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Abstract  
Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological 15 

variability is key to the balance between the production and consumption of organic matter and ultimately particle export in 
the ocean. Here we investigate a potential link between bacterial traits and ecosystem functions in a rapidly changing polar 
marine ecosystem based on a bacteria-oriented ecosystem model. Using a data-assimilation scheme we utilize the observations 
of bacterial groups with different physiological states to constrain the group-specific bacterial ecosystem functions. We then 
examine the association of the modelled bacterial and other key ecosystem functions with eight recurrent modes representative 20 
of different bacterial taxonomic traits. High nucleic acid (HNA) bacteria show relatively high cell-specific productivity, 
respiration, and utilization of the semi-labile dissolved organic carbon pool compared to their low nucleic acid (LNA) bacteria 
counterparts. Both taxonomy and physiological traits reflect the variability of bacterial carbon demand, net primary production, 
and particle sinking flux. Numerical experiments under perturbed climate conditions show a potential shift from LNA- to 
HNA-dominated bacterial communities in the warming WAP. Our study suggests that bacterial diversity via different 25 
taxonomic and physiological traits can guide the modelling of the WAP ecosystem, providing insights into key bacterial and 
ecosystem functions under climate change.   

1 Introduction  

Microbes regulate many key ecosystem functions in the marine food web. Unicellular primary producers fix organic 
carbon (i.e., an ecosystem function termed primary production), while heterotrophic marine bacteria and archaea (hereafter 30 
bacteria) utilize the fixed organic carbon for growth and biomass synthesis (i.e., an ecosystem function termed bacterial 
production) (Azam et al. 1983). Thus, the variability in the abundance and activity of bacteria is central to understanding the 
balance between production and consumption of organic matter and ultimately particle export. In flow cytometric analyses, 
bacteria cluster into two groups of cells with different nucleic acid content, including high nucleic acid (HNA) and low nucleic 
acid (LNA) cells (Bouvier et al. 2007; Gasol et al. 1999). These two groups are suggested to represent lineages (Schattenhofer 35 
et al. 2011; Vila‐Costa et al. 2012) or physiological states (Bowman et al. 2017), and HNA cells are generally larger in both 
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cell and genome size compared to LNA cells (Bouvier et al. 2007; Calvo-Díaz and Morán 2006). The significance of HNA 
versus LNA cells in determining distinct ecosystem states and functions has been investigated, but much is still unknown. In 
a recent study along the West Antarctic Peninsula (WAP), the high dimensionality of the bacterial community structure data 
was reduced via emergent self-organizing maps and subdivided into a small number of bacterial modes associated with specific 40 
taxonomic and functional traits (Bowman et al. 2017). Bowman et al. (2017) demonstrated that a combination of taxonomy, 
physiological structure (i.e., HNA and LNA cells), and abundance of bacterial communities explained up to 73% of the 
variance in bulk bacterial production. Their findings imply that bacterial physiological and taxonomic traits could inform a 
predictive ecosystem model to further explore ecologically important questions such as: Can bacterial traits reflect key 
ecosystem functions like primary production and particle sinking flux? If so, what are the underlying mechanisms driving such 45 
bacterial trait-ecosystem function relationships? And how will these relationships be impacted by climate change?  

The WAP is a rapidly warming marine ecosystem, with resulting changes in physical, ecological, and biogeochemical 
processes (Clarke et al. 2009; Cook et al. 2005; Ducklow et al. 2007; King 1994; Meredith and King 2005; Stammerjohn et al. 
2008; Vaughan et al. 2003; Vaughan 2006; Whitehouse et al. 2008). Routine monitoring through the Palmer Long-Term 
Ecological Research project (Palmer LTER; since 1991) has revealed climate-driven variations in seasonal phytoplankton 50 
accumulation (Saba et al. 2014; Schofield et al. 2017), bacterial dynamics (Bowman and Ducklow 2015; Ducklow et al. 2012a; 
Kim and Ducklow 2016; Luria et al. 2017; Luria et al. 2014), nutrient drawdown (Kim et al. 2016), and micro- and 
macrozooplankton dynamics (Garzio and Steinberg 2013; Steinberg et al. 2015; Thibodeau et al. 2019). The wealth of Palmer 
LTER observations has enabled the construction of a numerical marine ecosystem model for the coastal WAP region (i.e., the 
WAP-1D-VAR model; Kim et al. 2021) based on existing regional test-bed models of other ocean basins (Friedrichs 2001; 55 
Friedrichs et al. 2006, 2007; Luo et al. 2010, 2012). The WAP-1D-VAR model is compared against roughly bi-weekly time-
series data over the growth season (October - March) near Palmer Station (64.77°S, 64.05°W; the mean depth of ~65 m, the 
bottom depth of ~75 m) that records seasonal variations in ecological processes modulated by variations in surface light, mixed 
layer depth, and surface sea-ice cover. The WAP-1D-VAR model utilizes a data assimilation scheme to minimize the misfits 
between model results and observational data via a variational adjoint method (Lawson et al. 1995), by assimilating the 60 
available Palme LTER observations. Serving as a mechanistic model, assimilation of the Palmer LTER observations constrains 
poorly measured bacterial processes (e.g., respiration, viral and grazing mortality, growth efficiency, carbon demand, and 
utilization of dissolved organic matter with varying lability) and enables model predictions of the microbial system state in 
changing environments. Yet, incorporating molecular observations into an ecosystem model is still a challenge due to 
differences in how levels of biological organization are treated in observations and models (Hellweger 2020) and the high 65 
dimensionality of microbial molecular observations. One argument is that molecular-level changes may not directly translate 
into a clear picture of changes in community structure or resulting changes to bulk ecosystem functions.   

In this study, we explore a potential link between bacterial traits and ecosystem functions in the warming coastal WAP, 
using a bacteria-oriented ecosystem model originally derived and modified from the WAP-1D-VAR model (Kim et al. 2021). 
The bacterial traits examined in this study include both physiological and taxonomic traits. For physiological traits, the model 70 
explicitly simulates the dynamics of the two ubiquitous bacterial groups of differing nucleic acid content, a HNA group and a 
LNA group, by directly assimilating the group-specific biomass observations. For taxonomic traits, taxonomic modes derived 
from bacterial 16S rRNA gene sequence data (calculated by Bowman et al. 2017) are compared to model output values at the 
corresponding time points, with the assumption that microbial taxonomy would provide information about microbial 
ecosystem process and structure. In contrast to genome-scale, metabolic flux, or gene-centric models, this study combines 75 
statistical products from genomic analyses with numerical ecosystem modelling to incorporate molecular information into 
ecosystem-level dynamics.  
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2 Material and Methods  

2.1 Bacteria-oriented ecosystem model 

The bacteria-oriented ecosystem model is originally derived and modified from the 1-D variational data assimilation 80 
model for the coastal WAP region (WAP-1D-VAR v1.0; Kim et al. 2021) simulating 12 state variables, including carbon 
stocks of biological compartments and dissolved inorganic nutrients such as diatoms (Eq. A.2.41), cryptophytes (Eq. A.3.37), 
bacteria (Eq. A.4.53), microzooplankton (Eq. A.5.24), krill (Eq. A.6.27), labile dissolved organic carbon (LDOC, in Eq. A.8.4), 
semi-labile DOC (SDOC, in Eq. A.8.7), ammonium (NH4, in Eq. A.9.2), nitrate (NO3 in Eq. A.9.3), phosphate (PO4, in Eq. 
A.9.4), and particulate detritus (in carbon unit, Eq. A.7.4; Figure 1; more details about model setup in Text S1-3). Refractory 85 
DOC (RDOC) and higher trophic levels are implicitly represented as model closure terms. In other words, higher levels and 
RDOM play a role as source or sink terms of other explicit model state variables (i.e., krill removal by higher level, detrital 
production by higher level, SDOM production by higher level in Eq. A.6.24, bacterial RDOM excretion in Eq. A.4.26, krill 
RDOM excretion in Eq. A.6.21, SDOM to RDOM conversion in Eq. A.8.2) but the model does not calculate time derivatives 
of their concentrations.  90 

The model adapts a phytoplankton growth scheme with flexible stoichiometry, in which phytoplankton cells are allowed 
to accumulate and store more nutrients under light stress (Bertilsson et al., 2003; Droop, 1974, 1983; McCarthy, 1980). 
Phytoplankton carbon growth rate is limited by their cellular nutrient quota (Eq. A.2.1-2, A.3.1-2) and nitrogen uptake 
decreases when their cellular N/C quota is higher than their reference (Redfield) ratio, but not limited when lower than their 
reference ratio (Eq. A.2.4, A.2.8, A.3.4, A.3.8, Geider et al., 1998). The maximum photosynthesis rate decreases when the 95 
phytoplankton cellular quota is lower than their reference ratio, and approaches zero near their minimum ratio (Eq. A.2.6, 
A.3.6). The model allows both L- and SDOM as the substrate sources for bacteria, and bacterial nutrient quota lets the lability 
of SDOM variable for their selective utilization. Bacterial carbon growth is determined by their cellular quota and available 
L- and SDOC concentration (Eq. A.4.12-13), in which growth would be limited if bacterial cellular nitrogen (phosphorus) 
quota is smaller than their reference ratios (Eq. A.4.8-9). Zooplankton adjust their body cellular quota by either releasing 100 
SDOM if carbon is in excess, or by regenerating NH4 or PO4 if nitrogen or phosphorus is in excess (Eq. A.5.12-16, A.6.12-
16), similar to the bacterial scheme. More details about model schemes are found in Text S1.  

Distinct to the model used in the present study compared to the WAP-1D-VAR model in Kim et al. (2021) is the 
inclusion of HNA and LNA bacterial compartments (as carbon biomass) and the partitioning of the bulk bacterial productivity 
by each bacterial compartment. The model is forced by mixed layer depth (MLD), photosynthetically active radiation (PAR) 105 
at the ocean surface, surface sea-ice concentration, water-column temperature, and eddy diffusivity (Figure S1, Text S2) to 
simulate the stocks and flows of C, N, and P through the model state variables using a constant time step of 1 hour and a 
second-order Runge-Kutta scheme. For the rpesent study, we only analyze and discuss C stocks and flows from the model. In 
essence, the time rate of change of the bacterial group-specific biomass (constrained by observations; section 2.4) is calculated 
as follows: 110 

dCHNA  

dt
 = GCHNA,LDOC + GCHNA,SDOC – RCHNA – ECHNA,RDOC – ECHNA,SDOC – GZCHNA – MCHNA  (1) 

where CHNA is biomass (mmol C m-3), GCHNA,LDOC is LDOC consumption (mmol C m-3 d-1; Eq. A.4.12), GCHNA,SDOC is SDOC 
consumption (mmol C m-3 d-1; Eq. A.4.13), RCHNA is respiration (mmol C m-3 d-1; Eq. A.4.25), ECHNA,RDOC is RDOC excretion 
(mmol C m-3 d-1; Eq. A.4.26), ECHNA,SDOC is SDOC excretion (mmol C m-3 d-1; Eq. A.4.38, A.4.41), GZCHNA is C-specific grazed 
amount of cells by microzooplankton (mmol C m-3 d-1; Eq. A.4.44), and MCHNA is viral mortality (mmol C m-3 d-1; Eq. A.4.47) 115 
of the HNA group (the same form applies to LNA group below).  

dCLNA  

dt
 = GCLNA,LDOC + GCLNA,SDOC – RCLNA – ECLNA,RDOC – ECLNA,SDOC – GZCLNA – MCLNA  (2) 
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Total (bulk) bacterial production (BP; BP = BPHNA + BPLNA) is directly constrained by observations, but there are no 
data available for the group-specific BP. Instead, we set up the model in the way that the group-specific BP (BPHNA and BPLNA, 
mmol C m-3 d-1) can be determined during optimization as follows. The assigned initial parameter values are used to calculate 120 
LDOC uptake (GCHNA,LDOC, Eq. A.4.12), SDOC uptake (GCHNA,SDOC, Eq. A.4.13), and respiration (RCHNA, Eq. A.4.25), and the 
resulting BPHNA, which are then adjusted as a result of optimization to calculate new, updated BPHNA values (the same applies 
to LNA), a product of the optimized model parameters:  

