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Abstract  
Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological 15 

variability is key to the balance between the production and consumption of organic matter and ultimately particle export in 
the ocean. Here we investigated a potential link between bacterial traits and ecosystem functions in a rapidly changing polar 
marine ecosystem based on a bacteria-oriented ecosystem model. Using a data-assimilation scheme we utilized the 
observations of bacterial groups with different physiological states to constrain the group-specific bacterial ecosystem 
functions. We then examined the association of the modelled bacterial and other key ecosystem functions with eight recurrent 20 
modes representative of different bacterial taxonomic traits. High nucleic acid (HNA) bacteria showed relatively high cell-
specific productivity, respiration, and utilization of the semi-labile dissolved organic carbon pool compared to their low nucleic 
acid (LNA) bacteria counterparts. Both taxonomy and physiological traits reflected the variability of bacterial carbon demand, 
net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditions showed a 
potential shift from LNA- to HNA-dominated bacterial communities in the warming WAP. Our study suggests that bacterial 25 
diversity via different taxonomic and physiological traits can guide the modelling of the WAP ecosystem, providing insights 
into key bacterial and ecosystem functions under climate change.   

1 Introduction  

Microbes regulate many key ecosystem functions in the marine food web. Unicellular primary producers fix organic 
carbon (i.e., an ecosystem function termed primary production), while heterotrophic marine bacteria and archaea (hereafter 30 
bacteria) utilize the fixed organic carbon for growth and biomass synthesis (i.e., an ecosystem function termed bacterial 
production) (Azam et al. 1983). Thus, the variability in the abundance and activity of bacteria is central to understanding the 
balance between production and consumption of organic matter and ultimately particle export. In flow cytometric analyses, 
bacteria cluster into two groups of cells with different nucleic acid content, including high nucleic acid (HNA) and low nucleic 
acid (LNA) cells (Bouvier et al. 2007; Gasol et al. 1999). These two groups are suggested to represent lineages (Schattenhofer 35 
et al. 2011; Vila‐Costa et al. 2012) or physiological states (Bowman et al. 2017), and HNA cells are generally larger in both 
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cell and genome size compared to LNA cells (Bouvier et al. 2007; Calvo-Díaz and Morán 2006). The significance of HNA 
versus LNA cells in determining distinct ecosystem states and functions has been investigated, but much is still unknown. In 
a recent study along the West Antarctic Peninsula (WAP), the high dimensionality of the bacterial community structure data 
was reduced via emergent self-organizing maps and subdivided into a small number of bacterial modes associated with specific 40 
taxonomic and functional traits (Bowman et al. 2017). Bowman et al. (2017) demonstrated that a combination of taxonomy, 
physiological structure (i.e., HNA and LNA cells), and abundance of bacterial communities explained up to 73% of the 
variance in bulk bacterial production. Their findings imply that bacterial physiological and taxonomic traits could inform a 
predictive ecosystem model to further explore ecologically important questions such as: Can bacterial traits reflect key 
ecosystem functions like primary production and particle sinking flux? If so, what are the underlying mechanisms driving such 45 
bacterial trait-ecosystem function relationships? And how will these relationships be impacted by climate change?  

The WAP is a rapidly warming marine ecosystem, with resulting changes in physical, ecological, and biogeochemical 
processes (Clarke et al. 2009; Cook et al. 2005; Ducklow et al. 2007; King 1994; Meredith and King 2005; Stammerjohn et al. 
2008; Vaughan et al. 2003; Vaughan 2006; Whitehouse et al. 2008). Routine monitoring through the Palmer Long-Term 
Ecological Research project (Palmer LTER; since 1991) has revealed climate-driven variations in seasonal phytoplankton 50 
accumulation (Saba et al. 2014; Schofield et al. 2017), bacterial dynamics (Bowman and Ducklow 2015; Ducklow et al. 2012a; 
Kim and Ducklow 2016; Luria et al. 2017; Luria et al. 2014), nutrient drawdown (Kim et al. 2016), and micro- and 
macrozooplankton dynamics (Garzio and Steinberg 2013; Steinberg et al. 2015; Thibodeau et al. 2019). The wealth of Palmer 
LTER observations enabled the construction of a numerical marine ecosystem model for the coastal WAP region (i.e., the 
WAP-1D-VAR model; Kim et al. 2021), based on existing regional test-bed models of other ocean basins (Friedrichs 2001; 55 
Friedrichs et al. 2006, 2007; Luo et al. 2010, 2012). The WAP-1D-VAR model was compared against roughly bi-weekly time-
series data over the growth season (October - March) near Palmer Station (64.77°S, 64.05°W; the mean depth of ~65 m) that 
recorded seasonal variations in ecological processes modulated by variations in surface light, mixed layer depth, and surface 
sea-ice cover. The WAP-1D-VAR model utilized a data assimilation scheme to minimize the misfits between model results 
and observational data via a variational adjoint method (Lawson et al. 1995), by assimilating the available Palme LTER 60 
observations. Serving as a mechanistic model, assimilation of the Palmer LTER observations constrained poorly measured 
bacterial processes (e.g., respiration, viral and grazing mortality, growth efficiency, carbon demand, and utilization of dissolved 
organic matter with varying lability) and enabled model predictions of the microbial system state in changing environments. 
Yet, incorporating molecular observations into an ecosystem model is still a challenge due to differences in how levels of 
biological organization are treated in observations and models (Hellweger 2020) and the high dimensionality of microbial 65 
molecular observations. One argument is that molecular-level changes may not directly translate into a clear picture of changes 
in community structure or resulting changes to bulk ecosystem functions.   

In this study, we explored a potential link between bacterial traits and ecosystem functions in the warming coastal 
WAP, using a bacteria-oriented ecosystem model originally derived and modified from the WAP-1D-VAR model (Kim et al. 
2021). The bacterial traits examined in this study included both physiological and taxonomic traits. For physiological traits, 70 
the model explicitly simulated the dynamics of the two ubiquitous bacterial groups of differing nucleic acid content, a HNA 
group and a LNA group, by directly assimilating the group-specific biomass observations. For taxonomic traits, taxonomic 
modes derived from bacterial 16S rRNA gene sequence data (calculated by Bowman et al. 2017) were compared to model 
output values at the corresponding time points, with the assumption that microbial taxonomy would provide information about 
microbial ecosystem process and structure. In contrast to genome-scale, metabolic flux, or gene-centric models (Coles et al. 75 
2017; Feist et al. 2009; Reed et al. 2014), this study combines statistical products from genomic analyses with numerical 
ecosystem modelling to incorporate molecular information into ecosystem-level dynamics.  
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2 Material and Methods  

2.1 Bacteria-oriented ecosystem model 

The bacteria-oriented ecosystem model was originally derived and modified from the 1-D variational data assimilation 80 
model for the coastal WAP region (WAP-1D-VAR v1.0; Kim et al. 2021) simulating 12 state variables, including diatoms, 
cryptophytes, bacteria, microzooplankton, krill, labile dissolved organic matter (LDOM), semi-labile DOM (SDOM), 
ammonium (NH4), nitrate (NO3), phosphate (PO4), and particulate detritus (Figure 1; model equations in Appendix A; more 
details about model setup in Text S1-4). Refractory DOM (RDOM) and higher trophic levels were implicitly represented as 
model closure terms. Distinct to this study’s model compared to the WAP-1D-VAR model was the inclusion of HNA and 85 
LNA bacterial compartments (as biomass) and the partitioning of the bulk bacterial productivity by each bacterial 
compartment. The model was forced by mixed layer depth (MLD), photosynthetically active radiation (PAR) at the ocean 
surface, surface sea-ice concentration, water-column temperature, and eddy diffusivity (Figure S1) to simulate the stocks and 
flows of C, N, and P through the model state variables using a constant time step of 1 hour and a second-order Runge-Kutta 
scheme. In essence, the time rate of change of the group-specific biomass (constrained by observations; section 2.4) was 90 
calculated as follows: 

dCHNA  

dt
 = GCHNA,LDOC + GCHNA,SDOC – RCHNA – ECHNA,RDOC – ECHNA,SDOC – GZCHNA – MCHNA  (1) 

where CHNA is biomass (mmol C m-3), GCHNA,LDOC is LDOC consumption (mmol C m-3 d-1; Eq. A.4.12), GCHNA,SDOC is SDOC 
consumption (mmol C m-3 d-1; Eq. A.4.13), RCHNA is respiration (mmol C m-3 d-1; Eq. A.4.25), ECHNA,RDOC is RDOC excretion 
(mmol C m-3 d-1; Eq. A.4.26), ECHNA,SDOC is SDOC excretion (mmol C m-3 d-1; Eq. A.4.38, A.4.41), GZCHNA is C-specific grazed 95 
amount of cells by microzooplankton (mmol C m-3 d-1; Eq. A.4.44), and MCHNA is viral mortality (mmol C m-3 d-1; Eq. A.4.47) 
of the HNA group (the same form applies to LNA group below).  

dCLNA  

dt
 = GCLNA,LDOC + GCLNA,SDOC – RCLNA – ECLNA,RDOC – ECLNA,SDOC – GZCLNA – MCLNA  (2) 

Total (bulk) bacterial production (BP; BP = BPHNA + BPLNA) was constrained by observations, and therefore, the group-
specific production (BPHNA and BPLNA, mmol C m-3 d-1) was determined during optimization:   100 

BPHNA  = GCHNA,LDOC + GCHNA,SDOC – RCHNA         (3) 
BPLNA	  = GCLNA,LDOC + GCLNA,SDOC – RCLNA         (4) 

2.2 Modelling framework 

The modelling framework consisted of a dynamic (mechanistic) part and a data-driven part (Figure 2): 1) the dynamic 
part as the processes associated with the data-assimilative model (Figure 1) that made predictions of the microbial ecosystem 105 
processes based on prognostic, time-evolving coupled ordinary differential equations (Appendix A); and 2) the data-driven 
part representing how bacterial modes (Bowman et al. 2017) were compared to optimized model outputs. The analysis in the 
present study relied on the two types of modes, including taxonomic modes and functional modes, described in Bowman et al. 
(2017): taxonomic modes (modes hereafter) were determined from 16S rRNA gene sequence abundance, while functional 
modes (fmodes hereafter) were derived from predicted community metabolic structure. Briefly, sequence reads were 110 
categorized into closest estimated genomes and closest completed genomes via the paprica pipeline (Bowman and Ducklow, 
2015) and the high dimensional community and metabolic structure data were reduced to 2-D space via a self-organizing map 
and K-means clustering of map units (Bowman et al. 2017). The final clustering of map units constitutes the modes, and each 
sample was assigned the mode of its closest map unit. In this approach the mode is a single categorical variable that succinctly 
describes key structural attributes of the sample. It is important to recognize the categorical nature of these modes, and to 115 
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understand that – because of the 2-D nature of the map – there is no linear progression among modes. Thus mode 1, for 
example, is not necessarily more similar to mode 3 than it is to mode 7. Neither mode nor fmodes is necessarily correlated to 
physiological traits of the bacteria (i.e., HNA- and LNA compartments). In other words, derived from separate observations 
of different parameters in the same bacterial samples, the relative abundance of HNA or LNA, mode, and fmodes are 
independent with each other by design.   120 

We selected a nearshore Palmer LTER water-column time-series station, Station B (64.77°S, 64.05°W), in the coastal 
WAP as the modelling site for this study (the mean depth of ~65 m). The Palmer LTER Station B datasets consisted of roughly 
bi-weekly physical, chemical, and biological profiles collected via a profiling Conductivity-Temperature-Density (CTD) and 
rosette. Additional observational data were utilized for bacterial flow cytometric (HNA and LNA) and 16S rRNA gene 
amplicon data collected from Arthur Harbour Station B at 10 m depth (situated 1 km from the Palmer Station B) or Palmer 125 
Station seawater intake at 6 m depth (Bowman et al. 2017). Three upper-ocean depth levels (0, 10, and 20 m) were modelled 
for 4 consecutive Palmer LTER growth seasons, including November 2010 - March 2011 (year 2010-11 hereafter), 2011-12, 
2012-13, and 2013-14, but the only results from 10 m were analysed in detail due to the availability of bacterial traits data 
there. The 1-D modelling of the coastal WAP region could be justified given that the WAP is a region of relatively weak net 
advection compared with the Antarctic Circumpolar Current (ACC) or the subpolar gyres (Meredith et al., 2008, 2013), and 130 
the CTD observations at Palmer Station did not show the evidence of abrupt changes in physical and biogeochemical tracers 
due to lateral advection, but showed rather laterally homogeneous temperature and salinity distributions during the Antarctic 
growing season for the modelled depth and years in this study (Kim and Ducklow 2016).  

