
1 
 

Microbial diversity-informed modelling of polar marine ecosystem functions 

Hyewon Heather Kim1, 2, *, Jeff S. Bowman3, Ya-Wei Luo4, Hugh W. Ducklow5, Oscar M. Schofield6, 
Deborah K. Steinberg7, Scott C. Doney2 

 
1Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA  5 
2University of Virginia, Charlottesville 22904, USA 
3Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA 
4Xiamen University, Xiamen, China 
5Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA 
6Rutgers University, New Brunswick, NJ 80901, USA 10 
7Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA 

Correspondence to: Hyewon Heather Kim (hkim@whoi.edu) 

Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their variability is key 

to the balance between the production and consumption of organic matter and ultimately particle export in the ocean. Here we 

investigate a potential link between bacterial traits and ecosystem functions in a rapidly changing polar marine ecosystem 15 

based on a bacteria-oriented ecosystem model. Using a data-assimilation scheme we utilize the observations of bacterial groups 

with different physiological states to constrain the group-specific bacterial ecosystem functions. We also investigate the 

association of the modelled bacterial and other ecosystem functions with eight recurrent modes representative of different 

bacterial taxonomic traits. High nucleic acid (HNA) bacteria show relatively high cell-specific bacterial production, 

respiration, and utilization of the semi-labile dissolved organic carbon pool compared to low nucleic acid (LNA) bacteria. Both 20 

taxonomy and physiological states of the bacteria are strong predictors of bacterial carbon demand, net primary production, 

and particle export. Numerical experiments under perturbed climate conditions show overall increased bacterial activity and a 

potential shift from LNA- to HNA-dominated bacterial communities in a warming ocean. Microbial diversity via different 

taxonomic and physiological traits informs our ecosystem model, providing insights into key bacterial and ecosystem functions 

in a changing environment. 25 

1 Introduction  

Microbes regulate many key ecosystem functions in the marine food web. Unicellular primary producers fix organic carbon 

(i.e., an ecosystem function termed primary production), while heterotrophic marine bacteria and archaea (hereafter bacteria) 

utilize the fixed organic carbon for growth and biomass synthesis (i.e., an ecosystem function termed bacterial production) 

(Azam et al. 1983). Thus, the variability in the abundance and activity of bacteria is central to understanding the balance 30 

between production and consumption of organic matter and ultimately particle export. In flow cytometric analyses, bacteria 
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cluster into two groups of cells with different nucleic acid content, including high nucleic acid (HNA) and low nucleic acid 

(LNA) cells (Bouvier, Giorgio, and Gasol 2007; Gasol et al. 1999). These two groups may represent lineages (Schattenhofer 

et al. 2011; Vila‐Costa et al. 2012) or physiological states (Bowman et al. 2017), and HNA cells are generally bigger in both 

cell and genome size compared to LNA cells (Bouvier, Giorgio, and Gasol 2007; Calvo-Díaz and Morán 2006). The 35 

significance of HNA vs. LNA cells in determining distinct ecosystem states and functions has been investigated, but much is 

still unknown. In a recent study along the West Antarctic Peninsula (WAP), the high dimensionality of the bacterial community 

structure data was reduced via emergent self-organizing maps and subdivided into a small number of bacterial modes 

associated with specific taxonomic and functional traits (Bowman et al. 2017). Bowman et al. (2017) demonstrated that a 

combination of taxonomy, physiological structure (i.e., HNA and LNA cells), and abundance of bacterial communities 40 

explained up to 73% of the variance in bulk bacterial production. Their findings implied that bacterial diversity (with different 

physiological and taxonomic traits) could inform a predictive ecosystem model to further explore ecologically important 

questions, such as: Can bacterial traits predict key ecosystem functions such as primary production and particle export? What 

are the underlying mechanisms driving the trait-ecosystem function relationship? And how will this relationship be impacted 

by climate change?  45 

 The WAP is a rapidly warming marine ecosystem, with resulting changes in physical and ecological processes (Clarke 

et al. 2009; Cook et al. 2005; Ducklow et al. 2007; King 1994; Meredith and King 2005; Stammerjohn et al. 2008; Vaughan 

et al. 2003; Vaughan 2006; Whitehouse et al. 2008). Routine monitoring since 1991 through the Palmer Long-Term Ecological 

Research project (Palmer LTER) has revealed climate-driven variations in seasonal phytoplankton accumulation (Saba et al. 

2014; Schofield et al. 2017), bacterial dynamics (Bowman and Ducklow 2015; Hugh W. Ducklow et al. 2012a; Kim and 50 

Ducklow 2016; Luria et al. 2017; Luria, Ducklow, and Amaral-Zettler 2014), nutrient drawdown (Kim et al. 2016), and micro- 

and macrozooplankton dynamics (Garzio and Steinberg 2013; Steinberg et al. 2015; Thibodeau et al. 2019). The wealth of 

Palmer LTER observations enabled the construction of a numerical marine ecosystem model for the coastal WAP region (Kim 

et al. In Review) based on existing regional test-bed models (Friedrichs 2001; Friedrichs et al. 2007; Friedrichs, Hood, and 

Wiggert 2006; Luo et al. 2010, 2012). This WAP ecosystem model was compared against the roughly bi-weekly, water column 55 

time-series data available over the growth season near Palmer Station on Anvers Island, Antarctica (64.77° S, 64.05° W) that 

recorded seasonal variations in phytoplankton bloom initiation, peak, and termination as well as biogeochemistry modulated 

by variations in surface light, mixed layer depth, and sea-ice cover. The model also utilized a data assimilation scheme to 

minimize the misfit between model output and the observational data via a variational adjoint method (Lawson et al. 1995), 

simulating key microbial and ecosystem functions driven by plankton trophic interactions. Serving as a mechanistic model, 60 

assimilation of the Palmer LTER observations constrained poorly measured bacterial processes (e.g., respiration, viral and 

grazing mortality, growth efficiency, carbon demand, and utilization of dissolved organic matter with varying lability) and 

enabled model predictions of the microbial system state in changing environments. However, incorporating molecular 

observations into an ecosystem model is a challenge due to differences in how levels of biological organization are treated in 

observations and models (Hellweger 2020) and the high dimensionality of environmental microbial molecular data. In other 65 
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words, molecular-level changes may not directly translate into a clear picture of changes in community structure or resulting 

changes to bulk ecosystem functions.   

 In this study, we explore a potential link between bacterial traits and ecosystem functions in the warming coastal 

WAP, using a bacteria-oriented ecosystem model modified from the WAP data-assimilative model (Kim et al., In Review). 

The bacterial traits here include both physiological and taxonomic traits. For bacterial physiological traits, our model explicitly 70 

simulates the dynamics of the two ubiquitous bacterial groups of differing nucleic acid content, a HNA group and a LNA 

group, by directly assimilating the group-specific biomass observations. For bacterial taxonomic traits, taxonomic modes 

(calculated by Bowman et al. 2017) are compared to model output values at the corresponding time point, with the assumption 

that taxonomy provides information about microbial ecosystem process and structure. We note that in contrast to genome-

scale, metabolic flux, or gene-centric models (Coles et al. 2017; Feist et al. 2009; Reed et al. 2014), our study combines 75 

statistical products from genomic analyses (mode derivation from bacterial 16S rRNA gene sequence data) with numerical 

ecosystem modelling to incorporate molecular information into ecosystem-level dynamics.  

