

1 **Evaluating the response of $\delta^{13}\text{C}$ in *Haloxylon ammodendron*, a**
2 **dominant C₄ species in Asian desert ecosystem, to water and nitrogen**
3 **addition as well as the availability of its $\delta^{13}\text{C}$ as the indicator of water**
4 **use-efficiency**

5 **Zixun Chen^{1,2}, Xuejun Liu^{2,3}, Xiaoqing Cui^{2,3}, Yaowen Han², Guoan Wang^{1,2*}, Jiazhu Li^{4*}**

6

7 1. Key Lab of Plant–Soil Interaction, College of Resources and Environmental Sciences, China
8 Agricultural University, Beijing, 100193, China.

9 2. Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of
10 Environmental Sciences and Engineering, College of Resources and Environmental Sciences,
11 China Agricultural University, Beijing, 100193, China.

12 3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83011,
13 China

14 4. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, 100192, China.

15

16

17 ***Corresponding author:**

18 **Guoan Wang, gawang@cau.edu.cn**

19 **Jiazhu Li, leejzids@caf.ac.cn**

20

21

22

23 **Abstract**

24 Variations in precipitation and atmospheric N deposition affect water and N
25 availability in desert, and thus may have significant effects on desert ecosystems.
26 *Haloxylon ammodendron* is a dominant plant in Asian desert, and addressing its
27 physiological acclimatization to the changes in precipitation and N deposition can
28 provide an insight into how desert plants adapt extreme environment by physiological
29 adjustment. Carbon isotope ratio ($\delta^{13}\text{C}$) in plants has been suggested as a sensitive
30 long-term indicator of physiological acclimatization. Therefore, this study evaluated
31 the effect of precipitation change and increasing atmospheric N depositon on $\delta^{13}\text{C}$ of
32 *H. ammodendron*. Furthermore, *Haloxylon ammodendron* is a C₄ plant, whether its
33 $\delta^{13}\text{C}$ can indicate water use-efficiency (WUE) has not been addressed. In the present
34 study, we designed a field experiment with a completely randomized factorial
35 combination of N and water, and measured $\delta^{13}\text{C}$, gas exchange and WUE of the
36 assimilating branches of *H. ammodendron*. $\delta^{13}\text{C}$ in *H. ammodendron* remained stable
37 under N and water supply, while N addition, water addition and their interaction
38 affected gas exchange and WUE in *H. ammodendron*. In addition, $\delta^{13}\text{C}$ had no
39 correlation with WUE. This result are associated with the irrelevance between $\delta^{13}\text{C}$
40 and c_i/c_a , which might be caused by a special value (0.37) of the degree of
41 bundle-sheath leakiness (ϕ) or a lower activity of carbonic anhydrase (CA) of *H.*
42 *ammodendron*. Thus, $\delta^{13}\text{C}$ of *H. ammodendron* cannot be used for indicating its
43 WUE.

44

45 1 Introduction

46 Recently, global precipitation pattern has changed significantly (Frank et al., 2015;
47 Knapp et al., 2015), and atmospheric N deposition has continued to rise (Galloway et
48 al., 2004; Liu et al., 2013; Song et al., 2017). Previous researchers have suggested that
49 arid ecosystems are most sensitive to climate change (Reynolds et al., 2007; Huang et
50 al., 2016), while global change in precipitation and atmospheric N deposition has an
51 important impact on water and N availability in desert (Huang et al., 2018). Thus,
52 these changes may have significant effects on desert ecosystems. *Haloxylon*
53 *ammodendron* is a dominant species in desert regions, especially in Asia. Studying the
54 physiological responses of *H. ammodendron* to global change can provide an insight
55 into how desert plants adapt extreme environment by physiological adjustment.

56 Carbon isotope ratio ($\delta^{13}\text{C}$) in plants depends on the ratio of intercellular to ambient
57 CO_2 concentration (c_i/c_a), which reflects the balance between inward CO_2 diffusion
58 rate, regulated by stomatal conductance (g_s), and CO_2 assimilating rate (A) (Farquhar
59 and Richards, 1984), and has been suggested as a sensitive long-term indicator of
60 physiological acclimatization (Battipaglia et al., 2013; Cernusak et al., 2013; Tranan
61 and Schubertt, 2016; Wang and Feng, 2012). Therefore, investigating the variations in
62 $\delta^{13}\text{C}$ of *H. ammodendron* under water and nitrogen addition can enhance our
63 understanding of physiological responses of desert plants to future changes in
64 precipitation and atmospheric N deposition.

65 A large quantity of works have been devoted to the relationships between C_3 plant
66 $\delta^{13}\text{C}$ and water availability or precipitation (e.g., Diefendorf et al., 2010; Kohn, 2010;

67 Liu et al., 2005; Ma et al., 2012; Serret et al., 2018; Stewart et al., 1995; Wang et al.,
68 2005, 2008) and nitrogen availability (e.g. Cernusak et al., 2007; Li et al., 2016;
69 Sparks and Ehleringer, 1997; Yao et al., 2011; Zhang et al., 2015). However, a
70 relatively small amount of research has focused on the responses of C₄ plant $\delta^{13}\text{C}$ to
71 water availability or precipitation (Ellsworth et al., 2017; Liu et al., 2005; Rao et al.,
72 2017; Wang et al., 2006) and nitrogen availability (Ma et al., 2016; Schmidt et al.,
73 1993). For C₄ plants, $\delta^{13}\text{C}$ is controlled by both the c_i/c_a ratio and the degree of
74 bundle-sheath leakiness (ϕ), the proportion of CO₂ produced within bundle sheath
75 cells from C₄ acids that leaks back to mesophyll cells (Ellsworth and Cousins, 2016;
76 Ellsworth et al., 2017; Farquhar, 1983). Thus, the responses of C₄ plant $\delta^{13}\text{C}$ to water
77 and N availability are also affected by ϕ . Genetic factors control ϕ values, which
78 causes the interspecific differences in $\delta^{13}\text{C}$, even the responses of plant $\delta^{13}\text{C}$ to water
79 and N availability (Gresset et al., 2014). On the other hand, enzymatic activity of
80 carbonic anhydrase (CA) may influence $\delta^{13}\text{C}$ in C₄ plants as CA activity is low
81 (Cousins et al., 2006). CA is an enzyme that catalyzes the hydration of CO₂ in
82 mesophyll cells to form bicarbonate (HCO₃⁻). Previous studies showed that CA
83 activity in most C₄ plants is usually low, just sufficient to support photosynthesis
84 (Cousins et al., 2006; Gillon and Yakir, 2000, 2001; Hatch and Burnell, 1990). *H.*
85 *ammiodendron* is a typical C₄ plant. How its $\delta^{13}\text{C}$ responds to water and N availability
86 has never been addressed.

87 Foliar $\delta^{13}\text{C}$ in C₃ plants has been considered as a useful indicator of intrinsic water
88 use-efficiency (WUE) (Farquhar, 1983). However, although some studies suggested

89 that $\delta^{13}\text{C}$ of C_4 plants could also indicate its WUE (Henderson et al., 1992; Wang et al.,
90 2005; Cernusak et al., 2013; Ellsworth and Cousins, 2016), this statement is still
91 controversial. The relationship between $\delta^{13}\text{C}$ and WUE is based on the links between
92 c_i/c_a ratio and $\delta^{13}\text{C}$ and between c_i/c_a ratio and WUE (Ehleringer and Cerling, 1995).
93 For C_3 plants, $\delta^{13}\text{C}$ always increases with an increase in c_i/c_a ratio; but for C_4 plants,
94 the correlation between $\delta^{13}\text{C}$ and c_i/c_a ratio depends on φ value (Cernusak et al., 2013)
95 and CA activity (Cousins et al., 2006). As mentioned above, φ value is under genetic
96 control, thus, the correlation between $\delta^{13}\text{C}$ and c_i/c_a ratio, as well as the relationship
97 between WUE and $\delta^{13}\text{C}$, shows interspecific difference. Whether $\delta^{13}\text{C}$ of *H.*
98 *ammodendron* indicates WUE has never been evaluated.