Given the availability of the Palmer LTER observations over the Austral spring-summer season, we optimized the 
model each year separately over the timeframe of available observations. This way, each year possessed its own unique 135 
optimized model parameter set (model) equivalent to a model solution for the minimized model-observation misfit for that 
year. In addition to these four years (2010-11 to 2013-14), we optimized the model for the climatological year, referred as the 
climatological model. The climatological year was constructed by averaging observations in the four years (2010-11 to 2013-
14), rather than the whole Palmer LTER multi-decadal period (since 1991), due to the limited availability of HNA and LNA 
biomass data only in those four years. Details on constructing the climatological year and model initialization, spin-up, and 140 
bottom boundary conditions are found in the Supplementary Material (Text S3). 

2.3 Data assimilation and parameter optimization  

The model utilized a variational adjoint data assimilation scheme (Lawson et al. 1995) to minimize the misfit between 
observations (i.e., assimilated data, section 2.4) and model output by optimizing a subset of model parameters (Friedrichs 
2001; Spitz et al. 2001; Ward et al. 2010). The data-assimilation scheme (Figure 2) consisted of four main steps (Glover et al. 145 
2011). First, the model was integrated forward in time from prescribed initial conditions and initial model parameter guess 
values (Table 1) to calculate the model-observation misfits referred as total cost function or total cost (section 2.5). Second, 
an adjoint model constructed using the Tangent linear and Adjoint Model Compiler (TAPENADE) was integrated backward 
in time and compute the gradients of the total cost with respect to the model parameters. Third, the computed gradients were 
passed to a limited-memory quasi-Newton optimization software M1QN3 3.1 (Gilbert and Lemaréchal 1989) to determine the 150 
direction and optimal step size by which the model parameters needed to be modified to reduce the total cost. Finally, a new 
forward mode simulation was performed using the new set of modified parameters from the third step. These four steps were 
conducted in an iterative manner until the pre-set convergence criteria were satisfied ensuring the convergence of the optimized 
parameters and a local minimum achieved by the total cost, via low gradients (sensitivity) of the total cost with respect to each 
optimized parameter and positive eigenvalues of the Hessian matrix (section 2.6).  155 

The initial parameter subset submitted to optimization consisted of 10 different model parameters, with one parameter 
per each state variable, the change of which yielded the largest decrease in the total cost function during preliminary sensitivity 
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tests, including αDA (initial slope of photosynthesis vs. irradiance curve of diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), αCR (initial 
slope of photosynthesis vs. irradiance curve of cryptophytes, mol C (g Chl a)-1 d-1 (W m-2)-1), Θ (maximum Chl:N ratio, g Chl 
a (mol N)-1), μHNA (maximum HNA growth rate, d-1), rAmax,HNA (maximum HNA active respiration rate, d-1), gHNA (half-160 
saturation density of HNA bacteria in microzooplankton grazing, mmol C m-3), μMZ (maximum microzooplankton growth rate, 
d-1), μKR (maximum krill growth rate, d-1), and remvKR (krill removal rate by higher-trophic levels, (mmol C m-3) -1 d-1; Tables 
S2-6). In most cases this initial subset led to positive eigenvalues of the inverse Hessian matrix, but in case of negative 
eigenvalues the corresponding parameters were eliminated from optimization (section 2.6) and a few other sensitive parameters 
were added and kept, one at each optimization cycle, if they further reduced the total cost function. Every assimilation cycle, 165 
we ensured that group-specific bacterial model parameters were optimized in the direction to properly represent the dynamics 
associated with each group (Table 1), in which we assigned different magnitudes of each parameter based on the best guesses 
and literatures (del Giorgio and Cole 1998; Jiao et al. 2010). For instance, maximum bacterial growth rate of the HNA group 
(μHNA, d-1) was ensured to be optimized to be higher than that of the LNA group (μLNA, d-1), so if μHNA was optimized smaller 
than μLNA, μHNA was reset back to the original value instead of being updated.   170 

2.4 Assimilated data 

We assimilated Palmer LTER observational data from 0, 10, and 20 m corresponding to compartments and flows in the 
model, including NO3, PO4, phytoplankton taxonomic specific chlorophyll (Chl) for diatoms and cryptophytes (Schofield et 
al. 2017), microzooplankton biomass (Garzio et al. 2013), primary production (PP), bulk BP, HNA bacterial biomass, LNA 
bacterial biomass, semi-labile dissolved organic carbon (SDOC), particulate organic carbon (POC), and particulate organic 175 
nitrogen (PON). The group-specific Chl was not measured in 2011-12, but due to its importance in constraining the group-
specific phytoplankton dynamics, the 4-year climatological value was assimlated for 2011-12. NO3 was not assimilated in 
2010-11, while POC, PON, and SDOC were not assimilated in 2012-13 and 2013-14 due to the lack of observations in those 
years. Krill biomass data were not assimilated due to the strong patchiness of the distribution (many zero values) that would 
hinder proper model optimization, while a single year measurement data of microzooplankton biomass (2010-11) was 180 
assimilated for all years to at least provide constraints on phytoplankton grazing parameters. Microzooplankton model-
observation misfits were not examined due to the discrepancy in the timing and location of the data compared to this study. 

SDOC was calculated by subtracting the background (RDOC) concentration (40.0 mmol m-3) from climatological total 
DOC concentration. POC (PON) were assimilated to represent the model detrital pool, but its measurements contained living 
biomass from bottle filter experiments. Climatological observations showed that living phytoplankton and bacterial biomass 185 
accounted for 74% of total POC and 71% of total PON, so these fractions were used to exclude living biomass from the bulk 
particulate material pool. When converting Chl to phytoplankton C (N) biomass, the maximum Chl to N ratio was used along 
with other reference ratios (Tables S2-6). BP (mmol C m-3 d-1) was derived from 3H-leucine incorporation rate (pmol l-1 h-1) 
data using the conversion factor of 1.5 kgC mol-1 leucine incorporated (Ducklow 2000). Group-specific bacterial biomass 
(mmol C m-3) was estimated from bacterial abundance measured by flow cytometry (i.e., bulk bacterial biomass multiplied by 190 
the fraction of each group, fHNA or fLNA, with the conversion factor of 10 fgC cell-1) (Fukuda et al. 1998). 

2.5 Cost function and portability index  

The total cost function or cost (J) was defined as follows to represent the misfit between observations (a!m,n) and model 
output (am,n) (Luo et al. 2010):  

J = ∑ 1
Nm
∑ ( am,n-a!m,n

σm
)Nm

n=1
M
m=1

2         (5) 195 

where m and n represent assimilated data types and data points, respectively, M and Nm are the total number of assimilated 
data types and data points for data type m, respectively, and σm is the target error for data type m. Hereafter, we referred the 
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total cost as the total cost normalized by M (J’ = J/M) and normalized costs of individual data types (J’m) as the model-
observation misfit equivalent to a reduced Chi-square estimate of model goodness of fit (i.e., J’ = 1 as a good fit from 
optimization, J’ >>1 as a poor fit due to underestimation of the error variance or the fit not fully capturing the data, and J’ <<1 200 
as an overfitting of the data, fitting the noise, or overestimation of the error variance). The base-10 logarithm of Chl and PP 
was used in Eq. 5 to account for high productivity of the WAP waters and the approximate log-normal distribution of those 
data types (Campbell 1995; Glover et al. 2018). The target error σm	was calculated for each data type m as:  

σm = a!m,n$$$$$ · CVm           (6) 
where a!m,n$$$$$ is the climatological mean of the observations and CVm	is the adjusted coefficient of variation (CV) of the 205 
observations of each data type over 0, 10, and 20 m (due to observational error and seasonal and interannual variations). The 
average CV of each data type at a single depth across the modelled years was higher compared to those across every measured 
depth within the mixed layer over an extended year period modelled in the WAP-1D-VAR model (2002-03 to 2011-12; Kim 
et al. 2021) and was therefore reduced to the level in the mixed layer to avoid an overestimated target error of each data type. 
The rationale behind using the adjusted CV in the target error calculation was based on Luo et al (2010), in which all properties 210 
in the mixed layer should be completely mixed, a perfect measurement without significant errors should generate similar data 
values at every measured depth within the mixed layer, and the average CV of all the depth profiles can be used as CV in the 
target error calculation. The standard deviation was used as target errors of the log-converted data types. The CV of the log-
converted data type was estimated as the average of ± 1 standard deviation in log space converted back into normal space 
(Doney et al. 2003; Glover et al. 2018). 215 

We computed the portability index to evaluate the broader applicability of the optimized model parameter set of each 
year in predicting dynamics of the other year (Friedrichs et al. 2007): 

Portability index = J’c/J’x           (7) 
where J’x is the normalized cross-validation cost when a model parameter set optimized for a given year is used to simulate 
another year, and J’c is the normalized total cost of the climatological model. A portability index close to 1 indicates a more 220 
portable model, or a system that is not particularly sensitive to year-to-year variations in optimized model parameters, while 
an index <<1 indicates a less portable model, or a system sensitive to year-to-year variations in optimized model parameters.  

2.6 Uncertainty analysis 

The uncertainties of the optimized parameters were estimated from a finite difference approximation of the complete 
Hessian matrix during iterative data assimilation processes (i.e., second derivatives of the cost function with respect to the 225 
model parameters; Text S4). When computed at the minimum of the cost function value, the square root of a diagonal element 
in the inversed Hessian matrix is the logarithm of the relative uncertainty of the corresponding optimized parameter. The 
absolute uncertainty of the constrained parameter was calculated as pf ´ e±σi where pf  is the value of optimized parameter and 
σf is the relative uncertainty of the corresponding optimized parameter. We then conducted Monte Carlo experiments to 
calculate the impact of the optimized parameter uncertainties on the model results. The Monte Carlo experiments consisted of 230 
1) creating an ensemble of parameter sets (N = 1,000) by randomly sampling values within the uncertainty ranges of the 
constrained parameters and 2) then performing a model simulation using each parameter set. All uncertainty estimates were 
calculated following standard error propagation rules and presented herein as ± 1 standard deviation. 
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3 Results  

3.1 Model skill assessment  235 

The iterative optimization procedure (Figure 2) reduced by 24-93% the misfits between observations and model 
output for each year and the climatological year, compared to the misfits obtained using the initial guess parameters (Table 2). 
The optimized parameter sets satisfied the pre-set convergence criteria, including local minima achieved by the total costs, 
low gradients of the total costs with respect to each optimized parameter, and positive eigenvalues of the Hessian matrix. The 
total costs were reduced by optimizing only a subset of the model parameters (5-7 constrained parameters and 3-6 optimized 240 
parameters; Tables S2-6). The optimized parameters in common across all years were αDA (initial slope of photosynthesis vs. 
irradiance curve of diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), μHNA (maximum HNA bacterial growth rate, d-1), μLNA (maximum 
LNA bacterial growth rate, d-1), and gCR (half-saturation density of cryptophytes in microzooplankton grazing, mmol C m-3). 
gHNA (half-saturation density of HNA bacteria in microzooplankton grazing, mmol C m-3), gMZ (half-saturation density of 
microzooplankton in krill grazing, mmol C m-3), and μKR (maximum krill growth rate, d-1) were next frequently optimized, at 245 
least for 4 years out of a total of 5 modelled years. 