2 Material and Methods  

2.1 Bacteria-oriented ecosystem model 

Our bacteria-oriented ecosystem model simulates 12 state variables, including diatoms, cryptophytes, HNA bacteria, LNA 80 

bacteria, microzooplankton, krill, labile dissolved organic matter (LDOM), semi-labile DOM (SDOM), ammonium, nitrate, 

phosphate, and detritus (Figure 1). Refractory DOM (RDOM) and higher trophic levels are implicitly represented as model 

closure terms. Distinct to our model compared to the original WAP ecosystem model is the inclusion of HNA and LNA 

bacterial compartments (as biomass) and the partitioning of the bulk bacterial productivity by each bacterial compartment. The 

model is forced by mixed layer depth (MLD), photosynthetically active radiation (PAR) at the ocean surface, sea-ice 85 

concentration, water-column temperature, and eddy diffusivity, and simulates the stocks and flows of C through the model 

state variables using a constant time step of 1 hour and a second-order Runge-Kutta scheme. An overview of the ecosystem 

model (Text S1) and full bacterial model schemes are found in the Supplementary Material (Text S2). In essence, the time rate 

of change of the group-specific biomass (constrained by observations, see Material and Methods 2.4) is calculated as follows:  

 
dBHNA

dt
  = (GROW HNA

 LDOC + GROW  HNA
 SDOC – RESPHNA

  – GRAZ  HNA
 C  – EXCR  HNA

 C  – REFR  HNA
 C  –  MORT  HNA

 C )
t

   (1) 90 

where BHNA is biomass (mmol C m-3), GROW HNA
 LDOC is LDOC consumption (mmol C m-3 d-1; Equation S4), GROW  HNA

 SDOC is 

SDOC consumption (mmol C m-3 d-1; Equation S5),	RESPHNA
  is respiration (mmol C m-3 d-1; Equation S9), GRAZ  HNA

 C  is C-

specific grazed amount of cells by microzooplankton (mmol C m-3 d-1; Equation S10), EXCR  HNA
 C  is C excretion (mmol C m-3 

d-1; Text S2), REFR  HNA
 C  is RDOC excretion (mmol C m-3 d-1; Text S2), and MORT  HNA

 C  is viral mortality (mmol C m-3 d-1; 

Text S2) of the HNA group (the same form applies to LNA group below).  95 
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dBLNA

dt
  = (GROW LNA

 LDOC + GROW  LNA
 SDOC – RESPLNA

  – GRAZ  LNA
 C  – EXCR  LNA

 C  – REFR  LNA
 C  –  MORT  LNA

 C )
t

     (2) 

By contrast, the group-specific production (BPHNA and BPLNA, mmol C m-3 d-1) is determined during optimization, given that it 

is the sum of the group-specific production (i.e., bulk bacterial production = BPHNA + BPLNA) that is constrained by observations:  

BPHNA = (GROW HNA
 LDOC  + GROW  HNA

 SDOC  –  RESPHNA
 )

t
       (3) 

BPLNA = (GROW LNA
 LDOC  + GROW  LNA

 SDOC  –  RESPLNA
 )

t
        (4) 100 

2.2 Modelling framework 

The modelling framework in this study consists of a dynamic (mechanistic) part and a data-driven part (Figure 2). The dynamic 

part represents the processes associated with the data-assimilative model (Figure 1) that makes predictions of the microbial 

ecosystem processes based on prognostic, time-evolving ordinary differential equations (Text S2). The data-driven part 

represents how bacterial modes (Bowman et al. 2017) are compared to optimized model outputs. Our analysis relies on the 105 

two types of modes described in Bowman et al. (2017): taxonomic nodes (modes hereafter) were determined from 16S rRNA 

gene sequence abundance, while functional modes (fmodes) were derived from predicted community metabolic structure. 

Briefly, sequence reads were categorized into closest estimated genomes and closest completed genomes via the paprica 

pipeline (Bowman and Ducklow, 2015) and the high dimensional community and metabolic structure data were reduced to 2-

D space via a self-organizing map and K-means clustering of map units (Bowman et al. 2017). The final clustering of map 110 

units constitutes the modes, and each sample was assigned the mode of its closest map unit. In this approach the mode is a 

single categorical variable that succinctly describes key structural attributes of the sample. It is important to recognize the 

categorical nature of these modes, and to understand that – because of the 2-D nature of the map – there is no linear progression 

among modes. Thus Mode 1, for example, is not necessarily more similar to Mode 3 than it is to Mode 7. Neither mode nor 

fmodes is necessarily correlated to physiological traits of the bacteria (i.e., modelled HNA- and LNA compartments). In other 115 

words, the relative abundance of HNA or LNA, mode, and fmodes are derived from separate observations of different 

parameters in the same bacterial samples and therefore independent with each other by design.   

We select a nearshore Palmer LTER water-column time-series station, Station B (64.77°S, 64.05°W), in the coastal 

WAP as the modelling site. The Palmer LTER Station B datasets consist of roughly bi-weekly physical, chemical, and 

biological profiles collected from small boat via a profiling CTD and discrete water samples. Additional observational data 120 

are utilized for bacterial flow cytometric (HNA and LNA) and 16S rRNA gene amplicon data collected from Arthur Harbour 

Station B at 10 m depth (situated 1 km from the Palmer Station B) or Palmer Station seawater intake at 6 m depth (Bowman 

et al. 2017). A single upper-ocean layer depth (10 m) is modelled for 4 consecutive Palmer LTER growth seasons, including 

November 2010 - March 2011 (2010-11 hereafter), 2011-12, 2012-13, and 2013-14. Given the availability of the Palmer LTER 
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observations over the Austral spring-summer season, we optimize the model each year separately over the timeframe of 125 

available observations. This way, each year possesses its own unique optimized model parameter set, or a model solution. In 

addition to individual years, we also optimize the model for the climatological year (i.e., climatological model). The 

climatological year is constructed using four years (2010-11 to 2013-14), rather than the whole Palmer LTER multi-decadal 

record (since 1991), due to the availability of HNA and LNA biomass data only in those four years. Details on constructing 

the climatological year and model initialization and spin-up are found in the Supplementary Material (Text S3). 130 

2.3 Data assimilation and parameter optimization  

Our model utilizes a variational adjoint data assimilation scheme (Lawson et al. 1995) to minimize the misfit between 

observations (i.e., assimilated data, see Material and Methods 2.4) and model output by optimizing a subset of model 

parameters (Friedrichs 2001; Spitz, Moisan, and Abbott 2001; Ward et al. 2010). The data-assimilation scheme (Figure 2) 

consists of four main steps (Glover, Jenkins, and Doney 2011). First, the model is integrated forward in time from prescribed 135 

initial conditions and initial model parameter guess values (Table 1) and calculates the model-observation misfits called total 

cost function or cost (Material and Methods 2.5). Second, an adjoint model constructed using the Tangent linear and Adjoint 

Model Compiler (TAPENADE) is integrated backward in time and compute the gradients of the total cost with respect to the 

model parameters. Third, the computed gradients are passed to a limited-memory quasi-Newton optimization software M1QN3 

3.1 (Gilbert and Lemaréchal 1989) to determine the direction and optimal step size by which the model parameters should be 140 

modified to reduce the total cost. Finally, a new forward mode simulation is performed using the new set of modified 

parameters from the third step. These four steps are conducted in an iterative manner until the pre-set convergence criteria are 

satisfied ensuring the convergence of the optimized parameters and a local minimum achieved by the total cost. The pre-set 

criteria include the low sensitivity (gradients) of the total cost with respect to each optimized model parameter and positive 

eigenvalues of the Hessian matrix (Material and Methods 2.6). Every assimilation cycle, we ensure that group-specific bacterial 145 

model parameters are optimized in the direction to properly represent the dynamics associated with each group (Table 1), in 

which we assign different magnitudes of each parameter based on our best guesses and literatures (del Giorgio and Cole 1998; 