BPHNA  = GCHNA,LDOC + GCHNA,SDOC – RCHNA         (3) 
BPLNA   = GCLNA,LDOC + GCLNA,SDOC – RCLNA         (4) 125 

2.2 Modelling framework 

The modelling framework consists of a dynamic (mechanistic) part and a data-driven part (Figure 2): 1) the dynamic 
part as the processes associated with the model (Figure 1) and its built-in data assimilation scheme that makes predictions and 
adjustment of the microbial ecosystem processes based on prognostic, time-evolving coupled ordinary differential equations 
(Appendix A); and 2) the data-driven part representing how bacterial modes (Bowman et al. 2017) are compared to final model 130 
outputs based on optimized model parameters from the dynamic part. The analysis in the present study relies on the two types 
of modes, including taxonomic modes and functional modes, the derivation and discussion of which are fully demonstrated in 
Bowman et al. (2017): taxonomic modes (modes hereafter) were determined from 16S rRNA gene sequence abundance, while 
functional modes (fmodes hereafter) were derived from predicted community metabolic structure. Briefly, sequence reads were 
categorized into closest estimated genomes and closest completed genomes via the paprica pipeline (Bowman and Ducklow, 135 
2015) and the high dimensional community and metabolic structure data were reduced to 2-D space via a self-organizing map 
and K-means clustering of map units (Bowman et al. 2017). The final clustering of map units constitutes the modes, and each 
sample was assigned the mode of its closest map unit. In this approach the mode is a single categorical variable that succinctly 
describes key structural attributes of the sample. It is important to recognize the categorical nature of these modes, and to 
understand that – because of the 2-D nature of the map – there is no linear progression among modes. Thus mode 1, for 140 
example, is not necessarily more similar to mode 3 than it is to mode 7. Neither mode nor fmodes is necessarily correlated to 
physiological traits of the bacteria (i.e., HNA- and LNA compartments). In other words, derived from separate observations 
of different parameters in the same bacterial samples, the relative abundance of HNA or LNA, mode, and fmodes are 
independent with each other by design.   

We select a nearshore Palmer LTER water-column time-series station, Station B (64.77°S, 64.05°W), in the coastal 145 
WAP as the modelling site for this study (the mean depth of ~65 m). The Palmer LTER Station B datasets consist of roughly 
bi-weekly physical, chemical, and biological profiles collected via a profiling Conductivity-Temperature-Density (CTD) and 
rosette. Additional observational data are utilized for bacterial flow cytometric (HNA and LNA) and 16S rRNA gene amplicon 
data collected from Arthur Harbour Station B at 10 m depth (situated 1 km from the Palmer Station B) or Palmer Station 
seawater intake at 6 m depth (Bowman et al. 2017). Three upper-ocean depth levels, 0, 10, and 20 m (with the layer thickness 150 
of 2, 16, and 4 m, respectively) are modelled for 4 consecutive Palmer LTER growth seasons, including November 2010 - 
March 2011 (year 2010-11 hereafter), 2011-12, 2012-13, and 2013-14, but the only results from 10 m are presented in detail 
due to the availability of bacterial traits data there. Despite the advantage of simulating the full water-column layers, we judge 
that it is best to exclude depth levels without bacterial traits observations, yet to include an adequate number of depth levels 
for simulating seasonal MLD and light impacts, and ultimately chose to model 0, 10, and 20 m. The 1-D modelling of the 155 
coastal WAP region could be justified given that the WAP is a region of relatively weak net advection compared with the 
Antarctic Circumpolar Current (ACC) or the subpolar gyres (Meredith et al., 2008, 2013), and the CTD observations at Palmer 
Station do not show the evidence of abrupt changes in physical and biogeochemical tracers due to lateral advection, but show 



5 
 

rather laterally homogeneous temperature and salinity distributions during the Antarctic growing season for the modelled depth 
and years in this study (Kim and Ducklow 2016).  160 

Given the availability of the Palmer LTER observations over the Austral spring-summer season, we optimize the model 
each year separately over the timeframe of available observations. This way, each year possessed its own unique optimized 
model parameter set (model) equivalent to a model solution for the minimized model-observation misfit for that year. In 
addition to these four years (2010-11 to 2013-14), we optimize the model for the climatological year, referred as the 
climatological model. The climatological year is constructed by averaging observations in the four years (2010-11 to 2013-165 
14), rather than the whole Palmer LTER multi-decadal period (since 1991), due to the limited availability of HNA and LNA 
biomass data only in those four years. Details on constructing the climatological year and model initialization, spin-up, and 
bottom boundary conditions are avialalbe in Text S3.  

2.3 Data assimilation and parameter optimization  

The model utilizes a variational adjoint data assimilation scheme (Lawson et al. 1995) to minimize the misfit between 170 
observations (i.e., assimilated data, section 2.4) and model output by optimizing a subset of model parameters (Friedrichs 
2001; Spitz et al. 2001; Ward et al. 2010). The data-assimilation scheme (Figure 2) consists of four main steps (Glover et al. 
2011). First, the model is integrated forward in time (i.e., forward model) from prescribed initial conditions and initial model 
parameter guess values (Table 1) to calculate the model-observation misfits referred as total cost function or total cost (section 
2.5). Second, an adjoint model constructed using the Tangent linear and Adjoint Model Compiler (TAPENADE) is integrated 175 
backward in time and compute the gradients of the total cost with respect to the model parameters. Third, the computed 
gradients are passed to a limited-memory quasi-Newton optimization software M1QN3 3.1 (Gilbert and Lemaréchal 1989) to 
determine the direction and optimal step size by which the model parameters need to be modified to reduce the total cost. 
Finally, a new forward mode simulation is performed using the new set of modified parameters from the third step. These four 
steps are conducted in an iterative manner until the pre-set convergence criteria are satisfied ensuring the convergence of the 180 
optimized parameters and a local minimum achieved by the total cost, via low gradients (sensitivity) of the total cost with 
respect to each optimized parameter and positive eigenvalues of the Hessian matrix (section 2.6).  

Initial values of the model parameters (total of 84 free or optimizable parameters, Tables S2-6) are assigned based on 
literature values (Caron et al., 2000, Luo et al., 2010, Garzio et al., 2013). Optimization starts by submitting a subset of these 
84 free model parameters rather than submitting all of them at once. The initial parameter subset submitted to optimization 185 
consists of 10 different model parameters, with one parameter per each state variable, the change of which yields the largest 
decrease in the total cost function during preliminary sensitivity tests, including αDA (initial slope of photosynthesis vs. 
irradiance curve of diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), αCR (initial slope of photosynthesis vs. irradiance curve of 
cryptophytes, mol C (g Chl a)-1 d-1 (W m-2)-1), Θ (maximum Chl:N ratio, g Chl a (mol N)-1), μHNA (maximum HNA growth 
rate, d-1), rAmax,HNA (maximum HNA active respiration rate, d-1), gHNA (half-saturation density of HNA bacteria in 190 
microzooplankton grazing, mmol C m-3), μMZ (maximum microzooplankton growth rate, d-1), μKR (maximum krill growth rate, 
d-1), and remvKR (krill removal rate by higher-trophic levels, (mmol C m-3) -1 d-1; Tables S2-6).  

If parameters are optimized to ecologically unrealistic values, they are kept back to their initial parameter values and 
removed from the next optimization cycle. Optimized parameters with σf  larger than 50% are updated but removed from the 
next optimization cycle (i.e., defined as ‘optimized’ parameters, or ‘OP’, Tables S2-6), while optimized parameters with σf  195 
smaller than 50% are updated and kept for the next optimization cycle (i.e., defined as ‘constrained parameters’, or ‘CS’, 
Tables S2-6). Constrained parameters are reported with the uncertainties, while optimized parameters are reported without the 
uncertainties (Tables S2-6) because both changed parameters consist of an optimized model parameter set, but the parameters 
reported with the uncertainty ranges are the ones optimized with relatively small uncertainties and considered constrained. 
Every assimilation cycle, we ensure that bacterial model parameters are optimized in the direction to properly represent the 200 
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dynamics associated with each bacterial group (Table 1) in which we assign different magnitudes of each parameter based on 
the best guesses and literatures (del Giorgio and Cole 1998; Jiao et al. 2010). For instance, the maximum bacterial growth rate 
of the HNA group (μHNA, d-1) is assigned to be higher than that of the LNA group (μLNA, d-1) prior to optimization, and ensured 
to keep optimized to be higher than that of the LNA group during optimization, so if μHNA is optimized smaller than μLNA, μHNA 
is set back to the original value instead of being updated. This way, a part of the initial parameter subset forms a final optimized 205 
parameter set. The gradients of the total cost function with respect to all 84 parameters are then evaluated, the parameters with 
large gradients (e.g., ~10) are resubmitted to optimization to further reduce the total cost, the gradients are evaluated again, 
and these cycles repeat until the termination of optimization. Optimization terminates when the gradients are reasonably low 
(e.g., < 0.01 for constrained parameters, < 5 for optimized parameters, and < 10 for unoptimized parameters).  

2.4 Assimilated data 210 

We assimilate Palmer LTER observational data from 0, 10, and 20 m corresponding to compartments and flows in the 
model, including NO3, PO4, phytoplankton taxonomic specific chlorophyll (Chl) for diatoms and cryptophytes (Schofield et 
al. 2017), microzooplankton biomass (Garzio et al. 2013), primary production (PP), bulk BP, HNA bacterial biomass, LNA 
bacterial biomass, semi-labile dissolved organic carbon (SDOC), particulate organic carbon (POC), and particulate organic 
nitrogen (PON). The group-specific Chl is not available in 2011-12, but due to its importance in constraining the group-specific 215 
phytoplankton dynamics, the 4-year climatological value is assimlated for 2011-12. NO3 is not assimilated in 2010-11, while 
POC, PON, and SDOC are not assimilated in 2012-13 and 2013-14 due to the lack of observations in those years. Krill biomass 
data are not assimilated due to the strong patchiness of the distribution (many zero values) that may hinder proper model 
optimization, while a single year measurement data of microzooplankton biomass (2010-11) is assimilated for all years to at 
least provide constraints on phytoplankton grazing parameters. Microzooplankton model-observation misfits are not examined 220 
due to the discrepancy in the timing and location of the data compared to this study. 

SDOC is calculated by subtracting the background (RDOC) concentration (40.0 mmol m-3) from climatological total 
DOC concentration. POC (PON) is assimilated to represent the model detrital pool, but its measurements contained living 
biomass from bottle filter experiments. Climatological observations show that living phytoplankton and bacterial biomass 
account for 26% of total POC and 29% of total PON, so these fractions are used to exclude living biomass from the bulk 225 
particulate material pool. When converting Chl to phytoplankton C biomass, the maximum Chl to N ratio is used along with 
the reference (Redfield) C to N ratio of 0.15. BP (mmol C m-3 d-1) is derived from 3H-leucine incorporation rate (pmol l-1 h-1) 
data using the conversion factor of 1.5 kg C mol-1 leucine incorporated (Ducklow 2000). Group-specific bacterial biomass 
(mmol C m-3) is estimated from bacterial abundance measured by flow cytometry (i.e., bulk bacterial biomass multiplied by 
the fraction of each group, fHNA or fLNA, with the conversion factor of 10 fg C cell-1) (Fukuda et al. 1998). 230 

2.5 Cost function and portability index  

The total cost function or cost (J) is defined as follows to represent the misfit between observations (a!m,n) and model 
output (am,n) (Luo et al. 2010):  

J = ∑ 1
Nm
∑ ( am,n-a!m,n

σm
)Nm

n=1
M
m=1

2         (5) 

where m and n represent assimilated data types and data points, respectively, M and Nm are the total number of assimilated 235 
data types and data points for data type m, respectively, and σm is the target error for data type m. Hereafter, we refer the total 
cost as the total cost normalized by M (J’ = J/M) and normalized costs of individual data types (J’m = J’m/M) as the model-
observation misfit equivalent to a reduced Chi-square estimate of model goodness of fit (i.e., J’ = 1 as a good fit from 
optimization, J’ >>1 as a poor fit due to underestimation of the error variance or the fit not fully capturing the data, and J’ <<1 
as an overfitting of the data, fitting the noise, or overestimation of the error variance). The base-10 logarithm of Chl and PP is 240 
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used in Eq. 5 to account for high productivity of the WAP waters and the approximate log-normal distribution of those data 
types (Campbell 1995; Glover et al. 2018). The target error σm	is calculated for each data type m as:  

σm = a!m,n$$$$$ · CVm           (6) 
where a!m,n$$$$$ is the climatological mean of the observations and CVm	is the adjusted coefficient of variation (CV) of the 
observations of each data type over 0, 10, and 20 m (due to observational error and seasonal and interannual variations). The 245 
average CV of each data type over 0, 10, and 20 m across the modelled years is higher compared to those across every measured 
depth within the mixed layer over an extended year period in the WAP-1D-VAR model (2002-03 to 2011-12; Kim et al. 2021) 
and is therefore reduced to the level in the mixed layer to avoid an overestimated target error of each data type (see details in 
Text S4). The rationale behind using the adjusted CV in the target error calculation was based on Luo et al (2010), in which 
all properties in the mixed layer should be completely mixed, a perfect measurement without significant errors should generate 250 
similar data values at every measured depth within the mixed layer, and the average CV of all the depth profiles can be used 
as CV in the target error calculation. The standard deviation is used as target errors of the log-converted data types. The CV 
of the log-converted data type is estimated as the average of ± 1 standard deviation in log space converted back into normal 
space (Doney et al. 2003; Glover et al. 2018). 