Because this study focused on composites of the modelled ecosystem functions as a function of bacterial mode and 
of the fraction of different physiological groups (section 3.2), rather than of year (Figures S2-5), we combined observations 
and model results from all four years together for further model skill assessment. The Taylor diagrams indicated similar model 
skills between the four years (Figure 3a) and the climatological year (Figure 3b). Three core bacterial variables in this study, 250 
including HNA biomass, LNA biomass, and BP, showed overall better model-observation agreements than other data types, 
with relatively high correlations, low centred (bias removed) root-mean-square difference (RMSD), and normalized standard 
deviation closer to 1. These three variables also had better fits to the four-year seasonal cycles of the observations than other 
data types (Figure S7). However, the model skill for HNA biomass slightly degraded in the climatological model (Figure 3b), 
with lower correlations and normalized standard deviation and higher RMSD than the four years together (Figure 3a). The 255 
optimized models captured best the temporal and spatial (depth) variability of PP, as shown by its high correlations (Figure 3), 
but the models tended to underestimate PP with relatively larger errors than for other data types (Figure S7). By contrast, there 
were slight positive model biases for POC and PON (Figure S7) and their variability was not well captured as shown by the 
negative correlations (Figure 3).   

Cross-validation cost analyses showed increased model-observation misfits when a set of parameters optimized for 260 
one year was used to simulate another year’s dynamics (Tables 1-2), suggesting that each year was best modelled using its 
own unique set of optimized parameters. The magnitude of the cost function increase varied by year pair, with the portability 
index values indicating that the optimized model parameters for 2012-13 was most portable (0.76 ± 0.11), followed by those 
for 2013-14 (0.73 ± 0.17), 2010-11 (0.67 ± 0.08), and 2011-12 (0.61 ± 0.12; Table 2).   

3.2 Bacterial carbon stocks and flows  265 

C stocks and flows for each bacterial group showed significant seasonal and interannual variability (Figure 4A, Figure 
S6). Across years HNA cells had significantly higher seasonal maximum values than their LNA counterparts, when normalized 
by the group-specific biomass. These so-called cell-specific, seasonal maximum rates of the HNA group ranged from 0.10 ± 
0.00 to 0.59 ± 0.24 d-1, 0.03 ± 0.00 to 0.18 ± 0.12 d-1, 0.02 ± 0.01 to 0.18 ± 0.08 d-1, 0.05 ± 0.00 to 0.57 ± 0.26 d-1, and 0.07 ± 
0.03 to 0.36 ± 0.17 d-1 for LDOC uptake, SDOC uptake, respiration, BP, and grazing rates, respectively (Figure 4). For the 270 
LNA group, maximum cell-specific rates ranged from 0.01 ± 0.00 to 0.12 ± 0.02 d-1, 0.00 ± 0.00 to 0.03 ± 0.01 d-1, 0.01 ± 0.00 
to 0.02 ± 0.01 d-1, 0.00 to 0.13 ± 0.02 d-1, and 0.02 ± 0.00 to 0.17 ± 0.03 d-1 for LDOC uptake, SDOC uptake, respiration, BP, 
and grazing rates, respectively (Figure 4). C stocks and flows averaged over the growth (Figure 5) and normalized by NPP 
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(normalized by NPP in 1-day for C stocks; Figure S9) season for each year summarized an annual snapshot of the group-
specific bacterial dynamics. The annual mean LNA biomass was ~17 times larger than that of HNA biomass in 2011-12 (Figure 275 
5b), in contrast to relatively similar mean biomass of both groups in other years (Figures 5a, c, d). Bacterial carbon demand 
(BCD; i.e., BCD = BP + bacterial respiration; blue arrows for respiration in Figure 5) was mostly supported by the LDOC pool 
(67-81%) for both bacterial groups.  

The rest of the model stocks and flows fell into one of three categories: 1) the variable for a single year values were 
assimilated (i.e., microzooplankton biomass); 2) the variables for which observational values for the given year were 280 
assimilated (i.e., nutrients, POC or detritus, and SDOC), and 3) the variables that were not assimilated (i.e., krill biomass, 
LDOC, NH4, and particle sinking flux). There was a little interannual variability in the average microzooplankton carbon 
biomass (Figure 5). NO3, POC, and SDOC in unassimilated years were modelled to values comparable to those in other 
assimilated years (Figure 5). Modelled LDOC and NH4 were also within the reasonable range of their typically small value (< 
1 μM).  285 

3.3 Bacterial physiological and taxonomic association with ecosystem functions 

A property map of the emergent self-organizing map nodes (as generated by Bowman et al. 2017) showed the mode 
association with community structure (Figure 6). The coloured map units (the circles in the background) were clustered into 
taxonomic mode membership or modes (Figure 6A), showing a different frequency of appearance year-to-year (Figure 6B). 
Each mode was dominated by unique bacterial taxa. For example, Candidatus Pelagibacter was most abundant in mode 6 290 
(Figure 6C), Dokdonia sp. MED134 in mode 7 (Figure 6D), Candidatus Thioglobus singularis PS1 in mode 1 (Figure 6E), 
Owenweeksia hongkongensis DSM 17368 in mode 2 (Figure 6F), Rhodobacteraceae in mode 5 (Figure 6G), and 
Planktomarina temperata RCA23 in mode 4 (Figure 6H).  

To explore a potential link between mode and the key ecosystem functions, we first extracted the modelled net primary 
production (NPP), POC sinking flux, and BCD from the ecosystem model at the time of bacterial samples and depth (10 m) 295 
that were placed into a single, observed mode. We then performed a linear regression with mode as a factor (i.e., mode as a 
categorical predictor with 8 modes rather than an ordinal or continuous variable; equivalent to a one-way ANOVA with 8 
different categories). fmode did not have a significant relationship with any of the modelled ecosystem functions examined 
(all p > 0.05; not shown). By contrast, 27%, 36%, and 77% of the total variance in the modelled NPP, POC sinking flux, and 
BCD was explained by mode (Figures 7A-C). In particular, modes 3, 5, and 7 were associated with 2-3 times higher NPP, 300 
POC sinking flux, and BCD, compared to when mode 4 dominated (two-sample t-test with unequal sample size, p = 0.02 for 
NPP and p < 0.001 for POC sinking flux and BCD), or to when mode 6 dominated (p = 0.03 for NPP, p = 0.003 for POC 
sinking flux, and p < 0.001 for BCD).  

The observed mode was positively correlated to the observed fHNA (r2 = 0.52, p < 0.001; not shown). Thus, we also 
examined a potential link between the observed fHNA and the key model ecosystem functions as described above (i.e., linear 305 
regression with an observed fHNA as a predictor and the modelled ecosystem functions as dependent variables). The observed 
fHNA was positively correlated to the modelled NPP (r2 = 0.33, p < 0.001; Figure 7d), and to a stronger extent, to the modelled 
POC sinking flux (r2 = 0.51, p < 0.001; Figure 7E) and to the modelled BCD (r2 = 0.54, p < 0.001; Figure 7F). The stepwise 
addition of one predictor variable to the other predictor variable (i.e., fHNA adding to mode or vice versa) did not improve the 
model performance (not shown). These results suggest a clear link between the modelled ecosystem functions and observed 310 
bacterial taxonomic (modes) and physiological (fHNA) traits observations.  
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3.4 Climate change experiments 

We explored the response of the modelled bacterial dynamics and ecosystem functions (sections 3.2-3.3) to changing 
climate along the WAP (Figure 8). Due to a varying range of portability of the optimized model solution for each year, we 
used the climatological model parameter set (Table S6) to simulate an overall system response under perturbed ocean 315 
temperature (+0.5°C and +1.0°C relative to observed temperatures) and sea-ice forcing fields (5% and 10% loss of sea-ice 
relative to observed sea-ice concentrations). These experiments were conducted under each perturbed environmental condition 
separately (i.e., warming alone in Figure S10 versus melting alone in Figure S11) and simultaneously (i.e., climate change 
experiments; Figure 8). We only focused on the results from the climate change experiments in this section, given that despite 
different impacts of each physical forcing changes (i.e., temperature impacts on rate processes versus sea ice impacts on light 320 
and photosynthesis but not MLD) climate change would cause simultaneous changes in sea ice and water temperature along 
the WAP.  

The climate change experiments resulted in a combination of changes in overall bacterial stocks and rates, as well as 
the key ecosystem functions, and shifts in the seasonal timing or phenology (Figure 8A), compared to the base state (first row 
as the base state and second and third rows as anomalies under perturbed conditions in Figure 8B). HNA bacterial stock and 325 
rates responded more strongly to the perturbed climate conditions compared to LNA bacterial stock and rates. Under combined 
warming/melting (+1.0°C/-10%) conditions, there were maximum increases of the HNA variables by 19-35% (29 ± 89% for 
biomass, 22 ± 67% for LDOC uptake, 35 ± 111% for SDOC uptake, 26 ± 79% for respiration, 25 ± 78% for BP, 29 ± 89% for 
viral mortality, 19 ± 26% for grazing, and 29 ± 89% for RDOC excretion), compared to the maximum increases of the LNA 
variables by 3-15% (3 ± 2% for biomass, 6 ± 11% for LDOC uptake, 15 ± 27% for SDOC uptake, 8 ± 3% for respiration, 7 ± 330 
6% for BP, 3 ± 2% for viral mortality, 7 ± 18% for grazing, and 3 ± 2% for RDOC excretion). In contrast to most bacterial 
variables that increased consistently throughout the growth season, microzooplankton grazing rates showed seasonally mixed 
responses for both HHA and LNA groups (i.e., the maximum decreases of 8 ± 32% for HNA and of 4 ± 32% for LNA). 
Similarly, there were maximum increases of NPP and POC sinking flux by 14 ± 15% and 3 ± 22%, and maximum decreases 
by 4 ± 11% and 3 ± 13%, respectively. SDOC exhibited the maximum increase by 2 ± 1% early in the season but shortly 335 
became depleted as the season progressed. LDOC decreased always in response to the perturbed conditions, with the maximum 
decrease by 10 ± 43%.  