Jiao et al. 2010). For instance, maximum bacterial growth rate of the HNA group (μHNA, d-1) should be higher than that of the 

LNA group (μLNA, d-1), so if μHNA is optimized to a smaller value than μLNA, μHNA is reset back to the original value instead of 

being updated.   150 

2.4 Assimilated data 

We assimilate Palmer LTER observational data from 10 m corresponding to compartments and flows in the model, including 

nitrate, phosphate, phytoplankton taxonomic specific chlorophyll (Chl) for diatoms and cryptophytes (Schofield et al. 2017), 

microzooplankton biomass (Garzio et al. 2013), primary production (PP), bulk bacterial production (BP), HNA bacterial 

biomass, LNA bacterial biomass, semi-labile dissolved organic carbon (SDOC), particulate organic carbon (POC), and 155 

particulate organic nitrogen (PON). Climatological observations of Chl (1992-93 to 2009-10) and a single year observation of 
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microzooplankton (2010-11) are assimilated to constrain the model parameters because these data are unavailable for some 

study years. SDOC is calculated by subtracting the background (RDOC) concentration (40.0 mmol m-3) from climatological 

total DOC concentration. POC (PON) are assimilated to represent the model detrital pool but its measurements also contain 

living biomass from bottle filter experiments. For example, climatological observations show that living phytoplankton and 160 

bacterial biomass account for 74% of total POC and 71% of total PON, so these fractions are used to exclude living biomass 

from the bulk particulate material pool. When converting Chl to phytoplankton C (N) biomass, the maximum Chl to N ratio is 

used along with other reference ratios (Tables S2-S6). Due to the discrepancy in the timing and location from our model 

experiments, the microzooplankton model-observation misfits are not discussed in this study. Krill biomass data are not 

assimilated due to the strong patchiness of the distribution (many zero values) that would hinder proper model optimization. 165 

BP (mmol C m-3 d-1) is derived from 3H-leucine incorporation rate (pmol l-1 h-1) data using the conversion factor of 1.5 kgC 

mol-1 leucine incorporated (H. W. Ducklow 2000). Group-specific bacterial biomass (mmol C m-3) is estimated from bacterial 

abundance measured by flow cytometry (i.e., bulk bacterial biomass multiplied by the fraction of each group, fHNA or fLNA, 

with the conversion factor of 10 fgC cell-1) (Fukuda et al. 1998). 

2.5 Cost function and portability index  170 

The total cost function or cost (J) is defined as follows to represent a misfit between observations (a"m,n) and model output 

(am,n) (Luo et al. 2010):  

J = ∑ 1
Nm
∑ ( am,n-a!m,n

σm
)Nm

n=1
M
m=1

2         (5) 

where m and n represent assimilated data types and data points, respectively, M and Nm are the total number of assimilated 

data types and data points for data type m, respectively, and σm is the target error for data type m. Hereafter, we present the 175 

total cost normalized by M (J’ = J/M) and normalized costs of individual data types (J’m) throughout this article as the model-

observation misfit equivalent to a reduced Chi-square estimate of model goodness of fit, where J’ = 1 indicates a good fit from 

optimization, J’ >>1 indicates a poor fit due to underestimation of the error variance or the fit not fully capturing the data, and 

J’ <<1 indicates an overfitting of the data, fitting the noise, or overestimation of the error variance. The base-10 logarithm of 

Chl and PP is used in Equation 1 to account for high productivity of the WAP waters and the approximate log-normal 180 

distribution of those data types (Campbell 1995; Glover et al. 2018). The target error σm	is calculated for each data type m as:  

σm = a"m,n$$$$$ · CVm          (6) 

where a"m,n$$$$$ is the climatological mean of the observations and CVm	is the adjusted coefficient of variation (CV) of the 

observations of each data type from 10 m depth (due to observational error and seasonal and interannual variations). The 

average CV of each data type at a single depth across the modelled years was 3-7 times higher compared to those across every 185 

measured depth within the mixed layer over an extended year period (2002-03 to 2011-12; Kim et al. In Review) and is 

therefore reduced to the level in the mixed layer to avoid an overestimated target error of each data type. The rationale behind 

using the adjusted CV in the target error calculation is based on Luo et al (2010), in which all properties in the mixed layer 
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should be completely mixed, a perfect measurement without significant errors should generate similar data values at every 

measured depth within the mixed layer, and the average CV of all the depth profiles can be used as CV in the target error 190 

calculation. The standard deviation is used as target errors of the log-converted data types. The CV of the log-converted data 

type is estimated as the average of ± 1 standard deviation in log space converted back into normal space (Doney et al. 2003; 

Glover et al. 2018). 

We compute the portability index to evaluate the broader applicability of the optimized model parameter set of each 

year in predicting dynamics of the other year (Friedrichs et al. 2007): 195 

Portability index = J’c/J’x         (7) 

where J’x is the normalized cross-validation cost when a model parameter set optimized for a given year is used to simulate 

another year, and J’c is the normalized total cost of the climatological model. A portability index close to 1 indicates a more 

portable model, or a system that is not particularly sensitive to year-to-year variations in optimized model parameters, while 

an index <<1 indicates a less portable model, or a system that is sensitive to year-to-year variations in optimized model 200 

parameters.  

2.6 Uncertainty analysis 

The uncertainties of the optimized parameters are estimated from a finite difference approximation of the complete Hessian 

matrix during iterative data assimilation processes (i.e., second derivatives of the cost function with respect to the model 

parameters, see Text S4 for details). When computed at the minimum of the cost function value, the square root of a diagonal 205 

element in the inversed Hessian matrix is the logarithm of the relative uncertainty of the corresponding optimized parameter. 

The absolute uncertainty of the constrained parameter is calculated as a∙e±σi where a is the value of optimized parameter and 

σi is the relative uncertainty of the corresponding optimized parameter. We then conduct Monte Carlo experiments to calculate 

the impact of the optimized parameter uncertainties on the model results. The Monte Carlo experiments consist of 1) creating 

an ensemble of parameter sets (N = 1,000) by randomly sampling values within the uncertainty ranges of the constrained 210 

parameters and 2) then performing a model simulation using each parameter set. All uncertainty estimates are calculated 

following standard error propagation rules and presented herein as ± 1 standard deviation. 

3 Results  

3.1 Model performance and validation 

The iterative, data assimilation-parameter optimization procedure (Figure 2) reduces by 87-91% the misfits between 215 

observations and model output across all years compared to the misfit with the initial guess parameters (Table 2). The 

optimized parameters satisfy the pre-set convergence criteria by reaching local cost function minima with low gradient values 

with regards to the total costs. The reduction in the total costs is achieved by optimizing a subset of the model parameters (i.e., 

https://doi.org/10.5194/bg-2020-302
Preprint. Discussion started: 2 September 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

7-10 parameters with low uncertainties or constrained parameters and 12-15 parameters with large uncertainties or optimized 

parameters; Tables S2-5). The constrained parameters in common across all years are αDIATOM (initial slope of photosynthesis 220 

vs. irradiance curve of diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), Θ (maximum Chl:N ratio, g Chl a (mol N)-1), μLNA (maximum 

LNA growth rate, d-1), rAmax, HNA (maximum HNA active respiration rate, d-1), gHNA (half-saturation density of HNA bacteria 

in microzooplankton grazing, mmol C m-3), and gHNA (half-saturation density of LNA bacteria in microzooplankton grazing, 

mmol C m-3).  

