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 47 

Abstract. In the current era of rapid climate change, accurate characterization of climate-48 

relevant gas dynamics - namely production, consumption and net emissions - is required for all 49 

biomes, especially those ecosystems most susceptible to the impact of change.  Marine 50 

environments include regions that act as net sources or sinks for a number of climate-active trace 51 

gases including methane (CH4) and nitrous oxide (N2O).  The temporal and spatial distributions 52 

of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical 53 

processes.  To evaluate and quantify the importance of these mechanisms relevant to marine CH4 54 

and N2O cycling requires a combination of traditional scientific disciplines including 55 

oceanography, microbiology, and numerical modeling.  Fundamental to all of these efforts is 56 

ensuring that the datasets produced by independent scientists around the world are comparable 57 

and interoperable.  Equally critical is transparent communication within the research community 58 

about the technical improvements required to increase our collective understanding of marine 59 

CH4 and N2O.  An Ocean Carbon & Biogeochemistry (OCB) sponsored workshop was organized 60 

to enhance dialogue and collaborations pertaining to marine CH4 and N2O.  Here, we summarize 61 

the outcomes from the workshop to describe the challenges and opportunities for near-future 62 

CH4 and N2O research in the marine environment. 63 

 64 
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 65 

1. Background 66 

The most abundant greenhouse gases in the troposphere, excluding water vapor, are carbon 67 

dioxide (CO2), methane (CH4), and nitrous oxide (N2O).  Together they account for more than 68 

80% of the total radiative forcing (IPCC, 2013) and their current tropospheric mole fractions and 69 

rates of increase are unprecedented in recent Earth history (Ciais et al., 2013; Burke et al., 2020; 70 

Fig. 1a).  While CO2 is the most abundant of the three greenhouse gases, CH4 and N2O both have 71 

a higher warming potential than CO2 (Montzka et al., 2011).  To accurately constrain the 72 

contribution of CH4 and N2O to Earth’s radiation budget requires their sources and sinks to be 73 

quantified with high resolution at the global scale. 74 

The oceans are a fundamental component of the global climate system and are a net source of 75 

tropospheric CH4 and N2O at the global scale, although local to regional budgets may include 76 

both source and sink aspects.  There are far fewer marine measurements of dissolved CH4 and 77 

N2O than of dissolved CO2 and while there is substantial international coordination with regard 78 

to CO2 analysis, calibration and data reporting, no such coordination yet exists for CH4 and N2O 79 

(Wilson et al. 2018).  Given the increasing prominence of climate change on scientific and 80 

societal agendas, greater coordination among the marine CH4 and N2O scientific community to 81 

provide more targeted measurements and increase the quality and interoperability of CH4 and 82 

N2O observations is particularly timely.   83 

Despite the lack of an international coordinating framework, there have been important 84 

advances in our understanding of marine CH4 and N2O in numerous research disciplines, ranging 85 

from cellular metabolism and model microbial systems to large-scale modeling.  For example, 86 

recent work identified novel microorganisms and metabolic pathways in the production of N2O 87 

(Trimmer et al., 2016; Caranto and Lancaster, 2017) and CH4 (Repeta et al. 2016; Bižić et al., 88 

2020).  Earth system models now incorporate improved N2O parameterizations to better resolve 89 

the ocean’s role in the global N2O cycle (Battaglia and Joos, 2018).  New techniques enable the 90 

discrimination of ancient and modern dissolved CH4 (Sparrow et al., 2018) and the transfer of 91 

CH4-derived carbon to other carbon pools (Pohlman et al., 2011; Garcia-Tigreros and Kessler, 92 

2018).  Other technological and analytical advances include improved near-continuous 93 

spectroscopic analysis that yield greater sampling resolution in surface waters (e.g. Gülzow et 94 
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al., 2011; Arévalo-Martínez et al., 2013; Erler et al., 2015) and the deployment of analytical 95 

devices on robotic vehicles (Nicholson et al., 2018).   96 

These scientific advances and an improvement in the quantity and quality of CH4 and N2O 97 

observations are timely given that large areas of both the open and coastal ocean remain under-98 

sampled (Fig. 1b).  This leads to uncertainty in oceanic CH4 and N2O inventories, their rates of 99 

production and consumption, and their emissions.  This is problematic given that the marine 100 

environment is susceptible to an accelerating rate of anthropogenic change that will continue to 101 

modify the global cycles of carbon and nitrogen into the future.  Environmental impacts on 102 

marine CH4 and N2O distributions include increasing seawater temperatures, decreasing 103 

concentrations of dissolved oxygen (O2), acidification, retreat of ice and mobilization of carbon 104 

substrates from former permafrost, altering coastal run-off, and eutrophication (IPCC, 2019).  105 

These impacts will undoubtedly alter future CH4 and N2O exchange with the atmosphere, but the 106 

directions and magnitudes of these modified fluxes remains insufficiently understood.   107 

A need to resolve the uncertainties prompted an evaluation of the collective ability of the 108 

international scientific community to accurately determine the distribution and emissions of CH4 109 

and N2O, and the physical-biogeochemical factors that determine them.  This became the focus 110 

of a marine CH4 and N2O workshop hosted by the Ocean Carbon and Biogeochemistry (OCB) 111 

program at Lake Arrowhead, California in October 2018.  The workshop considered CH4 and 112 