4 Discussion  

4.1 Model skill assessment 

Despite the important biogeochemical role that bacteria play in the ocean, the vast majority of marine ecosystem 340 
models neither include bacteria as a model compartment nor explicitly simulate bacterial processes. Most existing models 
parameterize the complex bacterial remineralization processes of the sinking organic matter with depth by using empirical 
relationships, such as, by fitting the power law functions, or other similarly-derived approaches and parameterizations 
(Buesseler et al. 2020; Cael and Bisson, 2018). Cellular functions, taxa, and functional gene expression of other prokaryotes, 
such as cyanobacteria (Hellweger 2010; Martín-Figueroa et al. 2000; Miller et al. 2013), or a diverse suite of microbial 345 
functional groups (Coles et al. 2017; Dutkiewicz et al. 2020) have been modelled so far; however, our study serve as the first 
to explicitly model bacterial groups of different physiological traits.  

In this study, only a subset of the model parameters was optimized to best simulate bacterial and other ecological 
patterns for each year, consistent with other data assimilation modelling studies (Friedrichs 2001; Friedrichs et al. 2006, 2007; 
Luo et al. 2010, 2012). In general, optimization of this class of marine ecosystem models requires adjustment of a small number 350 
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of independent model parameters to achieve well-posed model solutions, due to the highly cross-correlated nature of 
parameters in the inherently nonlinear model equations (Fennel et al. 2001; Harmon and Challenor 1997; Matear 1996; Prunet 
et al. 1996). Most of the constrained parameters in this study were directly associated with bacterial processes, with overall 
better model-observation fits for bacterial data types, giving confidence in the simulated bacterial C stocks and flows.  

Optimization also sheds light on major unknown parameters in the bacterial grazing process, including gHNA and gLNA 355 
(half-saturation density of HNA and LNA bacteria in microzooplankton grazing, respectively). Microzooplankton grazing of 
the given bacterial group was simulated using Holling Type 2 density-dependent grazing with a preferential prey selection on 
diatoms, cryptophytes, and the other bacterial group, in which the single microzooplankton maximum grazing rate is 
implemented for both bacterial groups for model simplicity purposes (Text S1, Tables S2-6). Thus, it was the half-saturation 
density that determined the degree of preferential grazing by microzooplankton on a certain bacterial group, the change of 360 
which would ultimately depend on biomass of each bacterial group. Due to the lack of a priori knowledge on the relative 
magnitude of gHNA and gLNA, we assigned the identical initial guess value (Table 1) to let the data assimilation scheme find the 
values that best fit overall observations of the bacterial group-specific dynamics. Compared to gLNA, smaller optimized gHNA 
(Tables S2-6) reflected preferential grazing of HNA cells by microzooplankton, consistent with previous speculations that 
grazers selectively remove larger and more active cells (Giorgio et al. 1996; Gonzalez et al. 1990; Sherr et al. 1992), so HNA 365 
cells (Garzio et al. 2013). Together with the higher mean cell-specific grazing rates for the HNA group (section 3.2), our results 
suggest preferential grazing of HNA cells by microzooplankton.  

In this study, the model portability index reflects the extent to which a single model framework represented by model 
parameters and equations captures the observed variability in different years, given variable environmental forcing and the 
accompanying shift in plankton ecosystem structure. The optimized model parameter set for 2012-13 was most portable and 370 
the optimized parameter set for 2011-12 was the least portable (Table 2), in which the most (n = 7 out of total 11) and the least 
numbers (n = 5 out of total 11) of parameters were constrained (i.e., optimized with low uncertainties), respectively (Tables 
S3-4). The other two years exhibited intermediate levels of portability, wth similar portability index values characterized by 
the same number of constrained parameters (n = 6 out of total 10 for 2010-11 and n = 6 out of total 12 for 2013-14; Tables S2, 
S5). In other words, it was the number of well-constrained parameters that mattered most in driving high model portability, 375 
suggesting the connection between overfitting and portability of optimized models in this study. Also, varying degrees of 
model portability across the years rendered it difficult to select one particular year’s model solution representing the 
climatological dynamics, consistent with the characteristics of the original WAP-1D-VAR model. Instead, better model skill 
was found by utilizing parameters from assimilating climatological observations into a more general version of the model 
(section 4.4).  380 
 

4.2 Bacterial carbon stocks and flows 

Assimilating each bacterial group’s biomass allows for the partitioning of the BP for each group as well as other 
physiological processes (e.g., SDOC uptake rates) that were never measured in this study. First, optimized models yielded in 
significantly higher cell-specific BP of the HNA group across all years, which could be attributed to the way the parameter 385 
optimization was performed to keep higher maximum cell-specific growth rates of HNA cells. However, it should also be 
noted that the cell-specific BP rates were driven by biomass stocks that were determined from the modelled trophic interactions. 
As with phylogenetic groups (Fuchs et al. 2000; Teira et al. 2009; Yokokawa et al. 2004), cell-specific bacterial growth rates 
are expected to differ among distinct bacterial physiological groups, but there are limited studies focusing on group-specific 
cell activities (Gasol et al. 1999; Giorgio et al. 1996; Günter et al. 2008; Longnecker et al. 2005; Moràn et al. 2011). Moràn et 390 
al (2011) showed that HNA cells greatly outgrew LNA cells in Waquoit Bay Estuary, with a cell-specific growth rate of up to 
2.26 d-1 for HNA cells versus < 0.5 d-1 for LNA cells. Second, our model results revealed HNA group’s significantly higher 



11 
 

uptake rates of both LDOC and SDOC pools than their LNA counterparts. Several studies have demonstrated that HNA cells 
depend more than LNA cells on phytoplankton substrates for growth and metabolism (Li et al. 1995; Morán et al. 2007; 
Scharek and Latasa 2007). The hypothesis that WAP bacteria might rely on SDOC has received indirect support previously, 395 
presumably due to LDOC limitation (Ducklow et al. 2011; Kim and Ducklow 2016; Luria et al. 2017), but our study is the 
first to show the importance of the SDOC pool for HNA cells’ C demand. 
 Although much of the discussion focuses on bacteria, the model also captured well the rest of the ecosystem variables. 
Modelled nutrient stocks were above detect limits and indicated the lack of macronutrient limitations. The WAP typically 
exhibits strong interannual variability (Ducklow et al. 2007), but the lack of the strong interannual variability in model 400 
microzooplankton biomass is due to assimilating climatological observations. One exception is krill biomass that was modelled 
3-8 times larger than the maximum value from the available field data in 2017-18 (0.57 mmol C m-3; not shown). It should be 
noted that there were inconsistences in the nature of the assimilated data types, such as a single-year observation of 
microzooplankton (versus each year-specific observations of others) and two unassimilated data types including krill biomass. 
Also, there can be compensating errors in krill grazing rate and metabolism values given that krill are mobile laterally. These 405 
observational limitations made it challenging to construct a complete microbial carbon budget without significant uncertainties. 
A more complete assimilation of zooplankton data should be the next effort to improve the model fits and minimize 
uncertainties in the bacterial variables and, therefore, to expand the current study. 

4.3 Bacterial physiological and taxonomic association with ecosystem functions 

The positive associations of the observed fHNA with the modelled NPP and POC sinking flux suggest a relatively 410 
strong resource control on these actively-growing cells, compared to slowly-growing LNA cells. This is consistent with 
previous studies that showed increased HNA growth rates in response to enhanced phytoplankton-derived organic substrate 
(Morán et al. 2010) and more abundant HNA cells in areas or periods where bacterial assemblages were predominantly 
controlled by resources, rather than grazing (Morán et al. 2007). It has been hypothesized that due to minimal inputs of 
terrestrial organic matter, bacteria must ultimately rely on in situ NPP for organic matter source in the WAP (Ducklow et al. 415 
2012b), supporting the importance of resource control on actively-growing bacteiral populations.  

In this study, modes 3, 5, and 7, characterized by copiotrophic taxa with large genomes and more 16S rRNA gene 
copies (Bowman et al. 2017), were associated with high modelled NPP, POC sinking flux, and BCD, while modes 4 and 6, 
characterized by taxa associated with more oligotrophic conditions, were associated with low modelled NPP, POC sinking 
flux, and BCD. Dokdonia sp. MED134, a common bacterial species of the modes associated with high NPP, POC sinking flux, 420 
and BCD, is a proteorhodopsin-containing marine flavobacterium that grows faster with light (Gómez-Consarnau et al. 2007; 
Kimura et al. 2011) and in conditions under which resources are abundant (Gómez-Consarnau et al. 2007). Given the coastal 
WAP being primarily light-limited (Ducklow et al. 2012), the correspondence of D. Dokdonia MED134 to high modelled NPP 
suggests light-enhanced growth rates and cell yields from sufficient irradiance. By contrast, mode 4, dominated by 
Planktomarina temperata RCA23, is a slowly growing bacterium that specializes in using complex organic substrates (Giebel 425 
et al. 2013). These attributes are consistent with high occurrence of mode 4 during the periods of low modelled NPP and POC 
sinking flux. Candidatus Pelagibacter, abundant in mode 6, is generally known as an oligotrophic specialist with a low DOC 
requirement, but often observed during the Antarctic phytoplankton blooms (Delmont et al. 2014; Luria et al. 2014), the 
characteristics of which support its occurrence during the periods of high modelled NPP. 
 In summary, our study provides a novel framework connecting the dynamics of different ecosystem functions with 430 
microbial physiology and taxonomy. Certain modes represent distinct WAP ecosystem states and the mode-state associations 
are reasonably explained from microbial perspectives. However, we did not investigate a seasonal succession and development 
in mode itself or the mode association of the key WAP ecosystem states. Future investigations should focus on including a 
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few dominant or seasonally distinct modes in data assimilation, in order to fully resolve the seasonality of the mode-ecosystem 
state associations along the WAP.   435 

4.4 Climate change experiments  

The WAP has experienced significant atmospheric and ocean warming and resulting changes in marine ecosystem 
processes and further climate change is projected for the next several decades. The magnitudes of the perturbations used in the 
climate change experiments (+0.5º/+1.0ºC compared to observed temperature fields and -5%/-10% compared to observed sea-
ice fields) are within the range of the long-term changes in temperature and sea-ice duration along the WAP continental shelf. 440 
The temperature of the ACC water that has direct access to the WAP shelf has shown a large increase after the 1980s, equivalent 
to a uniform warming of the upper 300 m layer by 0.7ºC (Ducklow et al., 2012). The trend in the annual ice season duration is 
-1.5 days per year over 1979-80 to 2017-18 field season (Henley et al. 2019). The degree of melting (5-10%) chosen for the 
climate change experiments is translated into the shortening of the ice season duration by 1-3 days (not shown), falling within 
the range of the trend in Henley et al. (2019).  445 

Under combined warming/melting conditions, we expected that increased NPP and phytoplankton accumulations 
early in the season would result in a significant build-up of DOC pools. This was the case only for SDOC, and bacteria were 
soon LDOC-limited due to their preferential LDOC uptake for their primary carbon source. The growth of bacteria and 
increased bacterial rates during LDOC limitation was because bacteria depended on SDOC to meet the rest of their carbon 
demand, resulting in the depletion of SDOC pool later in the season. In other words, bacteria were more likely resource-limited, 450 
in particular by the labile DOC pool, and SDOC subsequently played an increasingly important role. This change was 
particularly important in HNA cells, as shown by a relatively large increase of their BCD via SDOC, compared to LNA cells. 
Temperature is often regarded as a major factor regulating bacterial physiological rates by changing the rate of enzymatic 
reactions (Kirchman et al. 2009; White et al. 1991). In this study the modelled stocks and rates of HNA cells increased under 
the warming alone experiment (Figure S10) but equally or more than under the melting alone experiment (i.e., increased 455 
photosynthesis and resource availability; Figure S11). This suggests that temperature per se is not necessarily a more important 
limiting factor for bacterial, at least HNA, growth than resource availability (Ducklow et al. 2012a), and warming may rather 
enhance HNA utilization of the already increased organic matter from the increased productivity. Also, future climate may 
impact the (re)distribution of bacterial taxonomic groups, with a potential shift to more abundant HNA cells in the WAP 
bacterial communities, due to their preferential SDOC utilization. 460 

