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Abstract. Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, 22 

Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not 23 

well established in the Central Transantarctic Mountains, which are thought to represent some of the least hospitable 24 

Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (~85 °S), a major outlet 25 

glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the 26 

glacier (upper), central (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations 27 

with total salt concentrations exceeding 80,000 µg g-1, while the lower zone had the lowest water-soluble N:P ratios, 28 

suggesting that, in addition to other parameters (such as proximity to water/ice), the lower zone likely represents the most 29 

favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed 30 

multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, 31 

distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote 32 

measurements). Confidence in our random forest model predictions was moderately high, with R2 values for total water-33 

soluble salts, water-soluble N:P, ClO4
-, and ClO3

- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be 34 

used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information 35 

that can ultimately be used to better predict distributions of soil biota in this remote region.  36 
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1. Introduction 37 

The least biologically diverse terrestrial systems are those found in extreme physical and chemical environments. 38 

The abundance and diversity of life in soils is dependent on a number of environmental variables, including temperature, 39 

precipitation, organic matter content, and nutrient availability (Wall et al., 2012). Hot deserts are typically viewed as one of 40 

the least biologically diverse environments, but cold deserts can often be even less diverse (Freckman and Virginia, 1998). 41 

Soils in Antarctica typically serve as end-members for low habitat suitability due to their high salt concentrations, low 42 

organic carbon, low soil moisture, and low mean annual temperatures (Courtright et al., 2001).  43 

In the McMurdo Dry Valleys (MDV), organic matter and salt concentrations influence soil communities, where 44 

soils with higher amounts of organic carbon, lower water-soluble N:P ratios, and lower total water-soluble salt 45 

concentrations generally harbor the greatest biomass and biodiversity (Barrett et al., 2006; Bottos et al., 2020; Caruso et al., 46 

2019; Magalhães et al., 2012). These Antarctic ecosystems are relatively simple and are among few known soil systems 47 

where nematodes and microarthropods (Collembola, Acari) are at the top of the food chain (Freckman and Virginia, 1998; 48 

Hogg and Wall, 2012). Studies of soils in the MDV and Transantarctic Mountains (TAM) have been key to understanding 49 

ecosystem structure and function in extreme terrestrial environments (e.g. Caruso et al., 2019; Collins et al., 2019, 2020; 50 

Convey and McInnes, 2005; Freckman and Virginia, 1998; Hodgson et al., 2010).  51 

Biological processes in Antarctic soils are largely dependent on the availability, duration, and proximity of soils to 52 

liquid water (Barrett et al., 2006). Due to the seasonality of thawing events, liquid water acts as a pulse to the ecosystem, 53 

providing water for organisms, but also wetting surface soils and dissolving soluble salts (Webster-Brown et al., 2010; 54 

Zeglin et al., 2009). Experiments of salt thresholds on Antarctic nematodes found that no individuals survived in highly 55 

saline soils over ~2,600 mg L-1 TDS (Nkem et al., 2006). Concentrations of soluble salts exist at these concentrations or 56 

higher at high elevation and inland locations in the TAM (Bockheim, 2008; Lyons et al., 2016). Additionally, studies on 57 

TAM soils have found that increased salt concentrations lead to a decrease in soil biodiversity in older soils compared to 58 

younger soils (Magalhães et al., 2012). Yet, despite these inhospitable conditions (e.g. high salt concentrations and glacial 59 

advance and retreat), some organisms are postulated to have found suitable refugia in TAM soils and persisted in isolation 60 

for millions of years and through glacial cycles (Beet et al., 2016; Collins et al., 2019, 2020; Stevens et al., 2006; Stevens 61 

and Hogg, 2003).  62 

It is generally accepted that habitat suitability for invertebrate species in Antarctic soils is driven by a combination 63 

of geochemical, geographic, hydrologic, and geomorphic variables (Bottos et al., 2020; Courtright et al., 2001; Freckman 64 

and Virginia, 1998; Magalhães et al., 2012). Geographic variables, such as elevation, can be measured with advanced 65 

mapping tools and satellite imagery; however, surface exposure ages, soil geochemistry and nutrient content require 66 

extensive logistical support and resource allocation for sample collection and analysis. A better understanding of the 67 



3 

 

relationship between geographic variables and on-the-ground measurements is needed to aid in our ability to understand and 68 

predict habitat suitability for invertebrates throughout the TAM. 69 

With this study, we determined and evaluated geochemical patterns and gradients of water-soluble ions in soils 70 

collected from 11 ice-free areas along the Shackleton Glacier, Central Transantarctic Mountains (CTAM). Particular 71 

attention was given to total water-soluble salt concentrations, N:P ratios, and ClO4
- and ClO3

- concentrations, based on their 72 

influence on biodiversity as determined in previous studies (e.g. Ball et al., 2018; Barrett et al., 2006b; Courtright et al., 73 

2001; Dragone et al., 2020; Nkem et al., 2006). The geochemical data were compared to geographic parameters to 74 

understand how the physical environment influences the observed geochemical variability. Our results show that water-75 

soluble ion concentrations and distributions are driven largely by soil geography and surface exposure age. Finally, we 76 

implemented statistical and machine learning techniques to interpolate and predict the soil geochemistry across the region 77 

using geographic variables. Our multiple linear regression and random forest models show that latitude, longitude, elevation, 78 

distance from the coast, distance from the glacier, and soil moisture (all variables currently or soon to be remotely 79 

measurable using maps and satellites) are moderately effective at estimating spatial patterns in TAM soil geochemistry, with 80 

R2 values as high as 0.87. These data will be particularly useful for ecologists seeking to understand refugia and habitat 81 

suitability in Antarctica and similarly harsh, desert environments.  82 

2. Study sites 83 
The Shackleton Glacier (~84.5 to 86.4°S; ~130 km long and ~10 km wide) is a S-N trending outlet glacier of the 84 

East Antarctic Ice Sheet (EAIS) located to the west of the Beardmore Glacier and flows through the Queen Maud Mountains 85 