N2O equally on the same agenda, even though nearly all field, laboratory, and modeling studies 113 

examine these trace gases separately.  The rationale for this dual approach is that CH4 and N2O 114 

share common considerations of the physical, chemical, and microbial processes that dictate their 115 

water-column distributions (Bakker et al., 2014; Bodelier and Steenbergh, 2014).  In addition, 116 

many of the analytical procedures for quantifying CH4 and N2O and the subsequent data quality 117 

assurances share many common requirements.  The opportunity to bring a large research 118 

community together to increase dialogue and encourage the cross-fertilization of ideas was thus 119 

considered very valuable.  This article articulates the workshop outcomes framed in the context 120 

of current marine CH4 and N2O research and explores future research opportunities and 121 

challenges. 122 

 123 

2. Coordination of oceanic CH4 and N2O measurements 124 
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Our understanding of the temporal and spatial distributions of oceanic CH4 and N2O derives 125 

from over five decades of open ocean and coastal observations, including targeted expeditions, 126 

repeat hydrographic surveys, and time-series monitoring, each of which has been crucial to the 127 

development of our current knowledge (Fig. 2).  Targeted programs have enabled invaluable 128 

insights into the role of oxygen deficient zones in N2O cycling (Babbin et al., 2015; Bourbonnais 129 

et al., 2017; Frey et al., 2020) and the exploration of CH4-rich seeps and vents (Foucher et al., 130 

2009; Suess, 2010; Boetius and Wenzhöfer, 2013).  Basin-scale repeat hydrographic surveys 131 

(e.g.  the international GO-SHIP program) have facilitated extensive water-column mapping to 132 

identify relevant water masses and evaluate ventilation rates (e.g. de la Paz et al., 2017).   Other 133 

oceanic surveys have focused exclusively on surface sampling, using continuous equilibrator 134 

systems connected to various gas analyzers to yield high-resolution surface concentration fields 135 

of CH4 and N2O (Gülzow et al., 2013; Erler et al., 2015; Kodovska et al., 2016; Thornton et al., 136 

2016a; Pohlman et al., 2017).   In contrast, sustained long-term time-series measurements of CH4 137 

and N2O at fixed monitoring stations are relatively few, but they span a range of latitudes and 138 

biogeochemical provinces (Fig. 2).  The time-series observations provide the contextual 139 

background for seasonal and interannual variation that allow long-term temporal trends and 140 

episodic events to be identified and evaluated (Farías et al., 2015; Wilson et al., 2017; Ma et al., 141 

2019).  Overall, the majority of measurements enable the variability in marine CH4 and N2O to 142 

be quantified at the mesoscale or greater (i.e. from hundreds of kilometers to ocean basins), with 143 

monthly to annual resolution but there are substantially fewer datasets at the sub-mesoscale level 144 

(i.e. <10 km and hours to days) (Fig. 3).  A major reason for the limited sampling at the sub-145 

mesoscale level is that it necessitates high-resolution measurements to resolve the heterogeneous 146 

variability that exists at these time-space scales.  Such analyses have only recently become 147 

technically feasible (discussed in more detail in Section 6). 148 

Until recently there has been no formal coordination of observations across the CH4 and N2O 149 

scientific community.  In response to this, a Scientific Committee on Oceanic Research (SCOR) 150 

Working Group was initiated in 2014 entitled: ‘Dissolved N2O and CH4: Working towards a 151 

global network of ocean time series measurements’.  A major goal of the SCOR Working Group 152 

was to unite the international community in joint activities conceived to improve and inform 153 

seagoing CH4 and N2O analyses.  An important activity was the preparation and distribution of 154 

common, combined gaseous CH4 and N2O standards to twelve international laboratories, with 155 
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the aim of improving and standardizing calibration (Bullister et al., 2017).  A subsequent inter-156 

comparison of discrete seawater samples included the use of these standards and revealed the 157 

variability between laboratories.   While there were some encouraging results from the 158 

intercomparison, such as the agreement between individual laboratories using contrasting 159 

techniques, overall a large range was observed in CH4 and N2O concentration data generated by 160 

the participating laboratories (Wilson et al., 2018).  Such analytical discrepancies weaken our 161 

collective ability as a community to evaluate temporal-spatial variability in marine CH4 and N2O.  162 

The discrepancies also highlighted the need for Standard Operating Protocols (SOPs) for  CH4 163 

and N2O analyses to facilitate standardization of sampling, measurement, and calibration, as well 164 

as the reporting of data and accompanying metadata in common repositories.  The SOPs are 165 

currently in preparation with intended publication on the Ocean Best Practices network.  166 

A data repository for oceanic CH4 and N2O data known as the MarinE MEthane and NiTrous 167 

Oxide database (MEMENTO) was established in 2009 (Bange et al., 2009; Kock and Bange, 168 

2015).  MEMENTO is now sufficiently mature to support descriptions of the broad-scale surface 169 

distributions of CH4 and N2O (e.g. Suntharalingam et al., 2012; Zamora and Oschlies, 2014; 170 

Buitenhuis et al., 2018; Battaglia and Joos, 2018).  Machine-learning mapping recently identified 171 

CH4 and N2O distributions and various physical and biogeochemical predictor variables (e.g. 172 

depth, temperature, salinity, O2, nutrients, primary production) (Weber et al., 2019; Yang et al., 173 

2020, Fig. 4).  The application of gas transfer algorithms to the extrapolated oceanic CH4 and 174 

N2O distributions helped decrease the uncertainty in estimates of global air-sea exchange fluxes 175 

(Fig. 4c), thereby fulfilling one of the key goals of MEMENTO (Bange et al., 2009).  Net global 176 

open ocean emissions of N2O are now similarly estimated at 3–5 Tg N yr
-1

 by both Yang et al. 177 

(2020) and the Global Nitrous Oxide Project (Tian et al., 2020).  In comparison, net global ocean 178 

CH4 emissions from machine-learning mapping were estimated at 6–12 Tg CH4 yr
-1

 (Weber et 179 

al., 2019), compared to 9–22 Tg CH4 yr
-1

 in the most up-to-date CH4 synthesis (Saunois et al., 180 

2020).  However, the narrower range for machine-learning derived CH4 emissions retains high 181 

uncertainty in regions such as the Arctic, where emissions are highly heterogeneous and 182 

compounded by seasonal ice cover.  Identifying the causes for uncertainty in high emission 183 

regions will greatly aid future sampling campaigns, as is discussed in the following sections. 184 

