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Abstract. Previous studies have shown that microbially produced methane can be a dominant carbon source of lacustrine 

sedimentary macrofauna in eutrophic lakes, most likely through grazing on methane-oxidizing bacteria. Here we investigate 20 

the contributions of different carbon sources to macrofaunal biomass across five lakes in central Switzerland that range from 

oligotrophic to highly eutrophic. Macrofaunal communities change with trophic state, with chironomid larvae dominating 

oligotrophic and tubificid oligochaetes dominating eutrophic lake sediments. 13C-isotopic data suggest that the average 

contribution of methane-derived carbon to the biomass of both macrofaunal groups is similar, but consistently remains minor, 

ranging from only ~1% in the oligotrophic lake to at most 12% in the eutrophic lakes. The remaining biomass can be explained 25 

with assimilation of detritus-derived organic carbon. Low abundances of methane cycling microorganisms in macrofaunal 

specimens, burrows, and surrounding sediment based on 16S ribosomal RNA (rRNA) gene sequences and copy numbers of 

genes involved in anaerobic and aerobic methane cycling (mcrA, pmoA) support the interpretation of isotopic data. Notably, 

16S rRNA gene sequences of macrofauna, including macrofaunal guts, are highly divergent from those in tubes or sediments. 

Many macrofaunal specimens are dominated by a single 16S rRNA phylotype of Fusobacteria, α-, β-, γ-, or ε-Proteobacteria, 30 

Bacteroidetes, or Parcubacteria. This raises the question whether dominant lake macrofauna live in so far uncharacterized 

relationships with detrital organic matter-degrading bacterial endosymbionts. 

  



 2 

1 Introduction 

Lake sediments are globally important organic C sinks (Einsele et al., 2001; Mendonça et al., 2017) and sources of the 

greenhouse gas methane (CH4) (Bastviken et al., 2004; Raymond et al., 2013; Holgerson and Raymond, 2016). Overall the 

burial of organic carbon is usually higher in eutrophic compared to oligotrophic lakes due to high nutrient loads which increase 

primary production (Dean and Gorham, 1998; Maerki et al., 2009; Heathcote and Downing, 2012; Anderson et al., 2013; 5 

Anderson et al., 2014). Resulting increases in aerobic respiration lead to O2 depletion and increased organic matter deposition 

to sediments (Hollander et al., 1992; Steinsberger et al., 2017), where this increased organic matter stimulates microbial 

methane production (Fiskal et al., 2019). The combination of increased methane production in sediments and decreased aerobic 

methane consumption in overlying water then results in higher methane emissions from eutrophic lakes (DelSontro et al., 

2016). 10 

In addition to trophic state, the presence of macrofauna, which physically mix sediments, mechanically break down 

organic particles, or pump O2 into deeper, otherwise anoxic layers, influences O2 and C cycle dynamics in sediments (Meysman 

et al., 2006; White and Miller, 2008; Kristensen et al., 2012). While most research on macrofaunal effects on organic carbon 

burial and respiration reactions have been on marine sediments, there have also been numerous studies on freshwater 

sediments. These studies suggest that macrofauna can be present at high abundances (up to 11,000 individuals m -2) (Armitage 15 

et al., 1995; Mousavi, 2002) and significantly influence nutrient fluxes and sedimentary matrices in lake sediments (Stief, 

2013; Holker et al., 2015). Insects, in particular tube-dwelling chironomid larvae, can cause oxic-anoxic oscillations around 

their burrows through their pumping activity (Lewandowski et al., 2007; Roskosch et al., 2012; Baranov et al., 2016; Hupfer 

et al., 2019)These redox fluctuations affect the sedimentary cycles of nitrogen (Pelegri et al., 1994; Jeppesen et al., 1998; Stief 

et al., 2009; Stief, 2013), phosphorus (Andersson et al., 1988; Katsev et al., 2006), iron (Hupfer and Lewandowski, 2008) and 20 

methane (Deines et al., 2007b; Gentzel et al., 2012). Worms, especially tubificid oligochaetes, can also increase oxygenation 

and O2 uptake in (Lagauzère et al., 2009) and influence the release of ammonium (NH4
+), nitrate (NO3

