 Atlas (SOCAT), which was 561 

initiated in response to the need for a quality controlled, publicly available, global surface CO2 562 

dataset (e.g. Bakker et al., 2016).  Due to the fewer measurements, a similar data product for 563 

marine CH4 and N2O would be needed every ~5 years.  We consider the production of Global 564 

Data Products for dissolved CH4 and N2O to be essential for supporting future global modeling 565 

efforts and to enhance field observations.  566 

The benefits of pursuing the three activities described above have already been clearly 567 

demonstrated for carbon system measurements in the ocean.  The intercomparability and high 568 

accuracy and precision of carbon system measurements was achieved by streamlining 569 

methodological approaches, universally adopting agreed SOPs, production of reference material, 570 

and following community-driven quality control procedures (Dickson et al., 2007, Dickson et al, 571 

2010).  It is encouraging to see the marine CH4 and N2O community beginning to move in a 572 

similar direction.   573 
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 1214 

Figure 1. Atmospheric values of (a) CH4 and (b) N2O with the black lines reconstructed from 1215 

ice-core measurements (Etheridge et al., 1998; Machida et al., 1995) and the colored lines from 1216 

Mauna Loa Observatory (https://www.esrl.noaa.gov/gmd/dv/data/).  Global maps of marine (c) 1217 

CH4 and (d) N2O measurements available from the MEMENTO database 1218 

(https://memento.geomar.de/).  The 2018 workshop focused on the marine contribution to 1219 

atmospheric CH4 and N2O and the underlying microbial and biogeochemical control 1220 

mechanisms. 1221 
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 1223 

Figure 2. Repeat oceanic observations include both (a, b) fixed location time-series monitoring 1224 

observations and (c,d) hydrographic surveys.  Together, such field observation programs helps 1225 

resolve temporal variability ranging from months to years and spatial variability at the ocean 1226 

basin scale (see Fig. 3).  The Station ALOHA data derive from Wilson et al. (2018), the Station 1227 

18 data derive from Farías et al. (2015), and the P16 transect was conducted in 2015 by the 1228 

NOAA PMEL Tracer Group as part of the GO-SHIP program.  The data shown in the plots are 1229 

N2O concentrations, either as N2O (i.e. deviation from equilibrium value) or absolute values. 1230 
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 1236 

Figure 3. Time-space scale diagram illustrating various physical, biological, and climatological 1237 

processes relevant to marine CH4 and N2O (adapted from Dickey, 2003).  To date, the majority 1238 

of marine CH4 and N2O measurements resolve variability at the mesoscale level or higher.  1239 

Recent technological developments and the need to resolve concentrations and fluxes in shallow 1240 

water environments will increase the number of measurements conducted at the submesoscale 1241 

level (see Fig. 5).  The low resolution oceanographic surveys are more likely to achieve a high 1242 

level of analytical accuracy compared to high resolution coastal measurements, however this is 1243 

compensated for by high temporal resolution achieved by underway sampling.  1244 
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  1246 

Figure 4. Distributions and emissions of marine CH4 and N2O, (a) Air-sea N2O disequilibrium 1247 

mapped using a Regression Forest model (adapted from Yang et al., 2020), (b) Air-sea CH4 1248 

disequilibrium mapped using an Artificial Neural Network model (adapted from Weber et al., 1249 

2019).  For consistency with the original publications, the air-sea disequilibrium is shown in 1250 

different units for N2O (partial pressure) and CH4 (concentration).  (c) A summary of global 1251 

ocean CH4 and N2O emissions estimated by Yang et al. (2020) and Weber et al. (2019), 1252 

compared to the estimates of the IPCC 5th Annual Report (IPCC AR5) and the Global Methane 1253 

Budget (Saunois et al., 2016).  1254 
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 1257 

 Figure 5.  Key environmental predictors of surface ocean CH4 and N2O gradients. (a) Excess air-1258 

sea N2O is best predicted by O2 concentrations in the subsurface water-column (base of the 1259 

mixed layer to a depth of 100 m) (adapted from Yang et al., 2020). (b) Excess CH4 is best 1260 

predicted by seafloor depth, reflecting the supply from anoxic sediments (adapted from Weber et 1261 

al., 2019).  The grey dots represent individual data points and the red dots with error bars 1262 

represent mean ±1s.d. of binned data, using O2 bins of 10 μM width and seafloor depth bins of 1263 

10 m width.  1264 
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