99 In this study, we designed an experiment with multiple water and nitrogen supply in
100 the southern Gurbantunggut Desert in Xinjiang Uygur Autonomous Region, China.
101 We measured the $\delta^{13}\text{C}$, gas exchange and WUE of the assimilating branches of *H.*
102 *ammodendron*. We had two objectives. One objective was to evaluate the response of
103 the dominant plant of Asian desert to future changes in precipitation and atmospheric
104 N deposition by revealing the effects of water and N supply on $\delta^{13}\text{C}$ of *H.*
105 *ammodendron*. The other was to explore the availability of $\delta^{13}\text{C}$ as the indicator of
106 water use-efficiency in *H. ammodendron*.

107

108 **2 Materials and methods**

109 **2.1 Definitions and Basic Equations**

110 Stable carbon isotopic ratio ($\delta^{13}\text{C}$) of natural materials is expressed as:

111
$$\delta^{13}\text{C}(\text{‰}) = \left[\frac{(^{13}\text{C}/^{12}\text{C})_{\text{sample}}}{(^{13}\text{C}/^{12}\text{C})_{\text{standard}}} - 1 \right] \times 1000 \quad (1)$$

112 where the standard is the carbon dioxide obtained from the PeeDee belemnite (PDB)
113 limestone (Craig, 1957). Farquhar (1983) proposed the pattern of carbon isotopic
114 discrimination (Δ) in C_4 plant:

115
$$\Delta = \frac{\delta^{13}\text{C}_{\text{air}} - \delta^{13}\text{C}_{\text{plant}}}{1 + \delta^{13}\text{C}_{\text{plant}}/1000} \approx \delta^{13}\text{C}_{\text{air}} - \delta^{13}\text{C}_{\text{plant}} = a + [b_4 + \varphi(b - s) - a] \frac{c_i}{c_a} \quad (2)$$

116 where $\delta^{13}\text{C}_{\text{plant}}$ and $\delta^{13}\text{C}_{\text{air}}$ are the $\delta^{13}\text{C}$ values of plants and CO_2 in the ambient air.
117 The parameter a (= 4.4‰, Craig, 1954) is the carbon isotopic fractionation in the
118 diffusion of CO_2 into internal leaves; b_4 (= -5.9‰, O'Leary, 1984) is the combined
119 carbon isotopic fractionations occurring in the processes of gaseous CO_2 dissolution,
120 hydration/dehydration reactions of CO_2 and HCO_3^- in mesophyll cells, and
121 HCO_3^- carboxylation by PEP (phosphoenolpyruvate) carboxylase; s (= 1.8‰, O'Leary,
122 1984) is the carbon isotopic fractionation during diffusion of CO_2 out of the
123 bundle-sheath cells, and b (= 27‰, Farquhar and Richards, 1984) is the carbon
124 isotopic fractionation of CO_2 carboxylation by RuBP (ribulose-1,5-bisphosphate)
125 carboxylase. The variable φ is the proportion of CO_2 producing within bundle sheath
126 cells from C_4 acids that leaks back to mesophyll cells, and c_i/c_a is the ratio of
127 intercellular to ambient CO_2 concentration.

128 Water use-efficiency (WUE) is defined as the amount of assimilated carbon dioxide
129 by plants under the consumption of per unit water. There are two characteristics of
130 WUE, instantaneous WUE (ins-WUE) and intrinsic WUE (int-WUE), respectively.
131 ins-WUE can be calculated by:

132
$$\text{ins-WUE} = A/E = (c_a - c_i)/1.6v = c_a(1 - c_i/c_a)/1.6v \quad (3)$$

133 where A is photosynthetic rate, E is transpiration rate and v is calculated

134 by:

135
$$v = (e_i - e_a)/p \quad (4)$$

136 where e_i and e_a are the water vapor pressure inside and outside the leaves, p is the
137 atmospheric pressure.

138 The definition of int-WUE is:

139
$$\text{int-WUE} = A/g_s = (c_a - c_i)/1.6 = c_a(1 - c_i/c_a)/1.6 \quad (5)$$

140 where g_s is stomatal conductance.

141 **2.2 Study site**

142 This experiment was conducted at the Fukang Station of Desert Ecology, Chinese
143 Academy of Sciences, on the southern edge of the Gurbantunggut Desert (44°26' N,
144 87°54' E) in northwestern China. The altitude of the study site is 436.8 m above
145 average sea level (a.s.l.). It is a typical continental arid, temperate climate, with a hot
146 summer and cold winter in the area. The mean annual temperature is 7.1 °C and the
147 mean annual precipitation is 215.6 mm, with a potential evaporation of about 2000
148 mm. The soil type is grey desert soils (Chinese classification) with aeolian sands on
149 the surface (0-100 cm). The percentages of clay (< 0.005 mm), silt (0.005-0.063 mm),
150 fine sand (0.063-0.25 mm) and medium sand (0.25-0.5 mm) range from 1.63-1.76%,
151 13.79-14.15%, 55.91-56.21% and 20.65-23.23%, respectively (Chen et al., 2007). The
152 soil is highly alkaline ($\text{pH} = 9.55 \pm 0.14$) with low fertility. The vegetation is
153 dominated by *Haloxylon ammodendron* and *Haloxylon persicum* with about 30%
154 coverage. Herbs include ephemerals, annuals and small perennials, with a cover of ca.

155 40% (Fan et al., 2013). Although the coverage of the two *Haloxylon* species is a little
156 lower than that of herbs, the biomass of the former is much larger than that of the
157 latter, because *Haloxylon* plants are shrubs with an average height of 1.5 m whereas
158 the latter are very low herbaceous plants. Biological soil crusts are distributed widely
159 on the soil between the herbs and *Haloxylon*, with almost 40% coverage (Zhang et al.,
160 2007).

161 **2.3 Experimental design**

162 A field experiment with a completely randomized factorial combination of water and
163 nitrogen has been conducted from 2014 to 2017. We designed two water addition
164 levels (0, 60mm yr^{-1} ; W0, W1), since precipitation is predicted to increase by 30% in
165 northern China in the next 30 years (Liu et al., 2010), and three levels of N addition (0,
166 30, 60 kg N $\text{ha}^{-1} \text{yr}^{-1}$; N0, N1 and N2), because N deposition has reached 35.4 kg
167 N $\text{ha}^{-1} \text{yr}^{-1}$ in the nearby city, Urumqi (Cui et al., 2017) and will double by 2050
168 relative to the early 1990s (Galloway et al., 2008). Therefore, there were six
169 treatments (W0N0, W0N1, W0N2, W1N0, W1N1, W1N2) in this experiment. Four
170 replicates of each treatment were set, making a total of 24 plots with a size of 10 m
171 \times 10 m. A small sub-plot with a size of 1.5 m \times 1.5 m was set in each plot. A
172 well-grown *H. ammodendron* was enclosed in the center of the sub-plot. The average
173 height and coverage of an individual *H. ammodendron* were 1.5 m and 1.9 m^2 ,
174 respectively, and did not vary significantly across the plots. To simulate natural water
175 and N inputs, the treatments were applied in equal amounts, twelve times, once a
176 week in April, July and September, as 5 mm m^{-2} of water and 2.5 or 5 kg N ha^{-1} each

177 week (Cui et al., 2017). Usually, water addition was with a sprinkler kettle, irrigating
178 over the canopy of *H. ammodendron*.

179 **2.4 Measurements of gas exchange traits and WUE**

180 Gas exchange traits, including photosynthetic rate (A), stomatal conductance (g_s),
181 transpiration rate (E) and c_i/c_a , on the assimilating branches of the *H. ammodendron*
182 grown in the sub-plots were determined by LI-6400 portable photosynthesis system
183 on 27-29, June 2016. Then we calculated ins-WUE by the Eq. (3), and int-WUE by
184 Eq. (5).

