

1 **The effect of salinity, light regime and food source on C and N uptake in a benthic
2 foraminifera**

3

4 **Michael Lintner¹, Bianca Lintner¹, Wolfgang Wanek², Nina Keul³ and Petra Heinz¹**

5 **¹University of Vienna, Department of Palaeontology, Vienna, Austria**

6 **²University of Vienna, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem
7 Research, Vienna, Austria**

8 **³Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, Germany**

9

10 **Abstract**

11 Foraminifera are unicellular organisms that play an important role in marine organic matter cycles. Some species are
12 able to isolate chloroplasts from their algal food source and incorporate them as kleptoplasts into their own metabolic
13 pathways, a phenomenon known as kleptoplastidy. One species showing this ability is *Elphidium excavatum*, a common
14 foraminifer in the Kiel fjord, Germany. The Kiel fjord is fed by several rivers and thus forms a habitat with strongly
15 fluctuating salinity. Here, we tested the effects of food source, salinity and light regime on the food uptake (via ¹⁵N and
16 ¹³C algal uptake) in this kleptoplast-bearing foraminifer. In our study *E. excavatum* was cultured in the lab at three
17 salinity levels (15, 20, 25) and uptake of C and N from the food source *Dunaliella tertiolecta* (Chlorophyceae) and
18 *Leyanella arenaria* (Bacillariophyceae) were measured over time (after 3, 5, 7 days). The species was very well adapted
19 to the current salinity of the sampling region, as both, algal N and C uptake was highest at a salinity of 20. It seems that
20 *E. excavatum* coped better with lower than with higher salinities. The amount of absorbed C from the green algae *D.*
21 *tertiolecta* showed a tendency effect of salinity, peaking at a salinity of 20. Nitrogen uptake was also highest at a salinity
22 of 20 and steadily increased with time. In contrast, C uptake from the diatom *L. arenaria* was highest at a salinity of 15
23 and decreased at higher salinities. We found no overall significant differences in C and N uptake from green algae
24 versus diatoms. Furthermore, the food uptake at a light/dark rhythm of 16:8 h was compared to continuous darkness.
25 Darkness had a negative influence on algal C and N uptake, and this effect increased with incubation time. Starving
26 experiments showed a stimulation of food uptake after 7 days. In summary, it can be concluded that *E. excavatum* copes
27 well with changes of salinity to a lower level. For changes in light regime, we showed that light reduction caused a
28 decrease of C and N uptake by *E. excavatum*.

29

30 **1. Introduction**

31 **1.1. General information**

32 Foraminifera are unicellular, highly diverse marine organisms known since the early Cambrian (e.g., Scott et al., 2003;
33 Pawłowski et al., 2003). As major consumers of phytodetritus they play an important role in organic matter recycling in
34 marine environments, particularly in marine sediments (benthos), from coasts to the deep sea, and in brackish water

35 (Boltovskoy and Wright, 1976). Most foraminifera are heterotrophic, but some can isolate functional chloroplasts from
36 their algal food sources, keep them viable in their cells and incorporate them into their own cellular metabolism, a process
37 termed kleptoplastidy (Bernhard & Bowser, 1999). *Elphidium*, a benthic foraminifera, is one of currently nine known
38 genera of foraminifera (*Bulimina*, *Elphidium*, *Haynesina*, *Nonion*, *Nonionella*, *Nonionellina*, *Reophax*, *Stainforthia* and
39 *Virgulinella*) which perform kleptoplastidy (Lopez, 1979; Lee et al., 1988; Cedhagen, 1991; Bernhard and Bowser, 1999;
40 Correia and Lee, 2000; Grzymski et al., 2002; Goldstein et al., 2004; Pillet et al., 2011; Lechliter, 2014; Tsuchiya et al.,
41 2015). *Elphidium* has a worldwide distribution and occurs from tropical to Arctic waters (Murray, 1991). This genus
42 makes up a particularly high proportion of the total foraminiferal population in the shallow water of the Mediterranean,
43 the English Channel, the North Sea and the Baltic Sea (Murray, 1991). More than 60 morphospecies of *Elphidium* are
44 known (Murray, 1991), many of which are present in the North and Baltic Seas. A detailed description of the different
45 species and morphotypes is given in Darling et al. (2016). The most common species are *E. albiumbilicatum*, *E. excavatum*
46 *clavatum*, *E. excavatum excavatum*, *E. gerthi*, *E. guntheri*, *E. incertum* or *E. williamsoni* (Weiss, 1954; Terquem, 1876;
47 Williamson, 1858; Lutze, 1965; Frenzel et al., 2005; Nikulina et al., 2008; Polovodova and Schönfeld, 2008). *Elphidium*
48 *excavatum* shows a large morphological intraspecific variability (Miller et al., 1982). Two subspecies of this foraminifer
49 (*E. e. excavatum* and *E. e. clavatum*) have been found to coexist in the Baltic Sea (Lutze, 1965). Schweizer et al. (2010)
50 showed that these species exhibit large genetic differences with respect to each other and therefore can be regarded as
51 subspecies rather than as ecophenotypes.

52 During longer periods of starvation, kleptoplasts may possibly serve as nutritional source that can be digested (Falkowski
53 and Raven, 2007). But they can also supplement the nutrition through photosynthesis under light conditions. Diatoms are
54 the major chloroplast sources for *Elphidium*, with an average of 3.7×10^4 chloroplasts possessed by one foraminiferal
55 individual (Correia and Lee, 2000). The retention time of functional chloroplasts in foraminifera may vary from several
56 days to several months (Lopez, 1979; Lee et al., 1988; Correia and Lee, 2002). Another genus *Haynesina* (Pillet et al.,
57 2011) can sustain their kleptoplasts efficiently for more than a week (Jauffrais et al., 2016). The uptake of kleptoplasts by
58 *Haynesina germanica* and *Elphidium williamsoni* through the consumption of diatoms can be seen in the comparison of
59 spectral signatures and pigment composition (Jauffrais et al., 2016; 2019). Further experiments showed that not all algae
60 are excellent chloroplast donors (Lee and Lee, 1989; Correia and Lee, 2001). It was observed that *Elphidium* absorbs up
61 to five times more chloroplasts from diatoms than from green algae (Correia and Lee, 2000). It was also pointed out that
62 different light/dark regimes had no influence on the uptake of chloroplasts by *Elphidium* (Correia and Lee, 2000).
63 Foraminifera below the photic zone can also perform kleptoplastidy (Bernhard and Bowser, 1999). These aspects suggest
64 that foraminifera can not only incorporate chloroplasts for photosynthetic activity, but may also benefit from other
65 catabolic mechanisms (LeKieffre et al., 2018). This means not only C or N pathways, one of these mechanisms could also
66 be the sulfur-cycle (Jauffrais et al, 2019). Recent studies showed, that foraminifera host sulphur-cycle bacteria which have
67 the potential to act as endobionts (Salonen et al., 2019). Experiments showed, that foraminifera can even use kleptoplasts
68 to control the pH-value in their cytoplasm (Tsuchiya et al, 2019). This leads to an increased intracellular pH environment,
69 which allows foraminifera to produce a high magnesian calcite test. (Tsuchiya et al, 2019).

70 Currently little is known about the feeding behavior and the C and N metabolism of foraminifera species exhibiting
71 kleptoplastidy, such as *Elphidium* or *Haynesina*. Moreover, given that plastids may either supplement the nutrition of
72 foraminifera by providing photosynthates or by being digested, kleptoplastid species may show a slower detrimental
73 response to starvation, or a slower uptake of (pulses of) algal food (Lintner et al., 2020). Foraminiferal food uptake
74 depends on several factors such as size of food (Murray, 1963), the type of food (e.g., Lee and Müller, 1973; Nomaki et

75 al., 2014), the age of the foraminifera and food quality (Lee et al., 1966), water temperature (Wukovits et al., 2017; Heinz
76 et al. 2012) or salinity (Lintner et al., 2020; Dissard et al., 2009). Salinity and light conditions are highly variable in
77 intertidal and brackish milieus where foraminifera thrive in highly diverse and active communities. Very little is known
78 on such light-dark and salinity effects on the feeding behavior of foraminifera. For example, the kleptoplastid species
79 *Haynesina germanica* showed no response to changes in salinity while food uptake by the non-kleptoplastid species
80 *Ammonia tepida* increased with salinity (Lintner et al., 2020). In the same study, both species showed large differences in
81 the retention of C relative to N, with subsequent adverse effects on the re-cycling of these elements by
82 mineralization/respiration and excretion to the environment. Such differences, given that these species are (co)dominant
83 in their foraminifera community, can have important implications on local marine biogeochemical cycles of C and N.