 185 

3. Methane in marine environments 186 
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In the surface waters of tropical and temperate oceans, the low supersaturation of CH4 is 187 

driven by aerobic production arising from the decomposition of methyl phosphonate in 188 

phosphorus-depleted waters (Karl et al. 2008, Sosa et al., 2020), the degradation of methylated 189 

sulfur compounds by phytoplankton (Klintzsch et al., 2019), and other processes (Schmale et al., 190 

2018).  Deep within the ocean’s pelagic interior, CH4 is weakly undersaturated reflecting 191 

depletion via microbial oxidation (Reeburgh 2007; Weber et al., 2019).  Towards the coastline, 192 

CH4 supersaturation increases by orders of magnitude (Figure 5b), reflecting terrestrial inputs 193 

(e.g. river and groundwater) and CH4 diffusion and ebullition from shallow anoxic methane rich 194 

sediments (Zhang et al., 2008; Borges et al., 2016; Upstill-Goddard and Barnes, 2016).  195 

Supersaturation of CH4 occurs frequently in the Arctic Ocean and its relatively shallow marginal 196 

seas with the most extreme values observed in the Eurasian Arctic (e.g. Shakhova et al., 2010; 197 

Damm et al., 2015; Kosmach et al., 2015; Thornton et al, 2016a; Fenwick et al., 2017).  198 

Terrestrial and subsea permafrost are potential CH4 sources to shelf waters in addition to CH4 199 

hydrates that are found in marginal shelves globally (Ruppel and Kessler, 2017).  Large point 200 

source CH4 emissions, such as seafloor gas seeps can be large sources to the atmosphere in small 201 

localized areas (e.g. Thornton et al., 2020), but these sites remain particularly difficult to 202 

parameterize in models.  This reflects limited observations and a poor understanding of their 203 

spatial distributions, the driving mechanisms, and the wider context within the carbon cycle.  For 204 

example, the upwelling of cold, nutrient-rich water that accompanies CH4 ascending the water 205 

column stimulates CO2 consumption by photosynthesizing phytoplankton, rendering such CH4 206 

seeps an overall net sink for climate-forcing gases (Pohlman et al., 2017).  Recent work using 207 

thermal infrared satellite retrievals indicates increased high-latitude oceanic CH4 release in late 208 

autumn, coincident with pycnocline breakdown and a deepening of the ocean mixed layer depth 209 

thereby bringing deep CH4 to the surface (Yurganov et al., 2019).  This is especially notable in 210 

the Kara and Barents Seas, but the remote observations have not yet been confirmed by surface 211 

ocean measurements which are difficult and therefore rare, except during the Arctic summer. 212 

Seabed CH4 emissions are hypothesized to increase in a warming ocean through the 213 

decomposition of gas hydrates, the degradation of subsea permafrost under some high-latitude 214 

seas, and the increased biodegradation of sediment carbon (Romanovskii et al., 2005; Biastoch et 215 

al., 2011; Ruppel and Kessler, 2017; Borges et al., 2019).  Effort is thus focused on quantifying 216 

the fraction of CH4 generated in or released from marine sediments that ultimately enters the 217 
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atmosphere, particularly on shallow continental shelves and in coastal ecosystems.  Natural 218 

stable isotopes have been used to inform spatial and temporal changes in dissolved CH4 219 

concentrations (e.g. Pack et al., 2011; Mau et al., 2012; Weinstein et al., 2016; Leonte et al., 220 

2017; Chan et al., 2019) and incubation experiments with added stable isotopes and radiotracers 221 

have helped elucidate how oxidation (anaerobically in sediments and aerobically in the water 222 

column), ebullition (where CH4 pore water partial pressure exceeds sediment hydrostatic 223 

pressure), and subsequent bubble dissolution in the water column interact to mitigate CH4 224 

emissions to air (Steinle et al., 2015; Jordan et al., 2020).  The information deriving from these 225 

various approaches is inherently different but complementary.  Isotope tracer incubations provide 226 

snapshots of rates specific to the methanotrophic community and CH4 concentration at the time 227 

of sampling, whereas concentrations and isotopic gradients are used to infer in situ rates 228 

integrated over space and time.  A recent study deployed a remotely operated vehicle to examine 229 

the isotopic fractionation of CH4 during bubble ascent and used this to constrain the extent of 230 

bubble dissolution (Leonte et al., 2018).  This work demonstrated an experimental approach 231 

established for broadly constraining water column CH4 cycling directly from a surface research 232 

vessel.   233 

Despite the range of analytical and experimental approaches available, determining whether 234 

the origin of the emitted CH4 is seafloor release or aerobic production in the upper water column 235 

remains problematic.  To date there is no straightforward way to routinely distinguish between 236 

seafloor derived and water column generated CH4 for all locations.  Even so, stable carbon and 237 

hydrogen isotope measurements (i.e. δ
13

C-CH4 and δ
2
H-CH4) combined with ancillary data may 238 

provide valuable source information.  For example, combining these measurements with the ratio 239 

of CH4 to higher order hydrocarbons (e.g. ethene (C2H4) and ethane (C2H6)) can be used to infer 240 

for example, whether the origin of the CH4 is thermogenic, sub-seafloor, or biogenic within the 241 

water column (Whiticar, 1999; Pohlman et al., 2009; Lan et al., 2019).  Continuous shipboard 242 

measurement of CH4 isotopes in surface water (e.g. Pohlman et al., 2017) and in the atmospheric 243 

boundary layer (Pankratova  et al., 2019; Berchet et al., 2020) are now possible and they have 244 

been used in combination with atmospheric inversion models to characterize and discriminate 245 

marine-emitted CH4 from other sources (Berchet et al., 2020).  Application of this method to 246 

land-based monitoring stations appears promising for apportioning CH4 emissions from various 247 

marine regions and sources (Thonat et al., 2019).  Additionally, in regions where aerobic CH4 248 
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oxidation is substantial, the resulting isotopic fractionation generates measurable vertical and/or 249 

horizontal seawater gradients that can also be used to identify contrasting biogenic CH4 sources 250 