(CTAM) into the Ross Sea (Fig. 1). The elevations of exposed soils range from ~150 m.a.s.l. to >3,500 m.a.s.l. from the 86 

coast towards the Polar Plateau. Long-term climate data are not yet available, but the Shackleton Glacier region is a polar 87 

desert regime, similar to the Beardmore Glacier region, with average annual temperatures well below freezing and little 88 

precipitation (LaPrade, 1984).  89 

During the Last Glacial Maximum (LGM) and glacial periods throughout the Pleistocene, the size and thickness of 90 

the EAIS was likely greater than current levels (Golledge et al., 2013; Nakada and Lambeck, 1988; Talarico et al., 2012; 91 

Wilson et al., 2018). Outlet glaciers, such as the Shackleton Glacier, may have had the greatest increases in extent, especially 92 

at the glacier terminus (Golledge et al., 2012; Golledge and Levy, 2011). The behavior of local alpine and tributary glaciers 93 

is not well-constrained, but these glaciers are also believed to have advanced and retreated over the last two million years 94 

(Diaz et al., 2020a; Jackson et al., 2018). As a result, currently exposed soils were overlain and reworked by fluctuations of 95 

the Shackleton Glacier and other tributary and alpine glaciers in the region. Exposure ages range from the early Holocene to 96 

the Miocene, and generally increase with distance from the coast and distance from the glacier (Balter-Kennedy et al., 2020; 97 

Diaz et al., 2020a).  98 
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The soils contain a range of water-soluble salts derived primarily from atmospheric deposition and chemical 99 

weathering (Claridge and Campbell, 1968; Diaz et al., 2020b). The major salts are typically nitrate and sulfate salts, 100 

especially at higher elevations and further inland from the coast of the Ross Sea (Diaz et al., 2020b). The solubilities of the 101 

salts vary, but nitrate salts are highly soluble and their occurrence at high elevation and inland locations suggests that those 102 

soils have maintained persistent arid conditions.  103 

3. Methods 104 

3.1. Sample collection and preparation 105 

During the 2017-2018 austral summer, 220 surface soil samples (~top 5 cm) were collected from 11 distinct ice-free 106 

areas (Roberts Massif, Schroeder Hill, Mt. Augustana, Bennett Platform, Mt. Heekin, Thanksgiving Valley, Taylor Nunatak, 107 

Mt. Franke, Mt. Wasko, Nilsen Peak, and Mt. Speed) along the Shackleton Glacier, including a subset of 27 samples 108 

previously analyzed for S, N, and O isotopes in nitrate and sulfate (Diaz et al., 2020b). At each area, we collected samples in 109 

transects (ranging from ~200 m to ~2,000 m in length) to maximize the geochemical variability. Our transects were also 110 

designed to capture the LGM transition, with some soils exposed throughout the LGM and others exposed following glacier 111 

retreat. GPS coordinates and elevations were recorded with each sample and later used to estimate the distance from coast 112 

and distance from the glacier (defined as linear distance from the nearest glacier – Shackleton, tributary, or alpine). Once 113 

collected, the samples were stored and shipped frozen (-20 ℃) to The Ohio State University.  114 

Prior to geochemical analysis, the samples were dried at 50 ℃ for at least 72 hours with the loss in mass attributed 115 

to soil moisture content. The dried soils were leached at a 1:5 soil to DI water ratio, and the leachate was filtered through 0.4 116 

µm Nucleopore membrane filters (Diaz et al., 2018, 2020b; Nkem et al., 2006). Due to the low sediment to water ratio, this 117 

leaching technique only dissolves the more water-soluble salts (Toner et al., 2013). These include salts with ClO4
-, NO3

-, Cl-, 118 

SO4
2-, ClO3

-, and CO3
2- + HCO3

-. Process blanks were generated and analyzed to account for any contamination from the 119 

leaching process.  120 

3.2. Analytical analysis of water-soluble anions, cations, and nutrients 121 

The analytical techniques used here are similar to those reported by Diaz et al. (2020b). In brief, the analytes 122 

included anions (F-, Cl-, Br-, and SO4
2-) which were measured on a Dionex ICS-2100 ion chromatograph, cations (K+, Na+, 123 

Ca2+, Mg2+, and Sr2+) which were measured on a PerkinElmer Optima 8300 Inductively Coupled Plasma-Optical Emission 124 

Spectrometer (ICP-OES), and nutrients (NO3
- + NO2

-, PO4
3-, H4SiO4, and NH3) which were measured on a Skalar San++ 125 

Automated Wet Chemistry Analyzer at The Ohio State University. Perchlorate (ClO4
-) and chlorate (ClO3

-) were measured 126 

using an ion chromatograph-tandem mass spectrometry technique (IC-MS/MS) at Texas Tech University (Jackson et al., 127 

2012, 2015). All analytes are reported as listed. Total water-soluble salt concentration was calculated as the sum of all 128 

measured cations and anions. The precision of replicated check standards and samples was typically better than 10% for all 129 

major anions, cations and nutrients, and better than 20% for perchlorate and chlorate. Accuracy was typically better than 5% 130 
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for all major anions, cations, and nutrients, as determined by the NIST 1643e external reference standard and the 2015 USGS 131 

interlaboratory calibration standard (M-216), and better than 10% for perchlorate and chlorate, as determined by spike 132 

recoveries. Precision and accuracy for individual analytes are located in Table S1. Detection limits for the analytes have been 133 

previous reported (Diaz et al., 2018; Jackson et al., 2012). 134 

3.3. Data interpolation and machine learning  135 

Inverse distance weighted (IDW) interpolations were performed for Bennett Platform, Thanksgiving Valley, and 136 

Roberts Massif using the Geostatistical Analyst tool in ArcMap 10.3. Since IDW is a deterministic method where unknown 137 

values are predicted based on proximity to known values, we chose those three sites as they had the most defined transects 138 

and relatively higher sample density. The interpolation parameters were constant with a power of 4, maximum neighbors of 139 