The major limitation of our climate change experiments is the duration of the simulations. An ideal set of climate 
change simulations should be performed for longer-term periods as well as continuous across many years, not simply limited 
to growth seasons. This study could not accommodate these requirements due to the limited observations and existing data 
gaps in each year. Despite this limitation, we were able to validate the climatological model’s capacity to partly reproduce the 
already observed, climate-driven trends of some variables along the WAP.  Under each year’s forcing fields, the climatological 465 
model parameter set reproduced the interannual variability fairly well compared to the observed interannual variability, except 
for a few cases (e.g., overestimated BP and HNA biomass in 2011-12, underestimated PP in 2012-13 and 2013-14; Table S7), 
providing confidence in its usage for climate change impacts. 2011-12 was characterized by the negative temperature anomaly 
(-0.13 ± 0.83ºC versus 0.03 ± 0.84ºC for the 4-year climatology) and the positive sea-ice anomaly (24 ± 38% versus 21 ± 29% 
for the 4-year climatology), with lower temperature and higher sea-ice cover than the other three years (all p < 0.05, two-470 
sample t-test). This coldest year had the lowest values of BP, HNA biomass, and PP observations (Table S7), consistent with 
increases in the modelled BP, HNA biomass, and PP under the combined warming/melting conditions. A combination of low 
HNA biomass, low PP, and low POC flux was also modelled in 2011-12, largely responsible for driving the positive association 
of the observed fHNA with the modelled NPP and POC sinking across years (section 4.3). Sea ice did not retreat until mid-
December in 2011-12 (Figure S1), and due to subsequently low light levels PP was modelled to be low. The low modelled PP 475 
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drove both low HNA biomass and low particle export, reinforcing the strong resource control on fast-growing bacterial 
populations and the conventional “high PP-high export” paradigm along the WAP.  

Finally, our climate change simulations share similar results with those performed with the WAP-1D-VAR model 
with one bacterial compartment (Kim et al. 2021). In the original model, simultaneous combined warming and reduced sea-
ice conditions resulted in increased NPP, net community production, POC sinking flux, bulk bacterial productivity and 480 
biomass, and SDOC, in contrast to LDOC that was strongly limited early in the season. This potential shift to a more productive 
and efficient export system state is partially in agreement with suggestions made by previous studies that warming may induce 
more recycling favourable and microbial-dominated food-webs (Moline et al. 2004; Sailley et al. 2013). Despite the increased 
productivity and plankton accumulations, LDOC may become strongly depleted and, therefore, bacteria may need to depend 
more on SDOC to meet a significant part of their carbon demand (i.e., an increasing important role of SDOC for bulk bacterial 485 
communities). Most of these results convey the same story as this study’s climate change experiments, thereby adding 
confidence in the climate change simulations. However, it should be noted that the increased complexity of bacterial dynamics 
in the modified model adds two important contributions to the original model including: 1) the dominance of the HNA group 
over the LNA group in the warming WAP waters and 2) bacterial taxonomic (i.e., mode) and physiological (i.e., fHNA) traits 
being a significant indicator of key WAP ecosystem functions.  490 

5 Conclusions  

Heterotrophic microbial diversity has seldom been considered in detail in the formulation and analysis of marine pelagic 
ecosystem models reflecting in part the lack of suitable field data for model evaluation. Utilizing genomic products to prescribe 
taxonomic aspects of the bacterial model dynamics, this study investigated the association of bacterial abundance with different 
physiological states, bacterial community structure and key ecosystem functions. The modelling approach used in the present 495 
study enabled the observations in different bacterial populations to constrain the group-specific processes and model 
parameters that have been poorly understood. These included the partitioning of BP specific to HNA and LNA groups, the 
partitioning of the bacterial uptake of DOC pools with different lability, and the half-saturation density of each bacterial group 
in microzooplankton grazing. The model also served as an effective platform to explore the WAP microbial response to 
changing climate conditions, in which warming and decreasing sea ice would induce a potential shift to the dominance of HNA 500 
bacteria in more productive waters due to their increasing dependence on SDOC. 
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Appendix A 530 

1. Temperature effect 

    Tf  = exp{ –AE ´ (1/T – 1/Tref) }           (A.1.1) 

2. Diatom processes 

• Cellular quota (ratio):   
  QCN,DA  = NDA/CDA            (A.2.1) 535 
  QCP,DA  = PDA/CDA            (A.2.2) 
  QCCHL,DA  = CHLDA/CDA           (A.2.3) 

• N and P limitation function: 
  Nf,DA  = (QCN,DA – qCN,MIN,DA)/(qCN,RDF,DA – qCN,MIN,DA)  0 ≤ Nf,DA  ≤ 1     (A.2.4) 
  Pf,DA  = (QCP,DA – qCP,MIN,DA)/(qCP,RDF,DA – qCP,MIN,DA)  0 ≤ Pf,DA  ≤ 1     (A.2.5) 540 

• Maximum photosynthesis rate:  
PCMAX = μDA ´ Tf  ´ min(Nf,DA, Pf,DA)         (A.2.6) 

• C-specific gross primary production: 
GCDA = CDA ´ PCMAX  ´{ 1– exp(–αDA ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βDA ´ PAR)   (A.2.7) 

• Limitation on N and P uptake:   545 
VNMAX = (qCN,MAX – QCN,DA)/(qCN,MAX – qCN,RDF)  0 ≤ VNMAX  ≤ 1     (A.2.8) 
VPMAX = (qCP,MAX – QCP,DA)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.2.9) 

• N assimilation:  
GNH4DA = CDA  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.2.10) 

          GNO3DA = CDA ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }   (A.2.11) 550 
          GNDA    = GNH4DA + GNO3DA           (A.2.12) 

• P assimilation:  
GPO4DA = CDA  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.2.13) 
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• Chlorophyll production:  
GCHLDA = θ ´ (GNH4DA + GNO3DA)  ´{ GCDA /α ´ CHLDA ´ PAR ´ exp(-β ´ PAR) }   (A.2.14) 555 

• Respiration:  
RCDA = GNO3DA ´ ζNO3           (A.2.15) 

• Passive excretion of LDOM:  
ECDA,LDOC,PSV = exDA,PSV  ´ CDA          (A.2.16) 
ENDA,LDON,PSV = exDA,PSV  ´ NDA          (A.2.17) 560 
EPDA,LDOP,PSV = exDA,PSV  ´ PDA          (A.2.18) 

• Active excretion of LDOC:  
ECDA,LDOC,ACT  = exDA,ACT  ´ GCDA          (A.2.19) 

• Active excretion of SDOC:  
ECDA,SDOC,ACT =  0.5 ´ CDA ´ max( 1 – QCN,DA/qCN,RDF,DA, 1– QCP,DA/qCP,RDF,DA, 0 )    (A.2.20) 565 

• Active excretion of SDON and SDOP (if EXCDA,SDOC,ACT > 0, otherwise 0):  
ENDA,SDON,ACT  =  0.5 ´ 0.25 ´ NDA ´ max( 1 – QNP,DA/qCP,RDF,DA/qCN,RDF,DA, 0 )    (A.2.21) 
EPDA,SDOP,ACT  =  0.5 ´ 0.25 ´ PDA ´ max( 1 – QPN,DA/qCN,RDF,DA/qCP,RDF,DA, 0 )    (A.2.22) 

• Partitioning between LDOM and SDOM: 
ECDA,LDOC  = ECDA,LDOC,PSV + 0.75 ´ ECDA,LDOC,ACT       (A.2.23) 570 
ENDA,LDON  = ENDA,LDON,PSV          (A.2.24) 

EPDA,LDOP  = EPDA,LDOP,PSV           (A.2.25) 

ECDA,SDOC  = ECDA,SDOC,ACT + 0.25 ´ ECDA,LDOC,ACT       (A.2.26) 

ENDA,SDON  = ENDA,SDON,ACT          (A.2.27) 

EPDA,SDOP  = EPDA,SDOP,ACT           (A.2.28) 575 
• POM production by aggregation: 

DCDA     = pomDA ´  CDA ´ CDA          (A.2.29) 

DNDA     = QCN,DA  ´  DCDA            (A.2.30) 
DPDA     = QCP,DA  ´  DCDA            (A.2.31) 

DCHLDA  = QCCHL,DA  ´  DCDA            (A.2.32) 580 
• Grazing by microzooplankton:  

GZCDA,MZ = Tf  ´ μMZ ´ CMZ  
     ´ [(CDA – ϵDA)2/{(CDA – ϵDA)2 + gDA2 + (CCR ´ gDA/gCR)2 + (CBAC ´ gDA/gBAC)2}]   (A.2.33) 
GZNDA,MZ    = QCN,DA  ´  GZCDA,MZ         (A.2.34)  
GZPDA,MZ    = QCP,DA  ´  GZCDA,MZ          (A.2.35) 585 
GZCHLDA,MZ = QCCHL,DA  ´  GZCDA,MZ         (A.2.36) 

• Grazing by krill:  
GZCDA,KR = Tf  ´ μKR ´ CKR      

´ [ CDA2/{CDA2 + g’DA2 + (CMZ ´ g’DA/gMZ)2} ]      (A.2.37) 
GZNDA,KR    = QCN,DA  ´  GZCDA,KR          (A.2.38)  590 
GZPDA,KR    = QCP,DA  ´  GZCDA,KR          (A.2.39) 

GZCHLDA,KR = QCCHL,DA  ´  GZCDA,KR         (A.2.40) 
• The net growth rate equations:  

dCDA  

dt
 = GCDA – ECDA,LDOC – ECDA,SDOC – DCDA – RCDA – GZCDA,MZ – GZCDA,KR   (A.2.41) 
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dNDA  

dt
 = GNDA – ENDA,LDON – ENDA,SDON – DNDA                     – GZNDA,MZ – GZNDA,KR   (A.2.42) 595 

dPDA  

dt
 = GPDA – EPDA,LDOP – EPDA,SDOP – DNDA                      – GZPDA,MZ – GZPDA,KR   (A.2.43) 

dCHLDA  

dt
 = GCHLDA                              – DCHLDA                 – GZCHLDA,MZ – GZCHLDA,KR   (A.2.44) 

3. Cryptophyte processes 

• Cellular quota (ratio): 
  QCN,CR  = NCR/CCR            (A.3.1) 600 
  QCP,CR  = PCR/CCR            (A.3.2) 
  QCCHL,CR  = CHLCR/CCR           (A.3.3) 

• N and P limitation function: 
  Nf,CR  = (QCN,CR – qCN,MIN,CR)/(qCN,RDF,CR – qCN,MIN,CR)  0 ≤ Nf,CR  ≤ 1     (A.3.4) 
  Pf,CR  = (QCP,CR – qCP,MIN,CR)/(qCP,RDF,CR – qCP,MIN,CR)  0 ≤ Pf,CR  ≤ 1     (A.3.5) 605 

• Maximum primary production rate: 
PCMAX = μCR ´ Tf  ´ min(Nf,CR, Pf,CR)         (A.3.6) 

• C-specific gross primary production: 
GCCR = CCR ´ PCMAX  ´{ 1– exp(–αCR ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βCR ´ PAR)   (A.3.7) 