84 Based on the above mentioned aspects, this study investigated the food uptake and food preference (green algae versus
85 diatoms) of *Elphidium excavatum* spp. at different salinity levels and a changing light/dark rhythm. *Elphidium excavatum*
86 is optimally suited for this purpose, as it is representative for foraminifera in coastal regions and can account for over
87 90% of the total foraminiferal population in some areas (Schönfeld and Numberger, 2007). After Darling et al. (2016) our
88 tested foraminifera are called *E. selseyense*. Actually *E. selseyense* is officially accepted as *Criboelphidium selseyense*
89 (Hayward et al., 2021). But due to the high important of the “older” name we used for this manuscript the most common
90 and more often cited name *E. excavatum*.

91 1.2. Sampling location Kiel Fjord

92 Foraminifera studied here were collected in the Kiel Fjord in northern Germany. The Kiel Fjord covers 9.5 km in length.
93 It is about 250 m wide in the south (inner Fjord) and widens to the northern part to a width of 7.5 km (outer Fjord) (Nikula
94 et al., 2007; Polovodova and Schönfeld, 2008). The inner Fjord is about 10 – 12 m deep, whereas the outer Fjord has
95 more than 20 m water depth. The water in the inner Fjord is well homogenized and has a relatively constant temperature
96 and salinity at any depth (Schwarzer and Themann, 2003). During the summer months stratification of water masses
97 occurs, with the surface water having a temperature of 16 °C and a salinity of 14 and the bottom water with 12 °C and a
98 salinity of 21 (Nikula et al., 2007; Polovodova and Schönfeld, 2008). In the southeast of the Fjord, a fresh water supply,
99 the Schwentine, contributes to a lower salinity of water in this area. Earlier investigations showed that occasional sea
100 water inflow from the Baltic Sea (very saline surface water with a salinity of 33) has no major impact on the hydrography
101 in the Kiel Fjord (Fennel, 1996). The most common sediments in the fjord are fine sand and dark, organic rich mud
102 (especially found in the inner Fjord). In this area corrosion (abrasion and redeposition) of foraminiferal tests plays an
103 important role, due to the undersaturation of carbonate in the surface water (Grobe and Fütterer, 1981).

104

105 **2. Materials and methods**

106 2.1. Sample collection and culturing

107 The samples were collected from the Kiel Fjord in northern Germany on 26th and 27th September 2018 with a box corer
108 on the research vessel F. S. ALKOR. Detailed data on sampling sites are given in Table 1. The light penetration depth of
109 this area is about 10.7 m (1%-depth of surface photosynthetically active radiation, Rohde et al., 2008). On board of the
110 research vessel, the upper 5 – 7 cm of the box corer sediments were wet-sieved through a 63 or 125 µm sieve and kept in
111 storage containers with seawater from the sampling site until arrival at the laboratory at the University of Vienna (29th

112 September 2018). The permanent cultures (glass tubes covered with thin foil against evaporation) were kept at constant
113 20 °C (room temperature) and at a salinity of 20 in the laboratory.

114

115 Tab.1: Information of the sampling points: 1: Strander Bucht, 2: Laboe.

Sample	N	E	depth [m]	T [°C]	Salinity []
Strander Bucht	54°25.998‘	010°11.105‘	16.3	14.8	20.9
Laboe	54°25.235‘	010°12.409‘	15.3	14.9	20.9

116

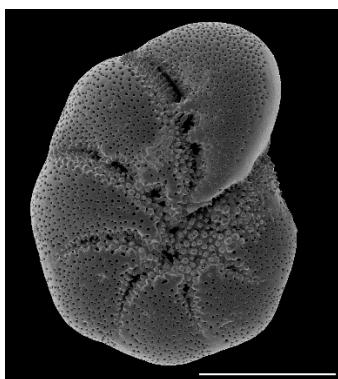
117 2.2. Preparation of labeled food source

118 Feeding experiments were performed with the green alga *Dunaliella tertiolecta* and the benthic diatom *Leyanella arenaria*
119 as food sources. These algae were often used in other feeding experiments with foraminifera, therefor we can assume that
120 they would also be consumed by *E. excavatum*. A f/2 nutrient medium (Guillard & Ryther, 1962; Guillard, 1975), enriched
121 with the isotopes ^{13}C and ^{15}N by amendment to a level of 1.5 mmol L $^{-1}$ $\text{NaH}^{13}\text{CO}_3$ and 0.44 mmol L $^{-1}$ $\text{Na}^{15}\text{NO}_3$, was
122 prepared for both cultures. The algal cultures were kept at 20 °C and a light/dark rhythm of 16:8h in isotopically enriched
123 medium. *Dunaliella tertiolecta* was harvested at peak biomass, when the cultures showed a strong green color. *Leyanella*
124 *arenaria* was harvested as soon as the bottom of the mixing vessel was densely populated and homogenously brown
125 colored. These two states reflect the characteristics of an optimal culture, where the algae are consumed later preferentially
126 by foraminifera (Lee et al., 1966). To collect isotopically enriched algae, the cultures were centrifuged at 800 xg for 10
127 min. The resultant algal pellet was washed three times with artificial seawater (Enge et al., 2011) and centrifuged after
128 each washing step. Afterwards, the algal pellet was shock frozen in liquid nitrogen and lyophilized for 3 days at 0.180
129 mbar. In order to retain a high quality of food, the dried algae were stored in a dry and dark place until use. The labeled
130 algal powder was isotopically enriched by about 3.3 at% ^{13}C and 32.3 at% ^{15}N for *D. tertiolecta* and about 12.6 at% ^{13}C
131 and 17.9 at% ^{15}N for *L. arenaria*. The C:N ratios based on C and N content of the diatom and the green algal food source
132 were 9.14 for *L. arenaria* and 5.78 for *D. tertiolecta*, respectively.

133 2.3. Feeding experiments

134 Before the start of the experiments (4 days after sampling of the material) all glassware was cleaned in a muffle furnace
135 (500 °C for 5 h). The "picking tools" and tin capsules were cleaned with a 1:1 (v:v) mixture of dichloromethane (CH_2Cl_2)
136 and methanol (CH_3OH).

137 20 foraminifera specimens (> 150 μm *E. excavatum* S5 after Darling et al., 2016, see fig. 1) were collected from the
138 permanent cultures using small brushes and placed in a crystallization dish with 280 ml sterile filtered sea water from the
139 sampling site in triplicates for the different time points and experiments. For the experiments we picked only foraminifera
140 which tests were fully filled with brownish cytoplasm. The food source was added once at the beginning of the
141 experiments (in case of (iv) the food was added after the starving period). After the experiments, there was still enough
142 food at the bottom of the dishes, which indicated that there was sufficient food available during the whole experiment.
143 Triplicates were analyzed for each time point and parameter (time, salinity, food source or light condition):


144 (i) Salinity: To test the influence of salinity and time on food uptake, the original seawater (salinity of 20) was
145 adjusted by adding NaCl or distilled water to obtain the desired salinity level (15, 20 and 25). These salinities
146 correspond to different areas of the Kiel Fjord (salinities of 15 at the Schwentinemündung, 20 at the
147 sampling location Strander Bucht/Laboe and 25 at the outer Fjord). Subsequently, foraminifera were
148 incubated for 24 h at 20 °C and a 16:8 h light:dark (30 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) cycle without food addition to
149 acclimate to the new parameters, before labelled *D. tertiolecta* food (5 mg) was added. Food uptake was
150 measured after 3, 5 and 7 days.

151 (ii) Food preference: The second experiment investigated the effect of different algal food sources on food
152 uptake of the foraminifera species. For this, the green algae *D. tertiolecta* (5 mg) and the diatom *L. arenaria*
153 (5 mg) were offered to foraminifera at salinities of 15, 20 and 25 and a light/dark rhythm of 16:8 h (30 μmol
154 $\text{photons m}^{-2} \text{s}^{-1}$) and specimens collected after 5 d.

155 (iii) Light: The third experiment tested the effect of different light conditions on food uptake (only *D. tertiolecta*
156 food, 5 mg). Here, foraminifera were acclimatized 24 h before food addition to continuous darkness or a
157 18:6 h light:dark cycle (30 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), at 20 °C and a salinity of 20, and samples were collected
158 after 1, 3, 5 and 7 days.