-), and phosphate (PO4
3-

) (Svensson et al., 2001; Mermillod-Blondin et al., 2005; Gautreau et al., 2020) from surface sediments. Many tubificids are 

moreover head-down deposit feeders that defecate on the sediment surface (McCall and Tevesz, 1982). This upward movement 

of reduced sediment can cause significant reworking and alter the redox potential in surface sediment (Davis, 1974). 25 

The community composition of lacustrine sedimentary macrofauna varies in response to trophic state (Aston, 1973; 

Verdonschot, 1992; Nicacio and Juen, 2015), in part due to differences in hypoxia/anoxia tolerance among macrofaunal species 

(Chapman et al., 1982). Different lacustrine macrofaunal species, moreover, vary in their impact on methane cycling in 

sediments (Bussmann, 2005; Figueiredo-Barros et al., 2009). methane oxidation in surface sediments is often stimulated by 

chironomid larval O2 input, which enriches populations of methane-oxidizing bacteria in larval tubes and surrounding sediment 30 

(“microbial gardening”) (Kajan and Frenzel, 1999). As a result, methane-oxidizing bacteria can become an important food 

source, and in some cases the main C source, of chironomid larvae (Kankaala et al., 2006; Deines et al., 2007a; Jones et al., 

2008; Jones and Grey, 2011). High contributions of methane-derived carbon via grazing on methane-oxidizing bacteria are 

typically found in profundal regions of eutrophic lakes with seasonal stratification and low O2 concentrations (Hershey et al., 

2006; Jones and Grey, 2011). Yet, variable isotopic values of chironomid biomass, even within the same location, suggest that 35 

diets of chironomid larvae vary greatly (Kiyashko et al., 2001; Reuss et al., 2013). The limited C-isotopic data on tubificid 

worms suggest that worm C sources also vary from detritus-based to locally or seasonally high contributions of methane-

derived carbon (Premke et al., 2010). 

Despite these past studies, the conditions under which methane-derived carbon becomes an important C source to 

chironomid larvae or oligochaetes are not well understood. Furthermore, the main pathways of methane-derived carbon 40 

incorporation into macrofaunal biomass, e.g. selective grazing or gardening of methane-oxidizing bacteria, or carbon transfer 

from methane-oxidizing bacteria gut symbionts, remain unclear. Here we analyse shallow sublittoral to profundal sediments 

of five temperate lakes in central Switzerland that differ strongly in trophic state and macrofaunal community composition. 
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We analyse the community structures of chironomid larvae and oligochaetes and compare their C-isotopic compositions to 

those of total organic C (TOC), dissolved organic C (DOC), and methane to investigate how C sources vary across dominant 

macrofaunal groups in relation to trophic state and water depth. In addition, we analyse microbial community structure based 

on 16S rRNA gene sequences and quantify functional genes involved in aerobic and anaerobic methane oxidation in 

macrofaunal specimens, macrofaunal burrows, and surrounding sediment to elucidate the potential for microbial gardening or 5 

symbiotic associations between macrofauna and microbiota.  

2 Material and Methods 

2.1 Sampling and Site description 

Sediment cores were obtained from three different water depths in the oligotrophic Lake Lucerne, the mesotrophic Lake Zurich,  

and the eutrophic Lake Zug, Lake Baldegg, and Lake Greifen in central Switzerland in June and July 2016 (Fig. 1,Table 1, for 10 

further information on trophic histories please see Fiskal et al. (2019)). Sediment cores were taken using gravity cores with 60 

cm long liners that had an inner diameter of 150 mm (UWITEC, AT) from boats or motorized platforms. The four sediment 

cores per station were used as follows: the most undisturbed core was used for microsensor measurements (O2, pH) and 

afterwards for macrofaunal community sampling. The second core was used for analyses of DNA sequences, methane 