(Leonte et al., 2020).  However, the general overlap in isotope compositions of sediment CH4 251 

(e.g. Thornton et al., 2016b; Sapart et al., 2017) can complicate purely isotope-based 252 

determinations of sources. 253 

Measurements of the natural radiocarbon content of dissolved oceanic CH4, while being 254 

highly specialized and requiring substantial amounts of ship time and processing (Kessler and 255 

Reeburgh, 2005; Sparrow and Kessler, 2017), provide valuable source information because the 256 

14
C-CH4 measurements are normalized to the same 

13
C value and are unaffected by the extent 257 

of oxidation.  The bubbles sampled from hydrate and active seafloor seeps are largely devoid of 258 

radiocarbon (Pohlman et al., 2009; Kessler et al., 2008; Douglas et al., 2016).  However, CH4 in 259 

sediments can also be derived from more modern or recently deposited organic material and an 260 

exact determination of individual contributions is hard to achieve (Kessler et al., 2008; Sparrow 261 

et al., 2018).  The powerful insights made by radiocarbon-CH4 investigations would be further 262 

strengthened by concurrent sampling of other analytes that offer CH4 source information, such as 263 

clumped isotopes.  Isotope clumping, the co-occurrence of two or more of the less abundant 264 

isotopes in a molecule (e.g. 
13

C and 
2
H or 

1
H and 

2
H), provides unique information on marine 265 

CH4 sources (Stolper et al., 2014;  Wang et al, 2015; Douglas et al., 2017; Young et al., 2017; 266 

Giunta et al. 2019).  In this approach, the isotopic deviations in samples from their random 267 

probability distributions can give insight into formation temperature and the extent of 268 

biochemical disequilibrium.  However, the sample size required for a clumped isotope analysis 269 

in the oceanic environment away from areas of seafloor emission is large and exceeds the 270 

already demanding volume requirements for 
14

C analyses by 1–2 orders of magnitude (Douglas 271 

et al., 2017).  While the requirement of large sample size and lengthy measurement time 272 

currently preclude their more widespread application, clumped isotope measurements offer 273 

future promise in refining our understanding of the processes of marine CH4 production and 274 

consumption. 275 

 276 

4. Nitrous oxide in marine environments  277 

The large-scale spatial distribution of N2O in the global ocean is reasonably well-established.  278 

The highest open ocean N2O values are in upwelling environments, where concentrations extend 279 
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up to micromolar levels (Arévalo-Martínez et al., 2015) and production rates can be as high as 280 

120 nM d
-1

 (Frey et al., 2020).  The highly elevated N2O concentrations can be proximal to 281 

regions with some of the lowest recorded N2O concentrations, in the cores of O2 deficient zones.  282 

This coexistence of the highest and lowest observed N2O concentrations over vertical distances 283 

of tens of meters make upwelling regions a focal point for N2O research, particularly since O2 284 

deficient ocean zones are increasing in size (Stramma et al., 2011).  In contrast, in the surface 285 

waters of the expansive oligotrophic ocean gyres, N2O is weakly supersaturated (103-105%) 286 

with respect to atmospheric equilibrium (Weiss et al., 1992; Wilson et al., 2017, Charpentier et 287 

al., 2010).  Nitrous oxide becomes more highly saturated in the surface waters of equatorial 288 

upwelling regions due to the upward advection of N2O-rich waters (Arévalo‐Martínez et al., 289 

2017).  For the Arctic Ocean, the data indicate low net N2O emissions, with some areas acting as 290 

net N2O sources and others as N2O sinks (Fenwick et al., 2017, Zhang et al., 2015). 291 

Several parameters control net N2O emissions from the ocean, including temperature, 292 

salinity, dissolved O2, apparent oxygen utilization (AOU), nutrients, and microbial community 293 

abundance and composition.  A recent modeling study trained with just three of these variables 294 

(chlorophyll, O2, and AOU) accounted for 60% of the observed variability in oceanic N2O 295 

concentrations (Yang et al., 2020), highlighting the importance of N2O in productive upwelling 296 

systems.  Correlations between N2O and environmental variables provide some insight into the 297 

factors controlling its distribution, but they provide no information about the microorganisms or 298 

metabolic pathways involved.  Microbial production of N2O occurs during the metabolic 299 

processes of nitrification and denitrification (Stein and Yung, 2003).  To determine which 300 

process dominates N2O production at any given location requires the application of multiple 301 

methodological approaches, ideally in parallel.   302 

One of the most commonly used approaches is the incubation of discrete water samples 303 

under in situ conditions with stable isotope (
15

N) addition such as 
15

N enriched NH4
+
, NO2

-
 or 304 

NO2
-
/ NO3

-
 to measure N2O production rates from nitrification and denitrification, respectively 305 

(e.g.  Ji et al., 2017).  These approaches also provide insight into the microorganisms involved.  306 

For example, N2O resulting from archaeal NH4
+
 oxidation is mostly formed from a combination 307 

of NH4
+
 and another N compound (e.g. NO2

-
) whereas bacteria produce N2O from NH4

+
 alone 308 

(Santoro et al., 2011, Stieglmeier et al., 2014; Carini et al. 2018; Lancaster et al., 2018; Frey et 309 

al. 2020).   Unfortunately, as with all incubation-based approaches 
15

N techniques are subject to 310 
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bottle artifacts, and the strong dependence of N2O production and consumption on ambient O2 311 

increases the potential for contamination during the collection and manipulation of anoxic deep 312 

seawaters.  Incubation based rate measurements are also compromised by abiotic N2O 313 

production via chemodenitrification, specifically the reduction of NO2
-
 coupled to Fe

2+
 314 

oxidation, as observed in high Fe environments (Ostrom et al., 2016; Buchwald et al., 2016; 315 