We compute the portability index to evaluate the broader applicability of the optimized model parameter set of each 255 
year in predicting dynamics of the other year (Friedrichs et al. 2007): 

Portability index = J’c/J’x           (7) 
where J’x is the normalized cross-validation cost when a model parameter set optimized for a given year is used to simulate 
another year, and J’c is the normalized total cost of the climatological model. A portability index close to 1 indicates a more 
portable model, or a system that is not particularly sensitive to year-to-year variations in optimized model parameters, while 260 
an index <<1 indicates a less portable model, or a system sensitive to year-to-year variations in optimized model parameters.  

2.6 Uncertainty analysis 

The uncertainties of the optimized parameters are estimated from a finite difference approximation of the complete 
Hessian matrix during iterative data assimilation processes (i.e., second derivatives of the cost function with respect to the 
model parameters). When computed at the minimum of the cost function value, the square root of a diagonal element in the 265 
inversed Hessian matrix is the logarithm of the relative uncertainty of the corresponding optimized parameter. The absolute 
uncertainty of the constrained parameter is calculated as pf ´ e±σi where pf  is the value of optimized parameter and σf is the 
relative uncertainty of the corresponding optimized parameter. We then conduct Monte Carlo experiments to calculate the 
impact of the optimized parameter uncertainties on the model results. The Monte Carlo experiments consist of 1) creating an 
ensemble of parameter sets (N = 1,000) by randomly sampling values within the uncertainty ranges of the constrained 270 
parameters and 2) then performing a model simulation using each parameter set. All uncertainty estimates are calculated 
following standard error propagation rules and presented herein as ± 1 standard deviation. 

3 Results  

3.1 Model skill assessment  

The iterative optimization procedure reduced by 24-93% the misfits between observations and model output for each 275 
year and the climatological year, compared to the misfits obtained using the initial guess parameters (Table 2). The optimized 
parameter sets satisfied the pre-set convergence criteria, including local minima achieved by the total costs, low gradients of 
the total costs with respect to each optimized parameter, and positive eigenvalues of the Hessian matrix. The total costs were 
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reduced by optimizing only a subset of the model parameters (5-7 constrained parameters and 3-6 optimized parameters; Tables 
S2-6). The optimized parameters in common across all years were αDA (initial slope of photosynthesis vs. irradiance curve of 280 
diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), μHNA (maximum HNA bacterial growth rate, d-1), μLNA (maximum LNA bacterial 
growth rate, d-1), and gCR (half-saturation density of cryptophytes in microzooplankton grazing, mmol C m-3). gHNA (half-
saturation density of HNA bacteria in microzooplankton grazing, mmol C m-3), gMZ (half-saturation density of 
microzooplankton in krill grazing, mmol C m-3), and μKR (maximum krill growth rate, d-1) were next frequently optimized, at 
least for 4 years out of a total of 5 modelled years including the climatological year.  285 

Because this study focused on composites of the modelled ecosystem functions as a function of bacterial mode and 
of the fraction of different physiological groups (section 3.2), rather than of year (Figures S2-5), we combined observations 
and model results from all four years together for model skill assessment. The Taylor diagrams showed overall similar model 
skills between the four years (Figure 3a) and the climatological year (Figure 3b). Three core bacterial variables in this study, 
including HNA biomass, LNA biomass, and BP, showed overall better model-observation agreements than other data types, 290 
with relatively high correlations, low centred (bias removed) root-mean-square difference (RMSD), and normalized standard 
deviation closer to 1. These three variables also had better fits to the four-year seasonal cycles of the observations than other 
data types (Figure S7). However, the model skill for HNA biomass slightly degraded in the climatological model (Figure 3b), 
with the insignificant correlation (p = 0.61, versus r = 0.53 and p = 0.003 in Figure 3a), lower normalized standard deviation, 
and higher RMSD than the four years together (Figure 3a). The optimized models captured best the temporal and spatial 295 
(depth) variability of PP, as shown by its high correlations (Figure 3), but the models tended to underestimate PP with relatively 
larger errors than for other data types (Figure S7). By contrast, there were slight positive model biases for POC and PON 
(Figure S7) and their variability was not well captured as shown by the negative correlations (Figure 3).   

Cross-validation cost analyses showed increased model-observation misfits when a set of parameters optimized for 
one year was used to simulate another year’s dynamics (Tables 2-3), suggesting that each year was best modelled using its 300 
own unique set of optimized parameters. The magnitude of the cost function increase varied by year pair, with the average 
portability index values indicating that the optimized model parameters for 2012-13 was most portable (0.76 ± 0.11), followed 
by those for 2013-14 (0.73 ± 0.17), 2010-11 (0.68 ± 0.08), and 2011-12 (0.61 ± 0.12; Table 3), though the differences were 
not always significantly different among the years.   

3.2 Bacterial carbon stocks and flows  305 

C stocks and flows for each bacterial group showed significant seasonal and interannual variability (Figure 4a, Figure 
S8). Across years HNA cells had significantly higher seasonal maximum values than their LNA counterparts, when normalized 
by the group-specific biomass. These so-called cell-specific, seasonal maximum rates of the HNA group ranged from 0.10 ± 
0.00 to 0.59 ± 0.24 d-1, 0.03 ± 0.00 to 0.18 ± 0.12 d-1, 0.02 ± 0.01 to 0.18 ± 0.08 d-1, 0.05 ± 0.00 to 0.57 ± 0.26 d-1, and 0.07 ± 
0.03 to 0.36 ± 0.17 d-1 for LDOC uptake, SDOC uptake, respiration, BP, and grazing rates, respectively (Figure 4). For the 310 
LNA group, maximum cell-specific rates ranged from 0.01 ± 0.00 to 0.12 ± 0.02 d-1, 0.00 ± 0.00 to 0.03 ± 0.01 d-1, 0.01 ± 0.00 
to 0.02 ± 0.01 d-1, 0.00 to 0.13 ± 0.02 d-1, and 0.02 ± 0.00 to 0.17 ± 0.03 d-1 for LDOC uptake, SDOC uptake, respiration, BP, 
and grazing rates, respectively (Figure 4). For each year C stocks and flows averaged over the growth season (Figure 5) and 
those normalized by NPP (normalized by NPP in 1-day for C stocks; Figure S9) summarized an annual snapshot of the group-
specific bacterial dynamics. The annual mean LNA biomass was ~17 times larger than that of HNA biomass in 2011-12 (Figure 315 
5b), in contrast to relatively similar mean biomass of both groups in other years (Figures 5a, c, d). Bacterial carbon demand 
(BCD; i.e., BCD = BP + bacterial respiration; blue arrows in Figure 5) was mostly supported by the LDOC pool (67-81%) for 
both bacterial groups.  

The rest of the model stocks and flows fell into one of three categories: 1) the variable for a single year values were 
assimilated (i.e., microzooplankton biomass); 2) the variables for which observational values for the given year were 320 
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assimilated (i.e., nutrients, POC or detritus, and SDOC), and 3) the variables that were not assimilated (i.e., krill biomass, 
LDOC, NH4, and particle sinking flux). There was a little interannual variability in the average microzooplankton carbon 
biomass (Figure 5). Even in the years when not assimilated, NO3, POC, and SDOC were modelled to the values comparable 
to those in other assimilated years (Figure 5). Modelled LDOC and NH4 were also within the reasonable range of their typically 
small value (< 1 μM).  325 

3.3 Bacterial physiological and taxonomic association with ecosystem functions 

A property map of the emergent self-organizing map nodes (as generated by Bowman et al. 2017) represented the 
mode association with community structure (Figure 6). The coloured map units (the circles in the background) were clustered 
into taxonomic mode membership or modes (Figure 6a), showing a different frequency of appearance year-to-year (Figure 
6b). Each mode was dominated by unique bacterial taxa. For example, Candidatus Pelagibacter was most abundant in mode 6 330 
(Figure 6c), Dokdonia sp. MED134 in mode 7 (Figure 6d), Candidatus Thioglobus singularis PS1 in mode 1 (Figure 6e), 
Owenweeksia hongkongensis DSM 17368 in mode 2 (Figure 6f), Rhodobacteraceae in mode 5 (Figure 6g), and Planktomarina 
temperata RCA23 in mode 4 (Figure 6h).  

To explore a potential link between mode and the key ecosystem functions, we first extracted the modelled net primary 
production (NPP), POC sinking flux, and BCD from the ecosystem model (i.e., “final optimized output” in Figure 2) at the 335 
time of bacterial samples and depth (10 m) that were placed into a single, observed mode. We then performed a linear 
regression with mode as a factor (i.e., mode as a categorical predictor with 8 modes rather than an ordinal or continuous 
variable; equivalent to a one-way ANOVA with 8 different categories). fmode did not have a significant relationship with any 
of the modelled ecosystem functions examined (all p > 0.05; not shown). By contrast, 27%, 37%, and 77% of the total variance 
in the modelled NPP, POC sinking flux, and BCD was explained by mode (Figures 7a-c). In particular, modes 3, 5, and 7 were 340 
associated with 2-3 times higher NPP, POC sinking flux, and BCD, compared to when mode 4 dominated (two-sample t-test 
with unequal sample size, p = 0.02 for NPP and p < 0.001 for POC sinking flux and BCD), or to when mode 6 dominated (p 
= 0.03 for NPP, p = 0.003 for POC sinking flux, and p < 0.001 for BCD).  

The observed mode was positively correlated to the observed fHNA (r2 = 0.52, p < 0.001; not shown). Thus, we also 
examined a potential link between the observed fHNA and the key model ecosystem functions as described above (i.e., linear 345 
regression with an observed fHNA as a predictor and the modelled ecosystem functions as dependent variables). The observed 
fHNA was positively correlated to the modelled NPP (r2 = 0.34, p < 0.001; Figure 7d), and to a stronger extent, to the modelled 
POC sinking flux (r2 = 0.50, p < 0.001; Figure 7e) and to the modelled BCD (r2 = 0.56, p < 0.001; Figure 7f). The stepwise 
addition of one predictor variable to the other predictor variable (i.e., fHNA adding to mode or vice versa) did not improve the 
model performance (not shown). These results suggest a clear link between the modelled ecosystem functions and observed 350 
bacterial taxonomic (modes) and physiological (fHNA) traits observations.  

3.4 Climate change experiments 

We explored the response of the modelled bacterial dynamics and ecosystem functions (sections 3.2-3.3) to changing 
climate along the WAP (Figure 8). Due to a varying range of the portability of the optimized model solution among the study 
years, we used the climatological model parameter set (Table S6) to simulate an overall system response under perturbed ocean 355 
temperature (+0.5°C and +1.0°C relative to observed temperatures) and sea-ice forcing fields (5% and 10% loss of sea-ice 
relative to observed sea-ice concentrations). These experiments were conducted under each perturbed environmental condition 
separately (i.e., warming alone in Figure S10 versus melting alone in Figure S11) and simultaneously (i.e., climate change 
experiments; Figure 8). We only focused on the results from the climate change experiments in this section, given that despite 
different impacts of each physical forcing changes (i.e., temperature impacts on rate processes versus sea ice impacts on light 360 
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and photosynthesis but not MLD) climate change would cause simultaneous changes in sea ice and water temperature along 
the WAP.  

