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Abstract. Streams are ecosystems organized by disturbance. One of the most frequent and variable 
disturbances in running waters is elevated flow. Yet, we still have few estimates of how ecosystem 10 
processes, such as stream metabolism (gross primary production and ecosystem respiration; GPP and 
ER), respond to high flow events. Furthermore, we lack a predictive framework for understanding 
controls on within-site metabolic responses to flow disturbances. Using five years of high-
frequency dissolved oxygen data from an urban- and agriculturally-influenced stream, we estimated daily 
GPP and ER and analyzed metabolic changes across 15 isolated high flow events. Metabolism was 15 
variable from day to day, even during lower flows; median and ranges for GPP and ER over the full 
measurement period were 3.7 (0.0, 17.3) and -9.6 (-2.2, -20.5) g O2 m-2 d-1. We calculated metabolic 
resistance as the magnitude of departure (MGPP, MER) from the mean daily metabolism during antecedent 
lower flows (lower values of M represent higher resistance) and estimated resilience as the time until GPP 
and ER returned to the prior range of ambient equilibrium. We evaluated correlations between metabolic 20 
resistance and resilience with characteristics of each high flow event, antecedent conditions, and time 
since last flow disturbance. ER was more resistant and resilient than GPP. Median MGPP and MER were -
0.38 and -0.09, respectively. GPP was typically suppressed following flow disturbances, regardless of 
disturbance intensity. The magnitude of departure from baseflow ER during isolated storms increased 
with disturbance intensity. Additionally, GPP was less resilient and took longer to recover (0 to >9 days, 25 
mean = 2.5) than ER (0 to 6 days, mean = 1.1). Prior flow disturbances set the stage for how metabolism 
responds to later high flow events: the percent change in discharge during the most recent high flow event 
was significantly correlated with M of both GPP and ER as well as the recovery intervals for GPP. Given 
the flashy nature of streams draining human-altered landscapes and the variable consequences of flow for 
GPP and ER, testing how ecosystem processes respond to flow disturbances is essential to an integrative 30 
understanding of ecosystem function.  
 
 
Copyright statement.  
 35 
 
1 INTRODUCTION  
 
Disturbances can alter stream ecosystem function by changing flow while influencing carbon and nutrient 
inputs, transformations, and exports (Stanley et al., 2010). Stream biogeochemical cycles are altered by 40 
long-term ‘press’ disturbances, such as land use change (e.g., Plont et al. 2020), and by episodic ‘pulse’ 
disturbances, such as transitory changes in allochthonous inputs (e.g., Bender et al. 1984; Dodds et al. 
2004; Seybold and McGlynn 2018). Here, we use the definition of disturbance from White and Pickett 
(1985): “any relatively discrete event in time that disrupts the ecosystem. . . and changes resources, 
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substrate availability, or the physical environment”. Frequent disturbances generate oscillations that form 45 
a dynamic ambient equilibrium (sensu Odum et al. 1995) that includes variability in processes (Resh et 
al., 1988; Stanley et al., 2010). Stream disturbances come in many forms, including: rapid increases in the 
volume and velocity of water, drought, substrate movement, and anthropogenic alterations of channel 
morphology, flow, or solute chemistry (Resh et al., 1988).  

Elevated flow is one of the most pervasive, frequent disturbances to streams. Flow disturbances 50 
can scour the benthos, increase turbidity, and reduce light – all of which can change stream function (Hall 
et al., 2015; Blaszczak et al., 2019). However, flow is an inherent characteristic of streams and may 
influence stream function along a “subsidy-stress” gradient (sensu Odum et al. 1979; Figure 1). Extreme 
high flows can stress stream biota and induce conditions unfavorable for biotic processes, whereas more 
‘normal’, frequent high flows can stimulate internal biogeochemical transformations by bringing in 55 
limiting nutrients or organic matter subsidies (Lamberti and Steinman, 1997; Roley et al., 2014; Demars, 
2019). How changes in flow subsidize or stress stream functions will depend on a variety of factors, 
including the ecosystem process of interest.  

Stream metabolism is an integrative whole-ecosystem estimate of the carbon fixed and respired 
by autotrophs and heterotrophs. Metabolism is most commonly estimated via diel changes in dissolved 60 
oxygen (Hall and Hotchkiss, 2017): autotrophs produce oxygen during gross primary production (GPP); 
autotrophs and heterotrophs consume oxygen during respiration, which we refer to as ecosystem 
respiration (ER) when measured at the whole-reach scale. Together, ER and GPP can elucidate whether a 
stream is a net producer (autotrophic; GPP > ER) or consumer (heterotrophic; ER > GPP) of carbon. 
Ecosystem metabolism is coupled with other ecosystem processes (e.g., nitrogen uptake, Hall and Tank 65 
2003) and is used to monitor stream health (Young et al., 2008; Jankowski et al., 2021) as well as 
ecosystem responses to disturbance and restoration (e.g., Arroita et al. 2019; Blersch et al. 2019; Palmer 
and Ruhi 2019).  

Metabolism on any given day is influenced by current and past environmental factors. GPP can 
increase with light (Mulholland et al., 2001; Roberts and Mulholland, 2007), nutrients (Grimm and 70 
Fisher, 1986; Mulholland et al., 2001), temperature (Acuña et al., 2004), and transient storage 
(Mulholland et al., 2001). ER is controlled by organic carbon availability (e.g., Demars 2019), as well as 
the same physicochemical conditions as GPP, and consequently often mirrors GPP (e.g., Roberts et al. 
2007; Griffiths et al. 2013; Roley et al. 2014). Antecedent conditions may also play a role in the 
variability of ecosystem responses to flow (McMillan et al., 2018; Uehlinger and Naegeli, 1998). GPP 75 
and ER respond differently to flow disturbances (O’Donnell and Hotchkiss, 2019), likely influenced by 
where the microbes contributing to GPP and ER reside on or within the heterogeneous stream benthos 
(e.g., Uehlinger 2000, 2006). Autotroph reliance on light for energy creates a stream bed commonly 
dominated by photoautotrophic algal communities and associated heterotrophs. Many heterotrophs, on the 
other hand, are established within the substrata and hyporheic zone, which can increase resistance and 80 
resilience of ER relative to GPP (Uehlinger, 2000; Qasem et al., 2019). Environmental drivers of 
metabolism fluctuate in response to disturbances (e.g., Uehlinger 2000) but also vary sub-daily to 
seasonally, thus inducing temporal variation in GPP and ER during base flows that are best characterized 
as a pulsing steady state or dynamic equilibrium (e.g., Roberts et al. 2007).  

