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Abstract. In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of 13 

this shift in land-use on greenhouse gas (GHG) fluxes and soil microbial communities remains highly 14 

uncertain, mainly due to a relatively small pool of available data. The aim of this study is to quantify 15 

differences of nitrous oxide (N2O) and methane (CH4) fluxes as well as soil carbon dioxide (CO2) 16 

respiration rates from logged forests, oil palm plantations of different ages and an adjacent small riparian 17 

area. The focus of this study is on N2O fluxes, as these emissions are expected to increase significantly 18 

due to the introduction of nitrogen (N) fertiliser application. This study was conducted in the SAFE 19 
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(Stability of Altered Forest Ecosystems) landscape in Malaysian Borneo (Sabah) with measurements 20 

every two months over a two-year period. GHG fluxes were measured by static chambers; at the same 21 

time soil samples were collected for analysis of the key soil physicochemical parameters and for analysis 22 

of microbial biodiversity using next generation sequencing in dry and wet season. N2O fluxes were highly 23 

variable across the different sites, with the highest mean flux from OP (46.2±166 µg m-2 h-1 N2O-N) and 24 

riparian (31.8±220 µg m-2 h-1 N2O-N) sites, compared to lower fluxes from logged forest (13.9±171 µg 25 

m-2 h-1 N2O-N). Methane fluxes were generally small; -2.6±17.2 µg CH4-C m-2 h-1 for OP and 1.3±12.6 26 

µg CH4-C m-2 h-1 for riparian with the range of measured CH4 fluxes largest in logged forests (2.2±48.3 27 

µg CH4-C m-2 h-1). Soil respiration rates were larger from riparian areas (157.7±106 mg m-2 h-1 CO2-C) 28 

and logged forests (137.4±95 mg m-2 h-1 CO2-C) than OP plantations (93.3±70 mg m-2 h-1 CO2-C) due to 29 

larger amounts of decomposing leaf litter. Microbial communities were distinctly different between the 30 

different land-use types and sites, bacterial communities linked to soil pH and fungal and eukaryotic 31 

communities to land-use. Despite measuring a number of environmental parameters, mixed models could 32 

only explain up to 17% of the variance of measured fluxes for N2O, 3% of CH4 and 25% of soil respiration. 33 

Scaling up measured N2O fluxes to Sabah using land areas for forest and OP resulted in emissions 34 

increasing from 7.6 Mt (95% confidence interval, -3.0-22.3 Mt) per year in 1973 to 11.4 Mt (0.2-28.6 Mt) 35 

per year in 2015 due to the increasing area of forest converted to OP plantations over the last ~40 years.  36 

 37 
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1 Introduction 38 

Deforestation in Southeast Asia is so intense that up to three quarters of its forests might be lost by the 39 

end of the 21st century (Sodhi et al., 2004) and most of the degradation happens because of conversion 40 

of forest to croplands and plantations (Wilcove et al., 2013). In Malaysia and Indonesia, more than 16 41 

million hectares of land, mainly from tropical forests but also to a lesser extent, other non-profitable 42 

agricultural land such as rubber plantations and peat, were cleared for oil palm (OP) (Yan, 2017). Many 43 

of the remaining forests are degraded forests, as they have been partially logged, to remove specific tree 44 

species and logging activity has caused an increase in forest openings (Houghton, 2012). In 20% of the 45 

world’s tropical forests, selective logging occurs, and it is estimated that this accounts for at least half of 46 

the anthropogenic greenhouse gas emissions (GHG) from forest degradation (Pearson et al., 2017). 47 

Consequently, forest degradation has been recognised as a source of GHG emissions, but little is known 48 

of the emissions from the resulting secondary forests, especially in Malaysian Borneo, Sabah. Due to 49 

deforestation, fragments of forest remain isolated from each other, which can have consequences for 50 

biodiversity and ecosystem function (Ewers et al., 2011).  51 

 52 

OP plantations are one of the main causes of deforestation and forest degradation in Southeast Asia (Lee-53 

Cruz et al., 2013; Wilcove et al., 2013) with some disputes about the extent to which industrial plantations 54 

are responsible for the loss of old-growth and selectively logged forests in Borneo (Gaveau et al., 2016). 55 

OP generates the highest yield per hectare of land of any vegetable oil crops. It is used in food products, 56 

detergents, soaps, cosmetics, animal feed and bioenergy, and was hence praised as a wonder crop (Sayer 57 

https://doi.org/10.5194/bg-2020-297
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

4 
 

 

et al., 2012). However, OP agriculture is now known to be responsible for soil degradation, loss of soil 58 

carbon (C) and reduced soil fertility due to the conversion and management methods (Guillaume et al., 59 

2015; Lee-Cruz et al., 2013). To create an OP plantation, complete deforestation followed by terracing of 60 

the land is often the chosen method, and not only in hilly terrain. Terracing can result in poor drainage, 61 

reduced soil fertility and increased soil erosion. Conversion of tropical forests may also lead to changes 62 

in the short- and long-term nutrient status of the converted land-use systems. It is important to understand 63 

impacts of these land-use changes in order to identify more environmentally friendly and sustainable 64 

management practices (Jackson et al., 2019).  65 

 66 

OP plantations are assessed for their GHG emissions, but rarely have emissions from forests and 67 

plantations from the same region been reported together, despite the call to study fluxes in forest and 68 

converted land simultaneously (van Lent et al., 2015). Much of the focus has been on GHG emissions 69 

from peatland rather than mineral soil, either tropical forest on peatland or peatland drained for 70 

plantations. More attention has been given to carbon fluxes or storage (Germer and Sauerborn, 2008; 71 

Hassler et al., 2015) than emissions from the non-CO2 GHG methane (CH4) and nitrous oxide (N2O). 72 

Meijide et al. (2020) identified the need to study all three GHGs to assess total emissions from OP 73 

plantations. Even though CH4 and N2O are not emitted at the quantity of CO2, their global warming 74 

potentials (GWP) per molecule are 28 – 34 (without and with climate-carbon feedback) and 265 – 298 75 

times higher than CO2 on a 100 year time horizon, respectively, which highlights their importance (Myhre 76 

et al., 2013).  Due to a number of environmental issues arising from conversion of peatlands to OP 77 
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plantations, the focus will increasingly shift to mineral soil for conversion to plantations, especially in 78 

Malaysia (Shanmugam et al., 2018). There are too few measurements reported of N2O emissions from 79 

mineral soils in the tropics to draw firm conclusions about the increase of N2O emissions after land-use 80 

change from secondary forest to OP (Shanmugam et al., 2018).  81 

 82 

Limited measurement and modelling studies have been carried out on N2O emissions from OP plantations 83 

(Pardon et al., 2016a; Pardon et al., 2016b; Pardon et al., 2017), and not in the context of comparing them 84 

with other land-uses on the same or similar soil type. Similarly, reported CH4 emissions from mineral 85 

soils in the Tropics (other than from paddy soils) are lacking. Most studies relating land-use change to 86 

trace gas emissions have been conducted in South America and not South East Asia (Hassler et al., 2015; 87 

Veldkamp et al., 2013). An additional caveat of published studies is that most have only been conducted 88 

over short periods of time (Hassler et al., 2015). The lack of reliable long-term and multi-year datasets on 89 