The climate change experiments resulted in a combination of changes in overall bacterial stocks and rates, as well as 
the key ecosystem functions, and shifts in the seasonal timing or phenology (Figure 8a), compared to the base state (first row 
as the base state in Figures 8a-b and second and third rows as anomalies under perturbed conditions in Figure 8b). HNA 365 
bacterial stock and rates responded more strongly to the perturbed climate conditions compared to LNA bacterial stock and 
rates. Under combined warming/melting (+1.0°C/-10%) conditions, there were maximum increases of the HNA variables by 
19-35% (29 ± 89% for biomass, 22 ± 67% for LDOC uptake, 35 ± 111% for SDOC uptake, 26 ± 79% for respiration, 25 ± 
78% for BP, 29 ± 89% for viral mortality, 19 ± 26% for grazing, and 29 ± 89% for RDOC excretion), compared to the maximum 
increases of the LNA variables by 3-15% (3 ± 2% for biomass, 6 ± 11% for LDOC uptake, 15 ± 27% for SDOC uptake, 8 ± 370 
3% for respiration, 7 ± 6% for BP, 3 ± 2% for viral mortality, 7 ± 18% for grazing, and 3 ± 2% for RDOC excretion). In 
contrast to most bacterial variables that increased consistently throughout the growth season, microzooplankton grazing rates 
showed seasonally mixed responses for both HNA and LNA groups (i.e., the maximum decreases of 8 ± 32% for HNA and of 
4 ± 32% for LNA). Similarly, there were maximum increases of NPP and POC sinking flux by 14 ± 15% and 3 ± 22%, and 
maximum decreases by 4 ± 11% and 3 ± 13%, respectively. SDOC exhibited the maximum increase by 2 ± 1% early in the 375 
season but shortly became depleted strongly as the season progressed. LDOC decreased always in response to the perturbed 
conditions, with the maximum decrease by 10 ± 43%.  

4 Discussion  

4.1 Model skill assessment 

Despite the important biogeochemical role that bacteria play in the ocean, the vast majority of marine ecosystem 380 
models neither include bacteria as a model compartment nor explicitly simulate bacterial processes. Most existing mechanistic 
models parameterize the complex bacterial remineralization processes of the sinking organic matter with depth by using 
empirical relationships, such as, by fitting the power law functions, or other similarly-derived approaches and 
parameterizations (Buesseler et al. 2020; Cael and Bisson, 2018). Cellular functions, taxa, and functional gene expression of 
other prokaryotes, such as cyanobacteria (Hellweger 2010; Martín-Figueroa et al. 2000; Miller et al. 2013), or a diverse suite 385 
of microbial functional groups (Coles et al. 2017; Dutkiewicz et al. 2020) have been modelled so far; however, our study serve 
as the first to explicitly model bacterial groups of different physiological traits.  

In this study, only a subset of the model parameters was optimized to simulate bacterial and other ecological patterns 
for each year, consistent with other data assimilation modelling studies (Friedrichs 2001; Friedrichs et al. 2006, 2007; Luo et 
al. 2010, 2012). In general, optimization of this class of marine ecosystem models requires adjustment of a small number of 390 
independent model parameters to achieve well-posed model solutions, due to the highly cross-correlated nature of parameters 
in the inherently nonlinear model equations (Fennel et al. 2001; Harmon and Challenor 1997; Matear 1996; Prunet et al. 1996). 
Most of the constrained parameters in this study were directly associated with bacterial processes, with overall better model-
observation fits for bacterial data types than other data types, giving confidence in the simulated bacterial C stocks and flows.  

Optimization also sheds light on major unknown parameters in the bacterial grazing process, including gHNA and gLNA 395 
(half-saturation density of HNA and LNA bacteria in microzooplankton grazing, respectively). Microzooplankton grazing of 
the given bacterial group is simulated using a Holling Type 2 density-dependent grazing function with a preferential prey 
selection on diatoms, cryptophytes, and the other bacterial group, in which the single microzooplankton maximum grazing 
rate is implemented for both bacterial groups for model simplicity purposes (Text S1, Tables S2-6). Thus, it is the half-
saturation density that determines the degree of preferential grazing by microzooplankton on a certain bacterial group, the 400 
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change of which may ultimately depend on biomass of each bacterial group. Due to the lack of a priori knowledge on the 
relative magnitude of gHNA and gLNA, we assigned the identical initial guess value (Table 1) to let the data assimilation scheme 
find the values that best fit overall observations of the bacterial group-specific dynamics. Compared to gLNA, smaller optimized 
gHNA (Tables S2-6) reflected preferential grazing of HNA cells by microzooplankton, consistent with previous speculations 
that grazers selectively remove larger and more active cells (Giorgio et al. 1996; Gonzalez et al. 1990; Sherr et al. 1992), so 405 
HNA cells (Garzio et al. 2013). Together with the higher mean cell-specific grazing rates for the HNA group (section 3.2), our 
results suggest preferential grazing of HNA cells by microzooplankton.  

In this study, the model portability index reflects the extent to which a single model framework represented by model 
parameters and equations captures the observed variability in different years, given variable environmental forcing and the 
accompanying shift in plankton ecosystem structure. The optimized model parameter set for 2012-13 was most portable and 410 
the optimized parameter set for 2011-12 was the least portable (Table 3), in which the most (n = 7 out of total 11) and the least 
numbers (n = 5 out of total 11) of parameters were constrained (i.e., optimized with low uncertainties), respectively (Tables 
S3-4). The other two years exhibited intermediate levels of portability, with similar portability index values characterized by 
the same number of constrained parameters (n = 6 out of total 10 for 2010-11 and n = 6 out of total 12 for 2013-14; Tables S2, 
S5). In other words, it is the number of well-constrained parameters that matters most in driving high model portability, 415 
suggesting the connection between overfitting and portability of optimized models in this study. Also, varying degrees of 
model portability across the years rendered it difficult to select one particular year’s model solution representing the 
climatological dynamics, consistent with the characteristics of the original WAP-1D-VAR model. Instead, better model skill 
was found by utilizing parameters from assimilating climatological observations into a more general version of the model 
(section 4.4).  420 
 

4.2 Bacterial carbon stocks and flows 

Assimilating each bacterial group’s biomass allowed for the partitioning of the BP for each group as well as other 
physiological processes (e.g., SDOC uptake rates) that were never measured for each bacterial group in this study area. First, 
optimized models yielded in significantly higher cell-specific BP of the HNA group across all years, which could be attributed 425 
to the way the parameter optimization was performed to keep higher maximum cell-specific growth rates of HNA cells. 
However, it should be noted that the cell-specific BP rates were also driven by biomass stocks determined from the modelled 
trophic interactions, and therefore, should be taken as the results of model optimization, not of the model assumption. For 
example, bacterial SDOC uptake is proportional to the bacterial stock (Eq. A.4.13). Bacterial respiration is affected not only 
by the bacterial stock but also by total DOC uptake (Equation A.4.25). By definition, cell-specific BP is the biomass-430 
normalized difference between total DOC uptake and respiration (i.e., cell-specific BP = (GCBAC,DOC – RCBAC)/CBAC, Eq. A.4.14, 
A.4.25, A.4.53). Because of these intertwined processes whose magnitudes were continuously adjusted and determined during 
optimization, keeping the high maximum HNA growth rate does not simply guarantee higher SDOC uptake and cell-specific 
BP of HNA than those of LNA. Thus, these two particular findings are the result of optimization in conjunction with the model 
assumption about cell-specific growth rates. 435 

As with phylogenetic groups (Fuchs et al. 2000; Teira et al. 2009; Yokokawa et al. 2004), cell-specific bacterial 
growth rates are expected to differ among distinct bacterial physiological groups, but there are limited studies focusing on 
group-specific cell activities (Gasol et al. 1999; Giorgio et al. 1996; Günter et al. 2008; Longnecker et al. 2005; Moràn et al. 
2011). Moràn et al (2011) showed that HNA cells greatly outgrew LNA cells in Waquoit Bay Estuary, with a cell-specific 
growth rate of up to 2.26 d-1 for HNA cells versus < 0.5 d-1 for LNA cells. Second, our model results revealed HNA group’s 440 
significantly higher uptake rates of both LDOC and SDOC pools than their LNA counterparts. Several studies have 
demonstrated that HNA cells may depend more than LNA cells on phytoplankton substrates for growth and metabolism (Li et 
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al. 1995; Morán et al. 2007; Scharek and Latasa 2007). The hypothesis that WAP bacteria might rely on SDOC has received 
indirect support previously, presumably due to LDOC limitation (Ducklow et al. 2011; Kim and Ducklow 2016; Luria et al. 
2017), but our study is the first to show the importance of the SDOC pool for HNA cells’ C demand. 445 
 Although much of the discussion was focused on bacteria, the model also captured well the rest of the ecosystem 
variables. Nutrient stocks were modelled to be the values above detect limits and indicated the lack of macronutrient 
limitations. The WAP typically exhibits strong interannual variability in physical forcing and ecological and biogeochemical 
processes (Ducklow et al. 2007), but the lack of the strong interannual variability in the modelled microzooplankton biomass 
is due to assimilating climatological observations. One exception is krill biomass that was modelled 3-8 times larger than the 450 
maximum value from the available field data in 2017-18 (0.57 mmol C m-3; not shown). It should be noted that there were 
inconsistences in the nature of the assimilated data types, such as a single-year observation of microzooplankton (versus each 
year-specific observations of others) and two unassimilated data types including krill biomass. Also, there can be compensating 
errors in krill grazing rate and metabolism values given that krill are mobile laterally. These observational limitations makes 
it challenging to construct a complete microbial carbon budget without significant uncertainties. A more complete assimilation 455 
of zooplankton data should be the next effort to improve the model fits and minimize uncertainties in the bacterial variables 
and, therefore, to expand the findings of our study.  

4.3 Bacterial physiological and taxonomic association with ecosystem functions 

The positive associations of the observed fHNA with the modelled NPP and POC sinking flux suggest a relatively 
strong resource control on these actively-growing cells, compared to slowly-growing LNA cells. This is consistent with 460 
previous studies showing increased HNA growth rates in response to enhanced phytoplankton-derived organic substrate 
(Morán et al. 2010) and more abundant HNA cells in areas or periods where bacterial assemblages were predominantly 
controlled by resources, rather than grazing (Morán et al. 2007). It has been hypothesized that due to minimal inputs of 
terrestrial organic matter, bacteria must ultimately rely on in situ NPP for organic matter source in the WAP (Ducklow et al. 
2012b), supporting the importance of resource control on actively-growing bacteiral populations.  465 

In this study, modes 3, 5, and 7, characterized by copiotrophic taxa with large genomes and more 16S rRNA gene 
copies (Bowman et al. 2017), were associated with high modelled NPP, POC sinking flux, and BCD, while modes 4 and 6, 
characterized by taxa associated with more oligotrophic conditions, were associated with low modelled NPP, POC sinking 
flux, and BCD. Dokdonia sp. MED134, a common bacterial species of the modes associated with high NPP, POC sinking flux, 
and BCD, is a proteorhodopsin-containing marine flavobacterium that grows faster with light (Gómez-Consarnau et al. 2007; 470 
Kimura et al. 2011) and in conditions under which resources are abundant (Gómez-Consarnau et al. 2007). Given the coastal 
WAP being primarily light-limited (Ducklow et al. 2012), the correspondence of D. Dokdonia MED134 to high modelled NPP 
suggests light-enhanced growth rates and cell yields from sufficient irradiance. By contrast, mode 4, dominated by 
Planktomarina temperata RCA23, is a slowly growing bacterium that specializes in using complex organic substrates (Giebel 
et al. 2013). These attributes are consistent with high occurrence of mode 4 during the periods of low modelled NPP and POC 475 
sinking flux. Candidatus Pelagibacter, abundant in mode 6, is generally known as an oligotrophic specialist with a low DOC 
requirement, but often observed during the Antarctic phytoplankton blooms (Delmont et al. 2014; Luria et al. 2014), the 
characteristics of which support its occurrence during the periods of high modelled NPP. 
 In summary, our study provides a novel framework connecting the dynamics of different ecosystem functions with 
microbial physiology and taxonomy. Certain modes represent distinct WAP ecosystem states and the mode-state associations 480 
are reasonably explained from microbial perspectives. However, we did not investigate a seasonal succession and development 
in mode itself or the mode association of the key WAP ecosystem states. Future investigations should focus on including a 
few dominant or seasonally distinct modes in the data assimilation process, in order to fully resolve the seasonality of the 
mode-ecosystem state associations along the WAP.   
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4.4 Climate change experiments  485 

The WAP has experienced significant atmospheric and ocean warming and resulting changes in marine ecosystem 
processes, and further climate change is projected for the next several decades. The magnitudes of the perturbations used in 
the climate change experiments (+0.5º/+1.0ºC compared to observed temperature fields and -5%/-10% compared to observed 
sea-ice fields) are within the range of the long-term changes in temperature and sea-ice duration along the WAP continental 
shelf. The temperature of the ACC water that has direct access to the WAP shelf has shown a large increase after the 1980s, 490 
equivalent to a uniform warming of the upper 300 m layer by 0.7ºC (Ducklow et al., 2012). The trend in the annual ice season 
duration is -1.5 days per year over 1979-80 to 2017-18 field season (Henley et al. 2019). The degree of melting (5-10%) chosen 
for the climate change experiments is translated into the shortening of the ice season duration by 1-3 days (not shown), falling 
within the range of the trend in Henley et al. (2019).  