The subsidy-stress relationship between flow and ecosystem function likely induces a range of 85 
metabolic responses to and recovery from flow changes (Figure 1). Both GPP and ER may decline due to 
disturbance during higher flows (Uehlinger, 2006; Roley et al., 2014; Reisinger et al., 2017); however, 
flow changes can also stimulate metabolism (Roberts et al., 2007; Demars, 2019). Ultimately, resistance 
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is reflected in the capacity of microbial assemblages to withstand a flow disturbance, with metabolic 
processes not reduced or stimulated outside of a dynamic ambient equilibrium. Resistance captures the 90 
instantaneous response of ecosystem metabolism to a flow disturbance. We can also quantify post-
disturbance ecosystem responses by estimating resilience: the time it takes for a process returns to 
equilibrium following a disturbance (Carpenter et al., 1992). The resilience of ER and GPP following a 
flow disturbance may take anywhere from days to weeks (e.g., Uehlinger and Naegeli 1998; Smith and 
Kaushal 2015; Reisinger et al. 2017), and likely varies with season and the magnitude of disturbance 95 
(Uehlinger, 2006; Roberts et al., 2007). A flow event of lesser magnitude may yield higher resistance and 
resilience for both GPP and ER, by supplying subsidizing, limiting nutrients and organic matter from the 
terrestrial landscape without inducing extreme scour. Stream metabolism appears to have low resistance 
to disturbance but high resilience (Uehlinger and Naegeli, 1998; Reisinger et al., 2017). Understanding 
how different attributes of flow events (e.g., magnitude, timing) control resistance and recovery 100 
trajectories is a critical next step in characterizing metabolic responses to flow changes within and among 
ecosystems.  

We quantified ecosystem resistance and resilience over several years of isolated, higher flow 
events to examine controls on and patterns of stream metabolic responses to disturbance. We had four 
hypotheses (Figure 1): (H1) ER will be more resistant than GPP to flow disturbances, given the protection 105 
of many heterotrophs within the streambed; (H2) there will be a stimulation of GPP and ER at 
intermediate flow disturbances due to an influx of limiting carbon and nutrients; (H3) metabolic 
resistance and resilience will change with the size of the event, with larger flow disturbances inducing 
more stress due to enhanced scour; and (H4) some flow events will not push GPP and ER outside of their 
ambient dynamic equilibrium. In addition to testing the subsidy stress hypotheses and differences in how 110 
GPP and ER may respond to and recover from higher flow events (Figure 1), we also analyzed the 
relationships between environmental variables and metabolic responses, including those prior to flow 
disturbances that may influence how stream microbial communities respond to flow changes. We 
predicted recent disturbances might make microbes more vulnerable and less resistant to the next high 
flow disturbance. We analyzed response and recovery dynamics (i.e., resistance and resilience) relative to 115 
a dynamic ambient equilibrium for 15 isolated flow events across 5 years in a flashy urban- and 
agriculturally-influenced stream. Our methods were chosen to address a lingering knowledge gap in our 
understanding of ecosystem processes, which motivated the three overall objectives of this work: (1) 
quantify how biological processes (GPP and ER) respond to and recover from discrete higher flow 
disturbances during storms (Figure 1, H2-H4), (2) test how the response and recovery of GPP and ER 120 
differ (Figure 1, H1), and (3) identify which environmental drivers best explain metabolic resistance and 
recovery.  
 
2 METHODS  
 125 
2.1 Study site  
 
Stroubles Creek is a third-order, urban- and agriculturally-influenced stream draining a 15 km2 sub-
watershed of the New River in Southwest Virginia in the United States (Figure A1, O’Donnell and 
Hotchkiss 2019). The mean annual precipitation of Stroubles Creek’s catchment is 1006 mm, with more 130 
than half (54%) of that precipitation falling from May-October (PRISM Climate Group, 2013). Annual 
mean air temperature is 11.3°C (0.4-22.0°C monthly mean minimum and maximum; PRISM Climate 



 4 

Group 2013). The catchment draining into Stroubles Creek at our study location is 85.5% developed, 
11.6% agriculture (pasture and crops), and 2.9% forested (Homer et al., 2015). Stroubles Creek has been 
designated an impaired waterway due to high sediment loading and has NO3

- concentrations that typically 135 
exceed 1 mg/L N-NO3 (O’Donnell and Hotchkiss, 2019); biological oxygen demand in Stroubles Creek 
appears to limited by organic carbon availability moreso than inorganic nutrients (O’Donnell and 
Hotchkiss, unpublished data). Our study site is part of the Stream Research, Education, and Management 
Lab (StREAM Lab, www.bse.vt.edu/research/facilities/StREAM_Lab.html), and has been monitored by 
Virginia Tech researchers for over 10 years.  140 
 
2.2 Sensor data collection  
 
High temporal resolution sensor data were collected from 2013-01-08 through 2018-04-14. Dissolved 
oxygen (DO) (mg L-1), turbidity (nephelometric turbidity unit, NTU), conductivity (ms cm-1), pH, and 145 
temperature (°C) data were logged at 15- 90 minute intervals by an in situ YSI 6920V2 sonde (Hession et 
al., 2020; O’Donnell and Hotchkiss, 2019). Because a freeze event impaired DO measurements from the 
YSI sonde, we gap-filled missing data with calibration-checked and comparable data from an adjacent 
PME MiniDOT from 2017-09-01 to 2018-04-14 (Figure A2; O’Donnell and Hotchkiss 2019). We 
obtained the data needed to model the relative change in light over 24-hours (Equation 1) from a nearby 150 
weather station (Figure A1), which also provided estimates of barometric pressure. A Campbell Scientific 
CS451 pressure transducer recorded stage measurements every 10 minutes. Velocity (v) and width (w) 
measurements were taken over multiple years to create site-specific relationships between stage, velocity, 
wetted width, and discharge (Q). A stage-discharge relationship was created in 2013 and updated in 2018 
to allow for daily estimates of depth (z) from Q = vwz. Sensors were calibrated every 2-4 weeks 155 
according to best practice recommendations from the manufacturer (Hession et al. 2020) or, in the case of 
the PME DO sensor, with Winkler titration checks of our 100% and 0% calibration solutions (Hall and 
Hotchkiss 2017, O’Donnell and Hotchkiss 2019). 

To remove lower-quality sensor data due to sensor error or periods of low flow, we used data 
cleaning and quality checks as in O’Donnell and Hotchkiss (2019). Briefly, we excluded values below the 160 
1% and above the 99% quantile for physicochemical parameters that were heavily skewed (i.e., turbidity 
and conductivity). We removed physicochemical values we knew to be unreasonable (e.g., turbidity was 
cut off at zero). We calculated daily medians of physicochemical parameters for all days that had at least 
80% of measurements over the course of the day after confirming the 80% cutoff as one that would not 
bias daily medians from dates without gaps in sensor measurements. Data from lower flow periods when 165 
individual sensors may have been out of water (Hession et al., 2020) were excluded when values were out 
of range of grab sample calibration checks.  
 