15, minimum neighbors of 5, and 4 sectors, and a variable search radius. These parameters were chosen such that they 140 

optimize for the lowest mean absolute error.  141 

Multiple linear regressions were generated for all geochemical analytes, except H4SiO4 (total of 15 dependent 142 

variables), with latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture as 143 

independent variables using built-in functions in R 3.6.3 (R Core Team, 2020). Random forest regression models were 144 

similarly generated using the randomForest library. The random forest model is a machine learning algorithm that utilizes 145 

supervised learning algorithms to predict values given input predictor variables (Breiman, 2001). Multiple decision trees are 146 

run in parallel with a randomized subset of predictor variables, and the aggregate result of each tree is used to generate a 147 

predicted outcome. Since each tree is generated using a random sample and random predictor variables, the random forest 148 

model is effective at minimizing overfitting and handling outliers (Breiman, 2001). For both models, all geochemical data 149 

were log-transformed to ensure the data were normally distributed (verified using a Jarque-Bera normality test). Missing 150 

values were input as NA. 151 

Machine learning algorithms are widely used in variety of disciplines from finance (Patel et al., 2015) to ecology 152 

(Davidson et al., 2009; Peters et al., 2007; Prasad et al., 2006), for both data prediction (regression) and classification. 153 

Recently, these techniques have been used for Earth Science applications, including geologic mapping (Heung et al., 2014; 154 

Kirkwood et al., 2016), air quality monitoring (Stafoggia et al., 2019), and water contaminant tracing (Tesoriero et al., 2017). 155 

We developed a novel application of machine learning to predict concentrations and gradients of water-soluble salts in 156 

Antarctic soils, given set geographic parameters, similar to the approaches developed for stock market and real estate 157 

predictions (Antipov and Pokryshevskaya, 2012; Patel et al., 2015).  158 

For our random forest models, any sparse missing values in Table S2 were estimated by averaging the geochemistry 159 

of the samples collected immediately before and after in the same transect. Missing values due to concentrations below the 160 

detection limit were input as NA. The new imputed dataset was split into a training set representing 86% of the data (n = 161 

189, Table S3) and a testing set representing the remaining 14% (n = 31, Table S4), based on ideal model parameters 162 
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described by Breiman (2001). The training dataset was used to generate the random forest models for each analyte. Each of 163 

the models were run with 2000 decision trees (ntree = 2000) to minimize the mean squared error. The number of random 164 

variables used for each node split in the decision trees was set to the recommended regression default of variables/3 to 165 

optimize the model randomness, which in our case was 2 (mtry = 2), following parameters described previously (Breiman, 166 

2001). The scripts developed for both the multiple linear regression and random forest models are included in the 167 

supplementary materials.  168 

4. Results 169 

4.1. Geochemistry of upper, middle, and lower zones 170 

The maximum, minimum, mean, standard deviation and coefficient of variation are reported in Table 1 for the 171 

measured geographic and geochemical data. Concentrations of water-soluble ions span up to five orders of magnitude and 172 

are variable across the region. Elevation, distance from the coast, distance from the glacier, and soil moisture are also 173 

variable and span up to three orders of magnitude. The highest elevation samples (> 2,000 m.a.s.l.) were collected from 174 

Schroeder Hill and the greatest soil moisture content is from Mt. Wasko at 12.3%, with a mean of 2.1% for all samples. 175 

Shackleton Glacier region surface soils can be separated into three zones based on their water-soluble geochemistry: 176 

an upper zone near the Polar Plateau, a middle zone near the center of the glacier, and a lower zone where the glacier flows 177 

into the Ross Sea (Figs. 1; 2). The upper zone samples are characterized by the highest total water-soluble salt 178 

concentrations, with the highest values greater than 80,000 µg g-1 at Schroeder Hill, while the lower zone samples have the 179 

lowest total salt concentrations, with the lowest values near 10 µg g-1 at Mt. Wasko (Fig. 2a-c). The middle zone has 180 

intermediate values. Water-soluble N:P molar ratios generally follow a similar trend (Fig. 2d-f). The lowest N:P ratios are in 181 

the lower zone soils, while the middle and upper zones have more variable values. Concentrations of ClO4
- and ClO3

- follow 182 

similar trends as the total salts, with less distinction between middle and upper zones, though most concentrations in the 183 

lower zone are below the detection limit (Fig. 2g-l; Table S2).  184 

Observed trends between the zones appear to be driven, at least partially, by geography. Regressions of total water-185 

soluble salt concentration, water-soluble N:P ratio, and ClO3
- concentration with elevation, distance from the coast, and 186 

distance from the glacier are all positive (Fig. 2). The strongest relationships are between total salts and elevation, and N:P 187 

ratio and elevation, with R2 values of 0.59 and 0.52, respectively, and p-values < 0.001 with a Bonferroni Correction, which 188 

was applied to minimize the familywise type 1 error rate associated with multiple comparisons (Fig. 2a;2d). The weakest 189 

relationships are between ClO4
- and distance from the coast , and ClO3

- and distance from the glacier, with R2 values of 0.11 190 

and 0.06, respectively (Fig. 2h; 2i). Distance from the glacier varies widely between individual zones with frequent overlaps, 191 

but there appears to be a moderate relationship with N:P ratio and total salts (Fig. 2c; 2f). Overall, total salt concentration has 192 

the strongest relationship with geography and ClO4
- has the weakest relationships. 193 
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Ternary diagrams highlight the specific geochemical gradients within and between the zones. The anion ternary 194 

diagram only includes SO4
2-, NO3

-, and Cl-, which are the major water-soluble salts in the region (Claridge and Campbell, 195 

1968; Diaz et al., 2020b). Though carbonate and bicarbonate salts have been identified in both lacustrine sediments and soils 196 

in Antarctica, previously measured concentrations in the Shackleton Glacier region were low, ranging from 0.07 to 2.5%, 197 

and bicarbonate salts were not identified in the highest elevation and furthest inland soils (Claridge and Campbell, 1968; 198 

Diaz et al., 2020b; Lyons et al., 2016). The most abundant anion for the upper zone is SO4
2-, which is greater than 99% of the 199 

total anion budget in some Schroeder Hill and Roberts Massif samples, though other locations are dominated by NO3
- (Fig. 200 

3). The anions are more evenly distributed in the middle zone, though the majority of samples are most abundant in NO3
- and 201 