Model skill is further evaluated using point-to-point comparisons (Figures S1-S5) and Taylor diagrams (Figure 3). 225 

The Taylor diagrams highlight that the optimized model has better skill for 2010-11 and 2011-12, with more data types 

exhibiting relatively high correlation coefficients and low centred (bias removed) root-mean-square difference (RMSD). Three 

core variables of interest in this study, including HNA biomass, LNA biomass, and BP, show overall good model-observation 

agreements with relatively high correlations and low RMSD. 

Cross-validation cost analyses show the overall model-observation misfit increases as expected when a set of 230 

parameters optimized for one year is used to simulate another year’s dynamics, indicating that each growth season is best 

modelled using its own unique set of optimized parameters (Table 3). The magnitude of the cost function increase varies by 

year pair, ranging from 0.27 to 0.81. The optimized model parameters for 2012-13 and 2013-14 are most portable, followed 

by the model parameters of 2010-11 and 2011-12.  

3.2 Bacterial carbon stocks and flows  235 

Seasonal progression of the C stocks and flows for each bacterial group shows significant seasonal variability (Figure S6) and 

interannual variability (Figure 4A). Average C stocks and flows in the food-web are calculated over the growth season at 10-

m depth for each year (Figure 5) and normalized by NPP (normalized by NPP in 1-day for C stocks) (Figure S7). The mean 

HNA biomass is 6 ± 4 times (mean ± propagated standard deviation from the Monte Carlo sensitivity experiments and season-

averaging; Figure 4B) larger than the mean LNA biomass in 2012-13, while the mean LNA biomass is 9 ± 8 times larger than 240 

the mean HNA biomass in 2011-12. Bacterial carbon demand (BCD) is equivalent to total carbon flows from LDOC and 

SDOC pools to bacteria (BCD = BP + bacterial respiration; Figure 5) and mostly supported by the LDOC pool (77 ± 5% to 97 

± 4%) for both bacterial populations across years. Partitioning of the BP (BP = BCD - bacterial respiration; Figure 5) belonging 

to each bacterial group is determined during optimization. The mean HNA BP ranged from 0.01 ± 0.05 to 0.23 ± 0.25 mmol 

C m-3 d-1, while the mean LNA BP ranged from 0.01 ± 0.02 to 0.08 ± 0.07 mmol C m-3 d-1. The mean cell-specific BP (BP 245 

divided by bacterial biomass or per-cell BP, d-1) is higher for the HNA group, ranging from 0.17 ± 0.61 to 0.40 ± 1.69 d-1 for 

HNA cells and 0.04 ± 0.05 to 0.16 ± 0.20 d-1 for LNA cells. The mean per-cell respiration rate (d-1) is also higher for the HNA 

group compared to the LNA group. The mean cell-specific SDOC uptake rate (d-1) is higher for the HNA group, while the 

mean cell-specific LDOC uptake rate (d-1) is higher for the LNA group. The mean bacterial growth efficiency, BGE (BP 
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divided by BCD) of the HNA group is lower than that of the LNA group, ranging from 0.19 ± 0.82 to 0.38 ± 0.38 for HNA 250 

cells and from 0.52 ± 1.18 to 0.62 ± 0.62 for LNA cells. 

In the model, the time rate of change of the bacterial biomass is determined by the difference between the production 

term (i.e., total DOC uptake or BCD) and loss terms (i.e., respiration, grazing, viral mortality, and RDOC excretion). In other 

words, the fate of BCD is formulated as follows:  

BCD = 
dBHNA

dt
	+ respiration + grazing + viral mortality + RDOC excretion     (8) 255 

or 

1 = (
dBHNA

dt
)/BCD + respiration/BCD + top-down control/BCD + RDOC excretion/BCD    (9) 

where B is bacterial biomass, the sum of grazing and viral mortality is equivalent to top-down control, and four different 

bacterial carbon utilization efficiencies sum to 1, including the efficiencies of biomass synthesis, respiration, top-down control 

(grazing and viral mortality), and RDOC excretion. The largest loss term with regards to the fate of BCD is respiration for 260 

HNA cells, accounting for 62 ± 7.7% to 81 ± 4.0% of the BCD (i.e., the mean respiration efficiency of 0.6 ± 0.08 to 0.8 ± 0.04 

across years). Top-down control is a relatively large loss term for LNA cells, accounting for 35 ± 0.30% to 60 ± 2.5% (i.e., the 

mean top-down control efficiency of 0.4 ± 0.003 to 0.6 ± 0.03 across years), equally large or larger than top-down control on 

HNA cells (i.e., the mean top-down control efficiency of 0.1 ± 0.004 to 0.4 ± 0.03 across years).  

The rest of the ecosystem state variables (stocks and flows) fall into one of three categories: 1) the variables for which 265 

climatological or a single year values are assimilated (diatom-specific Chl, cryptophyte-specific Chl, and microzooplankton 

biomass); 2) the variables for which observational values for the given year are assimilated (nutrients, POC or detritus, and 

SDOC), and 3) the variables that are not directly assimilated (krill, LDOC, carbon export flux). There is a little interannual 

variability in the average C stocks of the first category except relatively large microzooplankton biomass in 2011-12 (Figure 

5B) and cryptophyte biomass in 2012-13 (Figure 5C). Although nitrate is not assimilated in 2010-11 and detritus and SDOC 270 

are not assimilated in 2012-13 and 2013-14, their simulated values in those unassimilated years are comparable to other 

assimilated years.  

3.3 Bacterial physiological and taxonomic association with ecosystem functions 

A property map of the emergent self-organizing map nodes (as generated by Bowman et al. 2017) shows the mode association 

with community structure (Figure 6). The coloured map units (the circles in the background) are clustered into taxonomic 275 

mode membership or modes (Figure 6a), showing a different frequency of appearance year-to-year (Figure 6b). Each mode is 

dominated by unique bacterial taxa. For example, Candidatus Pelagibacter is most abundant in Mode 6 (Figure 6c), Dokdonia 

sp. MED134 in Mode 7 (Figure 6d), Candidatus Thioglobus singularis PS1 in Mode 1 (Figure 6e), Owenweeksia 
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hongkongensis DSM 17368 in Mode 2 (Figure 6f), Rhodobacteraceae in Mode 5 (Figure 6g), and Planktomarina temperata 

RCA23 in Mode 4 (Figure 6h).  280 

To explore a potential link between mode and the key model ecosystem functions, we first extract the modelled net 

primary production (NPP), POC export, and BCD from our ecosystem model at the time of bacterial samples that are placed 

into a single mode (observed). We then perform a linear regression with mode as a factor (i.e., mode as a categorical predictor 

with 8 modes rather than an ordinal or continuous variable; equivalent to a one-way ANOVA with 8 different categories). 

fmode does not show a significant relationship with any of the model ecosystem functions examined (all p > 0.05; not shown). 285 

By contrast, 19%, 52%, and 66% of the total variance in the modelled NPP, C export, and BCD is explained by mode (Figures 

7a-c). Mode 4 is associated with low NPP and low POC export, while Modes 3, 5, and 7 are associated with high NPP and 

high POC export. Mode 4 is associated with low BCD, while Mode 7 is associated with high BCD. Mode 6 occurs during 

relatively high NPP but low POC export. Mode is positively correlated to fHNA (r2 = 0.52, p < 0.001; not shown). Similarly, 

we examine a potential link between fHNA and the key model ecosystem functions as described above (i.e., linear regression 290 

where an observed fHNA is a predictor and the modelled ecosystem functions are dependent variables). fHNA is positively 

correlated to NPP (r2 = 0.12, p = 0.01; Figure 7d) and POC export to a moderate extent (r2 = 0.28, p <0.001; Figure 7e) and to 

BCD to a strong extent (r2 = 0.45, p <0.001; Figure 7f). The stepwise addition of one predictor variable to the other predictor 

variable (i.e., fHNA adding to mode or vice versa) does not improve the model performance (not shown). These results suggest 

a clear link between modelled ecosystem functions and observed bacterial molecular data (i.e., modes).  295 

3.4 Climate change experiments 

We explore the response of the modelled bacterial dynamics (Results 3.2-3.3) to changing climate along the WAP (Figure 8). 