159 (iv) Starvation: In order to determine the starvation effect on food uptake of this species, foraminifera were
160 cultured in the dark without nutritional supplement for different periods of time (1 – 7 days), at 20 °C and a
161 salinity of 20, and then were fed for 24 hours with 5 mg *D. tertiolecta*.

162 At the end of the test period, foraminifera were picked from the crystallization dishes and any food residues were removed
163 from the tests. Afterwards, they were washed three times with distilled water. It should be mentioned, that this process
164 could lead to a loss of cytoplasm due to osmotic shock. Therefore, the washing process should be done carefully and
165 quick to avoiding a breakup of the tests, which we did not observed during our experiments. Generally, we used always
166 the same amount of distilled water, so samples were all treated equal. Therefore, any potential impact of using distilled
167 water had the same effect on all samples. For isotope analysis, 20 foraminifera were transferred into pre weighted clean
168 tin capsules (Sn 99.9, IVA Analysentechnik GmbH & Co. KG) and dried for three days at room temperature. Finally, 5 μl
169 of 4% HCl was added twice to dissolve carbonate from foraminiferal tests. The dissolution was carried out at 60 °C in a
170 drying oven. Before weighing and isotope analysis, the tin capsules were dried again at 60 °C for 24 h to remove any
171 residual moisture. The dried and weighed samples were stored in a desiccator until isotope measurements.

172
173 Fig. 1: SEM – picture of the incubated foraminifera *E. excavatum* S5 after Darling et al., (2016). Bar scale = 100 μm .

174

175 2.4. Isotope analysis

176 Isotope analysis was performed at the Stable Isotope Laboratory for Environmental Research (SILVER) at the University
 177 of Vienna. Ratios of $^{13}\text{C}/^{12}\text{C}$ and $^{15}\text{N}/^{14}\text{N}$ were recorded by isotope ratio mass spectrometry (IRMS), using an elemental
 178 analyzer (EA 1110, CE Instruments) coupled with an interface (ConFlo III, Thermo Scientific) to a Delta^{PLUS} IRMS
 179 (Thermo Scientific).

180 In order to determine the amount of absorbed C or N the at% was calculated according to:

$$181 \text{at. \%} = \frac{100 \times R_{\text{standard}} \times \left(\frac{\delta X_{\text{sample}}}{1000} + 1 \right)}{1 + R_{\text{standard}} \times \left(\frac{\delta X_{\text{sample}}}{1000} + 1 \right)} \quad (1)$$

182 where X stands for C or N here, R_{Standard} : Vienna PeeDee Belemnite $R_{\text{VPDB}} = 0.0112372$ for C, and atmospheric nitrogen
 183 $R_{\text{atmN}} = 0.0036765$ for N.

184 Since the heavy stable isotopes used as a tracer (^{13}C and ^{15}N) are also occurring naturally, the natural abundance of these
 185 isotopes needs to be accounted for which was measured in foraminifera (untreated specimens from the main culture) that
 186 did not obtain labelled algal food sources. To take this into account, the so-called isotope excess (E) is calculated
 187 (Middelburg et al., 2000):

$$188 E = \frac{\text{atom}X_{\text{sample}} - \text{atom}X_{\text{background}}}{100} \quad (2)$$

189 As $X_{\text{background}}$ isotope abundances of foraminifera were used, which were not fed and thus reflect the natural isotope
 190 abundance signal.

191 The absorbed amount of isotopes can now be quantified, i.e. labeled I_{iso} for incorporated C or N.

192 $I_{\text{iso}} \mu\text{g mg}^{-1} = E \times C(N) \mu\text{g mg}^{-1} \quad (3)$

193 Here, either the number of individuals (ind^{-1}) or the mass (dry matter without test, see 3.1.) of foraminifera were used as
 194 reference.

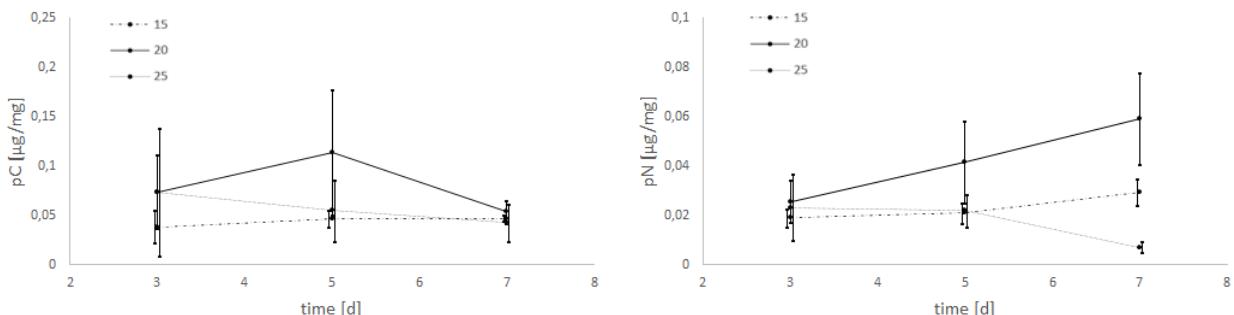
195 Finally, we need to consider the different isotopic enrichment of the algal food sources. Thus, “phytodetrital carbon (pC)
 196 or nitrogen (pN)“ is calculated accounting for the isotopic enrichment of the food sources. These values are calculated as
 197 follows:

$$198 pX = \frac{I_{\text{iso}}}{\frac{\text{at. \%}X_{\text{phyto}}}{100}} \quad (4)$$

199 2.5. Statistics

200 To test the main effects of salinity, food source, time, dark: light cycles and starvation, on pC and pN uptake we applied
 201 Kruskal-Wallis tests with a confidence interval of 95,0 %. All statistical tests were performed using Statgraphics Centurion
 202 XVI. The points in the graphs are the mean values from triplicates, with an 2σ error bar for the standard deviation.

203


204 **3. Results**

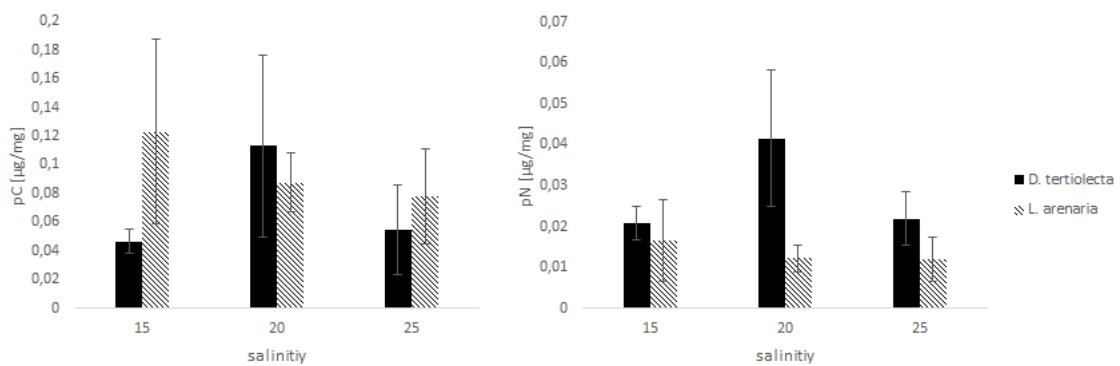
205 **3.1. Effect of salinity and time on C and N uptake from green algal food**

206 The uptake of C (pC) and N (pN) from green algal food sources by *E. excavatum* was slightly affected by salinity (Fig. 2). The statistical evaluation (Kruskal-Wallis) showed a significant effect of salinity on pC ($p=0.050$), but no significant effect of time ($p=0.651$). For a better insight into the described results, all data (values) are given in the supplementary. pC tended to be highest at a salinity of 20, followed by 25 and 15 across the whole time series. Considering the mean values after 3 days of feeding, *E. excavatum* showed the lowest pC values at salinities 15 and 25. The uptake of C showed a different pattern after 5 days and here reached a maximum at a salinity of 20 while the values at salinities 15 and 25 were lower but similar. After 7 days the amount of incorporated C was approximately the same at all three salinities (15, 20 and 25).