Cl-. The lower zone has much lower SO4
2- fractions than the upper zone and the dominant anion is generally Cl-. The cation 202 

distribution is very similar for all three zones (Fig. 3). Na+ + K+ is the most abundant cation pair representing over 90% of 203 

the total cations for many upper and middle zone samples, while Ca2+ is the second most abundant. In general, Mg2+ is the 204 

least abundant cation across all sampling locations.  205 

4.2. Statistical geochemical variability 206 

A principal component analysis (PCA) using the correlation matrix (i.e. scale = TRUE) was performed in R (using 207 

factoextra (Kassambara and Mundt, 2017) and built in R software libraries) to determine which geochemical variables most 208 

strongly differ across the samples. For the PCA, the first two principal components account for over 50% of the total dataset 209 

variability at 44.2% and 11.6%, respectively. The different zones are correlated with different principal components (Fig. 4). 210 

The samples from the middle zone are positively correlated with PC1 and PC2. In the biplot, they plot in the upper right 211 

quadrant with high concentrations of Cl-, NO3
-, water soluble N:P ratio, and Ca2+, with a minor influence from soil moisture 212 

and H4SiO4. The upper zone samples generally plot along PC1 and are most associated with Sr2+, SO4
2-, Mg2+, Na+, K+, F-, 213 

ClO4
-, and ClO3

-. The samples from the lower, more coastal zone are negatively correlated with PC1 and are distinguished by 214 

their higher PO4
3- concentrations. Most samples from all locations plot within the 95% confidence interval ellipses. 215 

However, there are two strong outliers from Schroeder Hill and Mt. Heekin. 216 

Similar to the PCA, we performed a simple Spearman’s rank correlation for the entire dataset to visualize the 217 

statistical dependence between all variables. Since a goal of this study is to relate water-soluble ion concentrations to 218 

geography, we focused on latitude, longitude, distance from the coast, distance from the glacier, and soil moisture. The 219 

strongest correlation coefficients are between Cl- and latitude, elevation, and distance from the coast, and Sr2+ and soil 220 

moisture (Fig. 5). Most other correlations are moderate to weak, though there appear to be notably stronger correlations 221 

between ClO3
- and latitude and distance from coast, Ca2+ and longitude, elevation, and distance from coast, NO3

- and 222 

latitude, and SO4
2- with distance from glacier. Longitude, elevation, and distance from coast have the greatest number of 223 

strong and moderate correlations with the geochemistry data. Outside of the geographic parameters, Na+ is highly correlated 224 

with total water-soluble salts, likely representative of the high Na+ + K+ percentages (Fig. 3), and Sr2+ is highly correlated 225 

with K+, likely reflecting a common ion source.  226 
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4.3. Spatial interpolation and machine learning model performance 227 

The total salt concentrations of individual samples at Bennett Platform produce the most defined interpolation 228 

gradient from the glacier front to further inland compared to Roberts Massif and Thanksgiving Valley (Fig. 6). Bennett 229 

Platform also has the smoothest salt concentration contours suggesting that the interpolation model is the strongest and most 230 

robust at this location. The second strongest interpolation is Thanksgiving Valley. Contrary to the measurements at Bennett 231 

Platform, Thanksgiving Valley has the highest salt concentrations in the center of the valley, with lower concentrations to 232 

both the east and west. The lowest concentration contours are closest to the glacier for both Bennett Platform and 233 

Thanksgiving Valley, which is likely related to glacial history since the soils near the glacier are relatively younger than 234 

those further inland based on meteoric 10Be data (Diaz et al., 2020a). The interpolation from Roberts Massif does not have a 235 

distinguishable spatial trend. 236 

The multiple linear regression and random forest models vary in their strength for the individual analytes. The 237 

highest R2 value from the linear regression is 0.65 for Na+, while total water-soluble salts, water-soluble N:P ratio, ClO4
-, and 238 

ClO3
- have values of 0.61, 0.60, 0.44, and 0.55, respectively (Table 2). The lowest R2 value is for PO4

3- at 0.17. The p-values 239 

for all analytes are <<0.001, even with a Bonferroni Correction. The highest out-of-the-box explained variance values from 240 

the random forest models are for total salts and ClO3
- at 75% and 63%, respectively. The lowest explained variance is for 241 

Sr2+ at 37%. Values N:P ratio and ClO4
- are 52% and 48%, respectively. We also evaluated the most important and least 242 

important variables in the random forest models based on node purity. The most important variable for the majority of 243 

analytes is elevation, while distance from the glacier is most important for N:P ratio and latitude for ClO3
- (Table 2). The 244 

least important variables are distance from the coast and latitude for every analyte, except ClO3
-, for which distance from the 245 

glacier is least important. 246 

5. Discussion 247 

5.1. Implications for ecological habitat suitability 248 

By establishing geochemical zones for the Shackleton Glacier region, we can better understand the relationship 249 

between geochemistry and geography, and ultimately biogeography. As stated in the introduction, we focused particularly on 250 

total water-soluble salt concentrations, water-soluble N:P ratios, and ClO4
- and ClO3

- concentrations. 251 

5.1.1. Elevation and moisture controls on total water-soluble salt gradients 252 

The elevational trends of total salt concentrations at the Shackleton Glacier are similar to those previously described 253 

in the TAM, where soils from higher elevation sites typically have higher salt concentrations (Bottos et al., 2020; Lyons et 254 

al., 2016; Magalhães et al., 2012). Our results are also consistent with those from Scarrow et al. (2014) who found that salt 255 

concentrations typically decreased with distance from the glacier in the Beardmore and Lennox King Glacier regions. Our 256 

total water-soluble salt interpolation maps highlight the spatial variability in Shackleton Glacier region soils (Fig. 6). The 257 

most spatially variable location is Robert Massif, which does not appear to follow local elevational, latitudinal, and/or 258 
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distance inland gradients. This heterogeneity is not necessarily due to currently active soil leaching, as the soil moisture 259 

values are not drastically different between the samples (Table S2). Though the variability in cation concentrations is likely 260 

due to weathering of tills, scree, and bedrock (Claridge and Campbell, 1968), recent work on the isotopic composition of 261 

water-soluble nitrate and sulfate, the major anions in the upper zone, suggests a common, atmospheric source (Diaz et al., 262 