185 At each plot, the top assimilating branches of a mature individual was selected
186 randomly for the measurement. About 5s was needed for stability after the
187 assimilating branches was inserted in the cuvette and then the assimilating branches
188 were measured. We repeated 10 times on the same assimilating branches for each
189 measurement. We measured gas exchange with a standard $450 \text{ mmol mol}^{-1} \text{ CO}_2$
190 concentration at a flow rate of 500 mmol s^{-1} above saturation in photo flux density of
191 $1000 \text{ mmol m}^{-2} \text{ s}^{-1}$. Leaf temperature kept stable and varied within $1.0 \text{ }^\circ\text{C}$ during each
192 measurement.

193 **2.5 Samples collection**

194 Samples were collected in July 2017. Previous researches have proved that leaf, as the
195 assimilating organ in plants, was most effective for the assessment of plant $\delta^{13}\text{C}$
196 (Saranga et al., 1999). However, extreme drought in desert ecosystems causes the
197 degeneration of leave in *H. ammodendron*. Thus we had to collect the assimilating
198 branches of *H. ammodendron* as our samples, which was its prime assimilating organ.

199 All *H. ammodendron* individuals grown in plots (10 m × 10 m) were sampled. Eight
200 pieces of assimilating branches were collected from each individual, two pieces of
201 assimilating branches were collected at each of the four cardinal directions from the
202 positions of full irradiance. All assimilating branches from the same plot were
203 combined into one sample. All plant samples were air-dried in the field and then in
204 the laboratory. Then the samples were ground into a fine powder using a steel ball
205 mixer mill MM200 (Retsch GmbH, Haan, Germany) for the measurements of $\delta^{13}\text{C}$, N
206 contents and chlorophyll contents.

207 **2.6 Measurements of plant $\delta^{13}\text{C}$, plant N and chlorophyll contents**

208 The $\delta^{13}\text{C}$ and N measurements were performed on a Delta^{Plus} XP mass spectrometer
209 (Thermo Scientific, Bremen, Germany) coupled with an automated elemental
210 analyzer (Flash EA1112, CE Instruments, Wigan, UK) in a continuous flow mode, at
211 the Stable Isotope Laboratory of the College of Resources and Environmental
212 Sciences, China Agricultural University. The carbon isotopic ratios were reported in
213 the delta notation relative to the V-PDB standard. For this measurement, we obtained
214 standard deviations low than 0.15‰ for $\delta^{13}\text{C}$ among replicate measurements of the
215 same sample. And standard deviations for the N measurements were 0.1%.

216 The chlorophyll contents of all samples were also determined. The samples were
217 first extracted by 95% ethyl alcohol (0.5 g sample to 25 mL ethyl alcohol), and then
218 the absorbancy was measured under the wave length of 665 and 649 nm by the
219 spectrophotometer. The content of chlorophyll a, b was calculated by the follow
220 equations:

221 Chlorophyll a (mg/L) = 13.95 × OD665 - 6.88 × OD649 (6)

222 Chlorophyll b (mg/L) = 24.96 × OD649 - 7.32 × OD665 (7)

223 where OD665 and OD649 are the absorbancy under the wave length of 665 and
224 649nm, respectively.

225 **2.6 Calculation of the degree of bundle-sheath leakiness**

226 The degree of bundle-sheath leakiness (φ) was calculated by the transformation of Eq.
227 (2):

228
$$\varphi = \left(\frac{(\delta^{13}\text{C}_{\text{air}} - \delta^{13}\text{C}_{\text{plant}})/(1 + \delta^{13}\text{C}_{\text{plant}}/1000) - a}{c_i/c_a} + a - b_4 \right) / (b - s) (8)$$

229 In this equation, parameters a, b_4 , b and s are constant, while $\delta^{13}\text{C}_{\text{plant}}$ and c_i/c_a are
230 the measured values of our samples. We did not measure the $\delta^{13}\text{C}_{\text{air}}$ at our study site,
231 so we had to use an approximation of the $\delta^{13}\text{C}_{\text{air}}$ to do this φ calculation. The
232 approximated value we used is -9.77‰, which has been measured at Donglingshan
233 Mountain, Beijing, north China in September 2019. We believe that the two sites
234 should have similar $\delta^{13}\text{C}_{\text{air}}$ because the two sites are located in countryside with less
235 human activities and have a similar distance from the nearest city. The straight line
236 distances between Donglingshan Mountain and the city center of Beijing, and
237 between our study and Urumqi city about 90 km.

238 **2.7 Statistical analysis**

239 Statistical analyses were conducted using SPSS software (SPSS for Windows, Version
240 20.0, Chicago, IL, United States). One-way analysis of variance (ANOVA) and
241 two-way analysis of variance (ANOVA) were used to compare the difference of $\delta^{13}\text{C}$
242 and other physiological traits between each treatment. Pearson analysis was used to

243 determine the correlation among $\delta^{13}\text{C}$, WUE and c_i/c_a in *H. ammodendron*.

244

245 **3 Results**

246 **3.1 Plant $\delta^{13}\text{C}$ under water and nitrogen addition**

247 The $\delta^{13}\text{C}$ of the assimilating branches of *H. ammodendron* in the six treatments

248 W0N0, W0N1, W0N2, W1N0, W1N1, W1N2 was $-14.18 \pm 0.19 \text{‰}$, $-14.71 \pm 0.35 \text{‰}$,

249 $-14.45 \pm 0.18 \text{‰}$, $-14.67 \pm 0.40 \text{‰}$, $-14.65 \pm 0.38 \text{‰}$, $-14.34 \pm 0.29 \text{‰}$, respectively.

250 One-way ANOVA analyses showed no significant variation in $\delta^{13}\text{C}$ across treatments

251 ($p = 0.788$, Fig. 1). Two-way ANOVA analyses suggested that $\delta^{13}\text{C}$ was not affected

252 by water addition ($p = 0.678$), N addition ($p = 0.607$) and their interaction ($p = 0.563$,

253 Table 1).

254 Fig.1

255 Table 1

256 **3.2 Gas exchange and WUE under water and nitrogen addition**

257 Photosynthetic rate (A), stomatal conductance (g_s), transpiration rate (E) and c_i/c_a

258 ranged from $12.11 \text{ }\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ to $39.35 \text{ }\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$, from $0.09 \text{ mol H}_2\text{O}$

259 $\text{m}^{-2} \text{ s}^{-1}$ to $0.31 \text{ mol H}_2\text{O m}^{-2} \text{ s}^{-1}$, from $2.87 \text{ mmol H}_2\text{O m}^{-2} \text{ s}^{-1}$ to $8.49 \text{ mmol H}_2\text{O m}^{-2} \text{ s}^{-1}$

260 and 0.11 to 0.57, respectively. One-way ANOVA analyses showed significant changes

261 in leaf gas exchange across the six treatments ($p = 0.012$ for A, $p = 0.006$ for g_s , $p =$

262 0.002 for E and c_i/c_a , Fig. 2). Two-way ANOVA analyses suggested that water

263 addition had exerted effect on c_i/c_a ($p = 0.004$), that N additions influenced A ($p =$

264 0.008) and c_i/c_a ($p = 0.009$), and that the interaction between water and N supply

265 played a role in g_s ($p < 0.001$), E ($p < 0.001$) and c_i/c_a ($p < 0.001$, Table 1).

266 Fig. 2

267 Instantaneous WUE (ins-WUE) and intrinsic WUE (int-WUE) ranged from 3.09
268 $\mu\text{mol CO}_2 / \text{mmol H}_2\text{O}$ to 8.49 $\mu\text{mol CO}_2 / \text{mmol H}_2\text{O}$ and from 93.64 $\mu\text{mol CO}_2 / \text{mol}$
269 H_2O to 208.47 $\mu\text{mol CO}_2 / \text{mmol H}_2\text{O}$, respectively. One-way ANOVA analyses
270 showed significant changes in these two indexes (both $p < 0.001$, Fig. 3). Two-way
271 ANOVA analyses suggested that water addition, N addition and their interaction all
272 have significant effect on these two indexes (all $p < 0.05$, Table 1).