Under combined warming/melting conditions, we expected that increased NPP and phytoplankton accumulations 495 
early in the season would result in a significant build-up of DOC pools. However, this was the case only for SDOC, and 
bacteria were soon LDOC-limited due to their preferential LDOC uptake for their primary carbon source. Nonetheless, the 
growth of bacteria and increased bacterial rates during LDOC limitation was still possible because bacteria depended on SDOC 
to meet the rest of their carbon demand, resulting in the strong depletion of SDOC pool later in the season. In other words, 
bacteria were more likely resource-limited, in particular by the labile DOC pool, and SDOC subsequently played an 500 
increasingly important role. This change was particularly important in HNA cells, as shown by a relatively large increase of 
their BCD via SDOC, compared to LNA cells. Temperature is often regarded as a major factor regulating bacterial 
physiological rates by changing the rate of enzymatic reactions (Kirchman et al. 2009; White et al. 1991). In this study the 
modelled stocks and rates of HNA cells increased under the warming alone experiment (Figure S10) but equally or more than 
under the melting alone experiment (i.e., increased photosynthesis and resource availability; Figure S11). This suggests that 505 
temperature per se is not necessarily a more important limiting factor for bacterial growth, at least for HNA, than resource 
availability (Ducklow et al. 2012a), and warming may rather enhance HNA utilization of the already increased organic matter 
from the increased productivity. Also, future climate may impact the (re)distribution of bacterial taxonomic groups, with a 
potential shift to more abundant HNA cells in the WAP bacterial communities, due to their preferential SDOC utilization. 

The major limitation of our climate change experiments is the short duration of the simulations. An ideal set of climate 510 
change simulations should be performed for longer-term periods as well as continuously across many years, not simply limited 
to the growth season for a limited period. However, our study could not accommodate these requirements due to the limited 
observations and existing data gaps in each year. Despite these challenges, we were able to validate the climatological model’s 
capacity to partly reproduce the already observed, climate-driven trends of some variables along the WAP. Under each year’s 
forcing fields, the climatological model parameter set reproduced the interannual variability fairly well compared to the 515 
observed interannual variability, except for a few cases (e.g., overestimated BP and HNA biomass in 2011-12, underestimated 
PP in 2012-13 and 2013-14; Table S7), providing confidence in its usage for climate change impacts. 2011-12 was 
characterized by the negative temperature anomaly (-0.13 ± 0.83ºC versus 0.03 ± 0.84ºC for the 4-year climatology) and the 
positive sea-ice anomaly (24 ± 38% versus 21 ± 29% for the 4-year climatology), with lower temperature and higher sea-ice 
cover than the other three years (all p < 0.05, two-sample t-test). This coldest year had the lowest values of BP, HNA biomass, 520 
and PP observations (Table S7), consistent with increases in the modelled BP, HNA biomass, and PP under the combined 
warming/melting conditions. A combination of low HNA biomass, low PP, and low POC flux was also modelled in 2011-12, 
largely responsible for driving the positive association of the observed fHNA with the modelled NPP and POC sinking across 
years (section 4.3). Sea ice did not retreat until mid-December in 2011-12 (Figure S1), and due to subsequently low light levels 
PP was modelled to be low. The low modelled PP drove both low HNA biomass and low particle sinking flux, reinforcing the 525 
strong resource control on fast-growing bacterial populations and the conventional “high PP-high export” paradigm along the 
WAP.  
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Finally, our climate change simulations share similar results with those performed with the WAP-1D-VAR model 
with one bacterial compartment (Kim et al. 2021). In the original WAP-1D-VAR model, simultaneous combined warming and 
reduced sea-ice conditions also resulted in increased NPP, net community production, POC sinking flux, bulk bacterial 530 
productivity and biomass, and SDOC, in contrast to LDOC that was strongly limited early in the season. This potential shift 
to a more productive and efficient export system state is partially in agreement with suggestions made by previous studies that 
warming may induce more recycling favourable and microbial-dominated food-webs (Moline et al. 2004; Sailley et al. 2013). 
Despite the increased productivity and plankton accumulations, LDOC may become strongly depleted and, therefore, bacteria 
may need to depend more on SDOC to meet a significant part of their carbon demand (i.e., an increasing important role of 535 
SDOC for bulk bacterial communities). Most of these results convey the same story as our study’s climate change experiments, 
thereby adding confidence in the results of the climate change simulations. Yet, it should be noted that the increased complexity 
of bacterial dynamics in the modified model (this study) adds two important contributions to the original model (Kim et al. 
2021) including: 1) the dominance of the HNA group over the LNA group in the warming WAP waters and 2) bacterial 
taxonomic (i.e., mode) and physiological (i.e., fHNA) traits being a significant indicator of the key WAP ecosystem functions.  540 

5 Conclusions  

Heterotrophic microbial diversity has seldom been considered in detail in the formulation and analysis of marine pelagic 
ecosystem models reflecting in part the lack of suitable field data for model evaluation. Utilizing genomic products to prescribe 
taxonomic aspects of the bacterial model dynamics, this study investigated the association of bacterial abundance with different 
physiological states, bacterial community structure and key ecosystem functions. The modelling approach used in the present 545 
study enabled the observations in different bacterial populations to constrain the group-specific processes and model 
parameters that have been poorly understood. These included the partitioning of BP specific to HNA and LNA groups, the 
partitioning of the bacterial uptake of DOC pools with different lability, and the half-saturation density of each bacterial group 
in microzooplankton grazing. The model also served as an effective platform to explore the WAP microbial response to 
changing climate conditions, in which warming and decreasing sea ice would induce a potential shift to the dominance of HNA 550 
bacteria in more productive waters due to their increasing dependence on SDOC. 
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Appendix A 580 

1. Temperature effect 

    Tf  = exp{ –AE ´ (1/T – 1/Tref) }           (A.1.1) 

2. Diatom processes 

• Cellular quota (ratio):   
  QCN,DA  = NDA/CDA            (A.2.1) 585 
  QCP,DA  = PDA/CDA            (A.2.2) 
  QCCHL,DA  = CHLDA/CDA           (A.2.3) 

• N and P limitation function: 
  Nf,DA  = (QCN,DA – qCN,MIN,DA)/(qCN,RDF,DA – qCN,MIN,DA)  0 ≤ Nf,DA  ≤ 1     (A.2.4) 
  Pf,DA  = (QCP,DA – qCP,MIN,DA)/(qCP,RDF,DA – qCP,MIN,DA)  0 ≤ Pf,DA  ≤ 1     (A.2.5) 590 

• Maximum photosynthesis rate:  
PCMAX = μDA ´ Tf  ´ min(Nf,DA, Pf,DA)         (A.2.6) 

• C-specific gross primary production: 
GCDA = CDA ´ PCMAX  ´{ 1– exp(–αDA ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βDA ´ PAR)   (A.2.7) 

• Limitation on N and P uptake:   595 
VNMAX = (qCN,MAX – QCN,DA)/(qCN,MAX – qCN,RDF)  0 ≤ VNMAX  ≤ 1     (A.2.8) 
VPMAX = (qCP,MAX – QCP,DA)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.2.9) 

• N assimilation:  
GNH4DA = CDA  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.2.10) 

          GNO3DA = CDA ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }   (A.2.11) 600 
          GNDA    = GNH4DA + GNO3DA           (A.2.12) 

• P assimilation:  
GPO4DA = CDA  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.2.13) 

• Chlorophyll production:  
GCHLDA = θ ´ (GNH4DA + GNO3DA)  ´{ GCDA /α ´ CHLDA ´ PAR ´ exp(-β ´ PAR) }   (A.2.14) 605 

• Respiration:  
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RCDA = GNO3DA ´ ζNO3           (A.2.15) 
• Passive excretion of LDOM:  

ECDA,LDOC,PSV = exDA,PSV  ´ CDA          (A.2.16) 
ENDA,LDON,PSV = exDA,PSV  ´ NDA          (A.2.17) 610 
EPDA,LDOP,PSV = exDA,PSV  ´ PDA          (A.2.18) 

• Active excretion of LDOC:  
ECDA,LDOC,ACT  = exDA,ACT  ´ GCDA          (A.2.19) 

• Active excretion of SDOC:  
ECDA,SDOC,ACT =  0.5 ´ CDA ´ max( 1 – QCN,DA/qCN,RDF,DA, 1– QCP,DA/qCP,RDF,DA, 0 )    (A.2.20) 615 

• Active excretion of SDON and SDOP (if EXCDA,SDOC,ACT > 0, otherwise 0):  
ENDA,SDON,ACT  =  0.5 ´ 0.25 ´ NDA ´ max( 1 – QNP,DA/qCP,RDF,DA/qCN,RDF,DA, 0 )    (A.2.21) 
EPDA,SDOP,ACT  =  0.5 ´ 0.25 ´ PDA ´ max( 1 – QPN,DA/qCN,RDF,DA/qCP,RDF,DA, 0 )    (A.2.22) 

• Partitioning between LDOM and SDOM: 
ECDA,LDOC  = ECDA,LDOC,PSV + 0.75 ´ ECDA,LDOC,ACT       (A.2.23) 620 
ENDA,LDON  = ENDA,LDON,PSV          (A.2.24) 

EPDA,LDOP  = EPDA,LDOP,PSV           (A.2.25) 

ECDA,SDOC  = ECDA,SDOC,ACT + 0.25 ´ ECDA,LDOC,ACT       (A.2.26) 

ENDA,SDON  = ENDA,SDON,ACT          (A.2.27) 

EPDA,SDOP  = EPDA,SDOP,ACT           (A.2.28) 625 
• POM production by aggregation: 

DCDA     = pomDA ´  CDA ´ CDA          (A.2.29) 

DNDA     = QCN,DA  ´  DCDA            (A.2.30) 
DPDA     = QCP,DA  ´  DCDA            (A.2.31) 

DCHLDA  = QCCHL,DA  ´  DCDA            (A.2.32) 630 
• Grazing by microzooplankton:  

GZCDA,MZ = Tf  ´ μMZ ´ CMZ  
     ´ [(CDA – ϵDA)2/{(CDA – ϵDA)2 + gDA2 + (CCR ´ gDA/gCR)2 + (CBAC ´ gDA/gBAC)2}]   (A.2.33) 
GZNDA,MZ    = QCN,DA  ´  GZCDA,MZ         (A.2.34)  
GZPDA,MZ    = QCP,DA  ´  GZCDA,MZ          (A.2.35) 635 
GZCHLDA,MZ = QCCHL,DA  ´  GZCDA,MZ         (A.2.36) 

• Grazing by krill:  
GZCDA,KR = Tf  ´ μKR ´ CKR      

´ [ CDA2/{CDA2 + g’DA2 + (CMZ ´ g’DA/gMZ)2} ]      (A.2.37) 
GZNDA,KR    = QCN,DA  ´  GZCDA,KR          (A.2.38)  640 
GZPDA,KR    = QCP,DA  ´  GZCDA,KR          (A.2.39) 