2.3 Estimating ecosystem metabolism  
 170 
We estimated GPP, ER, and K (the air-water gas exchange coefficient) from diel O2 (DO), light, and 
temperature sensor data using the same inverse modeling approach and data as O’Donnell and Hotchkiss 
(2019). Conservative tracer additions (Hotchkiss & O’Donnell, unpublished data) suggested there are no 
substantial groundwater inputs to this study reach that would otherwise bias our estimates of GPP and ER 
(Hall and Hotchkiss 2017). We selected the streamMetabolizer R package for our analyses (Appling et al., 175 
2018a), which uses Bayesian parameter estimation and a hierarchical state space modeling framework to 
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generate daily estimates of GPP, ER, and K that create the best fit between modeled and observed DO 
data (Appling et al. 2018b; Equation 1; Table 1).  GPP is multiplied by the proportion of light (PAR) at 
the previous measurement over total daily light. 
 180 

[Eqn 1 – code copied from LaTeX version for track change doc]  
 
mDO_i = mDO_{i-\Delta t}+\frac{GPP\times PAR_{i-\Delta t}}{z\times \Sigma PAR} + 
\frac{ER}{z}\Delta t + K_O(DO_{sat(i-\Delta t)} - mDO_{i-\Delta t})\Delta t 

 185 
We modeled GPP, ER, and K with both observation error and process error. We used most of the default 
model specs for streamMetabolizer. Model convergence was visualized via traceplot in the rstan package 
(Stan Development Team, 2019) to identify the proper number of burn-in steps (500); we saved 2000 
Markov chain Monte Carlo (mcmc) steps from four chains after burn-in. We calculated credible intervals 
for posterior estimates of GPP and ER derived from the mcmc-derived distributions of GPP and ER. 190 
Additionally, to decrease the chances of equifinality between GPP, ER, and K estimates (Appling et al., 
2018b), we constrained day-to-day variability in K by binning the range of possible K estimates according 
to discharge (O’Donnell and Hotchkiss, 2019). We divided yearly discharge into six bins, which the 
hierarchical modeling framework of streamMetabolizer then used to create K-Q relationships to constrain 
model K estimates (O’Donnell and Hotchkiss, 2019). We used nighttime linear regression of DO as 195 
another way to estimate the range in K in Stroubles (Hall and Hotchkiss, 2017) and used regression-
derived estimates of K to quality-check values of modeled K from streamMetabolizer (e.g., Figure 
A3). We quality-checked metabolism model output as in O’Donnell and Hotchkiss (2019). We removed 
all metabolism estimates that were biologically impossible, such as negative GPP or positive ER (ER is 
modeled as a negative flux of O2 consumption). Next, we used diagnostics from fit() in stan to remove 200 
values resulting from a poor model fit or lack of chain convergence (Stan Development Team, 2019). We 
removed dates with poor model convergence when Rhat exceeded 1.1 and poor model 125 fit when N_eff 
(effective sample size) ended at or exceeded the product of the number of chains (4) and the number of 
saved mcmc steps (2000) specified for our model. Additionally, to avoid using biased estimates of 
metabolism, we removed K values below the 1% (< 3.38 d-1) and above the 99% (> 27.21 d-1) quantile of 205 
model estimates. 246 days of metabolism estimates were ultimately removed due to these model output 
evaluation criteria, resulting in 1375 days (of 1621 total from 2013-01-08 to 2018-04-14) of quality-
checked GPP and ER for further analyses.  
 
2.4 Selection of isolated flow events  210 
 
To identify flow events for our analyses of metabolic resistance and resilience, we calculated the percent 
change in cumulative daily discharge (Q) relative to the day prior (Equation 2).  
 

[Eqn 2 – code copied from LaTeX version for track change doc] 215 
 
\%\Delta Q = \frac{Q_i - Q_{i-1}}{Q_{i-1}} \times100 

 
where Qi is the discharge of the day of interest and Qi-1 is the discharge during the prior day. We selected 
isolated flow events that had a greater than 50% Q change relative to the antecedent cumulative daily Q. 220 
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We defined isolation as a period of three days before and three days after a high flow event where no 
other flow events exceeding 10% Q change occurred. In total, there were 15 isolated flow events across 
all 5 years that met our criteria for isolated flow events and had quality-checked metabolism estimates 
(Figure 2). Hydrograph and metabolism time series for each isolated flow event are available in Appendix 
Figures 4 - 18.  225 

The designation of 50% change in flow for high flow events ensured analyzed events were 
outside of the range of baseline flows. We defined a flow event as >10% change in Q when comparing 
the high flow changes to prior metabolic rates, as smaller changes in Q may still influence metabolism. In 
testing different thresholds of flow change and different discharge metrics, we settled on our current 
method to optimize the thresholds for a change in Q that resulted in the highest number of quality-230 
checked events while ensuring differences between classifications of ambient stream flow and higher 
flow events. The goal of this work was to assess how metabolism responded to and recovered from higher 
flow events that were also isolated flow events. We focused on quality over quantity when selecting for 
and analyzing stream metabolism results before, during, and after high flow events. After all appropriate 
quality-checking measures, we had 1375 days of metabolism estimates over five years (as reported in 235 
O’Donnell & Hotchkiss, 2019). To calculate resistance and recovery, we needed consecutive days of 
high-quality metabolism estimates, which further limited the number of high flow events appropriate for 
our analyses. For example, in 2016: there were 52 (out of 352) days with quality-checked sensor data that 
had a 50% flow change relative to the day prior. After looking at these 52 storms and selecting those that 
had three days before and three days after without any other flow events, we had 12 that were isolated. 240 
After quality-checking our metabolism estimates for all of those days, we had four high flow events from 
2016 that passed all quality-checking steps required for this analysis. 
 
2.5 Characterizing metabolic resistance and resilience  
 245 
To acknowledge the ambient day-to-day variability of GPP and ER, we used metabolism estimates from 
three days prior each isolated flow event to calculate a mean value of antecedent metabolism. We 
quantified metabolic responses to flow disturbances by comparing the pre-event metabolic means with 
event and post-event metabolism rates. To assess resistance, we estimated the metabolic magnitude of 
departure (M) during events to quantify the resistance of GPP and ER to higher flow disturbances. We 250 
calculated M per isolated flow event by comparing the difference between GPP and ER to the nearest 
value of the antecedent range (Equation 3; Figure 3), 
 

[Eqn 3 – code copied from LaTeX version for track change] 
 255 
M = 1 - \frac{X_{event}}{X_{prior}} 

 
where Xevent is either GPP or ER (g O2 m-2 d-1) on the day of the isolated flow event. Xprior is the mean 
value of GPP or ER from the antecedent range, and whether M is positive or negative depends on if the 
isolated flow event resulted in a stimulated (increased) or suppressed (reduced) metabolic response. For 260 
instance, if GPP declined during a flow event, M was calculated as the difference between GPP for the 
isolated flow event and the mean GPP from the antecedent 3-day range (Figure 3). If GPP or ER on the 
event day did not fall above or below the antecedent mean, M was zero, thus indicating high resistance. A 
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negative M represents a suppression, and a positive M a stimulation, of GPP or ER relative to the 
antecedent mean.  265 

To quantify the resilience of GPP and ER, we estimated recovery intervals (RI) by counting the 
number of days until metabolic rates returned to or exceeded pre-event mean GPP or ER, signifying a 
return to antecedent conditions (Figure 3). If metabolism (mean and 2.5-97.5% credible intervals) during 
the isolated flow event did not fall outside of the antecedent mean, the RI was zero days (metabolism 
cannot recover if it never shifts outside ambient values). To ensure additional flow events did not obscure 270 
the recovery interval of GPP or ER, we stopped counting RI the day before the next event (i.e., if another 
flow event happened four days later, we stopped counting RI at three days). To test for statistically 
significant differences between ER and GPP recovery intervals (RIER and RIGPP) and ER and GPP 
magnitude of departure (MER and MGPP), we ran Welch’s t-tests in R (R Core Team, 2018).  