Wankel et al., 2017).  These issues highlight the need for incubation techniques that mitigate the 316 

effect of experimental artifacts (Stewart et al., 2012).    317 

In addition to isotope addition and incubation, natural abundance water-column 318 

measurements of N2O concentrations, isotopes, and isotopomers yield valuable rate and process 319 

information. These measurements are free from experimental artifacts and can be used to 320 

integrate over appropriate temporal and spatial scales.  For example, nitrification in sunlit waters 321 

has been inferred from N2O distributions (Dore and Karl, 1996), and N2O production close to the 322 

ocean surface is a large contributor to the uncertainty in oceanic N2O emissions (Ward et al., 323 

1982; Zamora and Oeschlies, 2014).  Isotopomers are isomers having the same number of each 324 

isotope of each element but differing in their structural positions.  Nitrous oxide isotopomers are 325 

increasingly used, sometimes in combination with box models, to estimate the rates of different 326 

N2O production pathways, in the upwelling systems off southern Africa (Frame et al., 2014) and 327 

Peru (Bourbonnais et al., 2017).  There is however some disagreement about whether isotopomer 328 

signatures are robust indicators of the formation pathway (Yoshida and Toyoda, 2000; Sutka et 329 

al., 2006) or whether there is fractionation during production (Schmidt et al., 2004; Casciotti et 330 

al., 2018).  Greater clarity is therefore required in the use of N2O isotopes and isotopomers to 331 

infer metabolic pathways of N2O formation.  Notwithstanding this issue, field measurements of 332 

N2O isotopes and/or isotopomers have the potential to greatly increase current experimental 333 

capabilities and robustness (Yu et al., 2020).  However, the development of spectroscopic gas 334 

analysis systems that have been so advantageous to CH4 research has been slower for N2O.  This 335 

is due to the higher costs and the increased complexity of the laser systems, although progress is 336 

being made to improve instrumental precision, and to decrease matrix effects and spectral 337 

interferences (e.g. Harris et al., 2019).  338 

A better understanding of the microorganisms responsible for N2O production and 339 

consumption is fundamental to deriving more accurate estimates of process rates. For example, 340 

the metabolic activity of ammonia oxidizing archaea can exceed that of ammonia oxidizing 341 
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bacteria in the ocean (Santoro et al., 2010; Löscher et al., 2012; Fuchsman et al., 2017).  The 342 

differing sensitivities of these archaea and bacteria to dissolved O2 (Stahl and de la Torre, 2012; 343 

Hink et al., 2017) are a critical factor in evaluating the microbial response to changing 344 

environmental conditions, as shown for the terrestrial environment (Prosser at al., 2020).  345 

Therefore, to understand the impact of deoxygenation on oceanic N2O emission requires a better 346 

understanding of both archaeal and bacterial metabolisms and their environmental niches.  Field-347 

based sequencing not only characterizes the community but can highlight potential metabolic 348 

pathways when they might not otherwise be inferred.  For example, transcripts encoding for N2O 349 

consumption (nosZ) have repeatedly been identified in the oxic water column, despite 350 

denitrification being an anaerobic metabolic process (Wyman et al., 2013; Sun et al., 2017).  The 351 

transcription of nosZ has been also located in highly dynamic O2 permeable coastal sediments 352 

(Marchant et al., 2017).  Denitrification under aerobic conditions is attributed to fluctuations in 353 

O2, NO3
-
, organic matter and other parameters that affect the availability of electron donors and 354 

acceptors which ultimately influences whether a coastal environment is a net source or sink of 355 

N2O, as discussed in the next section.    356 

 357 

5. CH4 and N2O in shallow marine environments 358 

Coastal and other shallow (<50 m) marine systems are globally relevant CH4 and N2O source 359 

regions.  However, their emission rates to the atmosphere are weakly constrained in comparison 360 

with the open ocean.  Several factors contribute to the uncertainty, including the high diversity of 361 

coastal and shallow marine ecosystems and lack of consistency in adequately defining them, 362 

locally heterogeneous conditions causing strong spatial and temporal concentration gradients, 363 

highly uncertain spatial distribution of CH4 seeps, a bias towards studies in the northern 364 

hemisphere, and incomplete or sometimes inappropriate sampling strategies (Al-Haj and 365 

Fulweiler, 2020).  Until these issues are resolved it will remain difficult to adequately define the 366 

contribution from shallow marine systems to global CH4 and N2O budgets.  An important 367 

illustration of this is reflected in the prevailing view that large geological sources (e.g. seeps, 368 

mud volcanoes, and hydrates) are the main contributors to marine CH4 emissions (Ciais et al., 369 

2013).  The most recent modeled estimate of global marine CH4 emissions (6–12 Tg CH4 yr
-1

) 370 

reported that near-shore environments (depths of 0–50 m) contribute a large and highly uncertain 371 

diffusive flux (Weber et al., 2019).  A study of coastal ecosystems, in this case defined as shelf, 372 
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estuarine, and tidally influenced rivers, estimated them to contribute 7 Tg CH4 yr
-1

 (Anderson et 373 

al., 2010) while another estimated 1–7 Tg CH4 yr
-1

 for estuaries alone (Borges and Abril, 2011).  374 

Similar uncertainties exist for N2O.  Estimates of coastal N2O emissions (which include coastal, 375 

estuarine, and riverine sources) range from 0.1–2.9 Tg N yr
-1

 (Ciais et al., 2013), although a 376 

recent review of N2O production across a range of estuarine habitats placed N2O fluxes at the 377 

lower end of these estimates (0.17–0.95 Tg N yr
-1

) (Murray et al., 2015).  Based on these data, 378 

coastal systems account for around one third of total marine N2O emissions (Yang et al., 2020).   379 