Due to a varying range of portability of the optimized model solution for each year, we perform this experiment with the 

climatological model parameter set (Table S6) to examine an overall system response under perturbed ocean temperature 

(+1°C and +2°C relative to observed temperatures) and sea-ice forcing fields (10% and 20% loss of sea-ice relative to observed 300 

sea-ice concentrations). The experiments are conducted under each condition separately (i.e., warming or sea-ice melting alone 

scenario; Figures S7-8) and simultaneously (i.e., climate change scenario; Figure 7), but the results from only the climate 

change scenario are discussed below, as despite different impacts of each physical forcing changes (i.e., temperature affects a 

variety of rate processes, while sea-ice concentration affects light levels and photosynthesis but not the mixed layer depth) 

climate change would cause simultaneous changes in sea ice and water temperature along the WAP. 305 

The climate change experiments exhibit a combination of changes in overall ecosystem stocks and rates integrated 

over the growth season and shifts in the seasonal timing or phenology (Figure 8A), compared to the base state (first row as the 

base state and second and third rows as anomalies in Figure 8B). Compared to other stocks and flows, HNA bacterial rates 

respond most to the perturbed climate conditions. In response to 2°C warming and 20% less sea ice, the maximum values 

increase for LDOC uptake (69 ± 2.2%; the maximum value ± standard deviation from Monte Carlo errors; results of sensitivity 310 
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experiments not shown), SDOC uptake (81 ± 1.9%), RDOC excretion (48 ± 1.6%), grazing (97 ± 5.0%), viral mortality (48 ± 

1.6%), and respiration (69 ± 1.7%) of HNA cells, and for LDOC uptake (49 ± 3.4%), SDOC uptake (67 ± 3.9%), RDOC 

excretion (33 ± 2.6%), grazing (63 ± 3.9%), viral mortality (33 ± 2.6%), and respiration (49 ± 3.4%) of LNA cells. The 

maximum values also increased for HNA biomass (48 ± 1.6%) and LNA biomass (33 ± 2.6%). In response to 2°C warming 

and 20% less sea ice, the events of high NPP, POC export flux, and diatom-, microzooplankton-, and krill accumulations shift 315 

to earlier in the season, with the maximum values of 50 ± 0.10%, 50 ± 0.20%, 20 ± 0.10%, and 25 ± 0.20%, and 38 ± 0.48%, 

respectively. More SDOC accumulates in the early spring (the maximum increase of 10 ± 0.10%) as a result of increased 

plankton accumulations and SDOC excretion during the same period. By contrast, LDOC becomes strongly limited throughout 

the growth season (the maximum decrease of 24 ± 1.0%).  

4 Discussion  320 

4.1 Model performance and validation 

In our study, only a subset of the model parameters is optimized to best simulate bacterial and other ecological patterns for 

each year, in accordance with other data-assimilative ecosystem model studies (Friedrichs 2001; Friedrichs et al. 2007; 

Friedrichs, Hood, and Wiggert 2006; Luo et al. 2010, 2012). In general, optimization of this class of marine ecosystem models 

requires adjustment of only a small number of independent model parameters to achieve well-posed model solutions, due to 325 

the highly cross-correlated nature of parameters in the inherently nonlinear model equations (Fennel et al. 2001; Harmon and 

Challenor 1997; Matear 1996; Prunet, Minster, Echevin, et al. 1996; Prunet, Minster, Ruiz‐Pino, et al. 1996). Most of the 

constrained parameters in our study are directly associated with bacterial processes, with overall better model-observation fits 

for bacterial data types, giving confidence in the simulated bacterial C stocks and flows. Despite the important biogeochemical 

role that heterotrophic marine bacteria play in the ocean, the vast majority of marine ecosystem models neither include bacteria 330 

as a model compartment nor explicitly simulate bacterial processes. Most existing models parameterize the complex bacterial 

remineralization processes of the (sinking) organic matter with depth as a function of POC concentration and temperature, or 

by fitting with power law functions. Cellular functions, taxa, and functional gene expression of other prokaryotes, such as 

cyanobacteria (Hellweger 2010; Martín-Figueroa, Navarro, and Florencio 2000; Miller et al. 2013), or a diverse suite of 

microbial functional groups (Coles et al. 2017; Dutkiewicz et al. 2020) have been modelled so far; however, our study is the 335 

first to explicitly model bacterial groups of different physiological traits.  

Here, optimization sheds light on major unknown parameters associated with the bacterial grazing process, including 

gHNA and gLNA (half-saturation density of HNA and LNA bacteria in microzooplankton grazing, respectively; Text S1; Equation 

S11). Microzooplankton grazing of a given bacterial group in the model is simulated using Holling Type 2 density-dependent 

grazing with a preferential prey selection on diatoms, cryptophytes, and the other bacterial group, in which the single 340 

microzooplankton maximum grazing rate is implemented for both bacterial groups for model simplicity purposes (Text S1; 
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Equation S11). Thus, it is the half-saturation density that determined the degree of preferential grazing by microzooplankton 

on a certain bacterial group, the change of which would ultimately depend on biomass of each group. Due to the lack of a 

priori knowledge on the relative magnitude of gHNA and gLNA, we assign the identical initial guess value (Table 1) to let the 

data assimilation scheme find the optimized values that best fit overall observations. Compared to gLNA values, smaller 345 

optimized gHNA values across all years (Tables S2-6) indicate preferential grazing of HNA cells by microzooplankton, 

consistent with previous speculations that grazers selectively remove larger and more active cells (Giorgio et al. 1996; 

Gonzalez, Sherr, and Sherr 1990; Sherr, Sherr, and McDaniel 1992), or HNA cells (Garzio et al. 2013). Despite respiration 

being the largest sink for the BCD of HNA cells, the absolute amount of grazing and its values normalized by group-specific 

biomass are modelled to be still greater for HNA cells, compared to LNA cells (Figure 4), supporting preferential grazing of 350 

HNA cells by microzooplankton.  

The model portability index reflects the extent to which a single model framework (i.e., parameters and equations) 

captured the observed variability in different years, given variable environmental forcing and the accompanying shift in 

plankton ecosystem structure. The varying range of the portability index values renders it difficult to pick one particular year’s 

model solution that represents the climatological dynamics in other years. In other words, better model skill might be found 355 

by simply utilizing parameters from assimilating climatological data into a more general version of the model (see Discussion 

4.4). These varying portability characteristics of the model in each Palmer LTER sampling year are consistent with those of 

the original WAP data-assimilative model forced by two contrasting sea-ice conditions (Kim et al. In Review).  