GHG balances has been recognised (Corre et al., 2014; Courtois et al., 2019).  Studies are often associated 90 

with high uncertainties (Henders et al., 2015). Nitrogen availability, soil moisture and texture are the main 91 

drivers of N2O fluxes in tropical forests and other soil ecosystems (Davidson et al., 2000). As well as 92 

agricultural soils, tropical forest soils have been identified as a major source of N2O (Werner et al., 2007), 93 

and soil type influences N2O fluxes in the Tropics (Dutaur and Verchot, 2007; Sakata et al., 2015). A 94 

recent meta-analysis concluded that tropical forests emit on average 2 kg N2O-N ha-1 y-1, and emission 95 

rates will significantly increase after land-use change (van Lent et al., 2015). Tropical forest soils are 96 

estimated to contribute 28% to the global CH4 uptake, hence large changes to this sink could alter the 97 
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accumulation of CH4 in the atmosphere substantially (Dutaur and Verchot, 2007). However, uncertainties 98 

are large due to data scarcity. Only one study from Peninsula Malaysia reported that selectively logged 99 

forest may be converted into a weaker sink of CH4 and greater source of N2O than undisturbed tropical 100 

rain forest, at least for a short period, because of the increased soil nitrogen availability and soil 101 

compaction due to disturbance by heavy machinery (Yashiro et al., 2008). 102 

 103 

Forest conversion to OP has shown differences in soil microbial community composition and functional 104 

gene diversity (Tripathi et al., 2016). The diversity and abundance of plant communities fundamentally 105 

affect soil microbial community and their function (Eisenhauer, 2016; Tripathi et al., 2016). As yet, it 106 

remains uncertain how conversion from forest to OP impacts microbial communities, and their influence 107 

on N2O and CH4 fluxes (Kaupper et al., 2019). Even though the importance of bacterial communities is 108 

recognised, little is known of changes in microbial communities due to land-use change (Tin et al., 2018). 109 

Transformation of tropical forest to, for example OP plantations, reduces bacterial abundance initially, 110 

alters the community composition but once established may not necessarily result in less bacterial richness 111 

in the OP soil (Lee-Cruz et al., 2013; Tripathi et al., 2016). Agricultural soils (including OP soils) are 112 

often thought to promote diversity through management, such as fertilisation and crop inputs and thereby 113 

reduce competition amongst soil microorganisms (Lee-Cruz et al., 2013). Information on microbial 114 

communities will help to understand the impact of anthropogenic land-use change and its impact on 115 

biogeochemical processes (Tin et al., 2018). The lack of our current understanding restricts our ability to 116 

predict and model responses to environmental change (Lee-Cruz et al., 2013). This is particularly 117 
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important as 80-90% of soil processes are mediated by microorganisms (Nannipieri et al., 2003). In our 118 

study, we aim to understand whether differences in microbial communities could also help understand 119 

measured differences in greenhouse gas (GHG) emissions. One part of this present study has investigated 120 

potential controlling factors and microbial pathways leading to GHG emissions from soil in controlled 121 

laboratory incubations, which complement the findings presented here from actual field measurements as 122 

the soil was taken from a subset of the sites (Drewer et al., 2020).  123 

The objectives of this study were: 124 

1) to compare GHG emission rates from different land-uses 125 

2) to investigate whether management practices and land-use will have a larger effect on GHG fluxes 126 

than other measured abiotic and biotic parameters 127 

3) to broadly upscale our measurements to Sabah scale 128 

 129 

In light of countries committing to reduce and mitigate GHG emissions, e.g. 2015 Paris Agreement 130 

(UNFCCC, 2015), it is important to constrain each country’s current emission rates, by providing data 131 

from measurements rather than relying on model estimates. In this study, we present much needed data 132 

of N2O and CH4 emission rates from logged tropical forests and OP plantations on mineral soil as well as 133 

their biochemical characteristics and temporal and spatial variability. We present two years of 134 

measurements from logged forests and OP plantations in Malaysian Borneo, Sabah from the same 135 

geographical area and on mineral soil.  136 
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2 Methods 137 

2.1 Site description 138 

The present study was carried out within the Stability of Altered Forest Ecosystems (SAFE) project in 139 

Malaysian Borneo (4°49’N, 116°54’E) in 2015 and 2016. The SAFE project was set up in Sabah in 2011 140 

in a secondary forest, designated by the Sabah government for conversion to OP plantations. SAFE is a 141 

long-term landscape-scale experiment designed to study the effects of anthropogenic activities related to 142 

deforestation and OP agriculture on the ecosystem as a whole (Ewers et al., 2011). The main aim of the 143 

SAFE project is to study how habitat fragmentation affects the forest ecosystem, mainly its biodiversity. 144 

The design comprises forest fragments of 1 ha, 10 ha and 100 ha. Larger areas of forests, designated as 145 

continuous logged forests, and not part of the conversion plan, were selected as controls. All forest sites 146 

had been selectively logged for dipterocarps, first in the 1970s then again between 2000 and 2008, such 147 

that the logged forest and forest fragments have a similar land-use history (Ewers et al., 2011). We had 148 

the opportunity to investigate GHG fluxes within this experimental site. As our sampling took place when 149 

conversion was still ongoing (i.e. designated ‘fragments’ were not fragmented yet), we classify sampling 150 

locations in ‘fragments’ and ‘logged forest’ controls both as ‘logged forest’. We selected a young OP 151 

plantation, around 2 years old at the time we started measurements (OP2) and a medium aged OP 152 

plantation, around 7 years old at the start of the project (OP7). The riparian area (RR) is adjacent and 153 

down slope from OP7. In addition, we selected a slightly older plantation, around 12 years of age at the 154 

start of the project (OP12). All OP plantations in this study were terraced. Logged forest sites are the 10 155 

ha plots of the logged forest (and future fragments) LF, B and E of the SAFE design. 156 
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The climate in the study area is wet tropical with a wet season typically from October to February and a 157 

dry season typically from March to September with average monthly temperatures of 32.5°C (irrespective 158 

of season) and average monthly rainfall of 164.1 mm (climate-data.org, 2019). At SAFE, the mean 159 

monthly rainfall over the two years of study period (2015 and 2016) was 190 mm, ranging from 45 mm 160 

during the driest month (Mar 2015) to 470 mm during the wettest month (Sep 2016; R. Walsh, Figure 1). 161 

Annual rainfall was 1927 mm in 2015 and 2644 mm in 2016 with 2015 being drier than usual. The soils 162 

at SAFE are classed as orthic Acrisols or Ultisols (Riutta et al., 2018).  163 

 164 

2.2. Field measurements 165 

In order to measure fluxes of N2O and CH4 from the chosen logged forests and OP plantations, a total of 166 

56 static chambers were installed in the SAFE area. Four chambers were placed in each of the two 10 ha 167 

plots in LF, B, and E, resulting in 8 chambers per site. In the OP plantations, 12 chambers were installed 168 

in the ~7-year old OP plantation, 8 in a ~2-year old, and 8 in a ~12-year old OP plantation. These were 169 

the plantation ages when we started sampling in 2015, hence, the sites are labelled OP2, OP7 and OP12. 170 

For exact GPS locations see the published dataset (Drewer et al., 2019). Fluxes were measured from all 171 

56 chambers every two months over a two-year period, from January 2015 to November 2016; resulting 172 

in 12 measurement occasions for each of the chambers and a total of 672 individual flux measurements. 173 

 174 

We received basic fertiliser information from the estate managers at the beginning of our study. Our 175 

measurement sites OP2 and OP7 were managed by the same estate. Fertiliser was applied as slow release 176 
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(over 4 – 6 months) bags (500 g) of the brand ‘PlantSafe®’ (N as Ammonium Sulphate). For palms 0 – 5 177 

years of age PlantSafe® 12-8-16-1.5+trace elements (Diammonium Phosphat ((NH4)2PO4), Murite of 178 

Potash (KCl), Ammonium Sulphate ((NH4)2SO4), Magnesium Sulphate (MgSO4) + Borax Penthydrate) 179 

was used, and for palms >5 years PlantSafe® 8-8-27-15 was applied as 2 kg bag per plant, three times 180 

per year. Planting density was approximately 9 x 9 m spacing between palms and in addition to the mineral 181 

fertiliser, empty fruit bunches (EFB) were spread, however, there appeared to be no obvious pattern of 182 

application and most EFB were piled up along the main roads, rather than distributed evenly throughout 183 

the plantations. The site OP12 was managed by a different estate. Distance between the palms and 184 

planting density here was 8 x 8 m. Application of fertiliser also occurred as PlantSafe® bags with two 185 

applications a year with 3-4 kg per palm each time, totalling about 8 kg N ha-1 y-1. EFB were not returned 186 

to this plantation and Glyphosate was applied three times per year around each palm stem to control 187 

weeds. We assume Glyphosate was also applied to the OP2 and OP7 plantations in the other estate. 188 