273 Fig. 3

274 **3.3 Correlations among $\delta^{13}\text{C}$, WUE and c_i/c_a ratio**

275 In order to test whether $\delta^{13}\text{C}$ in *H. ammodendron* can indicate WUE, the relationships
276 among $\delta^{13}\text{C}$, ins-WUE, int-WUE and c_i/c_a ratio were revealed in this study. Our
277 results showed no correlation between $\delta^{13}\text{C}$ and ins-WUE ($p = 0.229$, Fig. 4a),
278 between $\delta^{13}\text{C}$ and int-WUE ($p = 0.229$, Fig. 4c), and between $\delta^{13}\text{C}$ and c_i/c_a ratio ($p =$
279 0.183, Fig. 4e). However, there was a negative correlation between ins-WUE and c_i/c_a
280 ratio ($p < 0.001$, Fig. 4b), and between int-WUE and c_i/c_a ratio ($p < 0.001$, Fig. 4d).

281 Fig. 4

282 **3.4 The degree of bundle-sheath leakiness under water and nitrogen addition**

283 The calculated φ ranged from 0.32 to 0.59 with a mean value of 0.45. One-way
284 ANOVA analyses showed no significant variation in φ across treatments ($p = 0.768$,
285 Fig. 5). Two-way ANOVA analyses suggested that $\delta^{13}\text{C}$ was not affected by water
286 addition ($p = 0.644$), N addition ($p = 0.600$) and their interaction ($p = 0.521$, Table 1).

287 Fig. 5

288

289 **4 Discussion**

290 The $\delta^{13}\text{C}$ of the assimilating branches in *H. ammodendron* did not change across
291 treatments (Fig. 1, Table 1), suggesting that neither water addition nor nitrogen
292 addition influenced the $\delta^{13}\text{C}$ of *H. ammodendron*. Previous studies also reported no
293 significant relationship between $\delta^{13}\text{C}$ of C₄ plant and water availability (Swap et al.,
294 2004; Wang et al., 2008), and between $\delta^{13}\text{C}$ of C₄ plant and nitrogen availability (Yao
295 et al., 2011, Yang et al., 2017).

296 In general, the effects of water availability and nitrogen availability on $\delta^{13}\text{C}$ are
297 dependent on c_i/c_a ratio, which reflects the balance between stomatal conductance (g_s)
298 and photosynthetic rate (A) (Farquhar and Richards, 1984). With more water
299 availability under water addition, plants tend to open stomata to absorb more CO₂,
300 leading to an increase in g_s . Two-way ANOVA analyses suggested that water addition
301 had no effect on both A and g_s (Table 1). However, One-way ANOVA analyses
302 showed that g_s was higher in W1N0 than that in W0N0 (Fig. 2b). Thus, at least water
303 addition had a positive effect on g_s under ambient N condition. Increasing g_s under
304 water supply will lead to the rise of intercellular CO₂ because of the decrease of
305 diffusional resistance to CO₂. As the results, c_i/c_a ratio was observed to increase with
306 increasing moisture (Fig. 2d, Table 1). However, $\delta^{13}\text{C}$ remained stable under water
307 addition (Fig. 1, Table 1). Thus, c_i/c_a ratio could not explain the observed response of
308 $\delta^{13}\text{C}$ to water supply.

309 For most plants in natural ecosystems, nitrogen is the key factor limiting plant
310 growth (Hall et al., 2011). Thus, nitrogen addition usually causes plants to absorb
311 more N. However, extreme drought could prevent plants from absorbing N even
312 under high N supply. In the present experiment, N supply was found to have an effect
313 on N contents in *H. ammodendron*. Relative to the control treatment (W0N0), N
314 contents increased with N supply under low N addition, but kept unchanged under
315 high addition (Table S1, S2). Nitrogen is the main constituent of Rubisco (ribulose -
316 1,5 - bisphosphate carboxylase oxygenase) and chlorophyll in plants. Thus,
317 chlorophyll a was found to have the similar pattern as N contents under water and N
318 supply. Chlorophyll a was higher in W0N1 than W0N0, and there was no difference in
319 chlorophyll a between W0N0 and W0N2 (Table S1). Increasing chlorophyll contents
320 in W0N1 should lead to the increase in photosynthetic rate (A). However, different
321 from our prediction, one-way ANOVA analyses suggested that A in W0N1 did not
322 differ from that in W0N0, and that A in W0N2 is lower than that in W0N0 (Fig., 2a).
323 Two-way ANOVA analyses showed that N addition had an influence on A (Table 1).
324 Both the analyses suggested that N supply played a negative role in A, and thus the
325 consumption of intercellular CO₂. Consequently, c_i/c_a ratio was found to increase with
326 N supply (Fig. 2d, Table 1). Therefore, the variations in c_i/c_a ratio with N addition
327 could not account for the unchanged pattern in $\delta^{13}\text{C}$ under N supply (Fig. 1).
328 The co-application of water and nitrogen was found to have a negative effect on A
329 but no effect on g_s (W0N0 vs. W1N1, W1N2, Fig. 2a, b). The responses of A and g_s to
330 the co-application of water and nitrogen resulted in an increase in c_i/c_a ratio (Fig., 2d).

331 Since $\delta^{13}\text{C}$ remained unchanged under the co-application of water and nitrogen (Fig.
332 1), c_i/c_a ratio could not also explain the observed $\delta^{13}\text{C}$ response to the co-application
333 of water and nitrogen.

334 Two underlying mechanisms may explain the observed $\delta^{13}\text{C}$ stability across
335 treatments. The first one is associated with the φ value in *H. ammodendron*. For C_4
336 plants, the relationship between carbon isotope discrimination (Δ) and c_i/c_a ratio is
337 dependent on φ values (Ellsworth and Cousins, 2016; Ellsworth et al., 2017; Farquhar,
338 1983; Wang et al., 2008). Some studies suggested that φ value was stable for a given
339 species under a wide range of environmental conditions (Henderson et al., 1992;
340 Wang et al., 2008; Cernusak et al., 2013). However, other studies had different
341 conclusions that φ value was influenced by irradiation (Bellasio and Griffiths, 2014;
342 Kromdijk et al., 2010; Pengelly et al., 2010; Ubierna et al., 2013), temperature (von
343 Caemmerer et al., 2014), water stress (Fravolini et al., 2002; Gong et al., 2017;
344 Williams et al., 2001; Yang et al., 2017) and nitrogen supply (Fravolini et al., 2002;
345 Meinzer and Zhu, 1998; Yang et al., 2017). In current study, the φ value of *H.*
346 *ammodendron* remained unchanged across six treatments (Fig. 5), and two-way
347 ANOVA analyses suggested that water supply and N supply had no effect on φ (Table
348 1). Therefore, the φ value of *H. ammodendron* was insensitive to water and N addition
349 in this study. Even if the φ value remains stable, the relationship between Δ and c_i/c_a
350 ratio is also associated with the magnitude of the φ value. Cernusak et al. (2013)
351 predicted that when φ value is greater than 0.37, the correlation between Δ and c_i/c_a
352 ratio is positive; conversely, when φ value is less than 0.37, the correlation is negative.