GZCHLDA,KR = QCCHL,DA  ´  GZCDA,KR         (A.2.40) 
• The net growth rate equations:  

dCDA  

dt
 = GCDA – ECDA,LDOC – ECDA,SDOC – DCDA – RCDA – GZCDA,MZ – GZCDA,KR   (A.2.41) 

dNDA  

dt
 = GNDA – ENDA,LDON – ENDA,SDON – DNDA                     – GZNDA,MZ – GZNDA,KR   (A.2.42) 645 
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dPDA  

dt
 = GPDA – EPDA,LDOP – EPDA,SDOP – DNDA                      – GZPDA,MZ – GZPDA,KR   (A.2.43) 

dCHLDA  

dt
 = GCHLDA                              – DCHLDA                 – GZCHLDA,MZ – GZCHLDA,KR   (A.2.44) 

3. Cryptophyte processes 

• Cellular quota (ratio): 
  QCN,CR  = NCR/CCR            (A.3.1) 650 
  QCP,CR  = PCR/CCR            (A.3.2) 
  QCCHL,CR  = CHLCR/CCR           (A.3.3) 

• N and P limitation function: 
  Nf,CR  = (QCN,CR – qCN,MIN,CR)/(qCN,RDF,CR – qCN,MIN,CR)  0 ≤ Nf,CR  ≤ 1     (A.3.4) 
  Pf,CR  = (QCP,CR – qCP,MIN,CR)/(qCP,RDF,CR – qCP,MIN,CR)  0 ≤ Pf,CR  ≤ 1     (A.3.5) 655 

• Maximum primary production rate: 
PCMAX = μCR ´ Tf  ´ min(Nf,CR, Pf,CR)         (A.3.6) 

• C-specific gross primary production: 
GCCR = CCR ´ PCMAX  ´{ 1– exp(–αCR ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βCR ´ PAR)   (A.3.7) 

• Limitation on N and P uptake:   660 
VNMAX = (qCN,MAX – QCN,CR)/(qCN,MAX – qCN,RDF) 0 ≤ VNMAX  ≤ 1      (A.3.8) 
VPMAX = (qCP,MAX – QCP,CR)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.3.9) 

• Nitrogen assimilation:  
GNH4CR = CCR  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.3.10) 

          GNO3CR = CCR ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }   (A.3.11) 665 
          GNCR    = GNH4CR + GNO3CR           (A.3.12) 

• Phosphorus assimilation:  
GPO4CR = CCR  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.3.13) 

• Chlorophyll production:  
GCHLCR = θ ´ (GNH4CR + GNO3CR)  ´{ GCCR /α ´ CHLCR ´ PAR ´ exp(-β ´ PAR) }   (A.3.14) 670 

• Respiration:  
RCCR = GNO3CR ´ ζNO3           (A.3.15) 

• Passive excretion of LDOM:  
ECCR,LDOC,PSV = exCR,PSV  ´ CCR          (A.3.16) 
ENCR,LDON,PSV = exCR,PSV  ´ NCR          (A.3.17) 675 
EPCR,LDOP,PSV = exCR,PSV  ´ PCR          (A.3.18) 

• Active excretion of LDOC:  
ECCR,LDOC,ACT  = exCR,ACT  ´ GCCR          (A.3.19) 

• Active excretion of SDOC:  
ECCR,SDOC,ACT =  0.5 ´ CCR ´ max( 1 – QCN,CR/qCN,RDF,CR, 1– QCP,CR/qCP,RDF,CR, 0 )    (A.3.20) 680 

• Active excretion of SDON and SDOP (if EXCCR,SDOC,ACT > 0, otherwise 0):  
ENCR,SDON,ACT  =  0.5 ´ 0.25 ´ NCR ´ max( 1 – QNP,CR/qCP,RDF,CR/qCN,RDF,CR, 0 )    (A.3.21) 
EPCR,SDOP,ACT  =  0.5 ´ 0.25 ´ PCR ´ max( 1 – QPN,CR/qCN,RDF,CR/qCP,RDF,CR, 0 )    (A.3.22) 



18 
 

• Partitioning between LDOM and SDOM: 
ECCR,LDOC  = ECCR,LDOC,PSV + 0.75 ´ ECCR,LDOC,ACT       (A.3.23) 685 
ENCR,LDON  = ENCR,LDON,PSV          (A.3.24) 

EPCR,LDOP  = EPCR,LDOP,PSV           (A.3.25) 

ECCR,SDOC  = ECCR,SDOC,ACT + 0.25 ´ ECCR,LDOC,ACT       (A.3.26) 

ENCR,SDON  = ENCR,SDON,ACT          (A.3.27) 

EPCR,SDOP  = EPCR,SDOP,ACT           (A.3.28) 690 
• POM production by aggregation: 

DCCR     = pomCR ´  CCR ´ CCR          (A.3.29) 

DNCR     = QCN,CR  ´  ACCR            (A.3.30) 
DPCR     = QCP,CR  ´  ACCR            (A.3.31) 

DCHLCR  = QCCHL,CR  ´  ACCR            (A.3.32) 695 
• Grazing by microzooplankton:  

GZCCR = Tf  ´ μMZ ´ CMZ  
´ [ (CCR – ϵCR)2/{(CCR – ϵCR)2 + gCR2 + (CDA´ gCR/gDA)2 + (CBAC ´ gCR/gBAC)2} ]    (A.3.33) 
GZNCR    = QCN,CR  ´  GZCCR,MZ          (A.3.34)  
GZPCR   = QCP,CR  ´  GZCCR,MZ          (A.3.35) 700 
GZCHLCR = QCCHL,CR  ´  GZCCR,MZ          (A.3.36) 

• The net growth rate equations:  
dCCR  

dt
 = GCCR – ECCR,LDOC – ECCR,SDOC – DCCR – RCCR – GZCCR     (A.3.37) 

dNCR  

dt
 = GNCR – ENCR,LDON – ENCR,SDON – DNCR                     – GZNCR     (A.3.38) 

dPCR  

dt
 = GPCR – EPCR,LDOP – EPCR,SDOP – DNCR                      – GZPCR     (A.3.39) 705 

dCHLCR  

dt
 = GCHLCR                              – DCHLCR                 – GZCHLCR     (A.3.40) 

 
4. Bacterial processes (for both HNA and LNA groups)   

• Cellular quota (ratio): 
  QCN,BAC  = NBAC/CBAC            (A.4.1) 710 

 QCP,BAC  = PBAC/CBAC            (A.4.2) 
 QPN,BAC  = NBAC/PBAC            (A.4.3) 

  QCN,LDOM  = NLDOM/CLDOM           (A.4.4) 
  QCP,LDOM  = PLDOM/CLDOM           (A.4.5) 
  QCN,SDOM  = NSDOM/CSDOM           (A.4.6) 715 
  QCP,SDOM  = PSDOM/CSDOM           (A.4.7) 

• N and P limitation function: 
  Nf,BAC  = QCN,BAC/qCN,BAC     0 ≤ Nf,BAC  ≤ 1     (A.4.8) 
  Pf,BAC  = QCP,BAC/qCP,BAC     0 ≤ Pf,BAC  ≤ 1     (A.4.9) 

• Maximum available LDOC and SDOC:   720 
ALC = CLDOC            (A.4.10) 
ASC = rSDOC ´ CSDOC           (A.4.11) 
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• Bacterial uptake of LDOC and SDOC (i.e., bacterial gross C growth):  
GCBAC,LDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ALC/(ALC + kDOC + ASC) }   (A.4.12) 
GCBAC,SDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ASC/(ASC + kDOC + ALC) }   (A.4.13) 725 
GCBAC,DOC = GCBAC,LDOC + GCBAC,SDOC         (A.4.14) 

• Bacterial N uptake:  
GCBAC,LDON  = GCBAC,LDOC ´ QCN,LDOM           (A.4.15) 
GCBAC,SDON = GCBAC,SDOC ´ min{ qCN,BAC, QCN,SDOM + fS/Nf,BAC ´ (qCN,BAC – QCN,SDOM) }  (A.4.16) 
GCBAC,NH4 = GCBAC,LDON ´ NH4/NLDOM/min(1, Nf,BAC)       (A.4.17) 730 

if Nf,BAC  < 1,  
GCBAC,NO3 = min{ 0.1 ´ NO3 ´ 1/min(1, Nf,BAC) ´ (GCBAC,LDON + GCBAC,SDON)/(NLDOM + NSDOM),  

                         (NO3 + NH4) ´ (GNBAC,LDON + GNBAC,SDON)/(NLDOM + NSDOM) – GNH4BAC }   (A.4.18) 
    else,  GCBAC,NO3 = 0             (A.4.19)  

GCBAC,N = GCBAC,LDON  + GCBAC,SDON + GCBAC,NH4 + GCBAC,NO3      (A.4.20) 735 
• Bacterial P uptake:  

GCBAC,LDOP  = GCBAC,LDOC ´ QCP,LDOM           (A.4.21) 
GCBAC,SDOP = GCBAC,SDOC ´ min{ qCP,BAC, QCP,SDOM + fS/Pf,BAC ´ (qCP,BAC – QCP,SDOM) }  (A.4.22) 
GCBAC,PO4 = GCBAC,LDON ´ PO4/PLDOM/min(1, Pf,BAC)       (A.4.23) 
GCBAC,P = GCBAC,LDOP  + GCBAC,SDOP + GCBAC,PO4         (A.4.24) 740 

• Respiration:  
RCBAC = ζNO3 ´ GCBAC,NO3 + rBBAC ´ Tf  ´ CBAC 

+{ rAmin,BAC + (rAmax,BAC – rAmin,BAC) ´ exp(–bR,BAC ´ GCBAC,DOC) } ´ GCBAC,DOC  (A.4.25) 
• RDOC release:  

ECBAC,RDOC = refrBAC ´ CBAC           (A.4.26) 745 
ENBAC,RDON = ECBAC,RDOC ´ qCN,RDOM          (A.4.27) 
EPBAC,RDOP = ECBAC,RDOC ´ qCP,RDOM          (A.4.28) 

• Remineralization of inorganic nutrients:  
 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  

         REMINBAC = remiBAC ´ (NBAC – CBAC ´ qCN,BAC)         (A.4.29) 750 
    REMIPBAC = remiBAC ´ (PBAC – CBAC ´ qCP,BAC)         (A.4.30) 

remiBAC    
elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  

REMINBAC = 0            (A.4.31) 
    REMIPBAC = 0             (A.4.32) 755 

else (i.e., P in short)  
REMINBAC = 0            (A.4.33) 

    REMIPBAC = 0             (A.4.34) 
• SDOM excretion to adjust stoichiometry:  

 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  760 
ECBAC,SDOC = 0            (A.4.35) 
ENBAC,SDON = 0            (A.4.36) 
EPBAC,SDOP = 0            (A.4.37) 

elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  
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ECBAC,SDOC = exADJ,BAC ´ (CBAC – NBAC/qCN,BAC)        (A.4.38) 765 
ENBAC,SDOC = 0            (A.4.39) 
EPBAC,SDOP = exADJ,BAC ´ (PBAC – NBAC/qCN,BAC ´ qCP,BAC)      (A.4.40) 

else (i.e., P in short)  
ECBAC,SDOC = exADJ,BAC ´ (CBAC – PBAC/qCP,BAC)        (A.4.41) 
ENBAC,SDON = exADJ,BAC ´ (NBAC – PBAC/qCP,BAC´ qCN,BAC)       (A.4.42) 770 
ENBAC,SDOP = 0            (A.4.43) 

• Grazing by microzooplankton:  
GZCBAC = Tf  ´ μMZ ´ CMZ 
´ [ CBAC2/{CCR2 + gBAC2 + (CDA ´ gBAC/gDA)2 + (CCR ´ gBAC/gCR)2} ]      (A.4.44) 
GZNBAC = GZCBAC ´ QCN,BAC          (A.4.45) 775 
GZPBAC = GZCBAC ´ QCP,BAC          (A.4.46) 

• Viral mortality:  
       MCBAC = mBAC ´ CBAC            (A.4.47) 
       MNBAC = mBAC ´ NBAC            (A.4.48) 
       MPBAC = mBAC ´ PBAC             (A.4.49) 780 

• Net flux of inorganic nutrients through bacteria:   
FLUXNH4BAC = REMINBAC – GCBAC,NH4         (A.4.50) 
FLUXNO3BAC = –GCBAC,NO3          (A.4.51) 
FLUXPO4BAC = REMIPBAC – GCBAC,PO4         (A.4.52) 