Generally, fertiliser management was according to recommendations by the Malaysian Palm Oil Board 189 

(MPOB). As our sampling frequency was every two months, we were not able to capture individual 190 

fertilisation events and that was not the scope of this study. 191 

 192 

2.2.1 Soil nitrous oxide (N2O) and methane (CH4) fluxes 193 

The static chamber method was used for N2O and CH4 flux measurements as described in previous studies 194 

(Drewer et al., 2017a;Drewer et al., 2017b). Round static chambers (diameter = 40 cm) consisting of 195 

opaque polypropylene bases of 10 cm height were inserted into the ground to a depth of approximately 5 196 
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cm for the entire study period. Lids of 25 cm height were fastened onto the bases using four strong clips, 197 

only during the 45-minute measurement periods. A strip of commercially available draft excluder glued 198 

onto the flange of the lid provided a gas tight seal between chamber and lid. The lids were fitted with a 199 

pressure compensation plug to maintain ambient pressure in the chambers during and after sample 200 

removal. Gas samples were taken at regular intervals (0, 15, 30, 45 min) from each chamber. A three-way 201 

tap was used for gas sample removal using a 100 ml syringe. 20 ml glass vials were filled with a double 202 

needle system to flush the vials with five times their volume and remained at ambient pressure rather than 203 

being over-pressurised. The sample vials were sent to CEH Edinburgh for analysis usually between 4-7 204 

weeks after sampling. A specifically conducted storage test confirmed no significant loss of concentration 205 

during that time period. Samples and three sets of four certified standard concentrations (N2O, CH4 in N2 206 

with 20% O2) were analysed using a gas chromatograph (Agilent GC7890B with headspace autosampler 207 

7697A; Agilent, Santa Clara, California) with micro electron capture detector (µECD) for N2O analysis 208 

and flame ionization detector (FID) for CH4 analysis. These detectors were setup in parallel allowing the 209 

analysis of the two GHGs at the same time. Limit of detection was 5 ppb for N2O and 40 ppb for CH4. 210 

Peak integration was carried out with OpenLab© Software Suite (Agilent, Santa Clara, California). 211 

 212 

The flux F (μg m-2 s-1) for each sequence of gas samples from the different chambers was calculated 213 

according to Equation 1:  214 

𝐹 =  
𝑑𝐶

𝑑𝑡
 ×  

𝜕𝑉

𝐴
       (Equation 1) 215 
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Where dC/dt is the concentration (C, μmol mol-1) change over time (t, in s), which was calculated by 216 

linear regression, ρV/A is the number of molecules in the enclosure volume to ground surface ratio, where 217 

ρ is the density of air (mol m-3), V (m3) is the air volume in the chamber and A (m2) is the surface area in 218 

the chamber (Levy et al., 2012).  219 

 220 

Applying the analytical limit of detection to the flux calculation, the resulting detection limits and 221 

therefore uncertainties associated with the flux measurements are 1.6 µg N m-2 h-1 for N2O and 5 µg C 222 

m-2 h-1 for CH4 in the units used in the results section. 223 

 224 

2.2.2 Soil respiration (CO2) fluxes 225 

In addition, soil CO2 respiration rates were measured close to each chamber location using a dynamic 226 

chamber (volume: 0.001171 m3) covering 0.0078 m2 of soil for 120 s with an EGM-4 infrared gas analyser 227 

(IRGA: InfraRed Gas Analyser; PP Systems; Hitchin, Hertfordshire, England). To do so, cut drainpipes 228 

of 7 cm height matching the diameter of the IRGA chamber were inserted into the ground to a depth of 229 

about 5 cm for the duration of the study to allow for a good seal with the soil surface. All vegetation and 230 

litter was removed from the surface to guarantee soil-only respiration measurements. Taking into account 231 

the time of measurement and the soil temperature, fluxes were calculated based on the linear increase of 232 

CO2 concentrations. Soil respiration was measured every time the static chambers were measured, 233 

resulting in 12 measurement occasions for each of the 56 locations and 672 individual measurements. 234 

 235 
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2.2.3 Auxiliary physical and chemical soil measurements  236 

Other environmental parameters were measured during time of chamber enclosure as possible explanatory 237 

variables for correlation with recorded GHG fluxes. Soil and air temperatures were measured using a 238 

handheld Omega HH370 temperature probe (Omega Engineering UK Ltd., Manchester, UK) at each 239 

chamber location at a soil depth of 10 cm and by holding the temperature sensor 30 cm above the soil 240 

surface at chamber height. Volumetric soil moisture content (VMC) was measured at a depth of 7 cm 241 

using with a portable probe (Hydrosense 2; Campbell Scientific, Loughborough, UK). For determining 242 

KCl-extractable soil nitrogen (N) in the field, soil samples were collected to a depth of 10 cm around each 243 

of the chamber locations on each of the chamber measurement days, using a gouge auger. Extractions 244 

were carried out in the field laboratory on the same day. Soil samples were mixed well, stones were 245 

removed, and subsamples of ca. 6 g soil (fresh weight) was transferred into 50 ml falcon tubes containing 246 

25-ml 1 M KCl solution. The samples were shaken for 1 min every 15 min for one hour, then filtered 247 

through Whatman 42© filter paper (GE Healthcare, Chicago, USA) and kept in the fridge after addition 248 

of a drop of 75% H2SO4 as a preservative. Analysis for ammonium (NH4
+) and nitrate (NO3

-) 249 

concentrations was carried out at Forest Research Centre in Sandakan (Sabah, Malaysia) using a 250 

colorimetric method (Astoria 2 Analyzer (Astoria-Pacific Inc., USA).  251 

 252 

The following parameters were measured less frequently. Soil pH was measured on three occasions from 253 

the top 0-10 cm, close to each chamber at the start of the measurement period and two months later, and 254 

inside the chambers after the last flux measurements at the end of the experiment. For pH measurements 255 

https://doi.org/10.5194/bg-2020-297
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

14 
 

 

10 g of fresh soil was mixed with deionised H2O (ratio 1:2), and after 1 hour analysed on a MP 220 pH 256 

meter (Mettler Toledo GmbH, Schwerzenbach, Switzerland). Soil samples for bulk density were collected 257 

from inside each chamber after the final flux measurement. Galvanised iron rings (98.17 cm3) with a sharp 258 

edge were inserted in the upper soil layer with a hammer to 5 cm depth without compaction. Samples 259 

were oven-dried at 105°C until constant weight (usually 48 hours) and bulk density (g cm-3) was 260 

calculated based on the dry weight occupying the volume of the ring. Total C and N in soil and litter was 261 

measured once on the last sampling occasion. Soil samples were taken from the top 0-10 cm inside the 262 

chambers. The samples were air dried in the field laboratory and a subsample of each were dried at 105°C 263 

to constant weight in the laboratory to convert the results to oven-dry weight, ground and analysed at the 264 

Forest Research Centre in Sandakan on an elemental analyser (Vario Max CN Elemental Analyzer 265 

(Elementar Analysensysteme, Germany). Litter was collected from the surface area of each chamber, air 266 

dried at 30 °C and analysed for total C and N as described above. 267 

 268 

2.2.4 Soil microbial community composition 269 

Soil samples for microbial analysis were taken on two occasions from all 56 flux chamber locations. Soil 270 

samples were taken in March 2016 and November 2016 (the last sampling occasion). On the first sampling 271 

date, soil was taken close to each chamber in order not to disturb the soil inside the chamber. In November 272 