4.2 Bacterial carbon stocks and flows 

Our model results show significantly higher per-cell (or per C biomass) HNA BP across all years compared to the LNA group. 360 

The higher per-cell rates of HNA cells in the model is largely due to the way the parameter optimization is performed to keep 

higher maximum cell-specific growth rates of HNA cells compared to those of LNA cells, but these per-cell rates are a function 

of both  bulk rates and biomass stocks that are constrained from measurements and determined from trophic interactions in the 

model. As with phylogenetic groups (Fuchs et al. 2000; Teira et al. 2009; Yokokawa et al. 2004), cell-specific growth rates 

(equivalent to per-cell BP in our study) are expected to differ among distinct bacterial physiological groups, but there are 365 

limited studies that focused on group-specific cell activities or growth rates (Gasol et al. 1999; Giorgio et al. 1996; GÜnter et 

al. 2008; Longnecker, Sherr, and Sherr 2005; Moràn, Ducklow, and Erickson 2011). Moran et al (2011) showed that HNA 

cells greatly outgrew LNA cells in Waquoit Bay Estuary, Massachusetts, with a cell-specific growth rate of up to 2.26 d-1, 

compared to relatively slow growth of LNA cells (< 0.5 d-1). High cell-specific HNA BP in our model could be attributed to 

much larger total SDOC uptake of HNA cells than LNA cells, despite higher HNA respiration. We note that HNA cells also 370 

have significantly higher SDOC uptake rates per unit C biomass compared to LNA cells. Several studies demonstrate that 

HNA cells depend more than LNA cells on phytoplankton substrates for growth and metabolism (Li, Jellett, and Dickie 1995; 

Morán et al. 2007; Scharek and Latasa 2007), but our study is the first to show the importance of the SDOC pool for the carbon 

demand of HNA bacteria. The hypothesis that WAP bacteria might rely on SDOC has received indirect support previously, 
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presumably due to LDOC limitation (Hugh W. Ducklow et al. 2011; Kim and Ducklow 2016; Luria et al. 2017). HNA cells 375 

are also modelled to have relatively high per-cell respiration and respiration efficiency with regard to the fate of their carbon 

demand, while carbon demand of LNA cells is more likely lost to top-down control factors followed by respiration. The high 

HNA bacterial respiration drives an overall lower BGE of the HNA cells, despite their high BCD.  

 Although much of the discussion focuses on bacteria, our model also captures well the rest of the ecosystem variables. 

The WAP typically exhibits strong interannual variability in phytoplankton and zooplankton biomass accumulations (Ducklow 380 

et al. 2007), but the lack of their strong interannual variability in the model is due to assimilating climatological observations 

of diatom- and cryptophyte-specific Chl and a different year’s observations of microzooplankton biomass. Krill are not 

assimilated, but predicted as reasonable simulated values (0.13 ± 0.03 to 0.40 ± 0.18 mmol C m-3) compared to the available 

field data (the mean krill biomass = 0.12 ± 0.03 mmol C m-3 and the maximum krill biomass = 0.57 mmol C m-3 in 2017-18 at 

Palmer Station; data provided by D. Steinberg).  385 

4.3 Bacterial physiological and taxonomic association with ecosystem functions 

In Bowman et al. (2017) fHNA and mode alone accounted for 36% and 46% of the variance in bulk BP, respectively, and 

together accounted for up to 51% of the variance in bulk BP. In our study, Modes 3, 5, and 7, characterized by copiotrophic 

taxa with large genomes and more 16S rRNA gene copies (Bowman et al., 2017), are associated with high NPP, POC export, 

and BCD, while Modes 4 and 6, characterized by taxa associated with more oligotrophic conditions, are associated with low 390 

NPP, POC export, and BCD. Dokdonia sp. MED134, a common bacterial species of the modes associated with high NPP, 

POC export, and BCD, is a proteorhodopsin-containing marine flavobacterium shown to grow faster with light (Gómez-

Consarnau et al. 2007; Kimura et al. 2011) and in conditions under which resources are abundant (Gómez-Consarnau et al. 

2007). Given that the coastal WAP is frequently light-limited (Ducklow et al. 2012), association of D. Dokdonia MED134 

with high NPP suggests sufficient irradiance and therefore light-enhanced growth rates and cell yields of this species. Mode 395 

4, by contrast, is dominated by Planktomarina temperata RCA23, a slowly growing bacterium that specializes in using 

complex organic substrates (Giebel et al. 2013). These attributes are consistent with this species’ high occurrence during low 

NPP and low POC in the model. Candidatus Pelagibacter, abundant in Mode 6, is generally known as an oligotrophic specialist 

with a low DOC requirement, but is often observed during the Antarctic phytoplankton blooms (Delmont et al. 2014; Luria, 

Ducklow, and Amaral-Zettler 2014), consistent with its occurrence during high NPP periods in our model results.  400 

 The bacterial mode association with BCD, NPP, and particle export suggest that bacteria in the coastal WAP are 

controlled by resource availability. The modes predicted by high NPP and high POC export were also characterized by high 

BP (Bowman et al. 2017). It has been hypothesized that due to minimal inputs of terrestrial organic matter, bacteria in the 

WAP must ultimately rely on in situ NPP for organic matter source (Ducklow et al. 2012b). Indeed, our results show that 

compared to zooplankton excretion and detrital dissolution, phytoplankton excretion accounts for a major fraction of DOC 405 

production. Similarly, phytoplankton account for a major fraction of detritus production, but particle export in the model is 

also modelled to be proportional to optimizable particle sinking speed that is most likely linked to the difference in the time-
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rate change of POC observations. This explains the occasional discrepancy between NPP and POC export and why Mode 6 

shows a different relationship with NPP and POC export. In summary, our study provides a novel framework for the prediction 

of different ecosystem functions using microbial taxonomy. Certain modes represent distinct ecosystem states in the WAP and 410 

such mode-state associations are reasonably explained from microbial perspectives. However, we do not address a seasonal 

succession and development in mode itself or the mode predictability of the key WAP ecosystem states. Future investigations 

should focus on directly assimilating a few dominant or seasonally distinct modes in the ecosystem model, to fully resolve 

seasonality of the mode-state associations along the WAP.   

4.4 Climate change scenarios  415 

The WAP has experienced significant atmospheric and ocean warming and resulting changes in marine ecosystem processes 

and further climate change is projected for the next several decades. Based on our baseline ecosystem model simulations 

(Results 3.2-3.3), we investigate how future climate scenarios, with decreasing sea ice and warming temperature together, 

might affect bacterial dynamics and ecosystem functions. Under changing climate conditions, it is expected that increased NPP 

and phytoplankton- and zooplankton accumulations early in the season would result in a significant build-up of DOC pools. 420 

This is the case only for SDOC, but bacteria are soon strongly LDOC-limited due to their preferential and increased LDOC 

uptake for their primary carbon source. The growth of bacteria and increased bacterial production rates during strong LDOC 

limitation indicate that bacteria depend on SDOC to satisfy the rest of their carbon demand, resulting in the depletion of SDOC 

pool as the season progresses. In other words, bacteria are more likely resource-limited, especially labile pool of the organic 

matter, and SDOC subsequently plays an increasingly important role as a part of the bacterial carbon demand. This change is 425 

particularly important in HNA cells, as shown by a relatively large increase of BCD via SDOC pool, compared to LNA cells. 

Despite all four loss terms with regard to the fate of the BCD (i.e., respiration, grazing, viral mortality, and RDOC excretion) 

increase for both groups under perturbed conditions, overall high BCD leads to increased biomass of both bacterial groups. 