2020b).  263 

We argue that the heterogeneity in the total salt concentrations at Roberts Massif (Figs. 2; 6) is probably related to 264 

different and complex wetting history, where seasonal snow patch melt may pool in local depressions, transporting water-265 

soluble salts from slightly higher elevations and/or from saline wet-patches (Levy et al., 2012). This is demonstrated on a 266 

larger scale at Thanksgiving Valley, a glacially carved valley, where the higher concentrations of salts in the center of the 267 

valley are likely due to the transport of salts from nearby higher elevation slopes during melting events. This is further 268 

evidenced by the presence of two small, closed-basin ponds in the center of the valley, which likely formed from glacial melt 269 

and may have been larger in size in the recent past (Diaz et al., 2019). Similarly, streams and meltwater tracks in the MDV 270 

leach soils and carry salts into closed basin, brackish to hyper-saline lakes, where salts are cryoconcentrated over time 271 

(Lyons et al., 1998). Our results suggest that elevation and wetting history are important contributors to total salt gradients in 272 

the Shackleton Glacier region, as they influence the accumulation of salts and subsequent leaching from soils. 273 

5.1.2. Influence of glacial history on water-soluble N:P ratios 274 

Stoichiometric dependencies have been identified for Antarctic terrestrial organisms, where nutrient concentrations, 275 

in addition to soil aridity, limit ecosystem development (Nkem et al., 2006). Since nitrate is primarily derived from 276 

atmospheric deposition and phosphorus is primarily liberated from minerals by chemical weathering in the CTAM, many 277 

inland and higher elevation soils have accumulated high concentrations of NO3
-, resulting in stoichiometric imbalance with 278 

soluble PO4
3- (Ball et al., 2018; Barrett et al., 2007; Diaz et al., 2020b; Lyons et al., 2016; Nkem et al., 2006). As in the 279 

MDV, younger and coastal soils at lower elevations in the Shackleton Glacier region have the lowest water-soluble N:P 280 

ratios, driven by relatively low concentrations of NO3
- and high concentrations of PO4

3- due to an increase in moisture 281 

content and chemical weathering (Heindel et al., 2017) (Fig. 2; 4). It is not surprising that life was conspicuous in these soils, 282 

with thick lichen growth on several rocks and the presence of both Collembola and mites at Mt. Speed and Mt. Wasko (Fig. 283 

S1). However, despite overall elevational and latitudinal gradients, some inland locations in the middle and upper zones have 284 

water-soluble N:P ratios near those from the lower zone (Fig. 2).  285 

The interpolation model from Bennett Platform shows that some locations near the glacier have lower total water-286 

soluble salt concentrations (Fig. 6), similar to soils surveyed in the MDV (Bockheim, 2002). However, the samples near the 287 

glacier at Bennett Platform not only have lower total salt concentrations, they also have lower N:P ratios than samples 288 

collected further inland. This is also the case for the middle zone locations (Fig. 2f). We argue this is due to differences in 289 

glacial history between the locations. Our previous work showed that soils near the glacier are younger than soils further 290 
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inland in the Shackleton Glacier region (Diaz et al., 2020a). These soils are shielded from nitrate accumulation during glacial 291 

periods, and the recently exposed rocks likely serve as fresh mineral weathering material for PO4
3- mobilization (Heindel et 292 

al., 2017). Recently exposed and relatively nutrient rich soils might be important refugia for invertebrates. Previous 293 

hypotheses have suggested that organisms may have persisted at higher elevations during glacial periods (Bennett et al., 294 

2016; Stevens and Hogg, 2003). However, abiotic gradients in the Beardmore Glacier region suggest that higher elevation 295 

soils have salt concentrations that would classify them as unsuitable habitats (Lyons et al., 2016). If few organisms survived 296 

glaciations, the near-glacier, relatively P-rich soils may be important in helping communities recover and restructure post-297 

glaciation.  298 

5.1.3. High and variable ClO4
- and ClO3

- concentrations 299 

Our ClO4
- and ClO3

- concentrations include the highest measured in Antarctica to date and are comparable to 300 

concentrations from the Atacama and Mojave Deserts (Jackson et al., 2015). Though not a strong correlation, the highest 301 

elevation samples (upper zone) have the highest ClO4
- and ClO3

- concentrations (Fig. 2g; 2j). Similar to NO3
-, ClO4

- and 302 

ClO3
- are derived from atmospheric deposition and because of their high solubilities, their accumulations are related to 303 

wetting and glacial histories (Jackson et al., 2016, 2015). Therefore, soils which have been exposed for long periods of time 304 

and have not experienced snow or ice melt, such as those from Schroeder Hill and Roberts Massif, are able to accumulate 305 

high concentrations of ClO4
- and ClO3

-. Interestingly, our ClO4
- concentrations are lower (maximum of ~1.9 g L-1) than the 306 

highest recorded tolerance (1.1M (~130 g L-1) NaClO4) for the extremotolerant bacteria Planococcus halocryophilus, yet a 307 

recent study shows no detectable biomass for Schroeder Hill samples (Dragone et al., 2020). (Per)chlorates are strong 308 

oxidizers and are well established as toxic, thus the concentrations of ClO4
- and ClO3

- might be additional, crucial indicators 309 

of habitat suitability. However, the concentrations are highly heterogenous across our sampled locations (Fig. 2k-l), and 310 

unlike ClO3
-, neither the multiple linear regression nor random forest models were able to adequately capture the variability 311 

in ClO4
- concentrations (Table 2). 312 

5.2. Machine learning as a tool to predict soil geochemical trends 313 

We sought to evaluate our multiple linear regression and random forest models using a testing dataset from the 314 

Shackleton Glacier region (n = 31) and a second dataset from the Darwin Mountains (~80°S) (n = 10) (Magalhães et al., 315 