• The net growth rate equations:  785 
dCBAC  

dt
 = GCBAC,DOC – ECBAC,SDOC – ECBAC,RDOC – RCBAC – GZCBAC – MCBAC    (A.4.53) 

dNBAC  

dt
 = GNBAC,DON – ENBAC,SDON – ENBAC,RDON – RNBAC – GZNBAC – MNBAC    (A.4.54) 

dPBAC  

dt
 = GPBAC,DOP – EPBAC,SDOP – EPBAC,RDOP  – RPBAC – GZPBAC – MPBAC    (A.4.55) 

 
5. Microzooplankton processes  790 

• Cellular quota (ratio): 
  QCN,MZ  = NMZ/CMZ            (A.5.1) 

 QCP,MZ  = CMZ/PMZ            (A.5.2) 
• Gross growth:  

GCMZ = GZCDA,MZ + GZCCR + GZCBAC         (A.5.3) 795 
GNMZ = GZNDA,MZ + GZNCR + GZNBAC         (A.5.4) 
GPMZ = GZPDA,MZ + GZPCR + GZPBAC         (A.5.5) 

• LDOM excretion:  
ECMZ,LDOC = fex,MZ ´ exMZ ´ GCMZ          (A.5.6) 
ENMZ,LDON = fex,MZ ´ exMZ ´ GNMZ          (A.5.7) 800 
EPMZ,LDOP = fex,MZ ´ exMZ ´ GPMZ          (A.5.8) 

• SDOM excretion:  
ECMZ,SDOC,1 = (1 – fex,MZ) ´ exMZ ´ GCMZ         (A.5.9) 
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ENMZ,SDON,1 = (1 – fex,MZ) ´ exMZ ´ GNMZ ´ QCN,MZ/qCN,MZ      (A.5.10) 
EPMZ,SDOP,1 = (1 – fex,MZ) ´ exMZ ´ GPMZ ´ QCP,MZ/qCP,MZ      (A.5.11) 805 

• SDOM excretion to adjust stoichiometry:   
ECMZ,SDOC,2 = exADJ,MZ ´ CMZ  

´ max(0, 1 – QCN,MZ/qCN,MZ, 1 – QCP,MZ/qCP,MZ)     (A.5.12) 
ENMZ,SDON,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCN,MZ         (A.5.13) 
EPMZ,SDOP,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCP,MZ         (A.5.14) 810 

• Remineralization of inorganic nutrients:   
REMINMZ = remiMZ ´ max(0, NMZ – CMZ ´ qCN,MZ,  

    NMZ – qCN,MZ/PMZ ´ qCP,MZ)        (A.5.15) 
REMIPMZ = remiMZ ´ max(0, PMZ – CMZ ´ qCP,MZ,  

    PMZ – qCP,MZ/NMZ ´ qCN,MZ)        (A.5.16) 815 
• Respiration:  

RCMZ = rBMZ ´ Tf ´ CMZ + rAMZ ´ GCMZ         (A.5.17) 
• POM production: 

PCMZ     = pomMZ ´  GCMZ           (A.5.18) 
PNMZ     = qCN,POM   ´  GCMZ          (A.5.19) 820 
PPMZ     = qCP,POM  ´  GCMZ          (A.5.20) 

• Grazing by krill:  
GZCMZ = Tf  ´ μMZ ´ CKR 

´ [ CMZ2/{CMZ2 + gMZ2 + (CDA ´ gMZ/gDA)2} ]        (A.5.21) 
GZNMZ = QCN,MZ  ´ GZCMZ           (A.5.22) 825 
GZPMZ = QCP,MZ  ´ GZCMZ           (A.5.23) 

• The net growth rate equations:  
dCMZ  

dt
 = GCMZ – ECMZ,LDOC – ECMZ,SDOC,1 – ECMZ,SDOC,2  

– PCMZ – RCMZ – GZCMZ        (A.5.24) 
dNMZ  

dt
 = GNMZ – ENMZ,LDON – ENMZ,SDON,1 – ENMZ,SDON,2  830 

– PNMZ – RNMZ – GZNMZ        (A.5.25) 
dPMZ  

dt
 = GPMZ – EPMZ,LDOP – EPMZ,SDOP,1 – EPMZ,SDOP,2  

– PPMZ – RPMZ – GZPMZ        (A.5.26) 
 
6. Krill processes  835 

• Cellular quota (ratio): 
  QCN,KR  = NKR/CKR            (A.6.1) 

 QCP,KR  = CKR/PKR            (A.6.2) 
• Gross growth:  

GCKR = GZCDA,KR + GZCMZ          (A.6.3) 840 
GNKR = GZNDA,KR + GZNMZ          (A.6.4) 
GPKR = GZPDA,KR + GZPMZ          (A.6.5) 
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• LDOM excretion:  
ECKR,LDOC = fex,KR ´ exKR ´ GCKR          (A.6.6) 
ENKR,LDON = fex,KR ´ exKR ´ GNKR          (A.6.7) 845 
EPKR,LDOP = fex,KR ´ exKR ´ GPKR          (A.6.8) 

• SDOM excretion:  
ECKR,SDOC,1 = (1 – fex,KR) ´ exKR ´ GCKR         (A.6.9) 
ENKR,SDON,1 = (1 – fex,KR) ´ exKR ´ GNKR ´ QCN,KR/qCN,KR       (A.6.10) 
EPKR,SDOP,1 = (1 – fex,KR) ´ exKR ´ GPKR ´ QCP,KR/qCP,KR       (A.6.11) 850 

• SDOM excretion to adjust stoichiometry:   
ECKR,SDOC,2 = exADJ,KR ´ CKR  

´ max(0, 1 – QCN,KR/qCN,KR, 1 – QCP,KR/qCP,KR)     (A.6.12) 
ENKR,SDON,2 = 0.5 ´ ECKR,SDOC,2 ´ QCN,KR         (A.6.13) 
EPKR,SDOP,2 = 0.5 ´ ECKR,SDOC,2 ´ QCP,KR         (A.6.14) 855 

• Remineralization of inorganic nutrients:   
REMINKR = remiKR ´ max(0, NKR – CKR ´ qCN,KR,  

    NKR – qCN,KR/PKR ´ qCP,KR)        (A.6.15) 
REMIPKR = remiKR ´ max(0, PKR – CKR ´ qCP,KR,  

    PKR – qCP,KR/NKR ´ qCN,KR)        (A.6.16) 860 
• Respiration:  

RCKR = rBKR ´ Tf ´ CKR + rAKR ´ GCKR         (A.6.17) 
• POM production: 

PCKR     = pomKR ´  GCKR           (A.6.18) 
PNKR     = qCN,POM   ´  GNKR          (A.6.19) 865 
PPKR     = qCP,POM  ´  GPKR          (A.6.20) 

• RDOC release:  
ECKR,RDOC = refrKR ´ CKR            (A.6.21) 
ENKR,RDON = ECKR,RDOC ´ qCN,RDOM          (A.6.22) 
EPKR,RDOP = ECKR,RDOC ´ qCP,RDOM          (A.6.23) 870 

• Removal by higher trophic levels  
MCKR = mortKR ´ CKR ´ CKR          (A.6.24) 
MNKR = MCKR,RDOC ´ QCN,KR          (A.6.25) 
MPKR = MCKR,RDOC ´ QCP,KR          (A.6.26) 

• The net growth rate equations:  875 
dCKR  

dt
 = GCKR – ECKR,LDOC – ECKR,SDOC,1 – ECKR,SDOC,2 – ECKR,RDOC 

– PCKR – RCKR – MCKR         (A.6.27) 
dNKR  

dt
 = GNKR – ENKR,LDON – ENKR,SDON,1 – ENKR,SDON,2 – ENKR,RDON 

– PNKR – RNKR – MNKR         (A.6.28) 
dPKR  

dt
 = GPKR – EPKR,LDOC – EPKR,SDOC,1 – EPKR,SDOC,2 – EPKR,RDOC 880 

– PPKR – RPKR – MPKR         (A.6.29) 
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7. Detrital processes  

• Dissolution:  
DISSCDET = diss ´ CDET           (A.7.1) 885 
DISSNDET = diss ´ prfN ´ NDET          (A.7.2) 
DISSPDET = diss ´ prfP ´ PDET          (A.7.3) 

• The net change equations:  
dCDET  

dt
 = DCDA + DCCR + DCMZ + DCKR + DISSCHZ – DISSCDET      (A.7.4) 

dNDET  

dt
 = DNDA + DNCR + DNMZ + DNKR + DISSNHZ – DISSNDET      (A.7.5) 890 

dPDET  

dt
 = DPDA + DPCR + DPMZ + DPKR + DISSPHZ – DISSPDET      (A.7.6) 

  where DISSCHZ = fPOM,HZ ´ MCKR 

             DISSNHZ = fPOM,HZ ´ MNKR 

             DISSPHZ = fPOM,HZ ´ MPKR 

 895 
8. DOM processes 

• Conversion of SDOM to RDOM:  
REFRCSDOM = exREFR,SDOM ´ CSDOM ´ exp{ 1 – min(QCN,SDOM/qCN,RDOM, QCP,SDOM/qCP,RDOM) } (A.8.1) 
REFRNSDOM = REFRCSDOM ´ qCN,RDOM           (A.8.2) 
REFRPSDOM = REFRCSDOM ´ qCP,RDOM           (A.8.3) 900 

• The net change equations:  
dCLDOM  

dt
 = ECDA,LDOC + ECCR,LDOC + ECMZ,LDOC + ECKR,LDOC + MCBAC – GCBAC,LDOC   (A.8.4) 

dNLDOM  

dt
 = ENDA,LDON + ENCR,LDON + ENMZ,LDON + ENKR,LDON + MNBAC – GNBAC,LDON   (A.8.5) 

dPLDOM  

dt
 = EPDA,LDOP + EPCR,LDOP + EPMZ,LDOP + EPKR,LDOP + MPBAC – GPBAC,LDOP   (A.8.6) 

dCSDOM  

dt
 = ECDA,SDOC + ECCR,SDOC + ECBAC,SDOC + ECMZ,SDOC,1 + ECMZ,SDOC,2  905 

+ ECKR,SDOC,1 + ECKR,SDOC,2  + ECHZ,SDOC + DISSCDET – REFRCSDOM – GCBAC,SDOC  (A.8.7) 
dNSDOM  

dt
 = ENDA,SDON + ENCR,SDON + ENBAC,SDON + ENMZ,SDON,1 + ENMZ,SDON,2  

+ ENKR,SDON,1 + ENKR,SDON,2  + ENHZ,SDON + DISSNDET – REFRNSDOM – GNBAC,SDON  (A.8.8) 
dPSDOM  

dt
 = EPDA,SDOP + EPCR,SDOP + EPBAC,SDOP + EPMZ,SDOP,1 + EPMZ,SDOP,2  

+ EPKR,SDOP,1 + EPKR,SDOP,2  + EPHZ,SDOP + DISSPDET – REFRPSDOM – GPBAC,SDOP  (A.8.9) 910 
 
9. Dissolved inorganic nutrient processes 

• Nitrification:  
NTRF = rntrf ´ NH4           (A.9.1) 

• The net change equations:  915 
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dNH4  

dt
 = FLUXNH4BAC + REMINMZ + REMINKR + REMINHZ – GNH4DA – GNH4CR – NTRF  (A.9.2) 

dNO3 

dt
 = FLUXNO3BAC – GNO3DA – GNO3CR + NTRF       (A.9.3) 

dPO4 

dt
 = FLUXPO4BAC + REMIPMZ + REMIPKR + REMIPHZ – GPO4DA – GPO4CR    (A.9.4) 

where REMINHZ = MNKR – DNHZ – ESDONHZ 

           REMIPHZ = MNKR – DPHZ – ESDOPHZ 920 
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Figures  
 

 
Figure 1: Model structure. The model is forced by five different physical forcings, denoted as a horizontal row across the top of the 
schematic. As the ecosystem component, heterotrophic bacteria are divided into two groups of differing physiological states, high nucleic 1140 
acid (HNA) and low nucleic acid (LNA) bacterial compartments. The flows between the prognostic state variables with the name of the 
numbered flows in the legend only represent for these two bacterial compartments.   