The direct quantification of CH4 and N2O emissions from shallow coastal ecosystems has 380 

historically involved using gas concentrations measured in discrete water and air samples 381 

combined with a gas transfer velocity (kw).  For the coastal and open ocean, the dominant driver 382 

of gas exchange is wind speed (e.g. Nightingale et al., 2000; Wanninkhof, 2014) whereas in 383 

nearshore, shallow water environments the interaction of water, depth, and tidal current speeds 384 

may be a major contributor to near surface turbulence.  Several kw parameterizations are now in 385 

use for coastal waters (e.g. Raymond and Cole 2001; Kremer et al., 2003; Zappa et al., 2003; 386 

Borges and Abril, 2011; Ho et al. 2011; Rosentreter et al., 2017; Jeffrey et al., 2018) which 387 

increases the uncertainties associated with CH4 and N2O emissions.  For example, a fivefold 388 

variation in CH4 emissions from a single system occurred when applying different 389 

parameterizations to the measured gradients in CH4 (Ferrón et al., 2007).  390 

In order to constrain emissions over small areas continuous air-sea fluxes can be measured 391 

using free-floating chambers (e.g. Bahlmann et al., 2015; Rosentreter et al., 2018; Yang et al., 392 

2018; Murray et al., 2020), but issues related to turbulence modification may still generate flux 393 

artifacts (Upstill-Goddard, 2006).  To overcome these problems in the future, a greater reliance 394 

on direct and robust continuous techniques for air-sea flux measurement, such as eddy 395 

covariance (e.g. Podgrajsek et al., 2016) that avoids any need for kw, will be necessary. 396 

Combining this with new analytical techniques such as cavity enhanced absorption spectroscopy 397 

(CEAS) and non-dispersive infrared (NDIR) should continue to improve the quality of such 398 

estimates (McDermitt et al., 2011; Nemitz et al., 2018; Maher et al., 2019).  Indeed, eddy flux 399 

towers aboard ships (Thornton et al., 2020) and in coastal locations (Yang et al., 2016; Gutiérrez-400 

Loza et al., 2019) are now being equipped with CH4 instrumentation that enables the integration 401 

of CH4 fluxes over large areas.  There are fewer N2O flux estimates made with CEAS and NDIR 402 

and the implementation of N2O sensors on eddy flux towers remains limited.  Recently, N2O 403 
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emissions from three major Eastern Boundary Upwelling Systems were quantified using 404 

atmospheric measurements from coastal monitoring stations highlighting their ability to attain 405 

multi-year time-series measurements (Ganesan et al., 2020). 406 

Flux towers at fixed locations provide a stable instrument platform and facilitate the 407 

collection of ancillary data such as water-column depth, tidal motions (Rosentreter et al., 2018; 408 

Huang et al., 2019; Pfeiffer-Hebert et al., 2019), and other information relating to diel processes 409 

(Maher et al., 2016).  Such data are important because for example, the magnitude of CH4 and 410 

N2O fluxes vary over a diel period depending on the redox environment as a result of tidal 411 

effects and changes in inorganic N and O2 availability (Seitzinger and Kroeze, 1998; Call et al., 412 

2015; Vieillard and Fulweiler, 2014; Maher et al., 2015; Murray et al., 2015; Foster and 413 

Fulweiler, 2019).  The magnitude of CH4 and N2O fluxes also varies over longer temporal scales 414 

(seasonally to yearly) due to additional factors such as groundwater inputs, adjacent land-use, 415 

dissolved O2, organic matter content and quality, and macrofaunal distributions (Barnes and 416 

Upstill-Goddard, 2011; Upstill-Goddard and Barnes, 2016; Gelesh et al., 2016; Bonaglia et al., 417 

2017; Borges et al., 2018; Wells et al., 2018; Ray et al., 2019; Al-Haj and Fulweiler, 2020; 418 

Reading et al., 2020).  To determine the contributing factors and resolve the spatial distributions, 419 

mobile sampling platforms such as small vessels (Müller et al., 2016; Brase et al., 2017; Tait et 420 

al., 2017), and autonomous vehicles (Manning et al., 2019) are essential.  Recent improvements 421 

in gas sensors and in technology such as sonar and ebullition sensors will further increase our 422 

ability to measure dynamic fluxes (Maher et al., 2019; Lohrberg et al., 2020).  Improvements to 423 

the quality and quantity of CH4 and N2O measurements in coastal systems will enable the 424 

development of iterative forecast models, further improving estimates of global coastal CH4 and 425 

N2O fluxes. 426 

 427 

6. Leveraging culture studies to further our ecosystem understanding 428 

A more complete understanding of marine CH4 and N2O necessitates closer integration between 429 

biogeochemistry, model requirements, and targeted microbiological studies involving both single 430 

microorganism isolates and enrichment cultures.  Marine CH4 and N2O budgets deriving from 431 

both ‘bottom-up’ (e.g. emissions inventories, ocean and terrestrial process models) and ‘top-432 

down’ (e.g. inverse analyses of atmospheric trace-gas measurements) approaches would greatly 433 

benefit from more highly constrained metabolic processes.  Specifically, this includes rates of 434 
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CH4 or N2O production and consumption for key model microorganisms, and the kinetic 435 

parameters associated with these metabolic rates.  Reliable inventories of key microbially 436 

mediated process rates will improve the robustness of Earth System models used for predicting 437 

climate-mediated changes to marine CH4 and N2O emissions. 438 

For N2O, laboratory studies quantifying microbial process rates, such as for nitrification and 439 

denitrification, are relatively few (e.g. Frame and Casciotti 2010; Santoro et al. 2011; Löscher et 440 

al. 2012; Ji et al. 2015; Qin et al., 2017). Consequently, models largely continue to use process 441 

rates optimized using water column concentrations of N2O, O2, and related nitrogen cycle 442 

quantities (e.g. Battaglia and Joos, 2018; Buitenhuis et al., 2018; Landolfi et al., 2017).  Future 443 

model parameterizations for N2O will require information on the variability of microbial process 444 

yields derived from culture studies with controlled varying conditions of O2 (Goreau et al. 1980, 445 