While limiting our assessment to isolated flow events decreased the number of suitable events for 275 
analysis, our choice of methods allowed us to focus on metabolic response and recovery to discrete 
disturbances and avoid biased comparisons of multiple high flow (but not isolated) events that encompass 
time periods long enough (e.g., weeks) where pre/post comparisons are less meaningful. Because flow 
was so variable, we chose three days to balance best practices from past work on metabolic responses to 
storms (e.g., four days of prior stable baseflow, Reisinger et al., 2017) while ensuring we could analyze as 280 
many events with appropriately quality-checked data as possible. 
 
2.6 Testing controls on metabolic resistance and resilience  
We assessed three categories of potential predictors of metabolic resistance and resilience: antecedent 
conditions, characteristics of the isolated flow event, and characteristics of the most recent prior flow 285 
event. Antecedent conditions included GPP, ER, turbidity, water temperature, and light. Antecedent 
medians for turbidity were estimated from seven days prior due to missing sensor data. We had to remove 
poor-quality data from the turbidity dataset and chose to set methods that would accommodate inclusion 
of the most storms for our analysis. We compared the outcome of changing the number of days prior for 
events with turbidity data available for both three- and seven-day analyses and found no difference in the 290 
results. For all other variables, we estimated values from three days prior to the flow event for 
correlations between metabolism M and RI. Flow event characteristics included flow magnitude (% 
change of cumulative daily discharge; Equation 2), time of peak discharge, and environmental conditions 
(e.g., light, temperature, turbidity, season) on the event day. Characteristics of the most recent flow event 
included the magnitude of and days since the last flow event. We visually identified the most recent flow 295 
event (% change in cumulative daily discharge > 50) prior to each isolated flow event. We ran bivariate 
correlation analyses to quantify the strength and directions of linear relationships between predictor 
variables and metabolic resistance and resilience using the R cor.test function (R Core Team, 2018). We 
interpreted correlation strengths as: negligible (r = 0.0-0.3), low (0.3-0.5), moderate (0.5-0.7), or high 
(0.7-1.0) (Hinkle et al., 2003). All modeling and analyses were conducted in R (R Core Team, 2018).  300 
 
3 RESULTS  
 
3.1 Flow and metabolism  
 305 
Stroubles Creek is a hydrologically dynamic stream, with frequent high flow events (Figure 2). 
Cumulative daily discharge for days with quality-checked metabolism estimates ranged from 66 to 
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114,408 m3 d-1, with a median of 6,230 m3 d-1. The 15 isolated flow events selected for analyses were 
within the mid-high range of all cumulative daily discharge values, and were of magnitudes that occurred 
multiple times a year (Table 2, Figure 2). We identified isolated flow events of interest based on percent 310 
changes in flow, so changes in cumulative daily discharge are proportional across seasons. During the 
entire measurement period, GPP ranged from 0.00 to 17.3 g O2 m-2 d-1 (median = 3.7); ER ranged from -
2.2 to -20.5 g O2 m-2 d-1 (median = -9.6) (Figure 4; O’Donnell and Hotchkiss, 2019). Stroubles was 
heterotrophic (|ER| > GPP), except for 38 days (3%) where GPP > ER, all of which occurred in spring 
except for one day in the fall.  315 
 
3.2 Metabolic resistance and resilience  
 
GPP most often declined following an isolated flow event (11 of 15 events had suppressed GPP on the 
high flow day), whereas ER was less likely to deviate from the antecedent equilibrium during higher 320 
flows (10 of 15 events had ER credible intervals that overlapped with antecedent mean ER). The 
magnitude of departure for GPP (MGPP) ranged from -0.95 to 0.34, with a mean of -0.38 (Table 3; Figure 
5). GPP was inhibited during 11 and slightly stimulated (credible intervals still overlapped prior mean 
GPP) during three of 15 isolated flow events. The magnitude of departure for ER (MER) ranged from -
0.74 to 0.45, with a mean of -0.09 (Table 3; Figure 5). ER (mean and credible intervals) did not deviate 325 
from the antecedent mean for ten events (i.e., MER was close to zero). ER responses to elevated flow were 
more variable than that of GPP; ER was both stimulated and suppressed during different high flow 
periods. 

Although GPP exhibited stronger responses across isolated flow events than ER, MGPP and MER 

were positively correlated (R2 = 0.25, p = 0.03, Figure 5) and significantly different (t(26.3)=2.15, 330 
p=0.04). MGPP was lower than MER for nearly all flow events, except for three in which MGPP and MER were 
near zero (Table 3, Figure 5, Figure A19). The isolated flow event that induced the greatest stimulation of 
GPP (MGPP = 0.34) also stimulated ER (MER = 0.08) but the credible intervals of GPP and ER on the high 
flow day overlapped with prior GPP and ER (Figure A06). The one high flow event that stimulated ER 
(MER = 0.45), had no GPP response (MGPP = 0.04). Similarly, the only other event that stimulated GPP 335 
(MGPP = 0.32) had a minor ER response (MER = -0.09), suggesting many flow disturbances may decouple 
GPP and ER.  

Both GPP and ER typically recovered from flow-related stimulation or reduction in less than 
three days (Table 3). There were many isolated flow events where GPP took multiple days to recover but 
ER never departed from the antecedent dynamic equilibrium (i.e., RI = 0; Figure 5). When MGPP and MER 340 
were both greater than zero, ER almost always recovered faster than GPP. RIGPP ranged from 0-9+ d, with 
an average of 2.5 d (Table 3). RIER ranged from 0-6 d, with an average of 1.1 d (Table 3). There were only 
two isolated flow events where GPP recovered before ER. While ER always recovered before another 
flow event occurred, GPP did not recover before another flow event for two of 15 analyzed events. The 
recovery intervals for GPP and ER were not significantly different across all isolated high flow events 345 
(t(25.8)=-1.22, p=0.23).  
 