2016, soil was taken from inside each chamber, as this was the experimental end date. Approximately 5 273 

g of soil was taken from the top 3 cm and stored in ziplok bags at ambient air temperature until posting 274 

to CEH Wallingford for analysis. The soil samples had to be sent as ‘fresh’ samples as there were no 275 
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freezers operating continuously at the field station, therefore it was not possible to keep the soil frozen 276 

during storage and transport. The samples were frozen at -80°C once they reached CEH Wallingford until 277 

analyses. 278 

 279 

For sequencing analyses of bacterial, and fungal and soil eukaryotic communities, DNA was extracted 280 

from 0.2 g of soil using the PowerSoil-htp 96 Well DNA Isolation kit (Qiagen Ltd, Manchester, UK) 281 

according to manufacturer's protocols. The dual indexing protocol of Kozich et al. (2013) was used for 282 

Illumina MiSeq sequencing (Kozich et al., 2013) with each primer consisting of the appropriate Illumina 283 

adapter, 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker and the amplicon specific primer. The 284 

V3–V4 hypervariable regions of the bacterial 16S rRNA gene were amplified using primers 341F 285 

(Muyzer et al., 1993) and 806R (Yu et al., 2005), CCTACGGGAGGCAGCAG and 286 

GCTATTGGAGCTGGAATTAC respectively; the ITS2 region for fungi using primer ITS7f 287 

(GTGARTCATCGAATCTTTG) and ITS4r (TCCTCCGCTTATTGATATGC) (Ihrmark et al., 2012) for 288 

eukaryotes the 18S rRNA amplicon primers from (Baldwin; A.J et al., 2005) were used 289 

(AACCTGGTTGATCCTGCCAGT and GCTATTGGAGCTGGAATTAC). After an initial denaturation 290 

at 95 ºC for 2 minutes PCR conditions were: denaturation at 95 ºC for 15 seconds; annealing at 291 

temperatures 55 ºC, 52 ºC, 57 ºC for 16S, ITS and 18S reactions respectively; annealing times were 30 292 

seconds with extension at 72 ºC for 30 seconds; cycle numbers were 30; final extension of 10 minutes at 293 

72 ºC was included. Amplicon concentrations were normalized using SequalPrep Normalization Plate Kit 294 

(Thermo Fisher Scientific Ltd, Altrincham, UK) prior to sequencing each amplicon library separately on 295 
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the Illumina MiSeq using V3 chemistry using V3 600 cycle reagents at concentrations of 8 pM with a 5% 296 

PhiX Illumina control library (Illumina Ltd, Cambridge, UK).  297 

 298 

Illumina demultiplexed sequences were processed in R software package, version 3.6.1 (R Core Team, 299 

2017) using DADA2 (Callahan et al., 2016) to quality filter, merge, denoise and construct sequence tables 300 

as follows:  Amplicons reads were trimmed to 270 and 220 bases, forward and reverse respectively for 301 

ITS, and forward reads were trimmed to 250 and 280 bases for 16S and 18S respectively. Filtering settings 302 

were maximum number of Ns (maxN) = 0, maximum number of expected errors (maxEE) = (1,1). 303 

Sequences were dereplicated and the DADA2 core sequence variant inference algorithms applied. 304 

Forward and reverse reads were merged using mergePairs function as appropriate. Sequence tables were 305 

constructed from the resultant actual sequence variants and chimeric sequences were removed using 306 

removeBimeraDenovo default settings. 307 

 308 

2.3 Data analysis 309 

Environmental data, especially soil N2O fluxes, are typically highly variable in space and time, which 310 

makes their analysis challenging. Much of the variation cannot be explained by co-variates, as the driving 311 

microbial processes are not directly observed. They are also usually strongly left skewed (containing a 312 

high number of very small fluxes), and are expected to approximate a lognormal distribution. Against this 313 

background, trying to detect effects of land-use (or experimental treatments) is difficult. The calculation 314 
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of a confidence interval on the mean of a log-normal distribution is problematic when variability is high 315 

and sample size is small (e.g. Finney 1941), as is generally the case with flux measurements. 316 

 317 

Here we applied a Bayesian methodology to address this problem, using a model similar to that described 318 

by Levy et al. (2017). This accounts for the lognormal distribution of observations, while including 319 

hierarchical effects of land-use, and effects of sites within land-use types as well as the repeated measures. 320 

In the current statistical terminology, this is a generalised linear mixed-effect model (GLMM) with a 321 

lognormal response and identity link function. The model consists of a fixed effect of land-use (Forest, 322 

Oil Palm, or Riparian), with a random effect representing the variation among sites within a land-use type. 323 

The parameters were estimated by the Markov chain Monte Carlo (MCMC) method, using Gibbs 324 

sampling as implemented in Just Another Gibbs Sampler (JAGS) (Plummer 1994), and described in more 325 

detail by Levy et al. (2017). 326 

 327 

All other statistical analyses were conducted using the R software package, version 3.4.3 (R Core Team, 328 

2017) using the lme4 package for linear mixed-effects models (Bates et al., 2015) and ordinary multiple 329 

regression. Model selection was examined by sequentially dropping terms and assessing AIC and similar 330 

criteria using the MuMIn package (Bartoń, 2013). For N2O and CH4, where negative values occurred, the 331 

minimum was added to all data points (-30 and -115 µg m-2 h-1, respectively) so that a lognormal 332 

distribution could be fitted. 333 

 334 
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For microbial community composition samples within each sampling point were assessed in R for 335 

sequencing depth. Samples with fewer than 4000 reads were deemed as containing insufficient data and 336 

discarded. Package Vegan was used to rarefy each sampling occasion’s samples to the minimum read 337 

number. Vegan functions specnumber, diversity and metaMDS were used to generate the statistics for 338 

richness, Shannon’s diversity and Nonmetric Multidimensional Scaling, respectively. Analysis of 339 

similarities (ANOSIM) was used to test statistically whether there was a significant difference between 340 

two or more groups of parameters in relation to the microbial communities. 341 

 342 

2.4 Upscaling of N2O fluxes to Sabah scale 343 

In an attempt to broadly upscale our findings, we calculated the annual soil N2O emission for the Sabah 344 

state based on the data from this study (Table 2), together with land cover areas estimates (Gaveau et al., 345 

2016) of forests, pulpwood and OP plantations for 1973 and six 5 yearly intervals from 1990-2015. We 346 

included the pulpwood plantation area in the total forest area, as to our knowledge there are no data of 347 

N2O emissions from this sector. We used mean emissions and the 95% confidence interval calculated by 348 

the GLMM and posterior probability to account for variability and associated uncertainties.  349 

3 Results 350 

3.1 Soil parameters 351 

Results are presented by site (B, E, LF, OP2, OP7, OP12, RR) or land-use (logged forest (B, E, LF), oil 352 

palm (OP2, OP7, OP12), riparian (RR)). Soil pH was acidic from logged forest site B (pH 3.65±0.44) 353 
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compared to forest E and LF, which were closer to neutral (pH 6.38±0.67 and 6.14±0.5), and the OP 354 

plantations were more acidic (pH 4.5-4.7±0.2) compared to the riparian area (pH 5.8±0.55) (Table 1). 355 