Temperature is a major factor regulating bacterial biomass, production, and growth rates by changing the rate of enzymatic 

reactions (Kirchman, Morán, and Ducklow 2009; White et al. 1991). In our case, stocks and rates of both HNA- and LNA cells 430 

somewhat increase under a temperature warming alone scenario (Figure S8) but much more so under a sea-ice melting alone 

scenario (i.e., increased photosynthesis and resource availability). This is evident for all variables during high NPP and 

plankton accumulation events early in the spring (Figure S9), except for SDOC uptake of both bacterial groups due to overall 

increased resource availability. This suggests that temperature per se is not a more important limiting factor for bacterial 

growth than resource availability (Ducklow et al. 2012a), and warming temperature would rather enhance bacterial utilization 435 

of the already increased organic matter from increased phytoplankton activity. Our findings also suggest that future climate 

conditions along the WAP would further impact the distribution of taxonomic groups with a potential shift to more abundant 

HNA cells in the WAP bacterial communities due to their preferential SDOC utilization. This shift would cooccur with 

increased NPP and POC export, reinforcing the “high NPP-high particle export-more abundant HNA bacteria” link shown in 

the optimized model results for each year. The scenario of “more abundant HNA bacterial cells in more productive waters” 440 
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implies a relatively strong resource control on these actively growing cells. This is consistent with previous studies that show 

increased HNA growth rates in response to enhanced phytoplankton-derived organic substrate (Moran et al. 2010) and larger 

abundance of HNA cells in areas or periods where bacterial assemblages were predominantly controlled by resources, rather 

than grazing (Morán et al. 2007). 

5 Conclusions  445 

Heterotrophic microbial diversity has seldom been considered in detail in the formulation and analysis of marine pelagic 

ecosystem models reflecting in part the lack of suitable field data for model evaluation. Utilizing genomic products to prescribe 

taxonomic aspects of the bacterial model dynamics, our study investigates the association of bacterial abundance with different 

physiological states, bacterial community structure and key ecosystem functions. Our modelling approach enables the 

observations in different bacterial populations to constrain the group-specific processes and model parameters that have been 450 

poorly understood. These include the partitioning of BP specific to HNA and LNA groups, the partitioning of the bacterial 

uptake of DOC pools with different lability, and the half-saturation density of each bacterial group in microzooplankton 

grazing. The model is an effective platform to explore the WAP microbial response to changing climate conditions, in which 

warming and decreasing sea ice would induce a potential shift to the dominance of HNA bacteria in more productive waters 

due to their increasing dependence on SDOC. 455 
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Figures  

 675 

 
 

Figure 1: Ecosystem model framework. The model is forced by five different physical forcings, denoted as a horizontal row across the top 
of the schematic. The ecosystem component incorporates twelve different prognostic state variables. Heterotrophic bacteria (or bacteria) are 
divided into two groups of differing physiological states, high nucleic acid (HNA) and low nucleic acid (LNA) bacterial compartments. 680 
Model closure terms include RDOM and higher trophic levels. The flows between the prognostic state variables with the name of the 
numbered flows in the legend only represent for two bacterial compartments.   
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 685 
Figure 2: Data assimilation scheme. A variational adjoint method is employed for the parameter optimization and data assimilation 
processes (adapted from Glover et al., 2011). Gradient: the sensitivity of the total cost function with respect to model parameter from 
optimization. After optimization is finished, optimized model output is interpreted as a function of bacterial taxonomic modes (modes).  
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Figure 3: Model validation. A Taylor diagram using a polar-coordinate system summarizing the model-observational correspondence for 690 
each model stock and flow for individual annual simulations. The angular coordinate as the Pearson correlation coefficient (r), the distance 
from the origin denotes the normalized standard deviation, and the distance from point (1,0), marked as REF on x-axis, describes the centred 
(bias removed) root-mean-square difference (RMSD) between model results and observations. Note different x-axis scales are used for the 
normalized standard deviation in each panel. 
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 695 
 
Figure 4: Seasonal time series of group-specific bacterial carbon stocks and flows. Seasonal progression of HNA and LNA bacterial 
carbon stocks and flows at 10-m depth over the growth season (November-March) for each of the 4 simulation years (a), and coefficient of 
variation (Monte Carlo-derived standard deviation divided by each data point from Figure 4A) from 1,000 Monte Carlo experiments (b).  
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Figure 5: Annual mean carbon stocks and flows. Carbon stocks (mmol C m-3) and flows (mmol C m-3 d-1) averaged over the growth 
season in each year are denoted as the numbers on the first row, while the numbers on the second row or in the parentheses are the standard 
deviation propagated from averaging over the growth season and the Monte Carlo experiment-derived uncertainties. Flows do not necessarily 
balance to zero due to the build-up or loss in a compartment over the growth season. N and P flows are omitted. The original unit of POC 705 
export fluxes is mmol m-2 d-1, but normalized by depth to facilitate comparisons with other C flows and stocks in this diagram.  
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Figure 6: Properties of the emergent self-organizing map for bacterial community structure shown as taxonomic modes (modified 
from Bowman et al. 2017). (a) The map is trained, then the map units are clustered into modes. Map units are colored and numbered 710 
according to taxonomic mode membership. (b) Location of samples used in this study within the map. The map is trained with a larger set 
of samples, here, only those samples for which BP and flow cytometry data are available (those samples used in this study) are shown. Mode 
boundaries are the same as in (a). Each sample is placed within the map unit that has the most similar community structure, however, the 
position of each samples within the map unit is random. (c-h) Relative abundance of the most abundant taxa in the microbial community 
structure dataset in each map unit after training. The boundaries across all panels are as in (a). 715 
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Figure 7: Bacterial physiological and taxonomic association with ecosystem functions. The results of linear regression of the key 
ecosystem functions on a categorical predictor of mode (not assimilated in the model, a-c) and on the fraction of HNA cells (assimilated in 
the model, d-f). The fraction of HNA cells (fHNA) is assimilated in the model to constrain each bacterial group, but fHNA here as a predictor 720 
is an observed fHNA. The linear regression is performed in which a response variable is NPP, C export, or BCD and a predictor variable is 
mode as a factor (i.e., mode as a categorical predictor with 8 modes; equivalent to a one-way ANOVA with 8 different categories; a-c). The 
linear regression is performed in which a response variable is NPP, C export, or BCD and a predictor variable is fHNA (d-f). Regression 
statistics: (a) number of observations (N) = 43, error degrees of freedom (df) = 35, root mean squared error (RMSE) = 1.36, r2 = 0.32, adjusted 
r2 = 0.19, F-statistic value = 2.36, p-value = 0.04; (b) N = 43, df = 35, RMSE = 12.7, r2 = 0.60, adjusted r2 = 0.52, F-statistic value = 7.54, 725 
p-value = 1.53e-05; (c) N = 43, df = 35, RMSE = 0.12, r2 = 0.72, adjusted r2 = 0.66, F-statistic value = 12.6, p-value = 5.87e-08; (d) N = 43, 
df = 41, RMSE = 1.42, r2 = 0.14, adjusted r2 = 0.12, F-statistic value = 6.46, p-value = 0.01; (e) N = 43, df = 41, RMSE = 15.6, r2 = 0.29, 
adjusted r2 = 0.28, F-statistic value = 17.1 p-value = 1.71e-04; (f) N = 43, df = 41, RMSE = 0.15, r2 = 0.46, adjusted r2 = 0.45, F-statistic 
value = 35.2, p-value = 5.35e-07.  
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Figure 8: Climate change experiments. Seasonal progression of simulated HNA and LNA bacterial carbon stocks and processes and key 
ecosystem functions over the growth season under observed physical forcing and climate change scenarios (a) and the percent change of the 
corresponding variable compared to observed temperature and sea-ice forcing fields (b). For example, HNA biomass in (b) = (HNA biomass 
under +1°C/-10% - HNA biomass under observed forcing) x 100/HNA biomass under observed forcing) and the first row of each panel as 735 
zero (base states). 
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Parameter Definition HNA LNA 

kDOM (mmol C m
-3

) Half-saturation concentration of DOC in the DOC uptake function 0.5 0.2 

μ (d
-1

) Maximum growth rate 5.0 2.0 

bRESP ((mmol C m
-3

 d
-1

)
-1

 ) Parameter control for active respiration vs. production 0.08 0.2 

remi (d
-1

) Inorganic nutrient regeneration rate 8.0 2.0 

exREFR (d
-1

) Refractory DOC production rate 0.04 0.01 

fSLCT Selection strength on SDOM 0.1 0.7 

resp
B
 (d

-1
) Basal respiration rate 0.04 0.01 

r
A

min (d
-1

) Minimum active respiration rate 0.08 0.04 

r
A

max (d
-1

) Maximum active respiration rate 0.8 0.4 

mort (d
-1

) Mortality rate due to virus (viral mortality) 0.1 0.01 

g (mmol C m
-3

) 
Half-saturation concentration of bacteria in microzooplankton 
grazing function 0.55 0.55 