Frame and Casciotti 2010, Löscher et al. 2012; Ji et al., 2018), pH (Breider et al., 2019; Hopkins 446 

et al. 2020), temperature, and nutrients.  Automated incubation systems have measured N2O 447 

production kinetics and yield as functions of the concentrations of O2 and total ammonia nitrogen 448 

(Molstad et al., 2007; Hink et al., 2017).  Quantifying the physiology of relevant microorganisms 449 

and connecting them to environmental characteristics will provide insights into why, for 450 

example, some shallow marine habitats act as N2O sinks while others are N2O sources, or how 451 

N2O is produced in well oxygenated open-ocean waters, as compared to oxygen deficient zones.  452 

For CH4, a key requirement to relate in situ CH4 production with transport to atmospheric 453 

emissions is our ability to accurately determine rates of CH4 oxidation.  Fundamental issues 454 

include the challenges of cultivating methanotrophs and of replicating environmental conditions 455 

such as pressure and the chemistry of CH4 gas bubbles.  The increased emphasis on CH4 456 

dynamics in shallow water environments highlighted in Section 5, must be supported by culture-457 

based measurements of CH4 oxidation that control for temperature, O2 and other important 458 

variables.  In comparison to CH4 oxidation, culture-based studies are used increasingly to 459 

identify organisms capable of aerobic CH4 production and their underlying metabolic pathways 460 

(Carini et al., 2014; Klintzsch et al; 2019; Bižić et al., 2020).  461 

Specific cellular yields and consumption rates of CH4 and N2O are not the sole objective of 462 

culturing experiments.  Cultivation of microorganisms involved in CH4 and N2O production and 463 

consumption provides vital information into the physiology, metabolism, and interactions of 464 

environmentally relevant clades.  When combined with genomic approaches, insights can 465 
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therefore be gained into the diversity and global distribution of organisms involved in CH4 and 466 

N2O cycling. For CH4 some unexpected physiologies have been revealed (Ettwig et al., 2010; 467 

Haroon et al., 2013; Ettwig et al., 2016), which has directed research into sources and sinks of 468 

CH4 in the natural environment.  Similarly, our understanding of how and when ammonia 469 

oxidizers produce N2O has been facilitated by studies of cultured nitrifiers and detailed analysis 470 

of their biochemistry (Stahl and de la Torre, 2012; Caranto and Lancaster, 2017).  Recent 471 

combinations of cultivation studies with environmental genomics, albeit largely for terrestrial 472 

systems, have revealed a variety of denitrifiers, many of which are only involved in specific 473 

denitrification steps (Ganesh et al., 2014; Lycus et al, 2017;  Hallin et al, 2018; Marchant et al., 474 

2018; Conthe et al, 2019).   475 

 476 

7. Outlook and priorities for marine CH4 and N2O measurements 477 

This perspectives article has assessed the collective ability of the scientific community to 478 

determine the spatial variability of marine CH4 and N2O distributions, the underlying 479 

mechanisms that determine this variability, and the resulting sea-to-air emissions.  Shallow 480 

marine environments and oxygen deficient zones are widely recognized as deserving of greater 481 

attention because they have high CH4 and N2O concentrations with inherently high uncertainties 482 

that complicate any assessment of their emissions to air (Bange et al., 1994; Bange et al., 1996; 483 

Bakker et al., 2014; James et al., 2016; Borges et al., 2016; Tian et al., 2020).  Fortunately, recent 484 

technological advances that have increased our ability to conduct high-resolution measurements 485 

allow an optimistic outlook for making substantial progress in quantifying the CH4 and N2O 486 

budgets of these ecosystems.  Even so, the inherent complexity of shallow marine environments 487 

clearly warrants a strategically coordinated approach to optimize the value of future studies.  488 

Issues to consider include identifying the locations of complementary sampling sites, 489 

standardizing sampling strategies and techniques, and agreeing the use of common ancillary 490 

measurements that set the broad biogeochemical context (Bange et al., 2019).  In contrast to the 491 

open ocean, measurement campaigns in shallow water environments are amenable to the use of 492 

eddy covariance flux towers, and they have the potential to lever resources from existing 493 

observation networks, which in North America include the Long-Term Ecological Research 494 

network (LTER) and the National Estuarine Research Reserve (NERR) System (Novick et al., 495 

2018).  Indeed, such activities are already underway; an increasing number of flux towers are 496 
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being equipped for CH4 measurements (Torn et al., 2019) and future efforts should focus on the 497 

inclusion of N2O (see Section 5).  498 

We are encouraged that the Global Carbon Project with its objective of developing a 499 

complete picture of the global carbon cycle including interactions and feedbacks has expanded to 500 

include CH4 (Saunois et al., 2020) and is now incorporating N2O (Tian et al., 2020).  These 501 

Projects compile the most recent data from peer-reviewed analyses of the sources and sinks of 502 

atmospheric CH4 and N2O from both natural and human activities.  For example, the aquatic 503 

components of the recent Global Carbon Project N2O budget reported emissions from the open 504 

ocean, inland waters, estuaries and coastal zones.  Low-oxygen oceanic regions associated with 505 

eastern-boundary upwelling zones, and the coastal ocean were identified as key regions with 506 

significant N2O variability requiring more detailed assessment via measurement campaigns and 507 

model analyses (Tian et al., 2020).  Coordinating with global initiatives such as the Global 508 

Carbon Project and identifying other areas of synergistic CH4 and N2O research of mutual 509 

benefit to oceanographers and scientists studying other biomes serve to strengthen the scientific 510 

achievements of all involved (Ganesan et al., 2019).  Furthermore, as highlighted in Section 6, 511 

field observations alone are insufficient to improve the robustness of Earth System models and 512 

leveraging laboratory-based microbial process studies is highly recommended.  513 