2012). Few published/available TAM dataset include sample GPS coordinates, soil moisture, and water-soluble ion 316 

geochemistry. As stated in Section 3.3, the Shackleton Glacier region test data were not included in the random forest model 317 

generation so we could evaluate our models with an independent dataset. For the Darwin dataset, distance from the glacier, 318 

distance from the coast, and elevation were determined using the Reference Elevation Model of Antarctica (REMA), while 319 

location, soil moisture and geochemistry were retrieved from the literature (Howat et al., 2019; Magalhães et al., 2012). We 320 

evaluated all 15 analytes from the original models with the Shackleton dataset and, due to a lack of data, only evaluated 7 321 

analytes from the Darwin soils (Figure 7).  322 
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Both the multiple linear regression and random forest model outputs are moderately well-correlated for the 323 

Shackleton dataset, as determined by Pearson correlations between the measured and predicted values (Fig. 7a; Table 3). The 324 

random forest models outperform the linear regression models for nearly every analyte, with the exception of Sr2+, NH3, and 325 

PO4
3-, and nearly all p-values are <0.001. For Cl-, in particular, the random forest model significantly outperforms the 326 

multiple linear regression model, with R2 values of 0.67 and 0.16, respectively. N:P molar ratio is the most accurately 327 

predicted analyte, with R2 values of 0.88 and 0.59 for the random forest and linear regression models, respectively. However, 328 

the highest R2 value for the multiple linear regression model is for Na+ at 0.64 (Table 3). In terms of our analytes of interest 329 

regarding habitat suitability, total salts have the second strongest correlation (following N:P ratio) with the random forest 330 

model (R2 = 0.81), followed by ClO4
- (R2 = 0.78), and ClO3

- (R2 = 0.74). Mean absolute error (MAE) and root mean squared 331 

error (RMSE) values indicate that the random forest models also have a smaller error compared to the multiple linear 332 

regression models (Table 4). MAE values are lower than RMSE values for both models, indicating the strong influence of 333 

outliers in the testing dataset. This is unsurprising as the standard deviation and coefficient of variation values for the entire 334 

dataset are relatively large for all analytes. Additionally, the outliers are likely one reason why the random forest models are 335 

stronger than the multiple linear regression models. 336 

Similar to the model performance in the Shackleton Glacier region, the water-soluble ion predictions for the Darwin 337 

Glacier region are more strongly correlated with measured values in the random forest models compared to the multiple 338 

linear regressions (Fig. 7b). In fact, the linear regression models fail for nearly all the Darwin samples and most 339 

concentration outputs are negative, which is likely due to overfitting during model generation. Here, Ca2+ and K+ are 340 

exceptions and the multiple linear regression models outperform the random forest models in both cases. MAE and RSME 341 

values for both models are higher than those for the Shackleton dataset (Table 4). On the other hand, the random forest 342 

models perform particularly well for some analytes. Though a small sample size, the R2 values for N:P molar ratio and Ca2+ 343 

are 0.68 and 0.66, respectively, with p-values <<0.001. Total salts is moderately correlated (R2 = 0.47). It is unclear why 344 

some analytes, such as N:P molar ratio, are the most accurately predicted, though we suspect that this is due to 1) weathering 345 

trends of local lithology across the TAM since chemical weathering is probably the major source of these ions, and 2) 346 

deposition and accumulation of atmospherically-derived ions at higher elevations (Diaz et al., 2020b).  347 

It should be noted that the R2 values simply measure the strength of the correlations between the measured and 348 

predicted values. We performed slope tests by fitting bivariate lines using the standardized major axis (SMA) to further 349 

understand the relationship between the two values using the smatr library in R (Warton et al., 2012). For this test, we 350 

specifically evaluated the null hypothesis (H0) where slope = 1, which would indicate whether an ideal, direct 1:1 351 

relationship exists between the measured and predicted values. Test statistic values (t) were used to measure the sample 352 

correlation between the residuals and fitted values (Warton et al., 2012). Test statistic values near 1 indicate that we reject 353 

the null hypothesis. In other words, higher absolute test statistic values indicate a slope other than 1. Of the 15 analytes in the 354 

Shackleton dataset, 5 analytes have slopes near 1 for the multiple linear regression models and 11 for the random forest, as 355 
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indicated by test statistic values less than 0.5. For the Darwin, no analytes have test statistic values less than 0.5 (Fig. 7; 356 

Table 3).  357 

These data indicate that while some analytes have high correlations between measured and predicted values, the 358 

models perform best with the Shackleton Glacier region soils. Additionally, though the relationship may not be 1:1, the 359 

random forest models are effective at predicting the measured geochemical gradients. For example, similar to our data, the 360 

Darwin Glacier samples generally have greater water-soluble N:P ratios and total water-soluble salt concentrations further 361 

from the glacier and at higher elevations (Magalhães et al., 2012), a trend that is reflected by our model results despite offset 362 

values. Additionally, corrections for the offset of the model from a slope = 1 (i.e. multiplying the model output value by the 363 

regression slope) can be made to better estimate specific concentrations, though the difference between modeled and 364 

measured values can still be up to 2x greater. Our sample size for building the multiple linear regression and random forest 365 

models is small. We anticipate that, as more data are collected throughout the CTAM, these data can be added to the model 366 

training dataset, expanding our prediction capabilities and increasing model reliability. 367 

6. Conclusions 368 

The soil ecosystems found in the Transantarctic Mountains are among the least diverse on Earth and their structure 369 

is influenced by environmental variables. We characterized environmental and geochemical gradients in the Shackleton 370 

Glacier region, which aid in our understanding of the abiotic properties in soils governing biodiversity and biogeography. 371 

The 220 samples we analyzed represent a wide range of soil environments: those with different elevation, latitude, longitude, 372 

glacial history, and geochemistry. We determined three soil zones: an upper zone near the head of the glacier which is 373 

characterized by high total water-soluble salt concentrations, high water-soluble N:P ratios, and high ClO4
- and ClO3

- 374 

concentrations, a lower zone with low total salt concentrations and higher PO4
3- concentrations, and a middle zone with 375 

intermediate values. The zones help elucidate the geographic influences on soil geochemistry. In addition, our total water-376 

soluble salt interpolations at Roberts Massif, Bennett Platform, and Thanksgiving Valley reflect the local small-scale 377 

variability of salt concentrations and possible influences from soil age and wetting history.  378 