concentrations and δ13C-methane, TOC content and δ13C-TOC. The remaining cores were used for porewater sampling using 15 

rhizones (0.2 µm pore size, Rhizosphere), with DOC and δ13C-DOC sampling being done on a separate core than sampling for 

dissolved inorganic carbon (DIC) and δ13C-DIC sampling. A wide range of additional porewater geochemical analyses was 

performed on the core used for DIC sampling (including concentrations of nitrate, sulfate, hydrogen sulfide, Fe2+, Mn2+, and 

ammonium; for further details, see Fiskal et al. (2019)). In all cores, the top 4 cm were sampled in 0.5-cm to 1-cm depth 

intervals, samples from 4 to 20 cm sediment depth in 2-cm depth intervals, and all deeper layers in 4-cm depth intervals. Cores 20 

were typically ~40-50 cm long, however, the lowermost 5-10 cm were discarded due to contamination with lake water during 

core retrieval. An additional, narrow core with 6 cm diameter was obtained for radionuclide (210Pb and 137Cs) analyses (for 

analytical details, see Fiskal et al. (2019)). Cores for macrofaunal community analyses were extruded and macrofauna collected 

by sieving sediments through 400 and 200 µm mesh sieves. Three stations (two in Lake Lucerne, one in Lake Baldegg) were 

revisited in November 2017 and October 2018 to collect additional macrofaunal specimens and chironomid larval tubes for 25 

DNA analyses.  

2.2 Macrofaunal abundance and taxonomy  

For each depth interval, specimen numbers of oligochaetes and chironomid larvae were carefully picked with tweezers, counted 

and preserved in 70% ethanol for taxonomic and 13C-isotopic analyses or frozen on dry ice for DNA extractions. Detailed 

taxonomic analyses to the genus and, where possible, species level were performed on a subset of oligochaetes and chironomid 30 

larvae. Oligochaete specimens were sent to AquaLytis (Wildau, Germany), where they were embedded in epoxy resin and 

identified by light microscopy. Chironomid larvae were microscopically identified by AquaDiptera (Emmendingen, Germany). 

2.3 Stable carbon isotope analyses  

Carbon isotope analyses were performed on DOC, methane, TOC, macrofaunal specimens, or separately on guts and remaining 

bodies of macrofaunal specimens. Values are given in the δ notation; i.e.: 35 

δ13C = [(13C/12C)sample/( 
13C/12C)standard]. 

δ13C-DOC.  Porewater samples were analyzed as described in Lang et al. (2012). Briefly, 2-7 ml of sample were added to 12 

ml vacutainers. After removal of dissolved inorganic C by addition of 85% phosphoric acid and bubbling with high purity He, 

DOC was oxidized to CO2 using persulfate (1h at 100°C). The evolved CO2 was analyzed on a Gasbench II coupled to a Delta 
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V mass spectrometer (Thermo Fisher Scientific, Bremen). Water soluble organic standards of known isotope composition 

(phthalic acid and sucrose) were used as standards.  

δ13C-Methane. Methane was extracted by creating a sediment slurry with MilliQ water under saturating NaCl concentrations 

(~6.3 M). 2 cm3 of sediment were transferred to 20 ml crimp vials containing 2.514g NaCl and 5 ml MilliQ water, crimped, 

mixed, and stored on ice or at +4 °C until analysis using a Trace Gas (Isoprime) coupled to an isotope ratio mass spectrometer 5 

(GC-IRMS, Isoprime, Manchester). Separation was performed through a GC-column (PoraPLOT Q 30m column). The 

precision of the method was ± 0.7 ‰. After every 6th sample we included a standard with a known δ13C value (Standards: L-

iso1 with 2,500 ppmv CH4 at -66.5 ‰ δ13C-methane and T-iso3 with 250 ppmv CH4 at -38.3 ‰ δ13C-CH4, Air Liquide).  