214 The amount of absorbed nitrogen (pN) was highly significantly affected by salinity ($p=0.004$) though not by time ($p=0.589$). At salinities of 15 and 20 N uptake (mean values) increased steadily from 3 to 7 days while at a salinity of 25 N uptake remained constant between 3 and 5 days and thereafter decreased. The values of pN were very similar after 3 days. This changed after 5 days, where the highest amount of pN was determined at a salinity of 20 while N uptake was approximately the same at salinities of 15 and 25 ($p<0.1$). The pattern of pN at this time point (5 days) is highly comparable with the C uptake pattern. With increasing incubation time, the pN values differed significantly. After 7 days ($p<0.01$), the maximum of pN was observed at a salinity of 20 and was quite lower at salinities of 15 and 25.

221

222


223 Fig.2: Salinity effects on the uptake of C (pC) and N (pN) from the green algae *D. tertiolecta* by *E. excavatum* after different feeding times at 20 °C and
224 a light:dark cycle of 18:6 h.

225

226 **3.2. Effect of food source (green algae and diatoms) and salinity on C and N uptake**

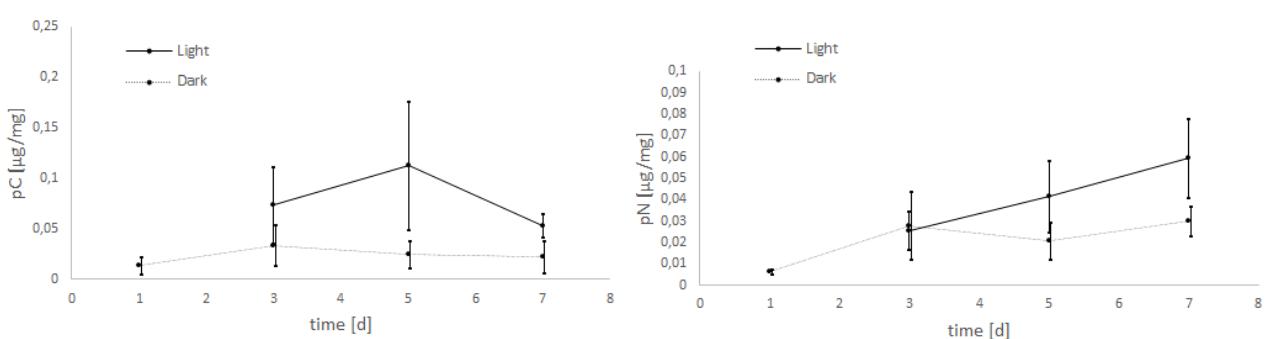
227 The values of C and N uptake from different food sources at three salinity levels are listed in Fig. 3.

228

229

230 Fig. 3: The uptake of C (pC) and N (pN) from different food sources (the green algae *D. tertiolecta* and the diatom *L. arenaria*) by *E. excavatum* after
231 5 days at 20 °C and a light:dark cycle of 16:8 h.

232 Kruskal-Wallis of the C uptake showed no significant difference ($p=0.825$) between the offered food sources. However,
233 this main salinity effect differed by food source: pC from *D. tertiolecta* peaked at a salinity of 20 while pC from *L.
234 arenaria* was highest at a salinity of 15 and showed a sharp decrease at higher salinities.

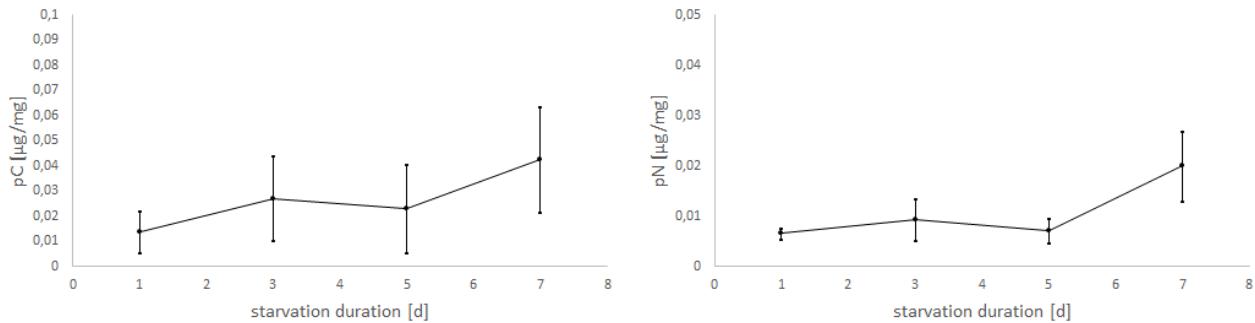

235 Nitrogen uptake showed quite different patterns compared to C uptake. We found a highly significant difference in pN
236 between food sources ($p=0.004$). In contrast to pC, pN was significantly higher after feeding on green algae than on
237 diatoms. Otherwise, food-specific effects of salinity on pN followed those of pC, i.e., pC peaked at a salinity of 20 for *D.
238 tertiolecta* and was highest at a salinity of 15 for *L. arenaria*.

239 Comparing the salinity effects on incorporated C and N from feeding with *D. tertiolecta* with those of *L. arenaria*,
240 different trends can be deduced. The highest pC was reached at the lowest salinity (15) from the diet with *L. arenaria*
241 while at highest salinity (25) the C uptake was highest when fed with *D. tertiolecta*. In contrast, N was preferentially
242 incorporated from a diet with *D. tertiolecta*. Such differences in pC and pN from different algal sources were also reflected
243 in distinct ratios of pC: pN, which were 2.2-2.7 in *D. tertiolecta* and 6.4-7.5 in *L. arenaria*.

244 3.3. Effects of light regime on the uptake of C and N from green algal food

245 The experiments clearly showed a strong effect of light regime on the food uptake of *E. excavatum*, with *D. tertiolecta* as
246 the food source (Fig. 4). Kruskal-Wallis of these data showed that the light regime had a highly significant effect on pC
247 of *E. excavatum* ($p<0.001$) while time ($p=0.561$) was not significant. Continuous darkness caused a sizable reduction of
248 pC compared to 16:8 h light:dark cycles.

249 The negative effect of continuous darkness was also observable on pN ($p=0.102$). Despite this negative effect, pN tended
250 to increase with time ($p=0.058$), particularly so under 16:8 h light:dark cycles.



251

252 Fig. 4: Effects of light regime (light:dark cycle of 18:6 h versus continuous darkness) on the uptake of C (pC) and N (pN) from the green algae *D. tertiolecta* by *E. excavatum* after different feeding times at 20 °C and a salinity of 20. The values of the “light-experiments” are the same as used in Fig. 2.

255 3.4. Effects of starvation on the uptake of C and N from green algal food

256 In a fourth experiment, foraminifera were incubated for different time intervals (1, 3, 5 and 7 days) without any food in
257 the darkness. After each starvation period they were fed with *D. tertiolecta* and exposed to light for 24 h.

258 Fig. 5: Uptake of C (pC) and N (pN) from green algal food (*D. tertiolecta*) by *E. excavatum* after different starvation periods in the dark at a salinity of
259 20 and 20 °C.

261 Considering the positive slope of the correlation line for the mean values (pC: $k = 0.0041$, pN: $k = 0.0019$), it seems that
262 the longer the foraminifera were starved, the more food was consumed within 24 h (Fig. 5). However, Kruskal-Wallis test
263 showed no significant starvation time effect of C uptake ($p=0.223$), but there was a tendency increase in pN with
264 increasing starvation duration ($p=0.113$). During the first 5 days in darkness without food, there was hardly any difference
265 in N uptake, while after 7 days in darkness a clear increase of pN was recorded. Similarly, pC tended to be stimulated by
266 prolonged starvation but the variation was too high to become significant.