Bulk density was lower at the forest sites (~0.81 g cm-3 ) compared to the OP plantations (~1.26 g cm-3) 356 

mainly due to a higher amount or organic matter and litter in the forest sites (B, E, LF) and a combination 357 

of compaction due to land management and lower organic matter content in the OP plantations and 358 

riparian area (OP2, OP7, OP12, RR) (Table 1).  Total carbon (C) and nitrogen (N) in soil were higher in 359 

the logged forest sites (~3-7% C and ~0.25-0.4% N, albeit with a very high variability) than the OP 360 

plantations  (<1% C and <0.1% N) (Table 1) due to larger amount of litter present. The riparian reserve 361 

had higher content of C and N in the soil (1.2% C, 0.15% N) than the OP plantations but not as high as 362 

the logged forests. Variability even within one site was large for the forest sites which is also reflected in 363 

the C/N ratios (Table 1). Litter was present in all of the forest and riparian reserve chambers and only in 364 

a few of the OP chambers. The average litter weight in the forest chambers was between 50 and 150 g 365 

dry weight with a very high variability, about 15 g in the riparian area, and hardly any litter in the OP 366 

chambers, with no litter in OP12, only in one of the OP7 chambers and an average amount of 50 g of litter 367 

in the young OP2 , again with a very high variability (Table 1). The total C and N content in litter was 368 

similar in logged forest and OP (~35-40% C and ~1.5-1.8% N); the main difference was the 369 

presence/absence of litter and the amount present. For all these measured parameters the variability within 370 

each site was high apart from pH in OP which was most likely regulated by plantation management 371 

operations. None of the soil physicochemcial parameters were significantly different for the different 372 

land-uses or sites apart from pH from site B. 373 

https://doi.org/10.5194/bg-2020-297
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

20 
 

 

 374 

Soil moisture had high variability both spatially and temporaly, with a large range for all land-uses (Figure 375 

2a) and no discernable temporal trend. The riparian reserve tended to have slightly higher soil moisture 376 

than the adjacent OP plantation due to proximity to a little stream and ground cover vegetation. The 377 

highest soil temperatures were measured in the young OP which had no canopy closure or shaded areas 378 

(Figure 2b). Soil temperature was slightly higher in the riparian reserve than the adjacent OP7, likely due 379 

to softwood trees with much less canopy cover compared to the 7 year old OP plantation. In summary, 380 

there was no discernible temporal trend of soil moisture or temperature over the two year measurement 381 

period and no apparent difference between wet and dry seasons.  382 

 383 

Soil extractable mineral N (both NH4
+ and NO3

-) was highly variable across the OP plantations with mean 384 

values of 8±23 and 6.3±18 mg N g-1, respectively, 4.5±5 and 2.3±4 mg N g-1 in riparian and 3.9±5 and 385 

5.3±5 mg N g-1 in the forests (Figure 3, Table 2). We measured the lowest average NH4
+ and NO3

- 386 

concentrations in the 12 year old plantation (OP12), and the highest in the youngest OP plantation (OP2) 387 

with maxima of >150 mg g-1, however, with a very high spatial variability (Figure 3, Table 2). Due to the 388 

low frequency of soil and flux sampling (every 2 months), and the lack of knowldege of the fertilisation 389 

dates, it is not possible to correlate soil mineral N concentrations with  individual fertiliser events. NH4
+ 390 

and NO3
- concentrations of  the logged forest sites, older OP plantation and riparian reserve were very 391 

similar. 392 

 393 

https://doi.org/10.5194/bg-2020-297
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

21 
 

 

3.2 Greenhouse gases 394 

3.2.1 Nitrous oxide (N2O) 395 

There were no temporal trends of nitrous oxide (N2O-N) fluxes and no distinct differences between wet 396 

(usually Oct to Feb) and dry (Mar to Sep) seasons (Figure 4a). Variability in N2O-N fluxes for all sites 397 

was high and the largest range was measured in the OP plantations (Figure 4a, Table 2).  We find that the 398 

largest fluxes observed were from the young (OP2) and old (OP12) oil palm plantations and exceed 1500 399 

µg m-2 h-1 N2O-N for individual chambers. In the logged forest, largest fluxes were ~400 µg m-2 h-1 for 400 

individual chambers at site B. On a given day, very large as well as very small fluxes were measured in 401 

the OP plantations. For each land-use standard deviation was a lot larger than the mean (Table 2); logged 402 

forest 13.9±171 µg m-2 h-1 N2O-N, OP 46.2±166 µg m-2 h-1 N2O-N and riparian 31.8±220 µg m-2 h-1 N2O-403 

N. By fitting the GLMM to the data, we estimated the posterior probability density of the effect of land-404 

use on N2O flux: mean fluxes to be 13.9 (95 % CI: -6.3 to 41.5) µg m-2 h-1 for logged forests, 46.2 (18.4 405 

to 97.5) µg m-2 h-1 for OP and 31.8 (-6.3 to 130.0) µg m-2 h-1 for the riparian area (Figure 4b, Table 2). 406 

The output using the Bayesian approach can be interpreted as follows: The area of the OP curve does not 407 

overlap with the area of the forest curve, which means that the probability is higher that the flux from OP 408 

plantation is higher than the flux from logged forest, with the riparian zone being intermediate. To 409 

investigate effects of additional variables, we used the automated model selection algorithm in the MuMIn 410 

R package, which uses all possible combinations of fixed effect terms and ranks them by AIC (Bartoń, 411 

2013). Possible terms included land-use, pH, soil moisture, NH4
+, NO3

-, bulk density, soil and air 412 

temperature, and the microbial NMDS axes. This procedure found the inclusion of NH4
+ and NO3

-, soil 413 
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moisture and soil temperature, in addition to land-use, to give the optimal model. However, whilst land-414 

use (including the site-level effects) explained 13% of the variance (expressed as conditional R2, (Bartoń, 415 

2013)), the additional four terms increased this by only 4%. The microbial NMDS axes did not improve 416 

the model fit, as measured by AIC. 417 

 418 

3.2.2 Methane (CH4)  419 

For methane, both negative fluxes (= CH4 oxidation) and positive fluxes (CH4 emission) were measured 420 

at all sites throughout the measurement period (Figure 5).  Highest emission and uptake rates were 421 

measured in the logged forest sites, with emissions reaching almost 300 µg m-2 h-1 CH4-C at site E, and 422 

uptake rates of up to 85 µg m-2 h-1 CH4-C at sites LF and B. In the OP plantations highest emissions were 423 

measured at OP7 (~100 µg m-2 h-1 CH4-C), and uptake rates were <50 µg m-2 h-1 CH4-C. Overall, CH4 424 

flux ranges were larger in the logged forests than OP plantations. Grouping fluxes by land-use, mean 425 

fluxes were about 2.2±48.3 µg CH4-C m-2 h-1 for logged forest, -2.6±17.2 µg CH4-C m-2 h-1 for OP and 426 

1.3±12.6 µg CH4-C m-2 h-1 for riparian reserve (Table 2). The magnitudes of CH4-C fluxes in the riparian 427 

reserve were more similar to the logged forests sites than the OP plantations. Standard deviation again 428 

was large but not as large as for N2O. 429 

 430 

As for N2O, possible drivers of CH4 fluxes were investigated using linear mixed effect models and the 431 

same model selection methods. However, no correlations with co-variates could be established, even with 432 

land-use. For example, a model including terms for land-use, pH, soil moisture, NO3, NH4, bulk density, 433 
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soil and air temperature could explain only 3% of the variance. Land-use was clearly not a strong 434 

determinant of CH4 flux, and the posterior distributions are not shown. 435 

 436 

3.2.3 Soil respiration (CO2) 437 

Soil respiration CO2-C fluxes also had a high spatial variability (Figure 6). There was a trend to slightly 438 

higher respiration rates at logged forest sites than OP plantations. Grouping fluxes by land-use, gave mean 439 

fluxes of 137.4±95 mg m-2 h-1 for logged forests, 93.3±70 mg m-2 h-1 for OP plantations and 157.7±106 440 

mg m-2 h-1 for the riparian site (Table 2). Soil respiration in the measured riparian reserves was therefore 441 

in the range of the soil respiration of logged forest, which was higher than from OP sites. Data was log 442 

transformed before statistical analysis. A linear mixed-effects model including all terms could explain 443 

