Supplementary Materials

Effects of land use and water quality on greenhouse gas emissions from an urban river system in Cuenca (Ecuador)

Long Ho¹*, Ruben Jerves-Cobo^{1, 2, 3}, Matti Barthel⁴, Johan Six⁴, Samuel Bode⁵, Pascal Boeckx⁵, Peter Goethals¹

¹ Department of Animal Sciences, Ghent University, Gent, Belgium;

² PROMAS, Universidad de Cuenca, Cuenca, Ecuador;

³ BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium

⁴ Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland;

⁵ Department of Green Chemistry and Technology, ISOFYS Group, Ghent University, Gent, Belgium

*Corresponding author. Email: <u>Long.TuanHo@UGent.be</u>

1. Supplementary Material S1: Details of Hack kits

Variable	Technique	Remark(s)
Temperature	Probe	YSI V6920
Conductivity	Probe	YSI V6920
рН	Probe	YSI V6920
Dissolved oxygen	Probe	YSI V6920
Turbidity	Probe	YSI V6920
Chemical oxygen demand	Test kit code 2415815	Hach, limits: $0.7 - 40.0 \text{ mgO}_2 \text{ L}^{-1}$
		Follows EPA 5220 D
Ammonia-nitrogen	Test kit code 114752	Merck, limits: $0.010 - 3.00 \text{ mgN } \text{L}^{-1}$
		Follows EPA 350.1, APHA 4500-NH3 F, ISO 7150-1 and DIN 38406-5
Nitrite-nitrogen	Test kit code 114776	Merck, limits: $0.002 - 1.00 \text{ mgN L}^{-1}$
		Follows EPA 354.1, APHA 4500-NO2- B and DIN EN 26 777
Nitrate-nitrogen	Test kit code 109713	Merck, limits: $0.1 - 25.0 \text{ mgN } \text{L}^{-1}$
		Follows DIN 38405-9
Orthophosphate-phosphorus	Test kit code 114848	Merck, limits: $0.0025 - 5.00 \text{ mgP } \text{L}^{-1}$
		Follows EPA 365.2+3, APHA 4500-P E and DIN EN ISO 6878

Table S1. List of physicochemical variables and the associated method.

2. Supplementary Material S2: Sampling protocol

- Site Name: Time and date:
- Sample ID:Investigator:

Stream name/lake	
Type of watercourse	River
	Lake
Coordinates	
Photos of the sampling location (numbering	the photos)
- Downstream	
- Upstream	
- Left bank	
- Right bank	
- Substrate	
Description of sites (exceptional, weather con	nditions, main interruption,)

Land use of the bank top (Estimate at both banks for the stretch of 100m * 10m)

-

Type of land use	% on left bank	% on right bank
forests		
arable land		
residential areas		
road, paths		
urban area		
quarrying or mining		
orchard		
other		
Shading		
partly shaded, limited strete	ch <33%	
partly shaded, longer stretc	h 33-90%	
partly shaded, whole stretc	h>90%	
completely shaded, limited	stretch >33%	
completely shaded, longer	stretch 33-90%	
completely shaded, whole s	stretch >90%	

Presence of macrophytes (% of the bed covered by Macrophytes) (Estimate area cover at the littoral zone of 100m * 10m)

	Submerged aquatic macrophytes	Emerged aquatic macrophytes	Floating aquatic macrophytes
Contigous/Interrupted			
A bundant = 75-100%			
C ommon = 50-75%			
F requent = 25-50%			
Occasional = 5-25%			
R are = 1-5%			
Invisible			

River morphology

Free drawing

Bank

erosion	Absent/Limited/Abundant
curvature erosion	Absent/Limited/Abundant
width-erosion	Absent/Limited/Abundant

Stream Depth

(Measure the depth across the stream, from right bank to left bank, the measure should be done at approximately 1/6, 2/6, 3/6, 4/5 and 5/6 of the way across the stream, 5 measurements) Section 1

M1	M2	M3	M4	M5

Section 2

M1	M2	M3	M4	M5

Section 3

M1	M2	M3	M4	M5

Variation in flow
absent
at human constructions
low
moderate
high

Current Velocity

(Should be measured at the same location where the depth measurements were taken) **Section 1**_____

S1	S2	S3	S4	S5
B1	B2	B3	B4	B5

Section 2

S1	S2	S3	S4	S5
B1	B2	B3	B4	B5

Section 3

S1	S2	S3	S4	S5
B1	B2	B3	B4	B5

Pool/Riffle class

Class 1 Pool-riffle pattern is (nearly) pristine: extensive sequences of pools and riffles.	Class 2 Pool-riffle pattern is well developed: high variety in pools and riffles.
Class 3	Class 4
Pool-riffle pattern is moderately developed: variety in pools and riffles but locally.	Pool-riffle pattern is poorly developed: low variety in pools and riffles.
Class 5	Class 6
Pool-riffle pattern is absent: uniform pool-riffle pattern.	Pool-riffle pattern is absent due to structural changes: uniform pool-riffle pattern due to reinforced bank and bed structures.