• Limitation on N and P uptake:   610 
VNMAX = (qCN,MAX – QCN,CR)/(qCN,MAX – qCN,RDF) 0 ≤ VNMAX  ≤ 1      (A.3.8) 
VPMAX = (qCP,MAX – QCP,CR)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.3.9) 

• Nitrogen assimilation:  
GNH4CR = CCR  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.3.10) 

          GNO3CR = CCR ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }   (A.3.11) 615 
          GNCR    = GNH4CR + GNO3CR           (A.3.12) 

• Phosphorus assimilation:  
GPO4CR = CCR  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.3.13) 

• Chlorophyll production:  
GCHLCR = θ ´ (GNH4CR + GNO3CR)  ´{ GCCR /α ´ CHLCR ´ PAR ´ exp(-β ´ PAR) }   (A.3.14) 620 

• Respiration:  
RCCR = GNO3CR ´ ζNO3           (A.3.15) 

• Passive excretion of LDOM:  
ECCR,LDOC,PSV = exCR,PSV  ´ CCR          (A.3.16) 
ENCR,LDON,PSV = exCR,PSV  ´ NCR          (A.3.17) 625 
EPCR,LDOP,PSV = exCR,PSV  ´ PCR          (A.3.18) 

• Active excretion of LDOC:  
ECCR,LDOC,ACT  = exCR,ACT  ´ GCCR          (A.3.19) 

• Active excretion of SDOC:  
ECCR,SDOC,ACT =  0.5 ´ CCR ´ max( 1 – QCN,CR/qCN,RDF,CR, 1– QCP,CR/qCP,RDF,CR, 0 )    (A.3.20) 630 

• Active excretion of SDON and SDOP (if EXCCR,SDOC,ACT > 0, otherwise 0):  
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ENCR,SDON,ACT  =  0.5 ´ 0.25 ´ NCR ´ max( 1 – QNP,CR/qCP,RDF,CR/qCN,RDF,CR, 0 )    (A.3.21) 
EPCR,SDOP,ACT  =  0.5 ´ 0.25 ´ PCR ´ max( 1 – QPN,CR/qCN,RDF,CR/qCP,RDF,CR, 0 )    (A.3.22) 

• Partitioning between LDOM and SDOM: 
ECCR,LDOC  = ECCR,LDOC,PSV + 0.75 ´ ECCR,LDOC,ACT       (A.3.23) 635 
ENCR,LDON  = ENCR,LDON,PSV          (A.3.24) 

EPCR,LDOP  = EPCR,LDOP,PSV           (A.3.25) 

ECCR,SDOC  = ECCR,SDOC,ACT + 0.25 ´ ECCR,LDOC,ACT       (A.3.26) 

ENCR,SDON  = ENCR,SDON,ACT          (A.3.27) 

EPCR,SDOP  = EPCR,SDOP,ACT           (A.3.28) 640 
• POM production by aggregation: 

DCCR     = pomCR ´  CCR ´ CCR          (A.3.29) 

DNCR     = QCN,CR  ´  ACCR            (A.3.30) 
DPCR     = QCP,CR  ´  ACCR            (A.3.31) 

DCHLCR  = QCCHL,CR  ´  ACCR            (A.3.32) 645 
• Grazing by microzooplankton:  

GZCCR = Tf  ´ μMZ ´ CMZ  
´ [ (CCR – ϵCR)2/{(CCR – ϵCR)2 + gCR2 + (CDA´ gCR/gDA)2 + (CBAC ´ gCR/gBAC)2} ]    (A.3.33) 
GZNCR    = QCN,CR  ´  GZCCR,MZ          (A.3.34)  
GZPCR   = QCP,CR  ´  GZCCR,MZ          (A.3.35) 650 
GZCHLCR = QCCHL,CR  ´  GZCCR,MZ          (A.3.36) 

• The net growth rate equations:  
dCCR  

dt
 = GCCR – ECCR,LDOC – ECCR,SDOC – DCCR – RCCR – GZCCR     (A.3.37) 

dNCR  

dt
 = GNCR – ENCR,LDON – ENCR,SDON – DNCR                     – GZNCR     (A.3.38) 

dPCR  

dt
 = GPCR – EPCR,LDOP – EPCR,SDOP – DNCR                      – GZPCR     (A.3.39) 655 

dCHLCR  

dt
 = GCHLCR                              – DCHLCR                 – GZCHLCR     (A.3.40) 

 
4. Bacterial processes (for both HNA and LNA groups)   

• Cellular quota (ratio): 
  QCN,BAC  = NBAC/CBAC            (A.4.1) 660 

 QCP,BAC  = PBAC/CBAC            (A.4.2) 
 QPN,BAC  = NBAC/PBAC            (A.4.3) 

  QCN,LDOM  = NLDOM/CLDOM           (A.4.4) 
  QCP,LDOM  = PLDOM/CLDOM           (A.4.5) 
  QCN,SDOM  = NSDOM/CSDOM           (A.4.6) 665 
  QCP,SDOM  = PSDOM/CSDOM           (A.4.7) 

• N and P limitation function: 
  Nf,BAC  = QCN,BAC/qCN,BAC     0 ≤ Nf,BAC  ≤ 1     (A.4.8) 
  Pf,BAC  = QCP,BAC/qCP,BAC     0 ≤ Pf,BAC  ≤ 1     (A.4.9) 

• Maximum available LDOC and SDOC:   670 
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ALC = CLDOC            (A.4.10) 
ASC = rSDOC ´ CSDOC           (A.4.11) 

• Bacterial uptake of LDOC and SDOC (i.e., bacterial gross C growth):  
GCBAC,LDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ALC/(ALC + kDOC + ASC) }   (A.4.12) 
GCBAC,SDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ASC/(ASC + kDOC + ALC) }   (A.4.13) 675 
GCBAC,DOC = GCBAC,LDOC + GCBAC,SDOC         (A.4.14) 

• Bacterial N uptake:  
GCBAC,LDON  = GCBAC,LDOC ´ QCN,LDOM           (A.4.15) 
GCBAC,SDON = GCBAC,SDOC ´ min{ qCN,BAC, QCN,SDOM + fS/Nf,BAC ´ (qCN,BAC – QCN,SDOM) }  (A.4.16) 
GCBAC,NH4 = GCBAC,LDON ´ NH4/NLDOM/min(1, Nf,BAC)       (A.4.17) 680 

if Nf,BAC  < 1,  
GCBAC,NO3 = min{ 0.1 ´ NO3 ´ 1/min(1, Nf,BAC) ´ (GCBAC,LDON + GCBAC,SDON)/(NLDOM + NSDOM),  

                         (NO3 + NH4) ´ (GNBAC,LDON + GNBAC,SDON)/(NLDOM + NSDOM) – GNH4BAC }   (A.4.18) 
    else,  GCBAC,NO3 = 0             (A.4.19)  

GCBAC,N = GCBAC,LDON  + GCBAC,SDON + GCBAC,NH4 + GCBAC,NO3      (A.4.20) 685 
• Bacterial P uptake:  

GCBAC,LDOP  = GCBAC,LDOC ´ QCP,LDOM           (A.4.21) 
GCBAC,SDOP = GCBAC,SDOC ´ min{ qCP,BAC, QCP,SDOM + fS/Pf,BAC ´ (qCP,BAC – QCP,SDOM) }  (A.4.22) 
GCBAC,PO4 = GCBAC,LDON ´ PO4/PLDOM/min(1, Pf,BAC)       (A.4.23) 
GCBAC,P = GCBAC,LDOP  + GCBAC,SDOP + GCBAC,PO4         (A.4.24) 690 

• Respiration:  
RCBAC = ζNO3 ´ GCBAC,NO3 + rBBAC ´ Tf  ´ CBAC 

+{ rAmin,BAC + (rAmax,BAC – rAmin,BAC) ´ exp(–bR,BAC ´ GCBAC,DOC) } ´ GCBAC,DOC  (A.4.25) 
• RDOC release:  

ECBAC,RDOC = refrBAC ´ CBAC           (A.4.26) 695 
ENBAC,RDON = ECBAC,RDOC ´ qCN,RDOM          (A.4.27) 
EPBAC,RDOP = ECBAC,RDOC ´ qCP,RDOM          (A.4.28) 

• Remineralization of inorganic nutrients:  
 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  

         REMINBAC = remiBAC ´ (NBAC – CBAC ´ qCN,BAC)         (A.4.29) 700 
    REMIPBAC = remiBAC ´ (PBAC – CBAC ´ qCP,BAC)         (A.4.30) 

remiBAC    
elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  

REMINBAC = 0            (A.4.31) 
    REMIPBAC = 0             (A.4.32) 705 

else (i.e., P in short)  
REMINBAC = 0            (A.4.33) 

    REMIPBAC = 0             (A.4.34) 
• SDOM excretion to adjust stoichiometry:  

 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  710 
ECBAC,SDOC = 0            (A.4.35) 
ENBAC,SDON = 0            (A.4.36) 
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EPBAC,SDOP = 0            (A.4.37) 
elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  

ECBAC,SDOC = exADJ,BAC ´ (CBAC – NBAC/qCN,BAC)        (A.4.38) 715 
ENBAC,SDOC = 0            (A.4.39) 
EPBAC,SDOP = exADJ,BAC ´ (PBAC – NBAC/qCN,BAC ´ qCP,BAC)      (A.4.40) 

else (i.e., P in short)  
ECBAC,SDOC = exADJ,BAC ´ (CBAC – PBAC/qCP,BAC)        (A.4.41) 
ENBAC,SDON = exADJ,BAC ´ (NBAC – PBAC/qCP,BAC´ qCN,BAC)       (A.4.42) 720 
ENBAC,SDOP = 0            (A.4.43) 

• Grazing by microzooplankton:  
GZCBAC = Tf  ´ μMZ ´ CMZ 
´ [ CBAC2/{CCR2 + gBAC2 + (CDA ´ gBAC/gDA)2 + (CCR ´ gBAC/gCR)2} ]      (A.4.44) 
GZNBAC = GZCBAC ´ QCN,BAC          (A.4.45) 725 
GZPBAC = GZCBAC ´ QCP,BAC          (A.4.46) 

• Viral mortality:  
       MCBAC = mBAC ´ CBAC            (A.4.47) 
       MNBAC = mBAC ´ NBAC            (A.4.48) 
       MPBAC = mBAC ´ PBAC             (A.4.49) 730 

• Net flux of inorganic nutrients through bacteria:   
FLUXNH4BAC = REMINBAC – GCBAC,NH4         (A.4.50) 
FLUXNO3BAC = –GCBAC,NO3          (A.4.51) 
FLUXPO4BAC = REMIPBAC – GCBAC,PO4         (A.4.52) 

• The net growth rate equations:  735 
dCBAC  

dt
 = GCBAC,DOC – ECBAC,SDOC – ECBAC,RDOC – RCBAC – GZCBAC – MCBAC    (A.4.53) 

dNBAC  

dt
 = GNBAC,DON – ENBAC,SDON – ENBAC,RDON – RNBAC – GZNBAC – MNBAC    (A.4.54) 

dPBAC  

dt
 = GPBAC,DOP – EPBAC,SDOP – EPBAC,RDOP  – RPBAC – GZPBAC – MPBAC    (A.4.55) 

 
5. Microzooplankton processes  740 

• Cellular quota (ratio): 
  QCN,MZ  = NMZ/CMZ            (A.5.1) 