25% of the variance, and land-use alone explained 7% of the variance.  444 

 445 

3.3 Soil biodiversity 446 

Soil samples for biodiversity measurements were collected in the low rainfall month, March 2016 (~50 447 

mm), and the high rainfall month, November 2016 (~250 mm, Figure 1), in order to quantify broad 448 

differences in communities due to land-use and provide additional biodiversity variables for modelling 449 

fluxes. Three different amplicon sequencing assays were performed on extracted DNA targeting bacteria 450 

(16S rRNA gene), fungi (ITS region), and broad groups of soil eukaryotic taxa (18S rRNA gene, including 451 

principally fungi, protists and algae). The ordinations and multivariate permutation effects of land-use 452 

were generally consistent across the two sampling points irrespective of seasonal climatic differences 453 
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(Figure 7). Fitting environmental vectors to the ordination axis scores revealed that the bacterial 454 

communities were highly related to soil pH (r2 = 0.85 and 0.84, p<0.001, for the two sample dates 455 

respectively), with acid soils (pH 3.6) at site B, compared to near neutral pH of 6.1 and 6.4 at sites LF 456 

and E, Table 1).  Weaker relationships with the land-use factors (r2= 0.23 and 0.11, p<0.05) were 457 

observed. Logged forests E and LF had very similar bacterial communities, which were distinct from the 458 

three OP sites and also the riparian site.  In contrast, fungal and eukaryotic communities were not as 459 

strongly related to soil pH (fungal r2= 0.67 and 0.72, and eukaryotic r2 = 0.73 and 0.79 for the two sample 460 

dates respectively, p<0.001), and were more strongly related to above ground land-use than bacterial 461 

communities (fungal r2= 0.52 and 0.57, and eukaryotic r2 = 0.50 and 0.42, p<0.001). As can be seen in 462 

the fungal ordinations particularly, the forested sites formed a distinct cluster separate from the OP sites, 463 

despite the large differences in soil acidity.  464 

 465 

3.4 Upscaling of N2O fluxes to Sabah scale 466 

In an attempt to broadly upscale our findings, we calculated the annual soil N2O emission for the Sabah 467 

state based on the data from this study (Table 2), together with land cover areas estimates (Gaveau et al., 468 

2016). Nitrous oxide emissions calculated for the Sabah region showed a strong dependence on the 469 

conversion of forest to OP plantations from 1973 to present day. By 2015, the total estimated N2O 470 

emissions from OP plantations were roughly 40% of total emissions, with 60% of the emissions from 471 

forested areas, despite the OP area being less than 40% of the forest area. The Sabah scale median N2O 472 

emission estimate had increased from 7.6 Mt (95% confidence interval, -3.0-22.3 Mt) per year in 1973 to 473 

https://doi.org/10.5194/bg-2020-297
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 

25 
 

 

11.4 Mt (0.2-28.6 Mt) per year in 2015. As the measured CH4 fluxes were fluctuating around zero, the 474 

changes in land-use also resulted in small changes of CH4 flux rates over the 42-year period. Our median 475 

results suggest that Sabah is a sink for CH4 (4 Mt y-1) throughout the time period presented. 476 

4 Discussion 477 

This study focussed on comparing GHG fluxes from different land-use types in the Tropics. Our data, 478 

although not high frequency measurements, provide a comprehensive insight in the potential impact of 479 

converting logged forests to OP plantations on GHG fluxes. The focus of this study is on N2O, with 480 

auxiliary measurements of CH4 and soil respiration. To date only four studies published data of N2O 481 

emissions from OP plantations on mineral soil in Southeast Asia using the chamber method that included 482 

measurements from a time period of longer than 6 months (Skiba et al., 2020). Only one of these studies 483 

included measurements in Malaysia (Sakata et al., 2015). Globally tropical forests are the largest natural 484 

source of N2O (Werner et al., 2007). Therefore, the question is whether the N input to OP plantations with 485 

lower organic matter (TC/TN content) compared to tropical forests (lots of organic matter input, warm, 486 

humid), lead to larger N2O emissions than forest. Although it has been recognised that N2O emissions are 487 

induced by N-fertiliser application in OP, when considering annual or long-term emissions from mineral 488 

soil, these fertilisation patterns might not have a pronounced or clear effect (Kaupper et al., 2019). For 489 

example, N-fertiliser induced N2O fluxes comprised only 6-21% of the annual soil N2O fluxes in OP 490 

plantations in Sumatra, Indonesia (Hassler et al., 2017), the rest was due to other natural processes 491 

occurring in the soil. Therefore, our study can be considered representative, particularly as measurements 492 
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were carried out over two years. All three land-use types (logged forest, oil palm and riparian) showed 493 

positive N2O fluxes albeit with a high variability.  494 

 495 

On some occasions, our measured fluxes exceeded the range reported by Shizuka et al. (2005) of N2O 496 

emissions from OP plantations on mineral soil in Indonesia, ranging from ~1-29 µg m-2 h-1, by an order 497 

of magnitude (maximum measured 350 µg m-2 h-1). The highest values reported by Shizuka et al. (2005) 498 

were from young plantations, while the lowest were reported from older plantations. They suggested the 499 

low N uptake of young plantations after fertiliser application and the fixation of N by the legume cover 500 

crop could be the reason for the high emissions. On the other hand, the low emissions from older 501 

plantations could result from higher N uptake by the OP and the absence of legume cover. In their study, 502 

N2O emissions were mainly determined by soil moisture (Ishizuka et al., 2005); which was not the case 503 

here. Mean N2O fluxes from a sandy soil in Malaysia were reported to range from 0.80 to 3.81 and 1.63 504 

to 5.34 μg N m-2 h-1 in the wet and dry seasons, respectively (Sakata et al., 2015). This was lower than 505 

from a sandy loam soil in Indonesia (27.4 to 89.7 and 6.27 to 19.1 μg N m-2 h-1  in the wet and dry seasons, 506 

respectively) (Sakata et al., 2015). Despite the limited number of measurements in OP plantations on 507 

mineral soils and the high variability of results, emissions seem to generally be higher in the early years 508 

of the OP plantations (Pardon et al., 2016a). This is not necessarily reflected in our data, as the OP2 509 

(young) and OP12 sites (older) showed higher fluxes than the OP7 (medium age) site; though with a 510 

lifespan of up to 30 years, all plantations measured in this study can still be regarded as immature. As in 511 

our study, Aini et al. (2015) also found no differences in N2O fluxes in the wet and dry months with fluxes 512 
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ranging from 0.08 to 53 μg N m-2 h-1. The range of our measured fluxes exceeded those of these previously 513 

published studies. However, it is difficult to generalise, as variability appeared to be high in all studies. 514 

 515 

Our measured N2O fluxes from the riparian area were similar to those measured in the OP plantation, as 516 

soil properties were more similar to OP than logged forest. There is currently a knowledge gap on GHG 517 

emissions from riparian buffers (Luke et al., 2019) and more studies are needed to evaluate the 518 

effectiveness in terms of nutrient retention and potential GHG mitigation of such buffers. A previously 519 

published study from Peninsula Malaysia reported mean N2O emission rates from logged tropical forest 520 

sites ranging from 17.7 to 92.0 µg m-2 h-1 N2O-N which was significantly larger than from their measured 521 

unlogged sites (Yashiro et al., 2008). Even though the range of our measured fluxes from logged forest 522 

sites was wider, it is broadly in the same order of magnitude (13.9±171 µg m-2 h-1 N2O-N). 523 