267

268 **4. Discussion**

269 4.1. Food uptake of *E. excavatum* at different salinities and type of food

270 Salinity (15, 20 and 25) significantly affected the food uptake of *E. excavatum*, especially for longer test times. The low
271 level of ingested *D. tertiolecta* in comparison to other studies with *Ammonia tepida* ($0.4 - 1.2 \mu\text{g C mg}^{-1}$ and $0.2 - 0.4 \mu\text{g}$
272 N mg^{-1} at a salinity of 24) and *Haynesina germanica* ($0.05 - 0.35 \mu\text{g C mg}^{-1}$ and $0.03 - 0.13 \mu\text{g N mg}^{-1}$ at a salinity of
273 24) (Lintner et al., 2020; Wukovits et al. 2017) suggests that this green algae was not a preferred dietary source of this
274 foraminifer species. This observation can be compared with experiments by Correia and Lee (2000) which demonstrated
275 an increased absorption of chloroplasts by *E. excavatum*, which corresponds to a dietary preference for diatoms. Though
276 the amount of ingested C from the diatom *L. arenaria* was also low here we found a tendency preference of *E. excavatum*
277 for the diatom diet over the green algal diet. It is therefore likely that *E. excavatum* prefers the algal diet that corresponds
278 to the source of its kleptoplasts. Moreover, generally food (C) uptake by a kleptoplastid species (*H. germanica*) was lower
279 than that of a species not showing kleptoplastidy (*A. tepida*) (Lintner et al., 2020; Wukovits et al. 2017), indicating that
280 the chloroplasts can supplement the C nutrition of species exhibiting kleptoplastidy. A shift of C uptake from diatoms at
281 a salinity of 15 to green algae at salinities of 20-25 is also noteworthy and has not yet been observed in this or other
282 foraminifera species. This might have strong implications on foraminiferal C and N re-cycling in habitats where *E.*

283 *excavatum* is dominant, given that N retention was approximately 3-fold higher with diets of green algae compared to
284 diatoms (pC:pN was 2.2-2.7 for *D. tertiolecta* compared to 6.4-7.5 for *L. arenaria*).

285 On a closer look, it can be seen that foraminifera reacted to an increased salt content in the longer term by lower rates of
286 green algal food consumption. The mean C uptake recorded at a salinity of 20 showed a maximum five days after food
287 addition and declined thereafter. Such a behavior is already known from *H. germanica* (Lintner et al., 2020), a closely
288 related species living in the same habitat. In Lintner et al. (2020) this behavior was explained by the fact that *H. germanica*
289 also contained kleptoplasts, which may serve as internal C and N sources via digestion. In the case of foraminiferal N
290 uptake in our study this effect was not evident, as the amount of incorporated N increased steadily, at least at salinities of
291 15 and 20. At this point it should be noted that foraminifera metabolize food C and N during their digestive process and
292 release them into the surrounding environment as excreta or as respiratory CO₂ (Hannah et al., 1994; Nomaki et al., 2014).
293 This needs to be taken into account the longer an experiment lasts and might explain the decrease in the incorporated
294 amount of C from day 5 to 7 (Fig. 2). Although C is constantly being absorbed by foraminifera in the form of food, it is
295 also partially relocated and excreted or released by cellular respiration (Hannah et al., 1994). Furthermore, C can also be
296 used for test formation as shown in the study of LeKieffre et al. (2017). During the preparation of foraminifera for isotope
297 analysis, the test is dissolved in hydrochloric acid and the amount of incorporated C in the test is not measured, which
298 may cause an underestimation of pC relative to pN at prolonged feeding times. Although N can also be transferred into
299 various excretions and released into the surrounding water in organic and inorganic form, a large part still remains in the
300 form of proteins or amino acids in the cell of the organisms (Nomaki et al., 2014).

301 After 3 day, foraminifera showed minimum C uptake at the lowest salinity (15). Comparing the entire time series of green
302 algal uptake, the 15-salinity series is the only one with a positive slope of mean values ($k = 0.0021$) for pC with time.
303 Based on this observation, foraminifera might feel uncomfortable at low salinities and react to this with a reduced
304 metabolism. There are a few studies which discuss the reduction of metabolism due to stressful conditions (Bernhard and
305 Alve, 1996; Ross and Hallock, 2016; LeKieffre et al., 2017). This may lead to a generally lower activity of foraminifera,
306 which reduces their cell respiration and results in a lower C output. This reduced C output could be linked to the
307 accumulation of lipid droplets which seems to be a common response of benthic foraminifera in response to stressful
308 conditions such as anoxia or increased heavy metals concentrations (Le Cadre and Debenay, 2006; Frontalini et al., 2016;
309 2015; Koho et al., 2018). Foraminifera held at higher salinity (20 or 25) may have a higher activity and thus a greater C
310 output due to cell respiration and excretion. The combination of these aspects could explain the negative slopes or peaks
311 of the 20 and 25 salinity trend lines. Direct observations during the experiments showed that foraminifera cultured in
312 crystallization dishes at salinities of 20 or 25 were more mobile (personal observation of crawling observations) than
313 those at a salinity of 15. This aspect confirms the higher activity of foraminifera at higher salinities.

314 The results of N incorporation differed from those of C. Here, both the 15 and 20 salinity series showed a positive slope
315 with time while in the long term, less N was absorbed at higher salinities (25). The magnitude of the slope of the 15-
316 salinity series was markedly lower than that at a salinity of 20. Again, this could be due to the lower activity of foraminifera
317 at a salinity of 15 compared to experiments at a salinity of 20. However, the decrease of N at a salinity of 25 with time
318 cannot be explained so easily. A possible explanation is faster N metabolism coupled to increased excretion of N-
319 containing substances by foraminifera at high salinity. There are no other studies which are dealing with this arguments,
320 so further experiments are necessary to resolve this observation. Moreover, the combination of high salinity with an
321 inappropriate diet (green algae) could cause long-term stress-related damage of the cells. Overall, this experiment

322 highlighted that the digestion and metabolic pathways of C and N differ substantially and are differentially influenced by
323 environmental parameters in foraminifera (Lintner et al., 2020; Wukovits et al. 2017).

324 4.2. Influence of the light/dark rhythm and starvation on the food uptake of *E. excavatum*

325 Food uptake was affected by light conditions (see fig. 4). Foraminifera had a much lower C and N uptake during
326 continuous darkness. pC values were low and more or less constant from day 1 through to day 7 (p=0.547). However, N
327 uptake increased slightly under dark conditions. As already mentioned, *Elphidium* species possess chloroplasts
328 (kleptoplasts), which they incorporate from their food sources into their own metabolic cycle (Correia and Lee, 2000).
329 This aspect could be an important contribution to explain the light regime effects on food uptake rates. There are two
330 different explanations.

331 First, in complete darkness foraminifera could stop foraging and start feeding on their 'own' chloroplasts. Past
332 investigations showed that chloroplasts in *Elphidium* were exclusively derived from diatoms, making diatoms their
333 preferred food source (Pillet et al., 2011). Our experiments showed that *E. excavatum* had a significantly higher food
334 uptake after 7 days of starvation compared to the days before (Fig. 5). During the first 5 days, foraminifera may have
335 either stagnated with a reduced metabolism or they may have begun to digest their chloroplasts. For further investigations
336 it would be interesting to detect chlorophyll in foraminifera spectroscopically, since this molecule is found exclusively in
337 chloro- or kleptoplasts (Cevasco et al., 2015; Krause and Weis, 1991; Mackinney, 1941). One aspect to be discussed here
338 is the life time of (viable) kleptoplasts in foraminifera under natural conditions. For example, *Nonionella labradorica*
339 showed a strong seasonal variation in plastid viability (Cedhagen, 1991). According to Cedhagen (1991) specimens of *N.*
340 *labradorica* collected in February were yellowish and showed no photosynthetic activity. In contrast, individuals sampled
341 after the spring bloom in March or April were completely green and photosynthetically active. In a study by Cevasco
342 (2015) foraminifera still contained chlorophyll (>288 photosynthetic plastids) after being held 5 days without food in the
343 darkness. The experiments by Lopez (1979) showed that *E. williamsoni* needs to ingest 65 chloroplasts per hour and
344 individual in order to keep a constant number of chloroplasts in the cell. At the moment there is no study which has shown
345 that the chloroplasts in *E. excavatum* are photosynthetically active. Lopez (1979) showed that there is no light induced
346 uptake of inorganic C by chloroplasts in *E. excavatum*. It should be noted that the aspect of difference in color mentioned
347 by Cedhagen (1991) is probably also applicable to our foraminifera. Specimens of *Elphidium* for this study were collected
348 in September, living in the top few cm of the sediment and showed a yellow coloring. It can therefore be assumed that
349 these individuals contained fewer functional chloroplasts from the beginning onwards compared to those in the study by
350 Lopez (1979). The different residence times of kleptoplasts in foraminifera can be fundamentally explained by different
351 feeding and sequestration strategies as well as diverse digestion abilities (Jauffrais et al., 2018).