 QCP,MZ  = CMZ/PMZ            (A.5.2) 
• Gross growth:  

GCMZ = GZCDA,MZ + GZCCR + GZCBAC         (A.5.3) 745 
GNMZ = GZNDA,MZ + GZNCR + GZNBAC         (A.5.4) 
GPMZ = GZPDA,MZ + GZPCR + GZPBAC         (A.5.5) 

• LDOM excretion:  
ECMZ,LDOC = fex,MZ ´ exMZ ´ GCMZ          (A.5.6) 
ENMZ,LDON = fex,MZ ´ exMZ ´ GNMZ          (A.5.7) 750 
EPMZ,LDOP = fex,MZ ´ exMZ ´ GPMZ          (A.5.8) 
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• SDOM excretion:  
ECMZ,SDOC,1 = (1 – fex,MZ) ´ exMZ ´ GCMZ         (A.5.9) 
ENMZ,SDON,1 = (1 – fex,MZ) ´ exMZ ´ GNMZ ´ QCN,MZ/qCN,MZ      (A.5.10) 
EPMZ,SDOP,1 = (1 – fex,MZ) ´ exMZ ´ GPMZ ´ QCP,MZ/qCP,MZ      (A.5.11) 755 

• SDOM excretion to adjust stoichiometry:   
ECMZ,SDOC,2 = exADJ,MZ ´ CMZ  

´ max(0, 1 – QCN,MZ/qCN,MZ, 1 – QCP,MZ/qCP,MZ)     (A.5.12) 
ENMZ,SDON,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCN,MZ         (A.5.13) 
EPMZ,SDOP,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCP,MZ         (A.5.14) 760 

• Remineralization of inorganic nutrients:   
REMINMZ = remiMZ ´ max(0, NMZ – CMZ ´ qCN,MZ,  

    NMZ – qCN,MZ/PMZ ´ qCP,MZ)        (A.5.15) 
REMIPMZ = remiMZ ´ max(0, PMZ – CMZ ´ qCP,MZ,  

    PMZ – qCP,MZ/NMZ ´ qCN,MZ)        (A.5.16) 765 
• Respiration:  

RCMZ = rBMZ ´ Tf ´ CMZ + rAMZ ´ GCMZ         (A.5.17) 
• POM production: 

PCMZ     = pomMZ ´  GCMZ           (A.5.18) 
PNMZ     = qCN,POM   ´  GCMZ          (A.5.19) 770 
PPMZ     = qCP,POM  ´  GCMZ          (A.5.20) 

• Grazing by krill:  
GZCMZ = Tf  ´ μMZ ´ CKR 

´ [ CMZ2/{CMZ2 + gMZ2 + (CDA ´ gMZ/gDA)2} ]        (A.5.21) 
GZNMZ = QCN,MZ  ´ GZCMZ           (A.5.22) 775 
GZPMZ = QCP,MZ  ´ GZCMZ           (A.5.23) 

• The net growth rate equations:  
dCMZ  

dt
 = GCMZ – ECMZ,LDOC – ECMZ,SDOC,1 – ECMZ,SDOC,2  

– PCMZ – RCMZ – GZCMZ        (A.5.24) 
dNMZ  

dt
 = GNMZ – ENMZ,LDON – ENMZ,SDON,1 – ENMZ,SDON,2  780 

– PNMZ – RNMZ – GZNMZ        (A.5.25) 
dPMZ  

dt
 = GPMZ – EPMZ,LDOP – EPMZ,SDOP,1 – EPMZ,SDOP,2  

– PPMZ – RPMZ – GZPMZ        (A.5.26) 
 
6. Krill processes  785 

• Cellular quota (ratio): 
  QCN,KR  = NKR/CKR            (A.6.1) 

 QCP,KR  = CKR/PKR            (A.6.2) 
• Gross growth:  

GCKR = GZCDA,KR + GZCMZ          (A.6.3) 790 
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GNKR = GZNDA,KR + GZNMZ          (A.6.4) 
GPKR = GZPDA,KR + GZPMZ          (A.6.5) 

• LDOM excretion:  
ECKR,LDOC = fex,KR ´ exKR ´ GCKR          (A.6.6) 
ENKR,LDON = fex,KR ´ exKR ´ GNKR          (A.6.7) 795 
EPKR,LDOP = fex,KR ´ exKR ´ GPKR          (A.6.8) 

• SDOM excretion:  
ECKR,SDOC,1 = (1 – fex,KR) ´ exKR ´ GCKR         (A.6.9) 
ENKR,SDON,1 = (1 – fex,KR) ´ exKR ´ GNKR ´ QCN,KR/qCN,KR       (A.6.10) 
EPKR,SDOP,1 = (1 – fex,KR) ´ exKR ´ GPKR ´ QCP,KR/qCP,KR       (A.6.11) 800 

• SDOM excretion to adjust stoichiometry:   
ECKR,SDOC,2 = exADJ,KR ´ CKR  

´ max(0, 1 – QCN,KR/qCN,KR, 1 – QCP,KR/qCP,KR)     (A.6.12) 
ENKR,SDON,2 = 0.5 ´ ECKR,SDOC,2 ´ QCN,KR         (A.6.13) 
EPKR,SDOP,2 = 0.5 ´ ECKR,SDOC,2 ´ QCP,KR         (A.6.14) 805 

• Remineralization of inorganic nutrients:   
REMINKR = remiKR ´ max(0, NKR – CKR ´ qCN,KR,  

    NKR – qCN,KR/PKR ´ qCP,KR)        (A.6.15) 
REMIPKR = remiKR ´ max(0, PKR – CKR ´ qCP,KR,  

    PKR – qCP,KR/NKR ´ qCN,KR)        (A.6.16) 810 
• Respiration:  

RCKR = rBKR ´ Tf ´ CKR + rAKR ´ GCKR         (A.6.17) 
• POM production: 

PCKR     = pomKR ´  GCKR           (A.6.18) 
PNKR     = qCN,POM   ´  GNKR          (A.6.19) 815 
PPKR     = qCP,POM  ´  GPKR          (A.6.20) 

• RDOC release:  
ECKR,RDOC = refrKR ´ CKR            (A.6.21) 
ENKR,RDON = ECKR,RDOC ´ qCN,RDOM          (A.6.22) 
EPKR,RDOP = ECKR,RDOC ´ qCP,RDOM          (A.6.23) 820 

• Removal by higher trophic levels  
MCKR = mortKR ´ CKR ´ CKR          (A.6.24) 
MNKR = MCKR,RDOC ´ QCN,KR          (A.6.25) 
MPKR = MCKR,RDOC ´ QCP,KR          (A.6.26) 

• The net growth rate equations:  825 
dCKR  

dt
 = GCKR – ECKR,LDOC – ECKR,SDOC,1 – ECKR,SDOC,2 – ECKR,RDOC 

– PCKR – RCKR – MCKR         (A.6.27) 
dNKR  

dt
 = GNKR – ENKR,LDON – ENKR,SDON,1 – ENKR,SDON,2 – ENKR,RDON 

– PNKR – RNKR – MNKR         (A.6.28) 
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dPKR  

dt
 = GPKR – EPKR,LDOC – EPKR,SDOC,1 – EPKR,SDOC,2 – EPKR,RDOC 830 

– PPKR – RPKR – MPKR         (A.6.29) 
 
7. Detrital processes  

• Dissolution:  
DISSCDET = diss ´ CDET           (A.7.1) 835 
DISSNDET = diss ´ prfN ´ NDET          (A.7.2) 
DISSPDET = diss ´ prfP ´ PDET          (A.7.3) 

• The net change equations:  
dCDET  

dt
 = DCDA + DCCR + DCMZ + DCKR + DISSCHZ – DISSCDET      (A.7.4) 

dNDET  

dt
 = DNDA + DNCR + DNMZ + DNKR + DISSNHZ – DISSNDET      (A.7.5) 840 

dPDET  

dt
 = DPDA + DPCR + DPMZ + DPKR + DISSPHZ – DISSPDET      (A.7.6) 

  where DISSCHZ = fPOM,HZ ´ MCKR 

             DISSNHZ = fPOM,HZ ´ MNKR 

             DISSPHZ = fPOM,HZ ´ MPKR 

 845 
8. DOM processes 

• Conversion of SDOM to RDOM:  
REFRCSDOM = exREFR,SDOM ´ CSDOM ´ exp{ 1 – min(QCN,SDOM/qCN,RDOM, QCP,SDOM/qCP,RDOM) } (A.8.1) 
REFRNSDOM = REFRCSDOM ´ qCN,RDOM           (A.8.2) 
REFRPSDOM = REFRCSDOM ´ qCP,RDOM           (A.8.3) 850 

• The net change equations:  
dCLDOM  

dt
 = ECDA,LDOC + ECCR,LDOC + ECMZ,LDOC + ECKR,LDOC + MCBAC – GCBAC,LDOC   (A.8.4) 

dNLDOM  

dt
 = ENDA,LDON + ENCR,LDON + ENMZ,LDON + ENKR,LDON + MNBAC – GNBAC,LDON   (A.8.5) 

dPLDOM  

dt
 = EPDA,LDOP + EPCR,LDOP + EPMZ,LDOP + EPKR,LDOP + MPBAC – GPBAC,LDOP   (A.8.6) 

dCSDOM  

dt
 = ECDA,SDOC + ECCR,SDOC + ECBAC,SDOC + ECMZ,SDOC,1 + ECMZ,SDOC,2  855 

+ ECKR,SDOC,1 + ECKR,SDOC,2  + ECHZ,SDOC + DISSCDET – REFRCSDOM – GCBAC,SDOC  (A.8.7) 
dNSDOM  

dt
 = ENDA,SDON + ENCR,SDON + ENBAC,SDON + ENMZ,SDON,1 + ENMZ,SDON,2  

+ ENKR,SDON,1 + ENKR,SDON,2  + ENHZ,SDON + DISSNDET – REFRNSDOM – GNBAC,SDON  (A.8.8) 
dPSDOM  

dt
 = EPDA,SDOP + EPCR,SDOP + EPBAC,SDOP + EPMZ,SDOP,1 + EPMZ,SDOP,2  

+ EPKR,SDOP,1 + EPKR,SDOP,2  + EPHZ,SDOP + DISSPDET – REFRPSDOM – GPBAC,SDOP  (A.8.9) 860 
 
9. Dissolved inorganic nutrient processes 



23 
 

• Nitrification:  
NTRF = rntrf ´ NH4           (A.9.1) 

• The net change equations:  865 
dNH4  

dt
 = FLUXNH4BAC + REMINMZ + REMINKR + REMINHZ – GNH4DA – GNH4CR – NTRF  (A.9.2) 

dNO3 

dt
 = FLUXNO3BAC – GNO3DA – GNO3CR + NTRF       (A.9.3) 

dPO4 

dt
 = FLUXPO4BAC + REMIPMZ + REMIPKR + REMIPHZ – GPO4DA – GPO4CR    (A.9.4) 

where REMINHZ = MNKR – DNHZ – ESDONHZ 

           REMIPHZ = MNKR – DPHZ – ESDOPHZ 870 
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Figures  
 

 
Figure 1: Model structure. The model is forced by five different physical forcings, denoted as a horizontal row across the top of the 1080 
schematic. As the ecosystem component, heterotrophic bacteria are divided into two groups of differing physiological states, high nucleic 
acid (HNA) and low nucleic acid (LNA) bacterial compartments. The flows between the prognostic state variables with the name of the 
numbered flows in the legend only represent for these two bacterial compartments.   
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Figure 2: Data assimilation scheme. A variational adjoint method is employed for the parameter optimization and data assimilation 
processes (adapted from Glover et al. 2011). Gradient: the sensitivity of the total cost function with respect to model parameter from 
optimization. Optimized model output was interpreted as a function of bacterial taxonomic and physiological traits. 
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 1090 

Figure 3: Model skill assessment. A Taylor diagram using a polar-coordinate system summarizing the model-observational correspondence 
for each model stock and flow for individual annual simulations for the four select modelled years together (2010-11 to 2013-14; a) and for 
the climatological year (b). The angular coordinate denotes the Pearson correlation coefficient (r), the distance from the origin denotes the 
normalized standard deviation, and the distance from point (1,0), marked as REF on x-axis, describes the centred (bias removed) root-mean-
square difference (RMSD) between model results and observations. Note different x-axis scales are used for the normalized standard 1095 
deviation in each panel.  