353 In particular, when φ value is equal to 0.37, no significant correlation can be found,
354 because the coefficient ($[b_4 + \varphi (b - s) - a]$ in Eq. (2)) of c_i/c_a ratio equals to 0
355 (Cernusak et al., 2013). The φ value ranged from 0.32 to 0.59 with a mean value of
356 0.45 in present study, thus the correlation between Δ and c_i/c_a in *H. ammodendron*
357 should be positive based on the prediction by Cernusak et al. (2013). However, $\delta^{13}\text{C}$
358 was found to have no correlation with the measured c_i/c_a ratio (Fig. 4e), suggesting
359 that the φ value of *H. ammodendron* could be close to 0.37. The reason resulting in
360 the inconsistence between our calculated φ value and the φ value based on the
361 prediction by Cernusak et al. (2013) is that we took the atmospheric $\delta^{13}\text{C}$ data at
362 Donglingshan, Beijing as $\delta^{13}\text{C}_{\text{air}}$ to calculate φ value. Since atmospheric $\delta^{13}\text{C}$ is
363 characterized by geography, the calculation might overestimate the φ value. Therefore,
364 considering that no correlation was found between with $\delta^{13}\text{C}$ and c_i/c_a ratio, we
365 hypothesize that the φ value of *H. ammodendron* could be close to 0.37, which leaded
366 to the observed insensitive response of $\delta^{13}\text{C}$ to water and N addition.

367 The second mechanism is associated with carbonic anhydrase (CA) in C_4 plants.
368 Cousins et al. (2006) suggested that enzymatic activity of CA affects carbon isotope
369 discrimination in most C_4 plants because CA can result in the changing of parameter
370 b_4 (see Eq. (2)). But in traditional view, the parameter b_4 was a constant. However, it
371 is only true when the ratio of PEP carboxylation rate to the CO_2 hydration rate (V_p/V_h)
372 is equal to zero, which is caused by a high CA activity. If V_p/V_h is not zero, b_4 will
373 change and be controlled by V_p/V_h (Cousins et al., 2006). Previous studies reported
374 that CA activity is low in most C_4 plants (Cousins et al., 2006; Gillon and Yakir, 2000,

375 2001; Hatch and Burnell, 1990). Thus, CA activity in *H. ammodendron* might also be
376 low, leading to the change in b_4 with V_p/V_h , and thus $\delta^{13}\text{C}$. Cousins et al. (2006)
377 added V_p/V_h into the discrimination pattern of C_4 plants and predicted that at a given
378 φ value, when the V_p/V_h is 0 or 1, the correlation between Δ and c_i/c_a ratio is negative
379 or positive, respectively. Since CA activity is low in most C_4 plants, and the V_p/V_h
380 always ranges from 0 to 1, we speculate that no correlation between Δ and c_i/c_a ratio
381 may also occur when the V_p/V_h is a certain value between 0 and 1. Thus, the
382 uncorrelated pattern between Δ and c_i/c_a ratio in *H. ammodendron* might be related to
383 this specific V_p/V_h value due to low CA activity.

384 Henderson et al. (1992) found that $\delta^{13}\text{C}$ of 10 C_4 species has negative correlation
385 with their WUE, which was just opposite to a positive relationship between $\delta^{13}\text{C}$ and
386 WUE for C_3 plants. The underlying mechanism of the negative correlation between
387 $\delta^{13}\text{C}$ and WUE is that the φ values in 10 C_4 species was observed to remain around
388 0.21 over a range of irradiance and leaf temperature. According to the suggestion by
389 Cernusak et al. (2013) that Δ is negatively related to c_i/c_a ratio when φ value is less
390 than 0.37, thus, the $\delta^{13}\text{C}$ of 10 C_4 species has a positive correlation with c_i/c_a ratio. In
391 general, under fixed ambient CO_2 concentration, WUE is always negatively correlated
392 with c_i/c_a ratio (see Eq. (3) and Eq. (5)). As a result, a negative relationship between
393 $\delta^{13}\text{C}$ and WUE was observed for the 10 C_4 species. However, our study shows that
394 $\delta^{13}\text{C}$ remained stable under water and nitrogen addition (Fig. 1, Table 1), while the
395 measured ins-WUE and int-WUE was higher in the control treatment (W0N0) than
396 other treatments (Fig. 3), suggesting and water and N supply had a significant effect

397 on WUE (Table 1). Furthermore, ins-WUE and int-WUE both had no correlation with
398 $\delta^{13}\text{C}$ (Fig. 4a, 4c). Thus, $\delta^{13}\text{C}$ of *H. ammodendron* could not indicate its WUE. The
399 probable cause of no correlation between WUE and $\delta^{13}\text{C}$ is that no correlation has
400 been found between with $\delta^{13}\text{C}$ and the measured c_i/c_a ratio (Fig. 4e), because c_i/c_a
401 ratio is the link between WUE and $\delta^{13}\text{C}$.

402

403 **5 Conclusion**

404 Global changes including precipitation and atmospheric N deposition have been
405 proved to have an important influence on ecosystems, especially for the arid
406 ecosystems. The present study showed that water and N addition had little effect on
407 the $\delta^{13}\text{C}$ values of *H. ammodendron*, but played an important role in the change of its
408 gas exchange and water use efficiency (WUE). In addition, no correlation between
409 instantaneous WUE (ins-WUE) and $\delta^{13}\text{C}$, and between intrinsic WUE (int-WUE) and
410 $\delta^{13}\text{C}$ has been found in this study, suggesting that $\delta^{13}\text{C}$ of *H. ammodendron* could not
411 indicate its WUE. This result is caused by the lack of the correlation between $\delta^{13}\text{C}$ and
412 the ratio of intercellular to ambient CO_2 concentration (c_i/c_a), which might be
413 associated with the degree of bundle-sheath leakiness (ϕ) or the activity of carbonic
414 anhydrase (CA). Thus, the current experiment implies that the availability of $\delta^{13}\text{C}$ as
415 the indicator of WUE could be not universal for C_4 species.

416

417 **Conflict of interest**

418 None declared.

419

420 **Funding**

421 This research was supported by the Chinese National Basic Research Program (No.
422 2014CB954202 and a grant from the National Natural Science Foundation of China
423 (No. 41772171).

424

425 **Authors' Contributions**

426 G Wang and J Li designed the experiment and modified the manuscripts. Z Chen
427 designed and executed the experiment and wrote the manuscripts. X Liu designed the
428 experiment. X Cui executed the experiment. Y Han executed the experiment.

429

430 **Acknowledgements**

431 This research was supported by the Chinese National Basic Research Program (No.
432 2014CB954202 and a grant from the National Natural Science Foundation of China
433 (No. 41772171). We would like to thank the supports from the Fukang Observation
434 Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese
435 Academy of Sciences, and to thank Ma Yan for analyzing stable carbon isotope ratios
436 in the Isotope Lab at the College of Resources and Environment, China Agricultural
437 University.

438

439 **Data availability**

440 The datasets analyzed in this manuscript are not publicly available. Requests to access

441 the datasets should be directed to gawang@cau.edu.cn.

442

443 **References**

444 Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H. R., Norby, R. J., and
445 Cotrufo, M. F.: Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from
446 carbon and oxygen isotope analyses in tree rings across three forest FACE sites. *New Phytol.*,
447 197, 544-554, 2013.

448 Bellasio, C., and Griffiths, H.: Acclimation to low light by C₄ maize: implications for bundle
449 sheath leakiness. *Plant Cell Environ.*, 37, 1046-1058, 2014.

450 Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and Farquhar, G. D.:
451 Environmental and physiological determinants of carbon isotope discrimination in terrestrial
452 plants. *New Phytol.*, 200, 950-965, doi: 10.1111/nph.12423, 2013.

453 Cernusak, L. A., Winter, K., Aranda, J., Turner, B. L., and Marshall, J. D.: Transpiration efficiency
454 of a tropical pioneer tree (*Ficus insipida*) in relation to soil fertility. *J. Exp. Bot.*, 58(13),
455 3549-3566, 2007.

456 Chen, Y., Wang, Q., Li, W., and Ruan, X.: Microbiotic crusts and their interrelations with
457 environmental factors in the Gurbantonggut desert, western China. *Environ. Geol.*, 52, 691-700,
458 2007.

459 Cousins, A. B., Badger, M. R., and von Caemmerer, S.: Carbonic anhydrase and its influence on
460 carbon isotope discrimination during C₄ photosynthesis. Insights from antisense RNA in
461 *Flaveria bidentis*. *Plant Physiol.*, 141, 232-242, 2006.