352 Secondly, different food uptake rates under dark or light conditions by *E. excavatum* in this study could be explained by
353 indirect light effects on chloroplasts in the foraminiferal cells. This aspect is rather speculative and needs of course further
354 studies to clarify. This raises the question whether inactive chloroplasts are degraded or stored for some time in order to
355 be able to reactivate them. Furthermore, it is interesting to know whether *E. excavatum*, which lives in a suboxic milieu
356 like the Kiel fjord, possesses chloroplasts to acquire oxygen from chloroplast photosynthesis to sustain respiratory
357 metabolism of their mitochondria. This in turn leads to the question whether *E. excavatum* is viable without chloroplasts
358 or whether the metabolism works in the long-term only with this additional organelle. To answer these questions clearly
359 further experiments are needed.

360 According to Jauffrais et al. (2016) the number of chloroplasts in *H. germanica* during starvation periods strongly depends
361 on illumination conditions. Based on this, foraminifera with kleptoplastidy are more likely to lose active chloroplasts at
362 light-exposed circumstances (Jauffrais et al., 2016). Combined with the results of Lopez (1979), who stated that
363 foraminifera must obtain a certain number of chloroplasts from food to maintain a constant number in their cells, our
364 experiments showed the following: *E. excavatum* is expected to be in a dormant phase under dark conditions, which
365 entails limited food uptake (Fig. 4). After prolonged starving periods (>7d) in the dark, a starvation effect of this species
366 is noticeable (Fig. 5). The triggers for this effect are currently unknown. It seems that *E. excavatum* can survive in the
367 darkness from the previously ingested food for up to 5 days of starvation. Only after 7 days of starvation a significantly
368 higher food uptake was observed.

369 4.3. The influence of salinity and food source on the foraminiferal assemblages in the Kiel fjord

370 In line with the observations of Lee und Müller (1973) dietary sources used in our experiments had a tendency effect on
371 C uptake, with higher C uptake from the diatom food. The effect of food type was even more pronounced for N uptake,
372 with clearly higher incorporation rates of N from the green algal food. However, different salinity levels caused significant
373 differences with time. Since *E. excavatum* is one of the dominant species in the Kiel fjord (Schönfeld and Numberger,
374 2007) and thus plays an important role in the turnover of organic matter, this aspect is discussed in more detail here.

375 The Baltic Sea had several transgressive phases that play crucial roles in salinity changes (Robertsson, 1990; Jensen et
376 al., 1997). The most important salinity indicators in this region are diatoms (Bak et al., 2006; Witkowski, 1994; Abelmann,
377 1985). Since diatoms serve as the natural food source for *E. excavatum* examined here, their salinity based distribution
378 plays an essential role in the interpretation of our results. A study by Schönfeld and Numberger (2007) demonstrated the
379 close connection between foraminifera and diatoms. Their study showed that few days after a phytoplankton bloom of
380 diatoms a large depositional pulse of organic matter occurred, whereupon the population of *E. excavatum* increased 2 –
381 6fold. In our experiments we found a slight preference of *E. excavatum* for the tested diatoms (*L. arenaria*) over green
382 algae (*D. tertiolecta*). Previous experiments showed how certain foraminifera are stimulated particularly by specific food
383 sources (Lee et al., 1961). However, considering the small amount of incorporated C and N in our experiments, neither
384 *L. arenaria* nor *D. tertiolecta* belongs to the preferred food sources of *E. excavatum*.

385 The Baltic Sea is the largest brackish water basin in the world (Voipio, 1981). During the sampling, the salinity was close
386 to 21 (surface water). This brackish milieu leads to a low diversity of foraminifera (Hermelin, 1987; Murray, 2006).
387 According to Lutze (1965) benthic foraminifera of this region require a minimum salinity of 11–12 to survive. The lowest
388 salinity in our experiment was set slightly above this limit, with 15. Interestingly, the amount of incorporated N was higher
389 after 7 days at a salinity of 15 than at a salinity of 25, and both pN and pC were highest at a salinity of 20 (considering
390 mean values of the uptake). Low salinities or strong salinity fluctuations can lead to smaller test sizes or test abnormalities
391 of foraminifera (Brodniewicz, 1965; Polovodova and Schönfeld, 2008). Only foraminifera without test abnormalities
392 were taken for experiments. After the feeding experiments, no visual influence of salinity on test abnormalities or new
393 chambers were recorded, but the time intervals in this study was likely too short for such observations. The influence of
394 salinity on the test structure of *Elphidium* in the Baltic Sea has already been investigated (e.g., Binczewska et al., 2018).
395 At our sampling point in Laboe test abnormalities occur in 12 – 33 individuals per 10 cm³ (Polovodova and Schönfeld,
396 2008). The authors suggested a connection between the high number of abnormalities in the Kiel fjord and the salt-rich
397 inflows from the Belt Sea. The Belt Sea represents the interface where the low-salt Baltic Sea water mixes with the salty
398 Kattegat waters (salinities of 20–26; Hurtig, 1966). At highest salinity (25) in this study, food uptake apparently decreased

399 over a longer period of time. Considering the recorded amount of N uptake (Fig. 2) only the 25-salinity series showed a
400 negative correlation and this trend was neither observed in the 15 nor in the 20-salinity series, which indicates that *E.*
401 *excavatum* was very good adapted to the brackish milieu of the Kiel Fjord.

402 The influences of salinity changes on foraminiferal communities in the Kiel fjord were also investigated by Nikulina et
403 al. (2008). As discussed before, an increase of salinity probably leads to a decrease of the amount of living *E. excavatum*.
404 Nowadays, the species *Ammotium cassis* is barely found in the inner Kiel fjord, while a decade ago it was a subdominant
405 part of the foraminiferal community (Nikulina et al., 2008). This shows how important changes of the salinity are for
406 changes in the foraminiferal communities. According to Lutze (1965), *A. cassis* is well adapted to a strong halocline
407 between the surface and deep waters. Several factors contribute to the formation of a halocline (Steele et al., 1995; Rudels
408 et al., 1996). Generally, eutrophication and increased storm frequency are important issues in the Baltic Sea (Christiansen
409 et al., 1996; Seidenkranz, 1993). These factors can lead to a better mixing of the water masses and thus reduce the halocline
410 and influence the faunal composition. However, the inner Kiel fjord is less saline than the open Kiel Bight and the fauna
411 is dependent on the salinity of the water (Nikulina et al., 2008; Lutze 1965).

412 In summary, we found significant differences in food uptake at different salinities. *Elphidium excavatum* seems to cope
413 better with lower salinities, which correlates very well with the brackish milieu in the Kiel fjord. An increase of the salinity
414 from 20 to 25 caused more stress for the species than a reduction from 20 to 15 (see reduced uptake of C and N after 7
415 days at higher salinities in fig. 2). This once again demonstrates the good adaptation of *E. excavatum* to habitats of lower
416 salinity. Foraminifera can convert up to 15 % of the total annual flux of particulate organic matter in the Kiel fjord
417 (Altenbach, 1985). In addition, this region is strongly affected by eutrophication, making the Kiel fjord an interesting
418 field of research in the future, where interactions of changing environmental parameters with foraminiferal communities
419 can be studied.

420

421 5. References

422 Altenbach, A.: Die Biomasse der benthischen Foraminiferen. Auswertung von 'Meteor' - Expedition im östlichen
423 Nordatlantik. Dissertation an der Christian-Albrechts-Universität zu Kiel: 133, 1985.

424 Bernhard, J. and Alve E.: Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from
425 Drammensfjord (Norway): response to anoxia. Mar. Micropal. 28, 1, 5-17, 1996.

426 Bernhard, J., and Bowser, S.: Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional
427 morphology: Earth-Sci. Rev., 46, 149–165, 1999.

428 Boltovskoy, E., and Wright, R.: Recent Foraminifera: W. Junk, The Hague, 515, 1976.

429 Binczewska, A., Moros, M., Polovodova-Asteman, I., Sławinska, J., and Bak, M.: Changes in the inflow of saline water
430 into the Bornholm Basin (SW Baltic Sea) during the past 7100 years – evidence from benthic foraminifera record.
431 Boreas, 47, 297–310, 2018.

432 Brodniewicz, I.: Recent and some Holocene foraminifera of the southern Baltic Sea. Acta Pal. Pol. 10, 131–157, 1965.

433 Cedhagen, T.: Retention of chloroplasts and bathymetric distribution in the Sublittoral Foraminiferan *Nonionellina*
434 *labradorica*: Ophelia, 33, 17–30, 1991.