 524 

As often the case with GHG studies, the variation in the measured GHG fluxes could not be explained 525 

with certainty by any of the measured soil parameters. Our sampling frequency was not high enough to 526 

investigate, for example, emission rates after fertiliser application in the OP plantations and besides, this 527 

was not the aim of our study. The wide ranges we measured for soil mineral N concentrations and N2O 528 

fluxes were likely due to the spatial and temporal variability of the fertiliser application, as the slow 529 

release fertiliser bags were randomly placed around the trees, and with time, the fertiliser release rate 530 

slowed down. Apart from no strong correlations with single environmental factors, multiple regression 531 

and mixed models were only able to explain around 17% of the variance including multiple measured 532 
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parameters. However, applying the Bayesian method, the posterior probability density of the effect of 533 

land-use on N2O flux confirmed that fluxes from the OP plantations were evidently higher than those 534 

from the forests (the area of the OP curve does not overlap with the forest curve), with the riparian zone 535 

being intermediate (mean fluxes 13.9 (95 % CI: -6.3 to 41.5) μg m-2 h-1 for logged forests, 46.2 (18.4 392 536 

to 97.5) μg m-2 h-1 for OP and 31.8 (-6.3 to 130.0) μg m-2 h-1 for the riparian area).  537 

 538 

Agricultural soils such as OP soils can be methane sinks, with uptake rates usually being lower than in 539 

forest soils (Hassler et al., 2015) which could also be seen in our data with logged forest showing higher 540 

uptake rates but at the same time also showing the highest emission rates. However, we did not see the 541 

seasonal cycle reported in Hassler et al., (2015) from Indonesia and generally differences between all 542 

three land-uses (logged forest, oil palm and riparian) were small. The lack of seasonal variability seen in 543 

our study might be due to the fact that dry and wet seasons are not as pronounced in Sabah as in other 544 

tropical regions (Kerdraon et al., 2020) and that temperature is fairly constant throughout the year. 545 

 546 

Higher soil respiration (sum of heterotrophic and autotrophic respiration) is often considered as a sign of 547 

good soil health, it reflects the capacity of soil to support soil life including microorganisms and crops. 548 

Heterotrophic soil respiration defines the level of microbial activity, soil organic matter content and its 549 

decomposition whilst autotrophic respiration is the metabolism of organic matter by plants. In a recently 550 

published study investigating litter decomposition, soil respiration fluxes in Sabah (also in the SAFE area) 551 

were higher from forest than OP (Kerdraon et al., 2020). This was also the general trend in our study 552 
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despite the high variability of all measured fluxes. Litter input in our plots was larger in the logged forest 553 

plots and riparian reserve than the OP. In litter decomposition experiments, in both Borneo and Panama, 554 

litter input was more important than litter type, which stresses the importance of the amount of 555 

aboveground litter for soil processes in general, especially in disturbed habitats or forest converted to 556 

plantations (Kerdraon et al., 2020). 557 

 558 

Analyses of soil microbial communities with different assays targeting different microbial components, 559 

revealed strong influences of soil properties such as pH, but also highlighted that fungal and eukaryotic 560 

communities were more affected by management and land-use than bacteria. Soil pH is known to have 561 

an impact on soil microbial community in the Tropics (Kaupper et al., 2019;Tripathi et al., 2012) which 562 

may explain the very different bacterial communities in logged forest B with the lowest measured pH of 563 

all our sites. Typically, C and N availability or generally soil fertility is known to decrease after 564 

deforestation (Allen et al., 2015; Hassler et al., 2017; Hassler et al., 2015; Kaupper et al., 2019), this is 565 

also reflected in our data (Table 1), especially the very low total N values in all OP plantations. Nutrient 566 

input through litter is higher in the forest than OP plantations and consistently replenished (Guillaume et 567 

al., 2015). Therefore, for microorganisms, OP plantations represent a nutrient deprived environment 568 

(Kaupper et al., 2019). Low total C input can also limit the methanotrophic population size and hence 569 

limit CH4 uptake (Krause et al., 2012). Lower N in OP soil has also shown to limit CH4 uptake when 570 

compared with forest soil (Hassler et al., 2015). Exactly how shifts in C and N after converting forest to 571 

OP may affect processes involved in N2O and CH4 fluxes remains highly uncertain (Kaupper et al., 2019). 572 
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On mineral soil, changes in bulk density after conversion from forest to plantation are often marginal 573 

(Aini et al., 2015; Chiti et al., 2014), however in our study we did see a distinct difference between logged 574 

forest and OP soil (Table 1), which was likely due to the higher organic matter content in the logged forest 575 

soil. 576 

 577 

We found distinct differences of microbial communities in the different land-uses. In a recently published 578 

study of a natural rainforest and an OP plantation in Sabah, bacterial community diversity (richness and 579 

evenness) was comparable or even slightly higher in the OP site (Tin et al., 2018). Also, Kaupper et al. 580 

(2019) have  suggested that microbial biodiversity loss occurs soon after clearance and that bacterial 581 

diversity might either be resilient to the change or changes cannot be detected after a sufficient recovery 582 

period (>8 years) after deforestation (Kaupper et al., 2019). Agricultural OP soil has previously been 583 

found to be more functionally diverse compared to forest soil (Mendes et al., 2015; Tripathi et al., 2016) 584 

while microbial functioning in forest soil appears to be dependent on microbial abundance rather than 585 

diversity (Mendes et al., 2015). Reason for this could be that in agricultural soils (i.e. OP plantations) 586 

there is a need for functional diversity in order to maintain a sufficient level of idleness for continued 587 

functioning under stress events such as deforestation and soil management. Despite these few recent 588 

studies on microbial communities, the link to processes leading to GHG fluxes has not been made 589 

(Kaupper et al., 2019), hence predictions on the impact of land-use change are difficult to make. Despite 590 

our data showing land-use and soil property effect on components of the microbial community, inclusion 591 

of derived community metrics in models to predict fluxes did not improve fits; it is possible that a more 592 
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specific focus on relevant functional gene abundances will yield greater predictive ability. In a laboratory 593 

incubation study that used soil from some of these field study sites, it was found that both logged forest 594 

and OP soil had the same potential for substantial N2O fluxes under laboratory conditions (Drewer et al., 595 

2020). However, under these controlled conditions, riparian reserve soil had negligible N2O fluxes, which 596 

is in contrast to the fluxes measured in the field. The same study also concluded that despite the high 597 

variability found amongst replicates, the main contribution to N2O emissions came from proteobacterial 598 

nirS and AniA-nirK containing denitrifiers and archaeal ammonia oxidizers (Drewer et al., 2020). The 599 

conversion of forest to monoculture plantations is a big threat to ecosystem functioning (Tripathi et al., 600 

2016), yet we are still missing data on microbial communities to make accurate predictions. 601 

 602 

Plantation management, for example returning palm fronds and empty fruit bunches to the plantation soil, 603 

will likely change nutrient cycling (Pardon et al., 2017) and therefore microbial composition. Presence 604 

of, for example, leaf litter as a source of organic matter is essential to maintain soil processes (Kerdraon 605 

et al., 2020). It is vital to understand underlying longer-term processes that ultimately might regulate 606 

GHG fluxes to be able to develop GHG mitigation strategies. More environmentally friendly plantation 607 

management would likely help with maintaining ecosystem functioning and reduce GHG emissions. 608 

 609 

In an attempt to broadly upscale our findings, we calculated the annual soil N2O emission for the Sabah 610 

state based on the data from this study (Table 2), together with land cover areas estimates (Gaveau et al., 611 

2016). The Sabah scale median N2O emission estimate had increased from 7.6 Mt per year in 1973 to 612 
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11.4 Mt per year in 2015. However, this change is small considering the associated uncertainties, 613 

demonstrated by the interquartile range, -3.0-22.3 Mt per year in 1973 and 0.2-28.6 Mt per year in 2015. 614 

The changes in land-use resulted in small changes of CH4 flux rates over the 42-year period. Our median 615 

results suggest that Sabah is a sink for CH4 (4 Mt y-1) throughout the time period presented. There was a 616 

slight decrease to the interquartile range of our estimate as more land was converted to OP plantation, 617 

suggesting that the strength of the sink decreased. However, this is much lower than the uncertainty 618 

associated with this analysis, hence; it is difficult to draw strong conclusions.  619 