462 Craig, H.: Carbon-13 in plants and relationships between carbon-13 and carbon-14 variations in

463 nature. J. Geol., 62, 115-149, 1954.

464 Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric
465 analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12, 133-149, 1957.

466 Cui, X. Q., Yue, P., Gong, Y., Li, K. H., Tan, D. Y., Goulding, K., and Liu, X. J.: Impacts of water
467 and nitrogen addition on nitrogen recovery in, *Haloxylon ammodendron*, dominated desert
468 ecosystems. Sci. Total Environ., 601-602, 1280-1288, 2017.

469 Diefendorf, A. F., Mueller, K. E., and Wing, S. L.: Global patterns in leaf ^{13}C discrimination and
470 implications for studies of past and future climate. Proc. Natl. Acad. Sci. U.S.A., 107,
471 5738-5743. doi: 10.1073/pnas.0910513107, 2010.

472 Ehleringer, J. R., and Cerling, T. E.: Atmospheric CO_2 and the ratio of intercellular to ambient
473 CO_2 concentrations in plants. Tree Physiol., 15, 105-111, 1995.

474 Ellsworth, P. Z., Ellsworth, P. V., and Cousins, A. B.: Relationship of leaf oxygen and carbon
475 isotopic composition with transpiration efficiency in the C_4 grasses *Setaria viridis* and *Setaria*
476 *italica*. J. Exp. Bot., 68(13), 3513-3528, 2017.

477 Ellsworth, P. Z., and Cousins, A. B.: Carbon isotopes and water use efficiency in C_4 plants. Curr.
478 Opin. Plant. Biol., 31, 155-161, 2016.

479 Fan, L. L., Li, Y., Tang, L. S., and Ma, J.: Combined effects of snow depth and nitrogen addition
480 on ephemeral growth at the southern edge of the Gurbantunggut Desert, China. J. Arid. Land, 5,
481 500-510, 2013.

482 Farquhar, G. D.: On the nature of carbon isotope discrimination in C_4 species. Aust. J. Plant
483 Physiol., 10(2), 205-226, 1983.

484 Farquhar, G. D., and Richards, P. A.: Isotopic composition of plant carbon correlates with

485 water-use efficiency of wheat genotypes. *Aust. J. Plant Physiol.*, 11, 539-552, 1984.

486 Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., der
487 Velde, M. V., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J. C., Ciais, P., Cramer, W.,
488 Sibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S. I., Walz, A., Wattenbach, M.,
489 Zavala, M. A., and Zscheischler, J.: Effects of climate extremes on the terrestrial carbon cycle:
490 Concepts, processes and potential future impacts. *Global Chang. Biol.*, 21(8), 2861-2880, 2015.

491 Fravolini, A., Williams, D. G., and Thompson, T. L.: Carbon isotope discrimination and bundle
492 sheath leakiness in three C₄ subtypes grown under variable nitrogen, water and atmospheric
493 CO₂ supply. *J. Exp. Bot.*, 53(378), 2261-2269, 2002.

494 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P.,
495 Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter,
496 J. H., Townsend, A. R., and Vörösmarty, C.J.: Nitrogen cycles: past, present, and future.
497 *Biogeochem.* 70, 153-226, 2004.

498 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli,
499 L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: recent trends,
500 questions, and potential solutions. *Science*, 320, 889-892, 2008.

501 Gillon, J. S., and Yakir, D.: Naturally low carbonic anhydrase activity in C₄ and C₃ plants limits
502 discrimination against (COO)-O-18 during photosynthesis. *Plant Cell Environ.*, 23, 903-915,
503 2000.

504 Gillon, J. S., and Yakir, D.: Influence of carbonic anhydrase activity in terrestrial vegetation on the
505 O-18 content of atmospheric CO₂. *Science*, 291, 2584-2587, 2001.

506 Gong, X. Y., Schäfele, R., and Schnyder, H.: Bundle-sheath leakiness and intrinsic water use

507 efficiency of a perennial C₄ grass are increased at high vapour pressure deficit during growth. *J.*
508 *Exp. Bot.*, 68(2), 321-333, 2017.

509 Gresset, S., Westermeier, P., Rademacher, S., Ouzunova, M., Presterl, T., Westhoff, P., and Schön,
510 C.: Stable carbon isotope discrimination is under genetic control in the C₄ species maize with
511 several genomic regions influencing trait expression. *Plant Physiol.*, 164(1), 131-143, 2014.

512 Hall, S. J., Sponseller, R. A., Grimm, N. B., Huber, D., Kaye, J. P., Clark, C., and Collins, S. L.:
513 Ecosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert. *Ecol.*
514 *Appl.*, 21, 640-660, 2011.

515 Hatch, M. D., and Burnell, J. N.: Carbonic anhydrase activity in leaves and its role in the first step
516 of C₄ photosynthesis. *Plant Physiol.*, 93, 825-828, 1990.

517 Henderson, S. A., von Caemmerer, S., and Farquhar, G. D.: Short-term measurements of carbon
518 isotope discrimination in several C₄ species. *Aust. J. Plant Physiol.*, 19, 263-285, 1992.

519 Huang, J. P., Yu, H. P., Guan, X. D., Wang, G. Y., and Guo, R. X.: Accelerated dryland expansion
520 under climate change. *J. Nature Climat. Chang.*, 6(2), 2016.

521 Huang, J. Y., Wang, P., Niu, Y. B., Yu, H. L., Ma, F., Xiao, G. J., and Xu, X.: Changes in C:N:P
522 stoichiometry modify N and P conservation strategies of a desert steppe species *Glycyrrhiza*
523 *uralensis*. *Sci. Rep.*, 8(1), 12668, 2018.

524 Knapp, A. K., Hoover, D. L., Wilcox, K. R., Avolio, M. L., Koerner, S. E., La Pierre, K. J., Loik,
525 M. E., Luo Y. Q., Sala, O. E., and Smith, M. D.: Characterizing differences in precipitation
526 regimes of extreme wet and dry years: Implications for climate change experiments. *Glob.*
527 *Chang. Biol.y* 21(7), 2624-2633, 2015.

528 Kohn, M. J.: Carbon isotope compositions of terrestrial C₃ plants as indicators of (paleo) ecology

529 and (paleo) climate. Proc. Natl. Acad. Sci. U.S.A., 107, 19691-19695. doi:
530 10.1073/pnas.1004933107, 2010.

531 Kromdijk, J., Griffiths, H., and Schepers, H. E.: Can the progressive increase of C₄ bundle sheath
532 leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant Cell
533 Environ., 33, 1935-1948, 2010.

534 Li, J. Z., Wang, G. A., Zhang, R.N., and Li, L.: A negative relationship between foliar carbon
535 isotope composition and mass-based nitrogen concentration on the eastern slope of mount
536 gongga, China. PLoS ONE, 11(11), e0166958, 2016.

537 Liu, W. G., Feng, X. H., Ning, Y. F., Zhang, Q. L., Cao, Y. N., and An, Z. S.: $\delta^{13}\text{C}$ variation of C₃
538 and C₄ plants across an asian monsoon rainfall gradient in arid northwestern China. Glob.
539 Chang. Biol., 11(7), 1094-1100, 2005.

540 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K.,
541 Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China. Nature
542 494, 459-462, 2013.

543 Liu, Y. X., Li, X., Zhang, Q., Guo, Y. F., Gao, G., and Wang, J. P.: Simulation of regional
544 temperature and precipitation in the past 50 years and the next 30 years over China. Quat. Int.,
545 212, 57-63, 2010.

546 Ma, J. Y., Sun, W., Liu, X. N., and Chen, F. H.: Variation in the stable carbon and nitrogen isotope
547 composition of plants and soil along a precipitation gradient in northern China. PLoS ONE,
548 7(12), e51894, 2012.