 

Table 1: Optimizable model parameters associated with bacterial processes and their initial guess values. Note different values are 
assigned to the model parameters of the HNA and LNA groups to simulate their distinct physiological processes and trophic interactions.  
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Data types 𝒂'( CV s 
2010-11 model 
parameter set 

2011-12 model 
parameter set 

2012-13 model 
parameter set 

2013-14 model 
parameter set 

J’0 J’f J’0 J’f J’0 J’f J’0 J’f 

NO3- 19.70 0.04 0.73 N/A N/A 8.16 1.10 14.46 3.43 31.68 3.71 

PO43- 1.31 0.03 0.04 49.41 1.00 21.86 6.86 50.33 3.91 42.32 1.58 
Microzooplankton 

biomass 0.72 0.40 0.28 4.32 0.09 4.09 0.29 5.22 0.17 3.94 0.11 

log10(ChlDIATOM) 0.15 0.19 0.08 24.57 1.07 20.10 1.45 28.77 2.05 24.46 1.85 

log10(ChlCRYPTO) -0.83 0.25 0.10 4.46 0.85 3.62 1.13 5.23 1.80 4.32 1.50 

log10(PP) 1.48 0.50 0.21 1.02 0.56 0.79 0.30 3.50 0.48 3.92 0.39 

HNA biomass 0.21 0.08 0.02 8.69 0.79 0.12 0.06 8.89 3.11 15.10 2.10 

LNA biomass 0.33 0.08 0.03 12.68 0.35 14.12 0.72 3.18 0.56 18.64 1.43 

BP 0.11 0.16 0.02 2.38 0.36 0.66 0.29 3.54 0.97 3.63 0.93 

SDOC 9.52 0.20 1.93 0.85 0.61 0.25 0.31 - - - - 

POC 13.02 0.13 1.70 2.12 0.91 4.95 1.08 - - - - 

PON 2.63 0.12 0.32 11.91 8.85 2.62 0.80 - - - - 

Total cost 122.42 15.43 81.34 14.40 123.12 16.47 147.98 13.61 
 
Table 2: Data types, observed means, coefficient of variation, target errors, and costs before and after optimization. The observed 
mean (𝑎"#), coefficient of variation (CV), and target error (s) of each assimilated data type used for calculating the cost function before and 
after optimization. Normalized cost functions (unitless; Equation 5) are presented where J’0 is the normalized cost function before 750 
optimization and J’f is the normalized cost function after optimization. Data type units as: mmol m-3 for nitrate (NO3

-), phosphate (PO4
3-); 

mmol C m-3 for microzooplankton biomass, diatom chlorophyll (ChlDIATOM), cryptophyte chlorophyll (ChlCRYPTO), HNA and LNA bacterial 
biomass, SDOC, and POC; mmol N m-3 for PON; and mmol C m-3 d-1 for primary production (PP) and bacterial production (BP). Normalized 
total costs in 2012-13 and 2013-14 model parameter sets do not include the costs of SDOC, POC, and PON (not assimilated, denoted as ‘-‘ 
in the table). 755 
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Data types J’c 
2010-11 model parameter set 2011-12 model parameter set 2012-13 model parameter set 2013-14 model parameter set 

J’f J’x, 

2011-12 
J’x, 

2012-13 
J’x, 

2013-14 J’f J’x, 

2010-11 
J’x, 

2012-13 
J’x, 

2013-14 J’f J’x, 

2010-11 
J’x, 

2011-12 
J’x, 

2013-14 J’f J’x, 

2010-11 
J’x, 

2011-12 
J’x, 

2012-13 

NO3
- 3.04 N/A 1.43 2.99 4.02 1.10 N/A 3.31 12.46 3.43 N/A 1.07 4.55 3.71 N/A 1.57 4.28 

PO4
3- 3.63 1.00 11.37 7.09 2.18 6.86 5.38 7.55 6.65 3.91 2.87 7.22 1.62 1.58 1.03 11.52 4.64 

Microzooplankt
on biomass 0.08 0.09 0.09 0.07 0.11 0.29 0.21 19.06 9.27 0.17 0.13 0.13 0.15 0.11 0.08 0.08 0.10 

log10(ChlDIATOM) 1.28 1.07 1.05 1.09 1.81 1.45 1.65 1.84 1.75 2.05 1.71 1.51 2.14 1.85 1.33 1.20 1.62 

log10(ChlCRYPTO) 1.10 0.85 1.11 4.07 2.46 1.13 1.61 5.80 2.08 1.80 1.62 1.32 1.92 1.50 1.01 0.75 0.98 

log10(PP) 0.35 0.56 0.44 0.56 0.42 0.30 0.37 0.64 0.74 0.48 0.56 0.49 0.42 0.39 0.60 0.50 0.46 

HNA biomass 2.96 0.79 4.06 16.20 3.39 0.06 7.04 5.67 12.27 3.11 1.00 4.62 4.30 2.10 0.66 7.42 5.73 

LNA biomass 2.45 0.35 8.98 0.64 7.83 0.72 2.35 209.75 111.14 0.56 1.74 7.55 7.01 1.43 1.69 4.78 10.16 

Total BP 0.91 0.36 0.78 1.26 1.20 0.29 1.49 1.99 0.73 0.97 0.50 1.12 1.29 0.93 0.40 0.93 0.88 

SDOC 0.45 0.61 0.29 - - 0.31 0.57 - - - 0.54 0.40 - - 0.56 0.36 - 

POC 0.87 0.91 1.30 - - 1.08 1.41 - - - 2.37 1.05 - - 2.51 1.07 - 

PON 2.03 8.85 0.91 - - 0.80 8.44 - - - 8.28 0.80 - - 8.30 0.80 - 

Total cost 19.14 15.43 31.81 33.99 23.41 14.40 30.53 255.60 157.09 16.47 21.32 27.26 23.38 13.61 18.17 30.99 28.87 

Portability index 0.66 ± 0.14 0.27 ± 0.31 0.81 ± 0.10 0.78 ± 0.24 
 
Table 3: Cross-validation cost analysis and portability index. The normalized cost function of each year and of the climatological year 
(i.e., climatological model). J’c is the normalized optimized cost from the climatological model, J’f is the normalized optimized cost for each 
year after optimization (Table 2), and J’x is the normalized cross-validation cost computed from simulating a different year’s optimized 
model parameter set against a given year. For example, J’x, 2011-12 under 2010-11 model parameter set indicates the normalized cross-765 
validation cost computed from simulating 2010-11 model parameter set against 2011-12. The portability index (Equation 7) reflects the 
generality of parameter sets, where the index <<1 (or closer to 1) implies the system that is (or is not) sensitive to year to year variations in 
optimized model parameters.  
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