(a) 2010 - 2013

(b) Climatological model
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Figure 4: Seasonal progression of modelled HNA and LNA bacterial carbon stocks and rates and key ecosystem functions across 
years. Seasonal patterns of HNA and LNA bacterial carbon stocks and flows, NPP and POC sinking flux at 10-m depth over the growth 1100 
season (November-March) for each of the 4 simulation years (a), and coefficient of variation (Monte Carlo-derived standard deviation 
divided by each data point from Figure 4A) from 1,000 Monte Carlo experiments (b).  

  

(a) (b)
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Figure 5: Annual mean carbon stocks and flows. Carbon stocks (mmol C m-3), flows (mmol C m-3 d-1), and particle sinking flux (mmol 1105 
C m-2 d-1) averaged over the growth season in each year are denoted as the numbers on the first row, while the numbers in the parentheses 
are the standard deviation propagated from averaging over the growth season and the Monte Carlo experiment-derived uncertainties. Flows 
do not necessarily balance to zero due to the build-up or loss in a compartment over the growth season. N and P flows, as well as the flows 
smaller than 0.01 mmol C m-3 d-1, are omitted.  
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Figure 6: Properties of the emergent self-organizing map for bacterial community structure shown as taxonomic modes (modified 
from Bowman et al. 2017). Map units are colored and numbered according to taxonomic mode membership (a). Location of samples used 
in this study within the map (b). The map was trained with a larger set of samples, here, only those samples for which BP and flow cytometry 
data were available (those samples used in this study) are shown. Mode boundaries are the same as in (a). Each sample was placed within 1115 
the map unit that had the most similar community structure, however, the position of each samples within the map unit is random. Relative 
abundance of the most abundant taxa in the microbial community structure dataset in each map unit after training (c-h). For example, P. 
ubique HTCC1062 (c) dominated samples associated with Mode 6, while Ca. Thioglobus singularis PS1 (e) dominated samples associated 
with Mode 1. The boundaries across all panels are as in (a). 
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Figure 7: Bacterial physiological and taxonomic association with ecosystem functions. The results of linear regression of key modelled 
ecosystem functions on a categorical predictor of the observed mode (a-c) and on the observed fraction of HNA cells (d-f). Regression 
statistics: (a) number of observations (N) = 43, error degrees of freedom (df) = 35; , root mean square error (RMSE) = 0.68 r2 = 0.39, adjusted 1125 
r2 = 0.27, F-statistic value = 3.22, p-value = 0.01; (b) N = 43, df = 35, RMSE = 2.88, r2 = 0.48, adjusted r2 = 0.37, F-statistic value = 4.55, 
p-value = 0.001; (c) N = 43, df = 35, RMSE = 0.03, r2 = 0.81, adjusted r2 = 0.77, F-statistic value = 20.7, p-value < 0.001; (d) N = 43, df = 
41, RMSE = 0.65, r2 = 0.36, adjusted r2 = 0.34, F-statistic value = 22.8, p-value < 0.001; (e) N = 43, df = 41, RMSE = 0.13, r2 = 0.51, adjusted 
r2 = 0.50, F-statistic value = 43.0, p-value < 0.001; (f) N = 43, df = 41, RMSE = 0.04, r2 = 0.57, adjusted r2 = 0.56, F-statistic value = 53.5, 
p-value < 0.001. 1130 
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Figure 8: Climate change experiments. Seasonal progression of the modelled HNA and LNA bacterial carbon stocks and rates and key 
ecosystem functions under observed physical forcing and climate change experiments (a) and the percent change of the corresponding 1135 
variable compared to observed fields in the second and third row of each panel, with the first row of each panel as zero to represent base 
states (b). For example, percent anomaly of the HNA biomass in (b) = (HNA biomass under +1°C/-10% – HNA biomass under observed 
forcing) ´ 100/HNA biomass under observed forcing.  
  

(a) (b)
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Tables 1140 
 

Parameter Definition HNA LNA 
kDOC,BAC DOC half-saturation concentration for bacterial uptake, mmol C m-3 0.5 0.2 
μBAC Maximum bacterial growth rate, d-1 2.0 1.0 
bR,BAC Parameter control bacterial active respiration versus production, (mmol C m-3 d-1)-1 0.08 0.2 
remiBAC Bacterial nutrient regeneration rate, d-1 8.0 2.0 
exREFR,BAC Bacterial RDOC production rate, d-1 0.04 0.01 
fS,BAC Bacterial selection strength on SDOM 0.1 0.7 
rBBAC Bacterial basal respiration rate, d-1 0.04 0.01 
rAmin,BAC Bacterial minimum active respiration rate, d-1 0.08 0.04 
rAmax,BAC Bacterial maximum active respiration rate, d-1 0.4 0.1 
mortBAC Bacterial mortality rate, d-1 0.2 0.01 
gBAC Bacterial half-saturation concentration in microzooplankton grazing, mmol C m-3 0.55 0.55 

 
Table 1: Initial guess values of bacterial model parameters. Different values are assigned to the model parameters of the HNA and LNA 
groups to simulate distinct physiological processes and trophic interactions for each group. 
 1145 
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Data types 𝒂"# CV s 
2010-11 model 
parameter set 

2011-12 model 
parameter set 

2012-13 model 
parameter set 

2013-14 model 
parameter set 

Climatological 
model parameter 

set 
J’0 J’f J’0 J’f J’0 J’0 J’0 J’f J’0 J’f 

NO3 19.70 0.04 0.76 - - 8.04 5.23 11.74 8.88 27.82 13.52 10.41 9.62 

PO4 1.31 0.03 0.04 9.20 7.08 86.26 21.03 41.41 6.64 2.70 7.05 45.76 10.47 

log10(ChlDA) 0.16 0.08 0.09 12.94 5.69 6.55 9.49 12.19 12.66 10.57 7.76 6.57 8.52 

log10(ChlCR) -0.90 0.10 0.10 8.75 6.41 11.04 7.33 10.02 8.37 9.92 8.23 11.10 6.95 

log10(PP) 1.32 0.21 0.21 4.50 4.71 4.51 2.69 9.81 6.26 9.86 7.61 7.19 3.83 

HNA biomass 0.21 0.08 0.02 20.39 2.08 0.15 0.20 24.86 8.49 36.34 10.28 23.78 10.87 

LNA biomass 0.33 0.08 0.02 4.26 3.06 673.73 21.05 860.14 1.99 10.65 6.15 590.29 9.27 

BP 0.11 0.16 0.02 3.54 3.83 16.72 0.65 24.20 13.23 5.65 5.05 12.82 3.50 

SDOC 10.52 0.20 2.13 3.88 3.96 1.38 1.42 - - - - 2.76 2.68 

POC 11.24 0.13 0.78 12.03 12.68 33.39 23.19 - - - - 39.23 16.26 

PON 2.40 0.12 0.43 48.44 48.26 42.77 26.19 - - - - 43.86 27.30 

Total cost 127.94 97.77 884.53 118.46 994.38 66.51 113.51 65.65 793.77 109.29 

 
Table 2: Data types, observed means, coefficient of variation, target errors, and costs before and after optimization. The observed 
mean (𝑎"#), coefficient of variation (CV), and target error (s) of each assimilated data type used for calculating the normalized cost function 1150 
(unitless; Eq. 5) before (J’0) and after optimization (J’f). Data type unit: mmol m-3 for nitrate (NO3), phosphate (PO4); mmol C m-3 for diatom 
chlorophyll (ChlDA), cryptophyte chlorophyll (ChlCR), HNA and LNA bacterial biomass, SDOC, and POC; mmol N m-3 for PON; and mmol 
C m-3 d-1 for primary production (PP) and bacterial production (BP). NO3 was not assimilated in 2010-11, while SDOC, POC, and PON 
were not assimilated in 2012-13 and 2013-14 (denoted as ‘-’ in the table). 
 1155 
 
  



40 
 

 
 

Data types J’c 

2010-11 model parameter set 2011-12 model parameter set 2012-13 model parameter set 2013-14 model parameter set 

J’x, 2011-

12 
J’x, 2012-13 J’x, 2013-14 J’x, 2010-11 J’x, 2012-13 J’x, 2013-14 J’x, 2010-11 J’x, 2011-12 J’x, 2013-14 J’x, 2010-11 J’x, 2011-12 J’x, 2012-13 

NO3 9.62 4.88 10.35 30.82 N/A 10.61 31.96 N/A 4.68 20.32 N/A 6.54 10.26 

PO4 10.47 24.36 5.42 1.46 9.15 5.47 0.88 8.33 28.54 2.70 7.56 37.74 10.70 

log10(ChlDA) 8.52 8.66 13.93 8.45 7.42 13.92 8.67 5.95 7.37 7.91 5.64 7.34 12.45 

log10(ChlCR) 6.95 12.00 17.38 19.62 8.47 8.44 9.50 10.22 7.24 8.99 9.50 7.16 7.54 

log10(PP) 3.83 1.86 8.45 10.71 6.08 10.38 12.94 3.87 1.70 8.18 4.68 2.28 5.88 

HNA biomass 10.87 22.93 11.57 12.57 26.90 25.86 43.08 6.11 9.44 16.01 2.75 27.71 14.95 

LNA biomass 9.27 22.54 4.64 16.39 4.60 17.14 7.57 12.91 28.98 27.43 7.03 25.40 28.47 

BP 3.50 3.39 14.14 5.48 6.76 16.32 10.02 3.80 1.66 5.86 3.02 3.21 13.69 

SDOC 2.68 1.40 N/A N/A 3.90 N/A N/A 3.53 1.85 N/A 3.47 2.46 N/A 

POC 16.26 23.70 N/A N/A 12.02 N/A N/A 12.63 21.51 N/A 14.35 20.23 N/A 

PON 27.30 26.04 N/A N/A 47.53 N/A N/A 47.92 27.48 N/A 49.58 29.47 N/A 

Total cost 109.29 151.77 85.86 105.51 132.85 108.15 124.62 115.27 140.47 97.39 107.57 169.54 103.93 

Portability index 0.68 ± 0.08 0.61 ± 0.12 0.76 ± 0.11 0.73 ± 0.17 

 1160 
Table 3: Cross-validation cost and portability index. J’c as the normalized optimized cost from the climatological model (equivalent to 
J’f  under the climatological model parameter set in Table 1) and J’x as the normalized cross-validation cost (Eq. 7) where, for example, J’x, 

2011-12 under 2010-11 model parameter set indicates the normalized cross-validation cost from simulating 2010-11 model parameter set 
against 2011-12.  