549 Ma, J. Y., Sun, W., Koteyeva, N. K., Voznesenskaya, E., Stutz, S. S., Gandin, A., Smith-Moritz, A.
550 M., Heazlewood, J. L., and Cousins, A. B.: Influence of light and nitrogen on the photosynthetic

551 efficiency in the c4 plant *Miscanthus* *×* *Giganteus*. Photo. Res., 131(1), 1-11, 2016.

552 Meinzer, F. C., and Zhu, J.: Nitrogen stress reduces the efficiency of the C₄ CO₂ concentrating
553 system, and therefore quantum yield, in *Saccharum (sugarcane)* species. J. Exp. Bot., 49(324),
554 1227-1234, 1998.

555 O' Leary, M. H.: Measurement of the isotopic fractionation associated with diffusion of carbon
556 dioxide in aqueous solution. J. Phys. Chem., 88, 823-825, 1984.

557 Pengelly, J. J. L., Sirault, X. R. R., Tazoe, Y., Evans, J. R., Furbank, R. T., and von Caemmerer, S.:
558 Growth of the C₄ dicot *Flaveria bidentis*: photosynthetic acclimation to low light through shifts
559 in leaf anatomy and biochemistry. J. Exp. Bot., 61, 4109-4122, 2010.

560 Rao, Z. G., Guo, W. K., Cao, J. T., Shi, F. X., Jiang, H., and Li, C. Z.: Relationship between the
561 stable carbon isotopic composition of modern plants and surface soils and climate: A global
562 review. Earth Sci. Rev., 165, 110-119, 2017.

563 Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turnerll, B. L., Mortimore, M., Batterbury, S. P. J.,
564 Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang,
565 H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global desertification:
566 building a science for dryland development. Science, 316(5826), 847-851, 2007.

567 Saranga, Y., Flash, I., Paterson, A. H., and Yakir, D.: Carbon isotope ratio in cotton varies with
568 growth stage and plant organ. Plant Sci. (Shannon), 142(1), 0-56, 1999.

569 Schmidt, G., Gebauer, G., Widmann, K., and Ziegler, H.: Influence of nitrogen supply and
570 temperature on stable carbon isotope ratios in plants of different photosynthetic pathways (C₃,
571 C₄, CAM). Isotopenp. Isot. Environ. Heal. Stud., 29(1-2), 9-13, 1993.

572 Serret, M. D., Yousfi, S., Vicente, R., Piñero, M. C., Oñate-Alcón G., del Amor, F. M., and Araus,

573 J. L.: Interactive effects of CO₂ concentration and water regime on stable isotope signatures,

574 nitrogen assimilation and growth in sweet pepper. *Front. Plant Sci.*, 8, 2180, 2018.

575 Song, L., Kuang, F., Skiba, U., Zhu, B., Liu, X., Levy, P., Dore, A., and Fowler, D.: Bulk

576 deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013. *Environ.*

577 *Pollut.* 227, 157-166, 2017.

578 Sparks, J. P., and Ehleringer, J. R.: Leaf carbon isotope discrimination and nitrogen content for

579 riparian trees along elevational transects. *Oecologia*, 109, 362-367. doi:

580 10.1007/s004420050094, 1997

581 Stewart, G. R., Turnbull, M. H., Schmidt, S., and Erskine, P. F.: ¹³C Natural abundance in plant

582 communities along a rainfall gradient: a biological integrator of water availability. *Aust. J. Plant*

583 *Physiol.*, 22, 51-55. doi: 10.1071/ PP9950051, 1995.

584 Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly III, W. P., and Macko, S. A.: Natural

585 abundance of ¹³C and ¹⁵N in C₃ and C₄ vegetation of southern africa: patterns and implications.

586 *Glob. Change Biol.*, 10(3), 350-358, 2004.

587 Tranan, M. W., and Schubert, B. A.: Temperature-induced water stress in high-latitude forests in

588 response to natural and anthropogenic warming. *Glob. Change Biol.*, 22, 782-791, doi:

589 10.1111/gcb.13121, 2016.

590 Ubierna, N., Sun, W., Kramer, D. M., and Cousins, A. B.: The efficiency of C₄ photosynthesis

591 under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. *Plant*

592 *Cell Environ.*, 36, 365-381, 2013.

593 von Caemmerer, S., Ghannoum, O., Pengelly, J. J. L., and Cousins, A. B.: Carbon isotope

594 discrimination as a tool to explore C₄ photosynthesis. *J. Exp. Bot.*, 65, 3459-3470, 2014.

595 Wang, G. A., Feng, X., Han, J., Zhou, L., Tan, W., and Su, F.: Paleovegetation reconstruction using
596 $\delta^{13}\text{C}$ of soil organic matter. *Biogeosci.*, 5, 1325-1337. doi: 10.5194/bg-5-1325-2008, 2008.

597 Wang, G. A., and Feng, X. H.: Response of plants' water use efficiency to increasing atmospheric
598 CO_2 concentration. *Environ. Sci. Technol.*, 46, 8610-8620, 2012.

599 Wang, G. A., Han, J. M., Zhou, L. P., Xiong, X. G., and Wu, Z. H.: Carbon isotope ratios of plants
600 and occurrences of C_4 species under different soil moisture regimes in arid region of Northwest
601 China. *Physiol. Plant.*, 25, 74-81, 2005.

602 Wang, G. A., Han, J. M., Zhou, L. P., Xiong, X. G., Tan, M., Wu, Z. H., and Peng, J.: Carbon
603 isotope ratios of C_4 plants in loess areas of North China. *Sci. China Ser. D.*, 49(1), 97-102,
604 2006.

605 Williams, D. G., Gempko, V., Fravolini, A., Leavitt, S. W., Wall, G. W., Kimball, B. A., Pinter Jr, P.
606 J., LaMorte, R., and Ottman, M.: Carbon isotope discrimination by *Sorghum bicolor* under CO_2
607 enrichment and drought. *New Phytol.*, 150, 285-293, 2001.

608 Yang, H., Yu, Q., Sheng, W. P., Li, S. G., and Tian, J.: Determination of leaf carbon isotope
609 discrimination in C_4 plants under variable N and water supply. *Sci. Rep.*, 7, 351, 2017.

610 Yao, F. Y., Wang, G. A., Liu, X. J., and Song, L.: Assessment of effects of the rising atmospheric
611 nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using
612 nitrogen and carbon stable isotopes. *Rapid Commun. Mass Spectrom.*, 25, 1827-1836, 2011.

613 Zhang, J., Gu, L., Bao, F., Cao, Y., Hao, Y., He, J., Li, J., Li, Y., Ren, Y., Wang, F., Wu, R., Yao, B.,
614 Zhao, Y., Lin, G., Wu, B., Lu, Q., and Meng, P.: Nitrogen control of ^{13}C enrichment in
615 heterotrophic organs relative to leaves in a landscape-building desert plant species. *Biogeosci.*,
616 12(1), 15-27, 2015.

617 Zhang, Y. M., Chen, J., Wang, L., Wang, X. Q., and Gu, Z. H.: The spatial distribution patterns of
618 biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. *J. Arid Environ.*,
619 68, 599-610, 2007.