3.3 Controls on metabolic resistance and resilience after a flow disturbance  
 
Although GPP and ER are linked processes, the variables that were moderate or strong predictors of 350 
resistance or resilience (r > 0.5) differed between ER and GPP (Table 4). The two predictors with 
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moderate relationships with both MGPP and RIGPP were the percent change in Q during the most recent 
high flow event and antecedent mean GPP. The percent change in Q during the most recent high flow 
event was positively correlated with MER (r = -0.51) and the only variable evaluated with r > 0.5. The 
magnitude of each disturbance, characterized by the % change in cumulative daily discharge, was 355 
negatively correlated with MGPP (r = -0.40, p = 0.14) and MER (r = -0.49, p = 0.07) (Figure 6), and 
positively correlated with RIGPP (r = 0.71, p = 0.003). Overall, there were multiple environmental controls 
on metabolic resistance or resilience that had low correlations with either GPP or ER, but no significant 
drivers of both GPP and ER resistance and resilience (Table 4).  
 360 
4 DISCUSSION  
 
4.1 Metabolic resistance and resilience  
 
GPP and ER responded differently to flow events in a heterotrophic stream draining a heterogeneous 365 
urban-agricultural landscape. Notably, ER was more resistant than GPP to metabolic changes induced by 
higher flow (Figures 5,6). Of the fifteen isolated flow events analyzed here, two events stimulated ER and 
there were two instances of minor GPP stimulation (Table 3). The flow disturbance of heterotrophic 
activity was likely balanced by increased inputs of organic carbon from terrestrial sources that stimulated 
respiration (Roberts et al., 2007; Demars, 2019). The potential balance between subsidy and stress that 370 
buffered changes in ER during higher flows (10 of 15 events had MER near zero) was a pattern that 
emerged in an analysis of metabolism at Stroubles Creek across all flows: GPP decreased but ER was 
relatively constant on days with higher than median flow (O’Donnell and Hotchkiss, 2019). While we do 
not discuss net ecosystem production results in the context of this work because the patterns mirror those 
for ER (O’Donnell and Hotchkiss, 2019), we note that during the time periods of different GPP and ER 375 
responses and recovery to higher flow, Stroubles Creek was even more heterotrophic due to the higher 
resistance and resilience of ER relative to GPP. How often and when GPP and ER respond similarly to 
flow disturbances may differ among ecosystems as a function of their metabolic balance (GPP:ER), 
nutrient limitation status, and history of flow disturbance. Ultimately, flow-induced changes 
disproportionately disturbed GPP relative to ER, even in a stream like Stroubles Creek with frequently 380 
dynamic flows and relatively short recovery times.  

ER was also more resilient than GPP. Differences in ER and GPP resilience were likely a result 
of flow-induced changes to physicochemical parameters (e.g., increasing turbidity with higher flows) that 
can also enhance the physical disturbance of flow on GPP (O’Donnell and Hotchkiss, 2019). For instance, 
sustained periods of high turbidity following a flow disturbance can prolong the recovery of GPP by 385 
inhibiting light attenuation (Blaszczak et al., 2019). In contrast, higher resilience of ER is likely a function 
of greater resistance of ER to disturbances (i.e., smaller M; Table 3) as well as flow-induced ER 
stimulation. The correlation of MGPP and MER, but a lack of correlation between RIGPP and RIER (Figure 5, 
Table 3), suggests GPP and ER were temporarily decoupled while recovering, despite similar initial 
responses of GPP and ER to flow disturbances.  390 

The dynamic nature of stream metabolism, even during low flow periods, must guide how we 
quantify metabolic responses to disturbance. While we estimated resistance as a deviation from an 
antecedent average (e.g., as in Reisinger et al. 2017; Roley et al. 2014), which may limit how well we 
capture the dynamic antecedent equilibrium of GPP and ER during baseflow periods (Figure1), we also 
leveraged posterior information about our certainty in GPP and ER estimates (i.e., Bayesian credible 395 
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intervals). By assigning RIs of zero days when the mean and credible intervals of high flow GPP or ER 
were overlapping the mean of GPP or ER from three days prior to the high flow event, we reduced 
potential bias of assuming more discrete differences between day to day metabolism estimates that may 
come with using means  or medians instead of the full posterior distributions provided by Bayesian 
parameter estimation. Without acknowledging the dynamic ambient equilibrium of metabolism in many 400 
streams and rivers, we may overestimate disturbances in ecosystem function. In assessing metabolic 
responses and recovery from smaller flow events relative to dynamic metabolism during ambient flows 
and acknowledging the uncertainty of metabolism model estimates, we found some of the shortest 
metabolic recovery intervals recorded in the literature (Figure 8; Table A1). Incorporating the dynamic 
nature of metabolism and standardizing calculations of metabolic recovery dynamics will enable more 405 
robust, cross-site comparisons of complex ecosystem response to changes in flow.  

Our analysis of only 15 isolated flow events provided examples of all four hypothesized changes 
in metabolism with flow (Figure 1; H1-H4). ER was more resistant than GPP to most flow disturbances 
(H1). At small-to-intermediate sized flow disturbances, the response of metabolism was variable (H2,H3), 
with the greatest range of metabolic stimulation or reduction (i.e., subsidy or stress) observed at smaller 410 
flow changes (Figure 6). ER and GPP also did not increase or decrease relative to their ambient values 
during several high flow events (H4). With increasing intensity of flow disturbance, stress and 
replacement may indeed scale with intensity (H3). We note that many smaller streams, even those 
draining heavily modified landscapes, may continue to play an important role in carbon cycling and 
nutrient removal, especially during smaller flow disturbances. Further work exploring when and why 415 
metabolism-flow dynamics adhere to predicted disturbance responses is critical for a predictive 
understanding of disturbances and ecosystem health. 
 
4.2 Controls on metabolic resistance and resilience after a flow disturbance  
 420 
In addition to testing potential subsidy-stress responses of metabolism to higher flow disturbances, a 
major objective of this work was to identify potential controls metabolic resistance and resilience. While 
GPP responded similarly to flows regardless of magnitude, ER was more resistant to smaller magnitude 
isolated flow events. Our prediction that isolated flow events of greater magnitudes (i.e., larger % change 
in cumulative daily discharge) would result in less resistance and higher M, due to increased scouring, 425 
was supported only marginally for MGPP and MER (Table 4). GPP appears to have low resistance to flow 
disturbances, regardless of flow magnitude (Table 4, Figure 7; Reisinger et al. 2017; Roley et al. 2014). 
Of the other stream metabolism studies that provided results suitable to include in our comparison of % 
reduction in GPP or ER and metabolic recovery intervals (RIGPP, RIER; Figure 7), two were from streams 
draining more heavily urbanized watersheds (Reisinger et al. 2017, Qasem et al. 2019), and one was from 430 
a stream draining an agriculturally-dominated landscape (Roley et al. 2014). It appears streams draining 
more urbanized landscapes have larger reductions in metabolism and longer recovery intervals after 
higher flow disturbances; additional analyses at sites covering a range of land cover types and flow 
regimes will provide exciting opportunities to see if the trends in Figure 7 are more broadly applicable. 

The different responses of GPP and ER to variable flow may be attributed to differences in 435 
energy sources and locations of autotrophs and heterotrophs (Uehlinger, 2000, 2006). Primary producers 
reside in exposed areas on the streambed to access light required for photosynthesis, and are thus more 
vulnerable to scour than heterotrophic biofilms tucked within, and protected by, substrates in the 
streambed, sediments, and hyporheic zone (Uehlinger, 2000). At some threshold of higher flows that 
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disturb more protected areas within and below streambeds, we expect ER will decline as flow-induced 440 
stress exceeds flow-induced carbon and nutrient subsidies. Analyses of the interactions between flow-
induced changes in shear stress, water depth, and light availability may provide additional insights to tests 
of predicted subsidy-stress dynamics related to stream metabolism. Future analyses that include event 
duration may also provide new insights into flow-metabolism dynamics: Do sustained, higher flows 
change GPP and ER in the same way as a more instantaneous, intense flow event? As is common of long-445 
term characterizations of metabolism in streams, many high flow days had metabolism model outputs that 
did not hold up to quality checks and thus were not included in our analyses. Overcoming the logistic and 
computational challenges of estimating metabolism during extreme flows that disturb deeper substrates 
will also allow us to better test predictions relating flow magnitude with ecosystem functions.  