Bacteria-oriented ecosystem model (modified from WAP-1D-VAR v1.0)
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Figure 2: Modelling framewok. The modelling framework consists of a dynamic (mechanistic) part as the processes associated with the 1145 
data-assimilation scheme of the bacteria-oriented ecosystem model (Figure 1) and a data-driven part representing how bacterial modes are 
associated with the optimized key model ecosystem functions and stocks. A variational adjoint method is employed for the parameter 
optimization and data assimilation processes (adapted from Glover et al. 2011). Gradient: the sensitivity of the total cost function with respect 
to model parameter from optimization. Optimized model output was interpreted as a function of bacterial taxonomic and physiological traits. 
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Figure 3: Model skill assessment. A Taylor diagram using a polar-coordinate system summarizing the model-observational correspondence 
for each model stock and flow for individual annual simulations for the four select modelled years together (2010-11 to 2013-14; a) and for 
the climatological year (b). The angular coordinate denotes the Pearson correlation coefficient (r), the distance from the origin denotes the 1155 
normalized standard deviation, and the distance from point (1,0), marked as REF on x-axis, describes the centred (bias removed) root-mean-
square difference (RMSD) between model results and observations.  

(a)

(b)

1: HNA biomass
2: LNA biomass
3: Bacterial production
4: Crypto.-specific Chl
5: Diatom-specific Chl
6: Nitrate
7: Phosphate
8: Particulate organic C
9: Particulate organic N
10: Primary production
11: Semi-labile DOC

1: HNA biomass
2: LNA biomass
3: Bacterial production
4: Crypto.-specific Chl
5: Diatom-specific Chl
6: Nitrate
7: Phosphate
8: Particulate organic C
9: Particulate organic N
10: Primary production
11: Semi-labile DOC
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Figure 4: Seasonal progression of modelled HNA and LNA bacterial carbon stocks and rates and key ecosystem functions across 1160 
years. Seasonal patterns of HNA and LNA bacterial carbon stocks and flows, NPP and POC sinking flux at 10-m depth over the growth 
season (November-March) for each of the 4 simulation years (a), and coefficient of variation (Monte Carlo-derived standard deviation 
divided by each data point from Figure 4a) from 1,000 Monte Carlo experiments (b).  

(a) (b)
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Figure 5: Annual mean carbon stocks and flows. Carbon stocks (mmol C m-3) and flows (mmol C m-3 d-1), particle sinking flux (mmol C 1165 
m-2 d-1), and other stocks (e.g., nutrients, mmol m-3) averaged over the growth season in each year are denoted as the numbers on the first 
row, while the numbers in the parentheses are the standard deviation propagated from averaging over the growth season and the Monte Carlo 
experiment-derived uncertainties. Numbers around the arrows represent intercompartmental flows and do not necessarily balance to zero 
due to the build-up or loss in a compartment over the growth season. The magnitude of the N and P flows, as well as the flows smaller than 
0.01 mmol C m-3 d-1, are omitted. RDOM and higher levels are implicit.  1170 
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Figure 6: Properties of the emergent self-organizing map for bacterial community structure shown as taxonomic modes (modified 
from Bowman et al. 2017). Map units are colored and numbered according to taxonomic mode membership (a). Location of samples used 
in this study within the map (b). The map was trained with a larger set of samples, here, only those samples for which BP and flow cytometry 1175 
data were available (those samples used in this study) are shown. Mode boundaries are the same as in (a). Each sample was placed within 
the map unit that had the most similar community structure, however, the position of each samples within the map unit is random. Relative 
abundance of the most abundant taxa in the microbial community structure dataset in each map unit after training (c-h). For example, Ca. P. 
ubique HTCC1062 (c) dominated samples associated with Mode 6, while Dokdonia sp. MED134 (e) dominated samples associated with 
Mode 7. The boundaries across all panels are as in (a). 1180 
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Figure 7: Bacterial physiological and taxonomic association with modelled ecosystem functions. The results of linear regression of key 
modelled ecosystem functions on a categorical predictor of the observed mode (a-c) and on the observed fraction of HNA cells (d-f). 
Regression statistics: (a) number of observations (N) = 43, error degrees of freedom (df) = 35; , root mean square error (RMSE) = 0.68 r2 = 1185 
0.39, adjusted r2 = 0.27, F-statistic value = 3.22, p-value = 0.01; (b) N = 43, df = 35, RMSE = 2.88, r2 = 0.48, adjusted r2 = 0.37, F-statistic 
value = 4.55, p-value = 0.001; (c) N = 43, df = 35, RMSE = 0.03, r2 = 0.81, adjusted r2 = 0.77, F-statistic value = 20.7, p-value < 0.001; (d) 
N = 43, df = 41, RMSE = 0.65, r2 = 0.36, adjusted r2 = 0.34, F-statistic value = 22.8, p-value < 0.001; (e) N = 43, df = 41, RMSE = 0.13, r2 
= 0.51, adjusted r2 = 0.50, F-statistic value = 43.0, p-value < 0.001; (f) N = 43, df = 41, RMSE = 0.04, r2 = 0.57, adjusted r2 = 0.56, F-statistic 
value = 53.5, p-value < 0.001. 1190 
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Figure 8: Climate change experiments. Seasonal progression of the modelled HNA and LNA bacterial carbon stocks and rates and key 
ecosystem functions under observed physical forcing and climate change experiments (a) and the percent change of the corresponding 
variable compared to observed fields in the second and third row of each panel, with the first row of each panel as zero to represent base 1195 
states (b). For example, percent anomaly of HNA biomass in (b) = (HNA biomass under +1°C/-10% – HNA biomass under observed forcing) 
´ 100/HNA biomass under observed forcing.  
  

(a) (b)
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Tables 
 1200 

Parameter Definition HNA LNA 
kDOC,BAC DOC half-saturation concentration for bacterial uptake, mmol C m-3 0.5 0.2 
μBAC Maximum bacterial growth rate, d-1 2.0 1.0 
bR,BAC Parameter control bacterial active respiration versus production, (mmol C m-3 d-1)-1 0.08 0.2 
remiBAC Bacterial nutrient regeneration rate, d-1 8.0 2.0 
exREFR,BAC Bacterial RDOC production rate, d-1 0.04 0.01 
fS,BAC Bacterial selection strength on SDOM 0.1 0.7 
rBBAC Bacterial basal respiration rate, d-1 0.04 0.01 
rAmin,BAC Bacterial minimum active respiration rate, d-1 0.08 0.04 
rAmax,BAC Bacterial maximum active respiration rate, d-1 0.4 0.1 
mortBAC Bacterial mortality rate, d-1 0.2 0.01 
gBAC Bacterial half-saturation concentration in microzooplankton grazing, mmol C m-3 0.55 0.55 

 
Table 1: Initial guess values of bacterial model parameters. Different values are assigned to the model parameters of the HNA and LNA 
groups to simulate distinct physiological processes and trophic interactions for each group. 
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 1205 
 

Data types 𝒂"# CV s 
2010-11 model 
parameter set 

2011-12 model 
parameter set 

2012-13 model 
parameter set 

2013-14 model 
parameter set 

Climatological 
model parameter 

set 
J’0 J’f J’0 J’f J’0 J’0 J’0 J’f J’0 J’f 

NO3 19.70 0.04 0.76 - - 8.04 5.23 11.74 8.88 27.82 13.52 10.41 9.62 

PO4 1.31 0.03 0.04 9.20 7.08 86.26 21.03 41.41 6.64 2.70 7.05 45.76 10.47 

log10(ChlDA) 0.16 0.08 0.09 12.94 5.69 6.55 9.49 12.19 12.66 10.57 7.76 6.57 8.52 

log10(ChlCR) -0.90 0.10 0.10 8.75 6.41 11.04 7.33 10.02 8.37 9.92 8.23 11.10 6.95 

log10(PP) 1.32 0.21 0.21 4.50 4.71 4.51 2.69 9.81 6.26 9.86 7.61 7.19 3.83 

HNA biomass 0.21 0.08 0.02 20.39 2.08 0.15 0.20 24.86 8.49 36.34 10.28 23.78 10.87 

LNA biomass 0.33 0.08 0.02 4.26 3.06 673.73 21.05 860.14 1.99 10.65 6.15 590.29 9.27 

BP 0.11 0.16 0.02 3.54 3.83 16.72 0.65 24.20 13.23 5.65 5.05 12.82 3.50 

SDOC 10.52 0.20 2.13 3.88 3.96 1.38 1.42 - - - - 2.76 2.68 

POC 11.24 0.13 0.78 12.03 12.68 33.39 23.19 - - - - 39.23 16.26 

PON 2.40 0.12 0.43 48.44 48.26 42.77 26.19 - - - - 43.86 27.30 

Total cost 127.94 97.77 884.53 118.46 994.38 66.51 113.51 65.65 793.77 109.29 

 
Table 2: Data types, observed means, coefficient of variation, target errors, and costs before and after optimization. The observed 
mean (𝑎"#), coefficient of variation (CV), and target error (s) of each assimilated data type used for calculating the normalized cost function 
(unitless; Eq. 5) before (J’0) and after optimization (J’f). Data type unit: mmol m-3 for nitrate (NO3), phosphate (PO4); mmol C m-3 for diatom 1210 
chlorophyll (ChlDA), cryptophyte chlorophyll (ChlCR), HNA and LNA bacterial biomass, SDOC, and POC; mmol N m-3 for PON; and mmol 
C m-3 d-1 for primary production (PP) and bacterial production (BP). NO3 was not assimilated in 2010-11, while SDOC, POC, and PON 
were not assimilated in 2012-13 and 2013-14 (denoted as ‘-’ in the table). 
 
 1215 
  



41 
 

 
 

Data types J’c 

2010-11 model parameter set 2011-12 model parameter set 2012-13 model parameter set 2013-14 model parameter set 

J’x, 2011-

12 
J’x, 2012-13 J’x, 2013-14 J’x, 2010-11 J’x, 2012-13 J’x, 2013-14 J’x, 2010-11 J’x, 2011-12 J’x, 2013-14 J’x, 2010-11 J’x, 2011-12 J’x, 2012-13 

NO3 9.62 4.88 10.35 30.82 N/A 10.61 31.96 N/A 4.68 20.32 N/A 6.54 10.26 

PO4 10.47 24.36 5.42 1.46 9.15 5.47 0.88 8.33 28.54 2.70 7.56 37.74 10.70 

log10(ChlDA) 8.52 8.66 13.93 8.45 7.42 13.92 8.67 5.95 7.37 7.91 5.64 7.34 12.45 

log10(ChlCR) 6.95 12.00 17.38 19.62 8.47 8.44 9.50 10.22 7.24 8.99 9.50 7.16 7.54 

log10(PP) 3.83 1.86 8.45 10.71 6.08 10.38 12.94 3.87 1.70 8.18 4.68 2.28 5.88 

HNA biomass 10.87 22.93 11.57 12.57 26.90 25.86 43.08 6.11 9.44 16.01 2.75 27.71 14.95 

LNA biomass 9.27 22.54 4.64 16.39 4.60 17.14 7.57 12.91 28.98 27.43 7.03 25.40 28.47 

BP 3.50 3.39 14.14 5.48 6.76 16.32 10.02 3.80 1.66 5.86 3.02 3.21 13.69 

SDOC 2.68 1.40 N/A N/A 3.90 N/A N/A 3.53 1.85 N/A 3.47 2.46 N/A 

POC 16.26 23.70 N/A N/A 12.02 N/A N/A 12.63 21.51 N/A 14.35 20.23 N/A 

PON 27.30 26.04 N/A N/A 47.53 N/A N/A 47.92 27.48 N/A 49.58 29.47 N/A 

Total cost 109.29 151.77 85.86 105.51 132.85 108.15 124.62 115.27 140.47 97.39 107.57 169.54 103.93 

Portability index 0.68 ± 0.08 0.61 ± 0.12 0.76 ± 0.11 0.73 ± 0.17 

 
Table 3: Cross-validation cost and portability index. J’c as the normalized optimized cost from the climatological model (equivalent to 1220 
J’f  under the climatological model parameter set in Table 2) and J’x as the normalized cross-validation cost (Eq. 7) where, for example, J’x, 

2011-12 under 2010-11 model parameter set indicates the normalized cross-validation cost from simulating 2010-11 model parameter set 
against 2011-12.  