620 Table 1 The p values of all measured and calculated indexs in plants under two-way ANOVA
621 analysis of water (W) and nitrogen (N) additions

	W	N	W*N
$\delta^{13}\text{C}$	0.678	0.607	0.563
Photosynthetic rate (A)	0.331	0.008**	0.183
Stomatal conductance (g_s)	0.533	0.871	<0.001***
Transpiration rate (E)	0.622	0.883	<0.001***
c_i/c_a	0.004**	0.009**	<0.001***
ins-WUE	0.002**	<0.001***	<0.001***
int-WUE	0.004**	0.018*	<0.001***
φ	0.644	0.600	0.521

622 Note. *, **, *** indicates a significant influence.

623

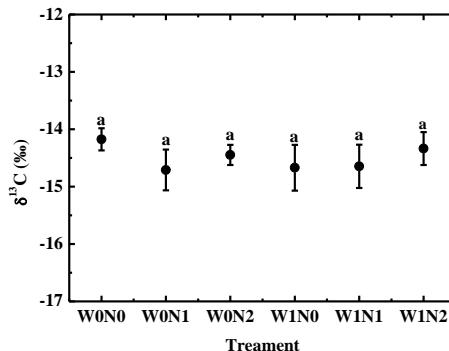
624

625

626

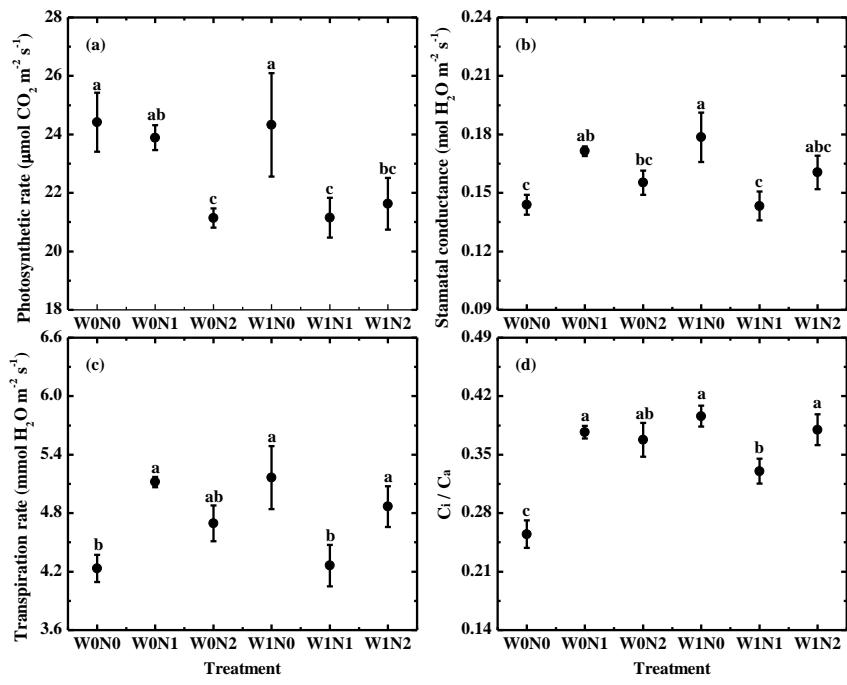
627

628

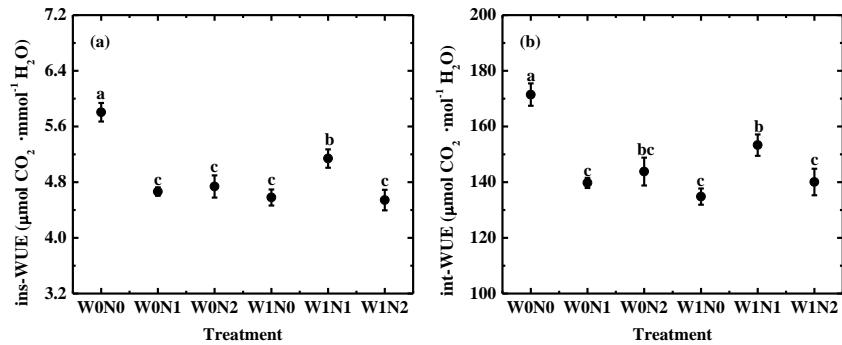

629

630

631

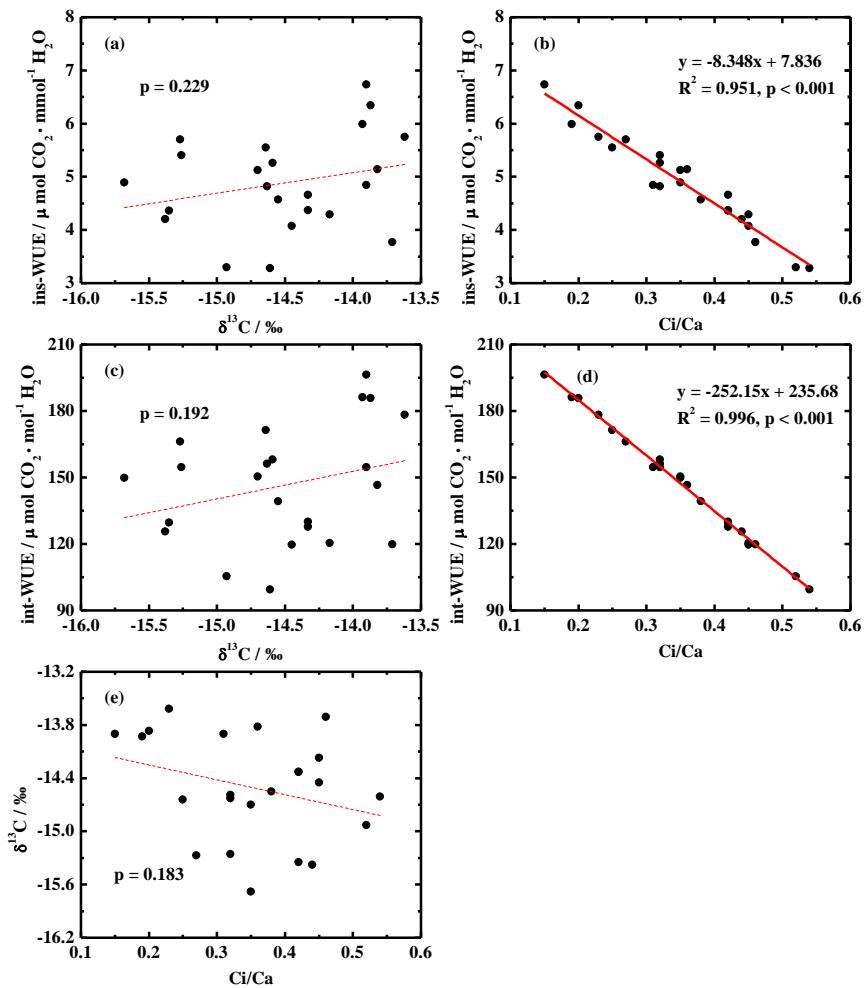

632

633

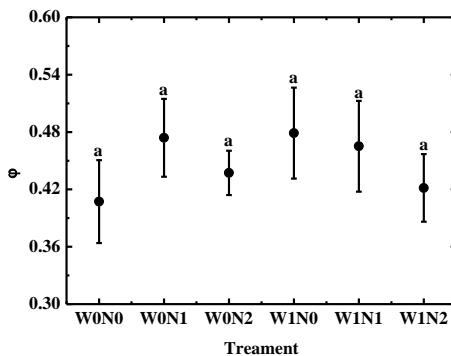


634
635 Fig. 1 The $\delta^{13}\text{C}$ of assimilating branches of *Haloxylon ammodendron* under water (W) and
636 nitrogen (N) additions. The spot represents the mean value of four replicates with error bars
637 denoting the standard error (SE).

638


639
640 Fig. 2 Variations in photosynthetic rate (a), stomatal conductance (b), water use-efficiency (c) and
641 C_i/C_a (d) across water (W) and nitrogen (N) additions. The spot represents the mean value of four
642 replicates with error bars denoting the standard error (SE).

643


644 Fig. 3 Variations in ins-WUE (a) and int-WUE (b) across water (W) and nitrogen (N) additions.
645 The spot represents the mean value of four replicates with error bars denoting the standard error
646 (SE).

647

648

649 Fig. 4 Correlations of ins-WUE vs. $\delta^{13}\text{C}$ (a), ins-WUE vs. c_i/c_a (b), int-WUE vs. $\delta^{13}\text{C}$ (c),
 650 int-WUE vs. c_i/c_a (d), and $\delta^{13}\text{C}$ vs. c_i/c_a (e) of assimilating branches of *Haloxylon ammodendron*

651
652 Fig. 5 Variations in φ across water (W) and nitrogen (N) additions. The spot represents the mean
653 value of four replicates with error bars denoting the standard error (SE).
654
655