Quantifying how different antecedent conditions induce variable responses from GPP and ER is 450 
critical to furthering our understanding of stream ecosystem responses to flow disturbances. Contrary to 
our prediction that past scouring might reduce future resistance to disturbances, the size of the most recent 
antecedent flow disturbance had a positive relationship with both MGPP and MER (Table 4, Figure A19). 
MGPP was smaller and GPP was more resistant when the most recent flow events were larger. Similarly, 
the % change in cumulative daily discharge from the last event was positively correlated with MGPP and 455 
MER. Stream biota still recovering and regenerating biomass lost from scour might respond differently to 
flow events depending on successional stage (Peterson and Stevenson, 1992). Furthermore, biomass 
growth initially stimulated by a preceding event may have been limited by one or more nutrients later 
supplied by the isolated flow event. Antecedent GPP and RIGPP were positively correlated, while MGPP 
was negatively correlated with antecedent GPP. We ultimately do not know what caused the unexpected 460 
relationships between the magnitude of the most recent event and MGPP as well as MER in Stroubles Creek; 
quantifying the interactions between recovery of biofilm communities and changes in nutrient limitation 
across multiple flow events may provide improved insights into the mechanisms linking metabolism 
responses to higher flows with antecedent flow and GPP.  

Environmental conditions on the day of isolated flow events that promote biomass growth, such 465 
as high light and temperature, were not significant predictors of ER or GPP recovery intervals. Metabolic 
recovery trajectories often increase with temperature and light (Uehlinger and Naegeli, 1998; Uehlinger, 
2000), and consequently may change seasonally, with faster recoveries in spring and slower recoveries in 
winter (Uehlinger, 2000, 2006). While we did not find any strong predictors of RIER among the 
environmental variables in our dataset, changes in the source, magnitude, and biological reactivity of 470 
organic matter inputs may alter RIER (Roberts et al., 2007). Combining high-frequency nutrient and 
organic matter quality measurements with metabolic resistance and resilience estimates will offer an 
improved understanding of how changing nutrients and organic matter mediate metabolic responses to 
flow changes.  
 475 
5 CONCLUSIONS  
 
Metabolic regimes are punctuated by high flow events that create frequent pulses of stimulated or reduced 
GPP or ER (e.g., Uehlinger 2006; Beaulieu et al. 2013; Bernhardt et al. 2018). As such, changes in flow 
play an influential role in the trends and variability in metabolism. While geomorphology and disturbance 480 
regimes may control metabolic resistance across sites (Uehlinger, 2000; Blaszczak et al., 2019), within-
site variability of M and RI may be controlled by the characteristics of each flow event as well as prior 
flow disturbances. Differences between ER and GPP response and recovery to flow disturbances at our 
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study site were controlled by higher resistance and resilience of ER relative to GPP. Within this study, our 
prediction that ER would be more resistant than GPP to flow disturbances was supported, as ER 485 
frequently did not even deviate from the antecedent ambient equilibrium. However, ER had less 
resistance to events of greater magnitude. Indeed, both MER and MGPP were negatively correlated with the 
% change in discharge of flow event, but MER had a stronger negative relationship with the % change in 
discharge than MGPP. Metabolic responses to small and intermediate flow disturbances were variable: GPP 
and ER were both stimulated and suppressed. We suggest there may be a resistance threshold to flow 490 
disturbances, where controls other than flow magnitude (e.g., season, light, turbidity) might regulate 
metabolic responses to lower flow changes. Using segmented process-discharge relationships to quantify 
a resistance threshold of processes to flow disturbances (O’Donnell and Hotchkiss, 2019) may support a 
more predictive understanding of metabolic response to flow disturbances, as it provided insights on how 
patterns of water quality parameters and metabolism changed across the full range of flow, thus 495 
supporting the inferences we were able to make from storm-specific analyses in this paper.  

One motivation of our work was to better understand metabolic dynamics in less pristine 
ecosystems, where more dynamic hydrology makes estimating metabolism more challenging, and further 
decreased the number of events with appropriate data for our analysis. Despite only analyzing 15 high 
flow events in this study, many of the past analyses on related topics included a similar or fewer number 500 
of events over a shorter time period. Our work fills in substantial knowledge gaps: we analyzed across 
seasons (not only summer months or a short sensor deployment period) and high flow magnitudes (not 
only base flow or the highest flow disturbances), which allowed us to show a suite of different metabolic 
responses to changing flow. We are also left with questions about how ecosystem processes respond to 
discrete changes: how might environmental drivers of metabolic subsidy or stress determine thresholds of 505 
resistance and timelines of recovery? How do recent high flow events facilitate improved resistance to 
flow disturbances? What is the role of flow duration in altering metabolism within and after high flow 
events? Ultimately, we are entering an era of metabolic data opportunity (e.g., Bernhardt et al. 2018). As 
time series of metabolism lengthen and modeling tools improve, we envision exciting opportunities to 
better assess the consequences of isolated flow events as well as the impacts of multiple, sequential high 510 
flow disturbances that did not meet our criteria for analyzing isolated flow events in this paper. While the 
short time periods between high flow events in many streams and rivers make isolating and quantifying 
functional resistance and resilience an ongoing challenge, including dynamic flow in our assessment of 
metabolic regimes is a critical next step toward a more holistic understanding of frequently disturbed 
ecosystems.  515 
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 730 
Figure 1. Potential metabolic responses along a subsidy-stress gradient of stream flow (adopted from 
Odum et al. 1979). Flow is on the x-axis. The y-axis represents ecosystem metabolism (i.e., gross primary 
production and ecosystem respiration; GPP and ER), scaled to the same "normal" starting values for 
comparison, and is broken into four categories as proposed by Odum et al. (1979): (1) subsidy (when flow 
replenishes carbon and nutrients and metabolism increases), (2) normal (periods of dynamic equilibrium 735 
under ambient flow), (3) stress (when ecosystem processes are suppressed by disturbance), and (4) 
replacement (when there is a severe reduction in metabolism and communities are scoured or replaced). 
H1-H4 labels correspond to different hypotheses about how GPP and ER may respond differently to flow 
(H1) and how metabolism might change with flow (H2-H4), and are described further in the main text of 
the introduction. The inset graph next to the ‘normal’ bracket depicts how ambient process rates are best 740 
represented by a dynamic ambient equilibrium rather than a fixed point of stability (sensu Odum et al. 
1995).  
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Figure 2. (A) Time series of cumulative daily discharge (m3 d-1) on all days with quality-checked 745 
metabolism estimates from 2013-01-08 to 2018-04-14. The 15 isolated flow events analyzed for 
metabolic responses to higher flow are represented by open squares. (B) Frequency distribution of 
cumulative daily discharge for days with quality-checked metabolism estimates. Vertical dashed lines 
denote the cumulative daily discharge values of the 15 different isolated flow events. (C) Box plots of 
cumulative daily discharge (m3 d-1) for all days with metabolism estimates versus from isolated flow event 750 
days that fit our criteria for analyzing metabolic resistance and resilience.  
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Figure 3. Example calculations of metabolic resistance (M) and resilience (RI). Daily gross primary 755 
production (GPP) was estimated for the three days before, one day during, and two days following an 
isolated flow event that occurred on 2017-02-09. The solid (prior to the flow event) and dashed (during 
and after the flow event) horizontal line represents the average GPP estimates from three days prior to the 
flow event. In this case, GPP declined with higher flow, and the magnitude of departure (M with arrow) is 
the difference between mean prior GPP estimate from the antecedent range (dashed line) and GPP during 760 
the event. After this flow event, GPP recovered to its prior average on day two. 
 