Similar to previous studies, our results suggest that high elevation and inland soils, such as those from the upper 379 

zone, were likely unsuitable candidates for refugia during the Last Glacial Maximum. However, glacial advance and retreat 380 

and climate shifts may leach soils, lowering otherwise toxic total water-soluble salt concentrations and N:P ratios. These 381 

more recently exposed soils may be particularly important in maintaining and reviving contemporary and past biological 382 

communities. 383 

Five geographic variables (latitude, longitude, elevation, distance from the coast, and distance from the glacier) and 384 

soil moisture were correlated with soil geochemistry. We used these variables to develop multiple linear regression and 385 

random forest models to predict ion concentrations and geochemical gradients. The model results generally reflected the 386 

measured geochemical variability across the region. Test datasets from the Shackleton and Darwin Glacier regions showed 387 
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that the random forest models typically outperformed the multiple linear regression models when correlating measured and 388 

predicted values, especially for the Darwin region. Though most correlations did not exhibit a 1:1 relationship and had 389 

varying slopes, the random forest models were able to adequately predict geochemical gradients, as demonstrated by 390 

moderate to high R2 values between measured and model predicted concentrations. As terrestrial Antarctic geochemical 391 

databases expand and are included in the random forest model training dataset, we anticipate the model’s predictive 392 

capabilities will expand and improve as well. While these results are currently most applicable for Central Transantarctic 393 

Mountain soils, similar techniques can be applied to other hyper-arid environments (e.g. Namib and Atacama Deserts, Mars) 394 

to inform patterns of biodiversity and biogeography. 395 
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Figures 414 

 415 

Figure 1. Samples were collected and analyzed from the exposed soils along the Shackleton Glacier, a major outlet glacier of 416 
the EAIS (a), in three zones. The upper zone (b) was located at the head of Shackleton Glacier, the middle zone (c) was the 417 
central portion, and the lower zone (d) was at the mouth of the glacier where it drains into the Ross Sea. Satellite images 418 
were provided courtesy of the Polar Geospatial Center (PGC). 419 
  420 
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  421 

Figure 2. Total water-soluble salts, water-soluble N:P molar ratio, and ClO4
- and ClO3

- concentrations (log scale) were 422 
compared to elevation, distance from the coast, and distance from the glacier for samples from the three geographic zones 423 
(blue for upper, yellow for middle, grey for lower zones). Linear regression lines are plotted, where dashed lines represent 424 
regressions where p > 0.05 with a Bonferroni Correction, and R2 values are reported for each relationship. The horizontal 425 
orange lines represent nematode salt tolerance of ~2,600 (Nkem et al., 2006) and the green lines represent the Redfield ratio, 426 
N:P = 16 for phytoplankton in the ocean. 427 
 428 
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 429 

Figure 3. Anion and cation ternary diagrams for the three geographic zones.  430 
 431 
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 432 

Figure 4. Principal component analysis (PCA) biplot generated in R using factoextra and built in R software libraries with all 433 
anions, cations, nutrients, and soil moisture for the three geographic zones. The PCA is based on the correlation matrix (i.e. 434 
scale = TRUE). Principal component 1 and principal component 2 are plotted on the x and y axes, respectively. Shaded 435 
ellipses represent 95% confidence intervals.  436 
  437 
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 438 

 439 

Figure 5. Spearman’s rank correlation matrix generated in R using the corrplot library. The colors represent correlation 440 
coefficients, indicating the strength and magnitude of the correlation. The blue box indicates the geographic variables and 441 
soil moisture, which were variables used in the multiple linear regression and random forest models. Familywise type 1 error 442 
corrections were not applied for this analysis. 443 
  444 
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 445 

Figure 6. Inverse distance weighted (IDW) interpolations of total salt concentration for Roberts Massif (a), Bennett Platform 446 
(b), and Thanksgiving Valley (c). The color scale represents the 10 natural breaks in the data. Interpolations were created and 447 
mapped using the Geostatistical Analyst tool in ArcMap 10.3. 448 
  449 
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  450 

Figure 7. R2 values for the multiple linear regression and random forest model predicted and measured values for the 451 
different analytes (Table 3). Test datasets include the Shackleton Glacier region (n =31) and the Darwin Glacier region (n = 452 
10) (Magalhães et al., 2012). Analytes with slopes near 1, indicating good agreement between measured and predicted 453 
values, are indicated (* t < 0.5; ** t < 0.20). 454 

  455 
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Table 1. Overview of geography, soil moisture, and water-soluble ions from the Shackleton Glacier region. The minimum 456 
values reported are those within the detection limits. Individual sample concentrations are detailed in Table S2.  457  

Max Min Mean STD CV 

Elevation (m) 2,220 150 1,130 551 48 

Distance from coast (km) 120 1 55 38 68 

Distance from glacier (m) 1,940 1 519 472 90 

Soil moisture (%) 12.3 0.1 2.1 2.1 102 

F- (µg g-1) 120 0.39 8.87 11.78 133 

Cl- (µg g-1) 13,600 1.59 615 1,780 289 

NO3
- (µg g-1) 38,400 0.10 1,470 3,450 235 

SO4
2- (µg g-1) 55,300 0.08 4,390 8,080 184 

PO4
3- (µg kg-1) 4,200 76.09 381 560 147 

ClO4
- (µg kg-1) 75,000 0.35 985 6,020 611 

ClO3
- (µg kg-1) 14,500 1.00 1,170 2,500 214 

Ca2+ (µg g-1) 4,400 0.55 839 1,160 139 

Mg2+ (µg g-1) 6,280 0.12 293 705 240 

Na+ (µg g-1) 25,300 0.39 1,140 2,880 252 

K+ (µg g-1) 440 0.86 28.31 51.61 182 

Sr2+ (µg g-1) 46.61 0.01 8.63 10.31 119 

H4SiO4 (µg g-1) 60.78 1.14 21.78 11.03 50.67 

NH3 (µg kg-1) 5,080 18.85 324 587 181 

N:P ratio (molar) 526,000 0.29 23,600 62,700 266 

Total salt (µg g-1) 80,500 9.46 7,932 13,300 167 

STD, standard deviation; CV, coefficient of variation 

  458 
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Table 2. Out-of-the-box multiple linear regression and random forest model statistics generated in R. All geochemical data 459 
were log-transformed. 460 