435 Cevasco, M., E., Lechliter, S., M., Mosier, A., E., and Perez, J.: Initial Observations of Kleptoplastidy in the Foraminifera
436 of Coastal South Carolina; South. Nat., 14(2), 361-372, 2015.

437 Chanvalon, A., T., Metzger, E., Mouret, A., Cesborn, F., Knoery, J., Rozuel, E., Launeau, P., Nardelli, M., P., Jorissen, F.,
438 J., Geslin, E.; Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine
439 mudflat (Loire estuary, France); BG, 12, 6219-6234, 2015.

440 Christiansen, C., Kunzendorf, H., Laima, M., Lund-Hansen, L., and Pedersem, A.: Recent changes in environmental
441 conditions in the southwestern Kattegat, Scandinavia. *Bulletin Norges Geologiske Undersökelse* 430, 137-144,
442 1996.

443 Correia, M., and Lee, J.: Chloroplast retention by *Elphidium excavatum* (Terquem). Is it a selective process?; *Sym.*, 29,
444 343-355, 2000.

445 Correia, M., and Lee, J.: Fine Structure of the Plastids Retained by the Foraminifer *Elphidium excavatum* (Terquem).
446 *Sym.*, 32, 15-26, 2001.

447 Debenay, J., Jouanneau, J., Sylvestre, F., Weber, O., Guiral, D.; Biological Origin of Rhythmites in Muddy Sediments of
448 French Guiana; *JCR*, 23(6), 1431 – 1442, 2007.

449 Dissard, D., Nehrke, G., Reichart, G., and Bijma, J.: The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic
450 Foraminifera *Ammonia tepida*: Results from culture experiments, *Geochim. Cosmochim. Acta* 74, 928-940, 2009.

451 Enge, A., Nomaki, H., Ogawa, N., Witte, U., Moeseneder, M., Lavik, G., Ohkouchi, N., Kitazato, H., Kucera, M., and
452 Heinz, P.: Response of the benthic foraminiferal community to a simulated short-term phytodetritus pulse in the
453 abyssal North Pacific, *Mar. Ecol.-Prog. Ser.*, 438, 129-142, 2011.

454 Falkowski, P., and Raven J.; *Aquatic photosynthesis*; Princeton University Press, QK882.F36, (Book) 2007.

455 Fennel, W.: *Wasserhaushalt und Strömungen*, in *Rheinheimer, Meereskunde der Ostsee*: Springer Verlag, Berlin, 56-67,
456 1996.

457 Frenzel, P., Tech, T., and Bartholdy, J.: Checklist and annotated bibliography of recent Foraminifera from the German
458 Baltic Sea coast. *Stud. Geol. Pol.*, 124, 67-86, 2005.

459 Frontalini, F., Curzi, D., Giordano, F., Bernhard, J., Falcieri, E. and Coccioni, R.: Effects of Lead Pollution on Ammonia
460 *Parkinsoniana* (Foraminifera): Ultrastructural and Microanalytical Approaches. *Eur. J. Histochem.* 59, 2460, 2015.

461 Frontalini, F., Curzi, D., Cesarini, E., Canonico, B., Giordano, F., Matteis, F., Bernhar, J., Pieretti, N., Eskelsen, G., Jubb,
462 J., Zhao, A., Pierce, L., Gobbi, E., Papa, P. and Coccioni, R.: Mercury-Pollution Induction of Intracellular Lipid
463 Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer *Ammonia parkinsoniana*. *Plos
464 one* 11, e0162401, 2016.

465 Gerlach, S.: Oxygen depletion 1980-1983 in coastal waters of the Federal Republic of Germany, *Berichte aus dem Institut
466 für Meereskunde an der Christian-Albrechts-Universität Kiel*, 130, 97, 1984.

467 Gerlach, S.: Nitrogen, phosphorus, plankton and oxygen deficiency in the German Bright and the Kiel Bay, *Kieler
468 Meeresforschungen*, Sonderheft 7, 341, 1990.

469 Grobe, H., and Fütterer, D.: Zur Fragmentierung benthischer Foraminifera in der Kieler Bucht (Westliche Ostsee):
470 *Mayniana*, 33, 85-96, 1981.

471 Grzymski, J., Schönfield, J., Falkowski, P., and Bernhard, J.: The function of plastids in the deep-sea benthic foraminifer,
472 *Nonionella stella*: *L&O*, 47, 1569-1580, 2002.

473 Goldstein, S., Bernhard, J., and Richardson, E.: Chloroplast Sequestration in the Foraminifer *Haynesina germanica*:
474 Application of High Pressure Freezing and Freeze Substitution; *Microsc. Microanal.*, 10, 1458-1459, 2004.

475 Guillard, R.: Culture of phytoplankton for feeding marina invertebrates in: *Culture of marine invertebrates animals*,
476 Springer, 29-60, 1975.

477 Guillard, R., and Ryther, J.: Studies of marina planktonic diatoms: I *Cyclotella nana* Hustedt, and *Detonula confervacea*
478 (CLEVE) Gran, *Can. j. Microbiol.*, 8, 229-239, 1962.

479 Hannah, F., Rogerson R., and Laybourn-Parry, J.: *Respiration rates and biovolumes of common benthic Foraminifera
480 (Protozoa)*; Cambridge University Press, 72(2), 301-312, 1994.

481 Hayward, B., Le Coze, F., Vachard, D. and Gross, O.: World Foraminifera Database. *Cribroelphidium selseyense* (Heron-
482 Allen & Earland, 1911). <http://www.marinespecies.org/aphia.php?p=taxdetails&id=754247> on 2021-01-04 2021.

483 Heinz, P., Marten R., Linsky V., Haap T., Gesling E., and Köhler H.: 70kD stress protein (Hsp70) analysis in living
484 shallow-water benthic foraminifera. *MBRJ*, 8, 677-681, 2012.

485 Hermelin, J.: Distribution of Holocene benthic foraminifera in the Baltic Sea. *JFR* 17, 63-72, 1987.

486 Jauffrais, T., LeKieffre, C., Schweizer, M., Geslin, E., Metzger, E., Bernhard, J., Jesus, B., Filipsson, H., Maire, O. and
487 Meibom, A.: Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C,
488 N and S studied with sub-cellular resolution. *Envir. Microbiol.* 21, 1, 125-141, 2019.

489 Jauffrais, T., LeKieffre, C., Schweizer, M., Jesus, B., Metzger, E. and Geslin, E.: Response of a kleptoplastidic
490 foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. *FEMS Microb. Ecol.*, 95 (5),
491 2019.

492 Jauffrais, T., LeKieffre, C., Koho, K., Tsuchiya, M., Schweizer, M., Bernhard, J., Meibom, A. and Geslin, E.;
493 Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats; *Mar.*
494 *Micropal.*, 138, 46-62, 2018.

495 Jauffrais, T., Jesus, B., Metzger, E., Mouget, J., Jorissen, F. and Geslin, E.: Effect of light on photosynthetic efficiency
496 of sequestered chloroplasts in intertidal benthic foraminifera (*Haynesina germanica* and *Ammonia tepida*). *BG* 13,
497 2715-2726, 2016.

498 Krause, G., Weis, E.; Chlorophyll fluorescence and photosynthesis: The Basics; *Annu. Rev. Plant Physiol. Plant Mol.*
499 *Biol.* 42:313-349, 1991.

500 Koho, K., LeKieffre, C., Nomaki, H., Salonen, I., Geslin, E., Mabilleau, G., Sogaard, J. and Reichert, G.: Changes in
501 ultrastructural features of the foraminifera Ammonia spp. in response to anoxic conditions: Field and laboratory
502 observations. *Mar. Micropal.*, 138, 72-82, 2018.

503 Lee, J., Price S., Tentchoff, M, and McLaughin, J: Growth and Physiology of Foraminifera in the Laboratory: Part 1:
504 Collection and Maintenance. *Micropal.*, 7(4), 461-466, 1961.

505 Lee, J., McEnery, M., Pierce, S., Freudenthal, H., and Muller, W.: Tracer Experiments in Feeding Littoral Foraminifera,
506 *J. of Euk. Microbio.*, 13(4), 659-670, 1966.

507 Lee, J., and Müller, W.: Trophic dynamics and niches of salt marsh foraminifera; *Am. Zool.* 13, 215-223, 1973.

508 Lee, J., Lanners, E., and Kuile, B.: The retention of chloroplasts by the foraminifer *Elphidium crispum*: *Symbiosis*, 5,
509 45-59, 1988.