 
 



 21 

 765 
Figure 4. Gross primary production (GPP, top) and ecosystem respiration (ER, bottom) in Stroubles 
Creek, VA from 2013-01-08 to 2018- 04-14. ER is represented here as a negative rate because it is the 
consumption of oxygen. Dashed vertical lines mark the isolated flow events that fit our criteria for 
analyzing metabolic responses to flow change (Figure 2).  
 770 
 

 
Figure 5. Resistance (i.e., magnitude of departure) of gross primary production (GPP) versus ecosystem 
respiration (ER) in Stroubles Creek, VA. Dashed line is the 1:1 line; solid line is the linear model fit 
through all data (p-value = 0.03, R2 = 0.25).  775 
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Figure 6. Flow event magnitude (% change in cumulative daily discharge (Q) relative to the day prior) 
was negatively correlated with magnitude of departure (M) for gross primary production (GPP; R2= 0.10, 780 
p = 0.143) and ecosystem respiration (ER; R2= 0.18, p = 0.066). The solid purple line is the regression 
line for the relationship between MGPP and % change in discharge, while the dashed orange line is the 
regression line for the relationship between MER and % change in discharge.   
 
 785 

 
Figure 7. A synthesis of metabolic recovery intervals (days) and % reduction of gross primary production 
(GPP) and ecosystem respiration (ER) in response to flow disturbances. Open symbols represent GPP 
response, and closed symbols signify ER response. A negative % reduction is a stimulation. Included in 
Table A1 are additional studies that have reported either recovery intervals, or % metabolic reduction in 790 
response to flow disturbances, but not both, and consequently could not be included here.  
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Table 1. Parameter symbols, descriptions, and units used in Equation 1

Parameter symbol Parameter description (units)

mDO Modeled O2 (g O2 m-3)

�t Measurement interval (d)

GPP Gross primary production (g O2 m-2 d-1)

ER Ecosystem respiration (g O2 m-2 d-1)

z Mean stream channel depth (m)

KO Air-water gas exchange of O2 (d-1)

Osat DO at saturation (g O2 m-3)

PAR Photsynthetically active radiation (µmol m-2 s-1)

25

Table 2. Cumulative daily discharge (CDQ), % change in CDQ relative to the prior day, metabolism (gross primary production (GPP),

ecosystem respiration (ER)), and air-water gas exchange (K) of isolated flow events analyzed for metabolic recovery

Date CDQ (m3 d-1) %� CDQ GPP (g O2 m-2 d-1) ER (g O2 m-2 d-1) K (d-1)

2013-03-12 33,970 713 1.5 -4.8 9.0

2013-03-31 13,849 188 2.4 -8.0 13.0

2013-05-23 11,923 69 3.7 -12.6 15.2

2013-06-02 6,545 93 3.2 -10.6 13.1

2015-02-02 18,842 210 1.4 -4.7 20.9

2015-05-17 19,683 94 7.2 -13.5 15.9

2015-09-03 4,447 120 6.5 -11.2 12.8

2016-04-01 13,869 67 4.8 -7.6 13.9

2016-04-07 12,478 53 5.0 -9.7 19.2

2016-04-22 18,340 114 1.9 -10.4 13.0

2016-08-21 9,418 94 0.3 -2.6 4.8

2017-02-09 20,383 149 2.2 -7.4 17.6

2017-08-21 44,543 1,105 2.5 -4.3 4.1

2017-09-06 11,600 269 0.6 -12.1 17.3

2017-10-16 8,761 54 3.4 -11.4 17.8

26
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Table 3. Magnitude of departure (M, unitless) and recovery intervals (RI, days) of gross primary 
production (GPP) and ecosystem respiration (ER) during and after fifteen isolated flow events between 
2013-01-08 and 2018-04-14. A negative M represents a suppression, and a positive M a stimulation, 
where GPP or ER increase relative to the prior mean GPP or ER calculated over three days. Estimates of 805 
M differed between GPP and ER (t(26.3)=2.15, p=0.04), while the RI for GPP and ER were not 
significantly different (t(25.8)=-1.22, p=0.23). The two instances where GPP did not recover during the 
isolated flow event analyzed are noted with an “NA” and the number of days without recovery (X+) that 
could be counted before the next high flow event occurred. 
 810 
Date MGPP RIGPP (d) MER RIER (d) 
2013-03-12 -0.78 NA (6+) -0.34 6 
2013-03-31 -0.60 2 0.14 0 
2013-05-23 0.34 0 0.08 0 
2013-06-02 -0.34 2 0.27 0 
2015-02-02 -0.30 1 0.05 0 
2015-05-17 0.04 0 0.45 6 
2015-09-03 -0.27 2 -0.17 0 
2016-04-01 -0.38 4 -0.29 2 
2016-04-07 -0.28 5 0.01 0 
2016-04-22 -0.87 6 -0.23 0 
2016-08-21 -0.95 2 -0.74 1 
2017-02-09 -0.12 0 0.11 0 
2017-08-21 -0.67 NA (9+) -0.63 1 
2017-09-06 -0.90 2 -0.01 0 
2017-10-16 0.32 0 -0.10 0 
Average -0.38 2.5 -1.09 1.1 

 
 
 
 
 815 
 
 
 
 
 820 
 
 
 
 
 825 
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Table 4. Pearson correlations (r) between predicted drivers of gross primary production (GPP) and 
ecosystem respiration (ER) magnitudes of departure (M) and recovery intervals (RI) of isolated flow 
events. Predictor variables with moderate or stronger relationships (r > 0.5; Hinkle et al. 2003) are bolded. 
p-values are included in parentheses.  830 
 