3. Supplementary Material S3: Prati and Oregon Indexes

The Prati-index

The researcher Prati developed a method to evaluate the degree of pollution by an index that considers different pollutants. Since different parameters have to be compared, different transformation formulas of the parameters were developed. The index is calculated by transforming the measured values. After that, the average values of the transformed measurements are considered.

Variables in the following formulas:

- X: index according to PRATI
- Y: measured value of the variable
- Dissolved oxygen

Saturation < 50 %	$X = 4.2 - 0.437*(100-Y)/5 + 0.042*((100-Y)/5)^2$
Saturation 50 – 100 %	X = 0.08*(100-Y)
Saturation > 100 %	X = 0.08*(Y-100)

- **COD** (mg/L): **X** = **Y**/10
- NH4-N (mg N/L): $X = 2^{2.1*\log(12*Y)}$

Assessment of Prati Index:

- 0 1 =good quality
- 1 2 =acceptable quality
- 2 4 = polluted
- 4 8 = heavily polluted
- > 8 = very heavily polluted

The Oregon Index

The original Oregon Index was designed in the 1970s to be a simple and concise method for expressing ambient water quality information. The Oregon Index is used in analyses to compare conditions across river basins and to detect trends over time. The OWQI is calculated using index aggregation. First, six water quality parameters, i.e. water temperature, DO, BOD₅, pH, total concentration of NH₄, NO₂, NO₃, and TP concentration, are transformed by the below equation. After that, they were aggregated using the additive method to produce the final index value as follows.

$$Oregon \, Index = \sqrt{\frac{n}{\sum_{i=1}^{n} 1/SI_i^2}}$$

where n is number of subindices; SI is subindex i;

Temperature (T)

T < 11 °C	$SI_{T} = 100$
T: 11 °C-29 °C	$SI_T = 76.54 + 4.172 * T - 0.1623 * T^2 - 2.0557 E - 3 * T^3$
T: > 29 °C	$SI_T = 10$

Dissolved Oxygen (DO)

DO saturation (DOs) $\leq 100\%$:

DO concentration (DO _c) < 3.3 mg/L	$SI_{DO} = 10$
DO _C : 3.3-10.5 mg/L	$SI_{DO} = -80.29 + 31.88 * DO_C - 1.401 * DO_C^2$
$DO_C \ge 10.5 \text{ mg/L}$	$SI_T = 100$

DOs: 100% - 275%

 $SI_{DO} = 100 * exp((DO_s - 100) * -1.197E-2)$

DOs > 275%

 $SI_{\rm DO}=10$

Biochemical Oxygen Demand, 5 day (BOD₅)

BOD₅ \leq 8 mg/L: SI_{BOD} = 100*exp(BOD*-0.1993)

 $BOD_5 > 8 mg/L: SI_{BOD} = 10$

pH < 4	$SI_{pH} = 10$
рН: 4-7	$SI_{pH} = 2.628 * exp(pH*0.5200)$
рН: 7-8	$SI_{pH} = 100$
pH: 8-11	$SI_{pH} = 100^{*}exp((pH-8)^{*}-0.5188)$
pH > 11	$SI_{pH} = 10$

Ammonia + Nitrate Nitrogen (N)

 $N \le 3 \text{ mg/L: } SI_N = 100 \text{*exp}(N \text{*-} 0.4605)$

 $N>3 \text{ mg/L: } SI_N=10$

Total Phosphorus (P)

 $P \leq 0.25 \mbox{ mg/L: } SI_P = 100 \mbox{ -} 299.5 \mbox{*} P \mbox{ -} 0.1384 \mbox{*} P^2$

 $P>0.25\ mg/L:\ SI_P=10$

Assessment of Oregon Index:

90 - 100 = Excellent 85 - 89 = Good 80 - 84 = Fair 60 - 79 = Poor

10 - 59 =Very Poor

4. Supplementary Material S4: Cleveland plots

Figure S4.2. Cleveland plots of CH4 emissions

Figure S4.3. Cleveland plots of N₂O emissions

5. Supplementary Material S5: Residuals of the fitted model

Figure S5.1. Residual vs Fitted values plot for CO2 mixed model

Figure S5.2. Residual vs Fitted values plot for CH4 mixed model

Figure S5.3. Residual vs Fitted values plot for N_2O mixed model

6. Supplementary Material S6: Mosaic plots for categorical variables

Figure S6.1. Mosaic plot of erosion level in Cuenca urban river system

Figure S6.2. Mosaic plot of flow variation in Cuenca urban river system

Figure S6.3. Mosaic plot of land-use categories in left bank in Cuenca urban river system. LB: Left Bank

Figure S6.4. Mosaic plot of land-use categories in right bank in Cuenca urban river system. RB: Right Bank

Figure S6.5. Mosaic plot of pool-riffle classes in Cuenca urban river system

Figure S6.6. Mosaic plot of shading levels in Cuenca urban river system

7. Supplementary Material S7: Source of the GHG emissions

Figure S7.1. Fraction of the total emissions per year from the five tributaries of the Cuenca urban river system.

Figure S7.2. Mean of the fluxes from the five tributaries of the Cuenca urban river system. Error bars represent the standard error of the mean of the sample.