510 Lee, J., and Lee, R.: Chloroplast retention in elphids (Foraminifera). *Endocyto.*, 215-220, 1989.

511 Lechliter, S.: Preliminary study of kleptoplasty in foraminifera of South Carolina: *Bridges*, 8, 44, 2014.

512 Le Cadre, V. and Debenay, J.: Morphological and cytological responses of Ammonia (foraminifera) to copper
513 contamination: Implication for the use of foraminifera as bioindicators of pollution. *Envir. Poll.* 143, 2, 304-317,
514 2006.

515 LeKieffre, C., Spangenberg, J., Mabilleau, G., Escrig, S., Meibom, A. and Geslin, E.: Surviving anoxia in marine
516 sediment: The metabolic response of ubiquitous benthic foraminifera (*Ammonia tepida*). *Plos one*, 2017.

517 Lintner, M., Biedrawa, B., Wukovits, J., Wanek, W., and Heinz, P.: Salinity-depending algae uptake and subsequent carbon
518 and nitrogen metabolisms of two intertidal foraminifera (*Ammonia tepida* and *Haynesina germanica*). *BG*, 17, 3723-
519 3732, 2020.

520 Lopez, E.: Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability
521 and persistence. *Mar. Bio.*, 53, 201-211, 1979.

522 Lutze, G.: Zur Foraminiferen: *Fauna der Ostsee. Meyniana* 15, 75-142, 1965.

523 Mackinney, G.; Absorption of light by chlorophyll solutions; *J. of Bio. Chem.*, 140, 315-322, 1941.

524 Middelburg, J., Barranguet, C., Boschker, H., Herman, P., Moens, T., and Heip, C: The fate of intertidal
525 microphytobenthos carbon: An in situ ^{13}C -labeling study, *Limnol. Oceanogr.* 45, 1224-1234, 2000.

526 Miller, A., Scott, D., and Medioli, F.: *Elphidium excavatum* (Terquem): ecophenotypic versus subspecific variation. *J*
527 *Foramin. Res.*, 12, 116-144, 1982

528 Murray, J.: Ecological experiments on Foraminifera, *Journal of the Marine Biological Association of the United*
529 *Kingdom*, 43(3), 621-642, 1963.

530 Murray, J.: Ecology and paleoecology of benthic foraminifera. Longman, Harlow, 1991.

531 Murray, J.: *Ecology and Applications of Benthic Foraminifera*. Cambridge University Press, 426, 2006.

532 Nikulina, A., Polovodova, I., and Schönfeld, J.: Environmental response of living benthic foraminifera in Kiel Fjord, SW
533 Baltic Sea; HAL archives-ouvertes, Hal Id: hal-00298257, 2007.

534 Nikulina, A., Polodovoda, I., and Schönfeld, J.: Foraminiferal response to environmental changes in Kiel Fjord, SW Baltic
535 Sea. *Earth*, 3, 37-49, 2008.

536 Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Ohkouchi, N., Uematsu, K., Tame, A., and Kitazato, H.: Nitrate uptake by
537 foraminifera and use in conjunction with endobionts under anoxic conditions; *Limno. and Oceano.*, 59(6), 1879-
538 1888, 2014.

539 Pawlowski, J., Holzmann, M., Bemey, C., Fahmi, J., Gooday, A., Cedhagen, T., Habura, A., and Bowser, S.: The Evolution
540 of early Foraminifera; *PNAS*, 100(2), 11494-11498, 2003.

541 Pillet, L., Vargas, C., and Pawlowski, J.: Molecular identification of sequestered diatom chloroplasts and kleptoplastidy
542 in foraminifera. *Protist*, 162, 394-404. 2011.

543 Polovodova, I., and Schönfeld, J.: Foraminiferal test abnormalities in the Western Baltic Sea. *J. Foramin. Res.*, 38(4),
544 318-336, 2008.

545 Rhode, S., Hiebenthal, C., Wahl, M., Karez, R. and Bischof, K.: Decreased depth distribution of *Fucus vesiculosus*
546 (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. *Eur. J.*
547 *Phycol.*, 43, 2, 143-150, 2008.

548 Ross B. and Hallock P.: Dormancy in the foraminifera: A review. *J. For. Res.* 46, 358-368, 2016.

549 Rudels, B., Anderson, L., and Jones, E.: Formation and evolution of the surface mixed layer and halocline of the Arctic
550 Ocean. *J. of Geo. Res.*, 101(C4), 8807-8821, 1996.

551 Salonen, I., Chronopoulou, P., Bird, C., Reichert, G. and Koho, K.: Enrichment of intracellular sulphur cycle –associated
552 bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. *Sci. Rep.* 9, 11692, 2019.

553 Seidenkrantz, M.: Subrecent changes in the foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia:
554 anthropogenic influence and natural causes. *Boreas*, 22, 383-395. 1993.

555 Senocak, T.: Schwermetalluntersuchung an Fischen der deutschen Ostseeküste (Kliesche, *Limanda limanda*; Flunder,
556 *Platichthys flesus*; Hering, *Clupea harengus* und Dorsch, *Gadus morhua*). Berichte aus dem Institut für
557 Meereskunde an der ChristianAlbrechts-Universität Kiel, 270, 177, 1995.

558 Scott, D., Mediolo, F., and Braund, R.: Foraminifera from the Cambrian of Nova Scotia: The oldest multichambered
559 foraminifera. *Micropal.*, 49(2), 109-126, 2003.

560 Steele, M., Morison, J. and Curtin, T.: Halocline water formation in the Barents Sea. *J. of Geo. Res.*, 100(C1), 881-894,
561 1995.

562 Schönfeld, J. and Numberger, L.: Seasonal dynamics and decadal changes of benthic foraminiferal assemblages in the
563 western Baltic Sea (NW Europe). *Journal of Micropal.*, 26, 47-60, 2007.

564 Schwarzer, K., and Themann, S.: Sediment distribution and geological buildup of Kiel Fjord (Western Baltic Sea), Mey.,
565 55, 91-115, 2003.

566 Schweizer, M., Polovodova, I., Nikulina, A., and Schönfeld, J.: Molecular identification of *Ammonia* and *Elphidium*
567 species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences. *Helgol. Mar. Res.*, 65,
568 1-10, 2011.

569 ter Jung, C.: Beitrag zum Schwermetallgehalts-Monitoring (Yn, Cd, Hg, Cn, Ag, Pb, Cr, Ni) in Miesmuscheln an der
570 schleswig-holsteinischen Ostseeküste (1988-1989). Berichte aus dem Institut für Meereskunde an der Christian-
571 Albrechts-Universität Kiel, 221, 89, 1992.

572 Terquem, O.: Essai sur le classement des animaux qui vivent sur la plage et dans les environs de Dunkerque, pt. 1.
573 Memoires de la Societe Dunkerquoise pour l'Encouragement des Sciences, des Lettres et des Arts, 19, 405-457, 1876.

574 Tsuchiya, M., Miyawaki, S., Oguri, K., Toyofuku, T., Tame, A., Uematsu, K., Takeda, K., Sakai, Y., Miyake, H. and
575 Marayuma, T.: Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in *Planoglabratella opercularis*
576 (Foraminifera, Rhizaria). *Front. Mar. Sci.* 7, 585, 2020.

577 Tsuchiya, M., Toyofuko, T., Uematsu, K., Bruchert, V., Collen, J., Yamamoto, H. and Kitazato, H.: Cytologic and genetic
578 characteristics of endobiotic bacteria and kleptoplasts of *Virgulinella fragilis* (Foraminifera): Journal of Eukaryotic
579 Microbio., 62, 454–469, 2015.

580 Voipio, A.: The Baltic Sea (Book). Elsevier Oceanography Series 30. Institute of Marine Research, Helsinki, Finland
581 1981.

582 Weiss, L.: Foraminifera and Origin of the Gardiners Clay (Pleistocene), Eastern Long Island, New York. Geol. Survey
583 Professional Paper, 254-G, 1954.

584 Williamson, W.: On the recent foraminifera of Great Britain (Book). Ray Society, 107, 1858.

585 Wukovits, J., Enge, A., Wanek, W., Watzka, M. and Heinz, P.: Increased temperature causes different carbon and
586 nitrogen processing patterns in two common intertidal foraminifera (*Ammonia tepida* and *Haynesina germanica*),
587 BG, 14, 2815-2829, 2017.