Predictor variable r, RIGPP r, MGPP r, RIER r, MER 
Isolated flow event of interest     
Daily median light 0.19 (0.51) 0.17 (0.55) -0.10 (0.74) -0.06 (0.84) 
Daily peak discharge -0.65 (0.01) -0.23 (0.42) 0.36 (0.18) -0.39 (0.15) 
Daily median temperature 0.10 (0.72) -0.02 (0.94) 0.00 (1.00) -0.29 (0.30) 
Event median discharge (Q) 0.14 (0.63) -0.13 (0.65) 0.50 (0.06) 0.09 (0.75) 
% change in Q during event 0.71 (0.00) -0.40 (0.14) 0.30 (0.28) -0.49 (0.07) 
Season 0.02 (0.93) -0.10 (0.73) -0.19 (0.50) -0.27 (0.34) 
Time of peak Q 0.14 (0.61) -0.06 (0.82) 0.07 (0.81) -0.04 (0.89) 
Turbidity 0.46 (0.13) -0.41 (0.19) 0.26 (0.41) -0.07 (0.83) 
Most recent flow event     
Days since last event 0.05 (0.86) -0.07 (0.82) -0.12 (0.67) -0.08 (0.78) 
Last event cumulative daily Q -0.40 (0.14) 0.49 (0.06) -0.21 (0.45) 0.14 (0.62) 
% change in Q during last event -0.56 (0.03) 0.63 (0.01) 0.38 (0.16) 0.51 (0.05) 
Antecedent conditions     
Antecedent GPP 0.62 (0.01) -0.54 (0.04) 0.13 (0.64) -0.29 (0.29) 
Antecedent ER -0.21 (0.46) 0.00 (1.00) 0.21 (0.46) 0.33 (0.23) 
Antecedent median gas exchange 0.26 (0.36) -0.07 (0.81) -0.11 (0.70) -0.41 (0.13) 
Antecedent median light 0.06 (0.82) 0.03 (0.92) 0.06 (0.83 0.26 (0.36) 
Antecedent median Q -0.22 (0.41) 0.44 (0.10) 0.21 (0.44) 0.47 (0.08) 
Antecedent median water temperature 0.07 (0.79) -0.02 (0.95) -0.09 (0.75) -0.29 (0.29) 
Antecedent median turbidity  0.12 (0.69) -0.02 (0.95) 0.11 (0.71) -0.29 (0.34) 
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Figure A1. Stroubles Creek watershed and land cover types in the area that drains to the StREAM Lab 835 
monitoring site at Bridge 1, Blacksburg, VA, U.S.A. The nearby weather station used for these analyses is 
just west of the watershed boundary and within the same valley. We created this map using ArcGIS, 
NHDplus version 2.1, and the U.S. Geological Survey’s 2011 National Land Cover Database.  
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 840 
Figure A2. Dissolved oxygen measurements from the two sensors – YSI Sonde and PME Minidot - at 
Bridge 1 on Stroubles Creek. The spread of YSI Sonde values spanning from the end of January to mid-
April was likely a result of a freeze event. We used PME data during the period of record when YSI data 
did not pass our quality assurance checks.  
 845 
 

 
Figure A3. Example of data used to confirm modeled K600 (d-1) using a regression of the nighttime 
dissolved oxygen saturation deficit versus changes in saturation (as in Hall and Hotchkiss 2017). These 
data are from 2017-09-04, when the estimated value for K600 was 22 d-1.  850 
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Figure A4. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2013-03-12 (noted with a dashed 855 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 

 860 
Figure A5. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2013-03-31(noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 865 
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Figure A6. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2013-05-23 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 870 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 

 
Figure A7. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 875 
respiration; ER) time series for the Stroubles Creek flow event on 2013-06-02 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 880 
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Figure A8. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2015-02-02 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 885 
Bayesian credible intervals. 
 

 
Figure A9. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2015-05-17 (noted with a dashed 890 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
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Figure A10. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 895 
respiration; ER) time series for the Stroubles Creek flow event on 2015-09-03 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 900 

 
Figure A11. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2016-04-01 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 905 
Bayesian credible intervals. 
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Figure A12. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2016-04-07 (noted with a dashed 910 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 

 915 
Figure A13. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2016-04-22 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 920 
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Figure A14. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2016-08-21 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 925 
Bayesian credible intervals. 
 

Figure A15. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2017-02-09 (noted with a dashed 930 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
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 935 
Figure A16. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2017-08-21 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 940 
 

 
Figure A17. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 
respiration; ER) time series for the Stroubles Creek flow event on 2017-09-06 (noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 945 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
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Figure A18. Cumulative daily discharge and metabolism (gross primary production; GPP and ecosystem 950 
respiration; ER) time series for the Stroubles Creek flow event on 2017-10-16(noted with a dashed 
vertical red line in all three panels). The dashed horizontal black lines are mean values of GPP and ER 
prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5% and 97.5% 
Bayesian credible intervals. 
 955 
 

 
Figure A19. The magnitude of the previous high flow event (% change in cumulative daily discharge) 
had a positive relationship with MGPP and MER. GPP is represented by filled black circles; ER by red 
crosses. The black, solid regression line reflects the relationship between magnitude of the last event and 960 
MGPP, whereas the dashed, red regression line represents the relationship between the magnitude of the 
last event and MER.  
 
 
 965 
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Table A1. Literature review of published reduction and recovery intervals (RI) of stream gross primary 
production (GPP) and ecosystem respiration (ER) after high flow events. If not enough information was 
given to calculate reduction or RI, we listed as "n/a". *=approximated days of recovery from figure in 
publication. **=approximation given in publication. 

Source  

Reduction in 
GPP (%) 

Reduction in 
ER (%) 

RIGPP  
(days) 

RIER  
(days) 

Uehlinger and Naegeli 1998 0.53 0.24 n/a n/a 
Uehlinger 2000 0.53 0.37 n/a n/a 
Uehlinger 2000 0.37 0.14 n/a n/a 
Uehlinger 2006 0.49 0.19 n/a n/a 
Roberts et al. 2007 0.90** n/a 5.0 5.0 
Roberts et al. 2007 n/a n/a 4* 4.0 
Roley et al. 2014 -1.10 -1.10 3.8 2.8 
Roley et al. 2014 -0.10 -1.50 5.2 1.8 
Roley et al. 2014 0.50 -0.80 16.9 1.4 
Roley et al. 2014 -0.10 -1.20 7.6 4.0 
Smith and Kaushal 2015 0.50** n/a 14-21 n/a 
Resinger et al. 2017 0.92 0.86 18.2 15.7 
Resinger et al. 2017 0.84 0.72 7.2 10.3 
Resinger et al. 2017 0.99 0.88 5.4 6.9 
Resinger et al. 2017 0.99 0.81 10.1 14.1 
Resinger et al. 2017 0.53 0.89 7.1 11.2 
Resinger et al. 2017 0.94 0.79 7.6 13.1 
Resinger et al. 2017 0.71 0.11 4.3 no recovery 
Resinger et al. 2017 0.88 0.70 6.9 11.2 
Resinger et al. 2017 0.97 0.84 9.0 8.8 
Resinger et al. 2017 0.83 0.20 13.8 9.9 
Resinger et al. 2017 0.17 0.50 11.3 11.7 
Qasem et al. 2019 0.06 -0.49 3.8 1.7 
Qasem et al. 2019 -0.25 -0.68 6.7 3.7 
Qasem et al. 2019 0.01 -0.80 4.5 2.0 
Qasem et al. 2019 0.25 -0.10 2.0 5.4 
Qasem et al. 2019 0.11 -1.43 2.6 9.5 
Qasem et al. 2019 -1.20 -1.02 2.3 1.6 
This study (mean) -0.38 -0.09 2.5 1.1 
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