The success of any coordinated CH4 and N2O research program relies heavily on having 514 

uniformly high confidence in the various resulting datasets and their interoperability, and we 515 

identify three key initiatives that are paramount to ensuring this:  516 

(i) The first is to develop and adopt Standard Operating Protocols (SOPs) to help obtain 517 

intercomparable CH4 and N2O datasets of the highest possible accuracy and precision.  In our 518 

recent marine CH4 and N2O inter comparison exercise we concluded that the diversity of 519 

analytical procedures employed by the participants was a major cause of high variability between 520 

the reported concentrations, highlighting an urgent requirement for CH4 and N2O SOPs (Wilson 521 

et al., 2018). Consequently, these SOPs are now being compiled, and they will be freely 522 

available via the Ocean Best Practices System.   523 

(ii) The second is the regular, routine inter comparison of measurements, by periodically 524 

distributing to the community “consensus material”, i.e. water samples in which CH4 and N2O 525 

concentrations are known with high confidence, obtained by pooling analyses from several 526 

laboratories with demonstrated analytical capability.  These will allow us to routinely monitor 527 
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data inter comparability and accuracy, particularly in the case of highly elevated concentrations 528 

of CH4 and N2O, i.e. those exceeding atmospheric equilibrium concentrations by at least an order 529 

of magnitude.   530 

(iii) The third activity is increased use and support for MEMENTO.  Until now the main 531 

function of MEMENTO has been as a data repository.  In this regard, it has been very valuable in 532 

supporting the modeling components of CH4 and N2O research (see Section 3).  We encourage a 533 

much more widespread, routine, use of this data facility, with submitted data produced according 534 

to the SOPs and inter comparison procedures.  To maintain its relevance, MEMENTO must 535 

continue to build its activities and develop into an ‘ocean CH4 and N2O Atlas’.  The international 536 

marine carbon science community has widely embraced such an approach for CO2, by 537 

submitting data to the Surface Ocean CO2 Atlas (SOCAT), which was initiated in response to the 538 

need for a quality controlled, publicly available, global surface CO2 dataset (e.g. Bakker et al., 539 

2016).  We believe establishing a similar data product for marine CH4 and N2O to be essential 540 

for supporting future global modeling efforts and to enhance and reward community 541 

engagement.  542 

The benefits of pursuing the three activities described above have already been clearly 543 

demonstrated for carbon system measurements in the ocean.  The intercomparability and high 544 

accuracy and precision of carbon system measurements was achieved by streamlining 545 

methodological approaches, universally adopting agreed SOPs, production of reference material, 546 

and following community-driven quality control procedures (Dickson et al., 2007, Dickson et al, 547 

2010).  It is encouraging to see the marine CH4 and N2O community beginning to move in a 548 

similar direction.   549 
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 1174 

Figure 1. Atmospheric values of (a) CH4 and (b) N2O with the black lines reconstructed from 1175 

ice-core measurements (Etheridge et al., 1998; Machida et al., 1995) and the colored lines from 1176 

Mauna Loa Observatory (https://www.esrl.noaa.gov/gmd/dv/data/).  Global maps of marine (c) 1177 

CH4 and (d) N2O measurements available from the MEMENTO database 1178 

(https://memento.geomar.de/).  The 2018 workshop focused on the marine contribution to 1179 

atmospheric CH4 and N2O and the underlying microbial and biogeochemical control 1180 

mechanisms. 1181 
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 1183 

Figure 2. Repeat oceanic observations include both (a, b) fixed location time-series monitoring 1184 

observations and (c,d) hydrographic surveys.  Together, such field observation programs helps 1185 

resolve temporal variability ranging from months to years and spatial variability at the ocean 1186 

basin scale (see Fig. 3).  The Station ALOHA data derive from Wilson et al. (2018), the Station 1187 

18 data derive from Farías et al. (2015), and the P16 transect was conducted in 2015 by the 1188 

NOAA PMEL Tracer Group as part of the GO-SHIP program.  The data shown in the plots are 1189 

N2O concentrations, either as N2O (i.e. deviation from equilibrium value) or absolute values. 1190 

 1191 
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 1195 

 1196 

 1197 

  1198 

 1199 

 1200 

Figure 3. Time-space scale diagram illustrating various physical, biological, and climatological 1201 

processes relevant to marine CH4 and N2O (adapted from Dickey, 2003).  To date, the majority 1202 

of marine CH4 and N2O measurements resolve variability at the mesoscale level or higher.  1203 

Recent technological developments and the need to resolve concentrations and fluxes in shallow 1204 

water environments will increase the number of measurements conducted at the sub mesoscale. 1205 
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 1207 

  1208 

Figure 4. Distributions and emissions of marine CH4 and N2O, (a) Air-sea N2O disequilibrium 1209 

mapped using a Regression Forest model (adapted from Yang et al., 2020), (b) Air-sea CH4 1210 

disequilibrium mapped using an Artificial Neural Network model (adapted from Weber et al., 1211 

2019).  For consistency with the original publications, the air-sea disequilibrium is shown in 1212 

different units for N2O (partial pressure) and CH4 (concentration).  (c) A summary of global 1213 

ocean CH4 and N2O emissions estimated by Yang et al. (2020) and Weber et al. (2019), 1214 

compared to the estimates of the IPCC 5th Annual Report (IPCC AR5) and the Global Methane 1215 

Budget (Saunois et al., 2016).  1216 
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 1218 

 1219 

 Figure 5.  Key environmental predictors of surface ocean CH4 and N2O gradients. (a) Excess air-1220 

sea N2O is best predicted by O2 concentrations in the subsurface water-column (base of the 1221 

mixed layer to a depth of 100 m) (adapted from Yang et al., 2020). (b) Excess CH4 is best 1222 

predicted by seafloor depth, reflecting the supply from anoxic sediments (adapted from Weber et 1223 

al., 2019).  The grey dots represent individual data points and the red dots with error bars 1224 

represent mean ±1s.d. of binned data, using O2 bins of 10 μM width and seafloor depth bins of 1225 

10 m width.  1226 
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