 Multiple regression Random forest 

 R2 p-value 
Variance explained 

(%) 

Most important 

variable 

Least important 

variable 

F- 0.47 <<0.001 57 Elevation Distance from coast 

Cl- 0.19 <<0.001 60 Elevation Longitude 

NO3
- 0.52 <<0.001 60 Elevation Longitude 

SO4
2- 0.53 <<0.001 62 Elevation Longitude 

PO4
3- 0.17 <<0.001 4 Elevation Distance from coast 

ClO4
- 0.44 <<0.001 48 Elevation Distance from coast 

ClO3
- 0.55 <<0.001 63 Latitude Distance from glacier 

Ca2+ 0.44 <<0.001 60 Elevation Distance from coast 

Mg2+ 0.49 <<0.001 61 Elevation Longitude 

Na+ 0.65 <<0.001 75 Elevation Longitude 

K+ 0.48 <<0.001 60 Elevation Distance from coast 

Sr2+ 0.34 <<0.001 37 Elevation Distance from coast 

NH3 0.29 <<0.001 38 Elevation Distance from coast 

N:P 0.60 <<0.001 52 
Distance from 

glacier 
Longitude 

Total 

salts 
0.61 <<0.001 75 Elevation Longitude 

 461 

  462 
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Table 3. Multiple linear regression and random forest statistics between predicted and measured concentrations from the 463 
Shackleton and Darwin Glacier regions. R2 and p-values are reported for the correlations between measured and predicted 464 
concentrations. Regression slopes and test statistic values (t) were calculated using the smatr library (Warton et al., 2012) in 465 
R to evaluate the null hypothesis (H0) of slope = 1. Higher test statistic values (closer to one) indicate that we reject the null 466 
hypothesis. All geochemical data were log-transformed. 467 

 Multiple Linear Regression Random Forest 

Analyte R2 p-value 
Reg. 

slope 

Test statistic 

(t) 

for H0 slope = 

1 

R2 p-value 
Reg. 

slope 

Test statistic 

(t) 

for H0 slope = 

1 

Shackleton 

N:P 

ratio 

0.59 <0.001 0.58 -0.720 0.88 <<0.001 0.64 -0.792 

Total 

salts 

0.61 <<0.001 0.71 -0.483* 0.81 <<0.001 0.86 -0.324* 

Na+ 0.64 <<0.001 0.76 -0.424* 0.80 <<0.001 0.89 -0.262* 

ClO4
- 0.52 <0.001 0.60 -0.614 0.78 <<0.001 0.71 -0.590 

ClO3
- 0.55 0.009 0.72 -0.454* 0.74 <0.001 0.86 -0.284* 

Mg2+ 0.46 <<0.001 0.63 -0.550 0.73 <<0.001 0.76 -0.469* 

Ca2+ 0.41 <0.001 0.57 -0.613 0.73 <<0.001 0.74 -0.512 

NO3
- 0.59 <<0.001 0.62 -0.615 0.70 <<0.001 0.75 -0.465* 

Sr2+ 0.35 0.026 0.54 -0.631 0.67 <0.001 0.82 -0.326* 

SO4
2- 0.57 <<0.001 0.63 -0.584 0.67 <<0.001 0.83 -0.310* 

Cl- 0.16 0.028 0.38 -0.773 0.67 <<0.001 0.76 -0.428* 

K+ 0.39 <0.001 0.69 -0.429* 0.61 <<0.001 0.83 -0.291* 

F- 0.46 <0.001 0.76 -0.352* 0.51 <<0.001 0.91 -0.141** 

NH3 0.12 0.052 0.57 -0.528 0.11 0.068 0.61 -0.475* 

PO4
3- 0.29 0.070 0.32 -0.857 0.07 0.408 0.38 -0.764 

Darwin 

N:P 

ratio 

- - - - 0.68 0.021 0.54 -0.765 

Ca2+ 0.76 0.001 0.66 -0.645 0.66 0.004 0.50 -0.785 

NO3
- - - - - 0.66 0.004 0.49 -0.794 

Cl- - - - - 0.64 0.005 0.22 -0.962 

Mg2+ - - - - 0.60 0.140 0.67 -0.544 

Na+ - - - - 0.59 0.160 0.42 -0.836 

Total 

salts 

- - - - 0.47 0.028 0.42 -0.802 
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K+ 0.45 0.070 0.62 -0.550 0.20 0.267 0.28 -0.882 

* t < 0.5; ** t < 0.20 

  468 
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Table 4. Multiple linear regression and random forest model mean absolute error (MAE) and root mean squared error 469 
(RMSE). All geochemical data were log-transformed for the analysis. 470  

Multiple Linear Regression Random Forest 

Analyte MAE RMSE MAE RMSE 

Shackleton 

N:P ratio 2.19 2.73 1.75 2.11 

Total salts 1.45 1.69 0.86 1.17 

Na+ 1.23 1.52 0.83 1.13 

ClO4
- 1.33 1.62 0.91 1.12 

ClO3
- 1.07 1.67 1.01 1.26 

Mg2+ 1.78 2.08 1.07 1.48 

Ca2+ 1.84 2.21 1.18 1.53 

NO3
- 1.96 2.29 1.56 1.93 

Sr2+ 1.05 1.17 0.59 0.82 

SO4
2- 1.58 1.94 1.35 1.67 

Cl- 2.11 2.39 1.07 1.5 

K+ 0.73 0.89 0.56 0.72 

F- 0.48 0.6 0.46 0.58 

NH3 0.67 0.83 0.65 0.86 

PO4
3- 0.75 0.96 0.78 1.14 

Darwin 

N:P ratio 267 267 1.48 1.73 

Ca2+ 5.79 5.85 2.63 2.83 

NO3
- 261 261 3.19 3.52 

Cl- 372 372 2.99 3.32 

Mg2+ 460 460 2.89 3.06 

Na+ 245 245 2.57 2.88 

Total salts 139 139 1.22 1.67 

K+ 30.8 30.8 1.00 1.19 

MAE, mean absolute error; RMSE, root mean squared error 

  471 
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