5 Conclusions 620 

N2O emission rates in Sabah on mineral soil were higher from OP than logged forest over a two-year 621 

study with N2O emission rates from riparian intermediate. Mean CH4 fluxes were low with very high 622 

variability, showed no clear trend and the highest range of fluxes was measured in logged forests. Fungal 623 

and eukaryotic communities were related to management whilst bacterial communities were strongly 624 

affected by soil pH, which might have masked any management impacts. Mixed models and multiple 625 

regression analysis could only explain 17% of the variation in the measured N2O fluxes, 3% of the CH4 626 

fluxes and 25% of soil respiration, despite the large number of measured abiotic and biotic parameters. 627 

This is not uncommon for GHG fluxes, but demonstrates that many more studies, ideally at high temporal 628 

and spatial resolution, are required to inform on the impact of land-use and climate change on GHG 629 

fluxes. Scaling up measured N2O fluxes to Sabah using land areas for forest and OP (Gaveau et al., 2016) 630 

imply that the emissions have increased over the last 42 years, with the proportion of emissions from OP 631 
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plantations increasing in comparison to the emissions from forests. Using the range of measured fluxes 632 

with mean and interquartile ranges highlights the large uncertainties still associated with these emission 633 

estimates, despite having almost 700 individual data points over two years. For CH4, the picture is even 634 

more uncertain. More studies on GHG fluxes from tropical forests and OP plantations on mineral soils 635 

(including experiments deriving N2O emission factors) are needed to reduce the uncertainty of their 636 

emission rates. Furthermore, the impact of current management systems and future potentially more 637 

environmentally friendly plantation management needs to be investigated in order to predict how to 638 

maintain ecosystem function and biodiversity which could have a positive impact on reducing GHG 639 

emissions.  640 
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Tables and Figures 860 

Table 1. Soil physicochemical parameters: pH (mean of three sampling occasions and replicate chambers 861 

at each site); bulk density (mean of replicate chambers at each site from one sampling occasion); total C 862 

and total N in soil from the top 1-10 cm and leaf litter in the chambers (from replicate chambers on one 863 

sampling occasion), from the different sites (LF (n=8), B (n=8), E (n=8) = logged forest, OP2 (n=8), OP7 864 

(n=12), OP12 (n=8) = oil palm, RR (n=4) = riparian reserve).  865 

 866 

site pH 
 

bulk density 

[g cm-3] 

soil total N 

[%] 

soil total C 

[%] 

C/N 

(soil) 

 
Total litter 

dry mass [g] 

litter total N 

[%] 

litter total C 

[%]  
mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd 

LF 6.14 0.50 0.80 0.16 0.24 0.14 3.21 2.04 14.4 4.97 53 18.18 1.76 0.39 36.44 6.82 

B 3.65 0.44 0.80 0.11 0.30 0.07 4.65 1.23 15.5 1.47 114 51.97 1.51 0.31 33.78 7.33 

E 6.38 0.67 0.84 0.21 0.38 0.26 6.40 6.72 13.8 5.44 92 41.38 1.82 0.15 40.01 3.88 

OP2 4.54 0.21 1.22 0.12 0.05 0.02 0.70 0.21 14.0 1.81 53 70.54 1.78 0.28 40.62 5.88 

OP7 4.71 0.22 1.28 0.18 0.07 0.05 0.97 0.47 15.2 4.18 19* N/A 1.54 N/A 31.99 N/A 

OP12 4.60 0.14 1.27 0.07 0.08 0.03 0.72 0.15 9.3 2.34 N/A N/A N/A N/A N/A N/A 

RR 5.77 0.55 1.25 0.10 0.14 0.06 1.18 0.32 9.6 3.61 17 3.00 1.78 0.28 40.62 5.88 

 867 

*only one of the OP7 chambers had litter present 868 
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Table 2. Greenhouse gas fluxes (N2O-N, CH4-C, soil respiration CO2-C) and soil mineral nitrogen (NH4-870 

N and NO3-N) averaged over the entire measurement period (January 2015 – November 2016) by land-871 

use. N = number of individual data points, sd = standard deviation; forest = logged forest, OP = oil palm, 872 

RR = riparian reserve. 873 

 874 

Variable Land-use N Mean SD Median 

N2O-N forest 286 13.87 171.49 13.90 

(µg m-2 h-1) OP 335 46.20 166.35 45.84  
RR 48 31.83 220.40 30.86       

CH4-C forest 216 2.20 48.34 -5.63 

(µg m-2 h-1) OP 251 -2.57 17.18 -3.00  
RR 36 1.27 12.60 -0.38       

CO2-C forest 288 137.39 94.63 115.35 

(mg m-2 h-1) OP 336 93.30 69.65 75.55  
RR 48 157.70 105.80 142.60       

NH4-N forest 288 3.92 5.41 2.85 

mg g-1 OP 336 7.99 22.72 2.50  
RR 48 4.50 5.40 2.50       

NO3-N forest 288 5.30 5.28 3.40 

mg g-1 OP 336 6.32 18.16 1.40  
RR 48 2.25 4.19 1.35 

 875 

  876 
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 877 

Figure 1. Monthly rainfall (mm) in the SAFE area in 2015 and 2016 (R. Walsh). 878 
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 879 

Figure 2. Barplots of mean volumetric soil moisture (a) and mean soil temperature (b) from January 2015 880 

- November 2016, every two months: (upper panel: B, E, LF = logged forests, middle panel: OP12, OP2, 881 

OP7 = oil palm plantations, bottom panel: RR = riparian reserve).  882 
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 883 

Figure 3. Mean mineral N as KCl extractable NH4
+ (a) and NO3

- (b) from January 2015 - November 884 

2016, every two months (upper panel: B, E, LF = logged forests, middle panel: OP12, OP2, OP7 = oil 885 

palm plantations, bottom panel: RR = riparian reserve). Error bars represent standard deviation of the 886 

samples around the mean. 887 
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 888 

Figure 4. a) Nitrous oxide (N2O-N) fluxes in µg m-2 h-1 from January 2015 - November 2016, every two 889 

months (upper panel: B, E, LF = logged forests, middle panel: OP12, OP2, OP7 = oil palm plantations, 890 

bottom panel: RR = riparian reserve). Bars are mean for each site and error bars are standard deviation of 891 

number of chambers per site.  892 
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 893 

Figure 4. b) Posterior probability density of the mean nitrous oxide flux from each land-use, estimated 894 

by the Bayesian GLMM described in the text. 895 
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 896 

Figure 5. Methane (CH4-C) fluxes in µg m-2 h-1 from the different sites from January 2015 - November 897 

2016, every two months (B, E, LF = logged forests, OP12, OP2, OP7 = oil palm plantations, RR = riparian 898 

reserve). The ends of the box are the upper and lower quartiles, so the box spans the interquartile range. 899 

The median is marked by a horizontal line inside the box. The whiskers are the two lines outside the box 900 

that extend to the highest and lowest observations with outliers marked with an asterisk (*). 901 
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 902 

Figure 6. Soil respiration (CO2-C) fluxes in mg m-2 h-1 from January 2015 - November 2016, every two 903 

months (B, E, LF = logged forests, OP12, OP2, OP7 = oil palm plantations, RR = riparian reserve). The 904 

ends of the box are the upper and lower quartiles, so the box spans the interquartile range. The median is 905 

marked by a horizontal line inside the box. The whiskers are the two lines outside the box that extend to 906 

the highest and lowest observations with outliers marked with an asterisk (*). 907 
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 908 

Figure 7. 2D Non metric multidimensional scaling ordination plots of bacteria, fungal and eukaryotic 909 

communities from two samples dates March 2016 (upper panel, t1) and November 2016 (lower panel, 910 

t2).  Coloured points designate replicates from each site (B, E, LF = logged forests, OP12, OP2, OP7 = 911 

oil palm plantations, RIP = riparian reserve), as indicated in the legend with additional site centroids 912 

denoted on the plots. In addition, hulls indicate broad land-use categories as indicated in the legend. 913 

 914 

 915 
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