δ13C-TOC.  For δ13C-TOC analyses, 5–10 g of frozen sediment were freeze-dried in glass vials and quantified using an 

Elemental analyzer (Thermo Fisher Flash EA 1112) coupled to an isotope-ratio-mass spectrometer (Thermo Fisher Delta V 10 

Plus) (EA-IRMS) as outlined in (Fiskal et al., 2019). 

δ13C-Macrofauna.  δ13C-analyses were performed on macrofaunal biomass according to the same method used for δ13C-TOC. 

Single specimens were cleaned with molecular grade water to remove sediment. Whole organisms, or separated guts and 

residual bodies, were placed in tin foil capsules, which were mounted to 96-well plates. 96-well plates were sealed using plastic 

seal foil, the foil above each well was pierced, and the whole plate was freeze dried. Afterward, the foil was removed, the tin 15 

foil capsules were closed, and the δ13C of macrofaunal biomass was measured.  

2.4 Two end member mixing model 

Assuming TOC and methane as the only carbon sources, a two end member mixing model was used to estimate the contribution 

of methane to biomass C of macrofauna:  

CH4-Contribution (%) = (100- (δ13Cfauna - δ
 13CCH₄)/(δ

13CTOC -δ13CCH₄)*100) 20 

2.5 DNA extraction from macrofauna, macrofaunal tubes and sediment 

DNA was extracted according to lysis protocol II of the modular DNA extraction method of Lever et al. (2015) following the 

exact procedure outlined in Han et al. (2020). While we used existing sediment DNA extracts from the latter study, DNA from 

empty larval tubes and from macrofauna were newly extracted. To remove sediment, macrofaunal specimens were rinsed with 

molecular grade water. DNA was then extracted from entire specimens, or separately on guts and the remaining body, after 25 

being cut into 3-4 pieces to increase extraction efficiency using a sterile scalpel. All DNA extracts were stored at -80 °C. 

2.6 qPCR 

Quantitative polymerase chain reaction (qPCR) was performed to quantify bacterial and archaeal 16S rRNA genes, and genes 

encoding particulate methane monooxygenase of aerobic methanotrophic bacteria (pmoA) and methyl coenzyme M reductase 

of methanogenic and anaerobic methane-oxidizing archaea (mcrA) (Table S1). Standards consisting of plasmids containing 30 

16S rRNA, pmoA, or mcrA genes from specific organisms (Table S1) were run in 10fold dilutions of ~101 to ~107 gene copies 

per qPCR reaction. All sample DNA extracts and standard dilutions were run in duplicate.  

The qPCR protocols are shown in Table S2. For each qPCR reaction, 2 µl of DNA extract were mixed with 1 µl of 

molecular grade water, 1 µl of bovine serum albumin (10 mg/ml; New England Biolabs, USA), 0.5 µl each forward and reverse 

primers (10 µM), and 5 µl LightCycler 480 SYBR Green I Master Mix (Roche, Switzerland). All standards and samples were 35 

kept on ice throughout the preparations and run immediately after in transparent 96-well plates on a Roche LightCycler 480.  
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2.7 Next Generation Sequencing (NGS) and Bioinformatic analyses 

Libraries of bacterial and archaeal communities were produced using the universal 16S rRNA primer pair Univ519F and 

Univ802R (Claesson et al., 2009; Wang and Qian, 2009). After library preparation DNA was pooled Pooled DNA wasand 

sequenced using a MiSeq (Illumina Inc., USA). Library preparations and subsequent data processing, including 97% zero-

radius operational taxonomic unit (ZOTU) clustering, were done as outlined in Han et al. (2020) (for PCR reaction mixtures 5 

and cycler conditions see Table S3). Briefly, raw sequences were initially quality trimmed using seqtk 

(https://github.com/lh3/seqtk) and paired-end reads were merged using flash (Magoč and Salzberg, 2011). This was followed 

by a final quality filtering using prinseq (Schmieder and Edwards, 2011). Sequences were then used to generate ZOTUs with 

USEARCH unoise3 using a 97% clustering identity (Edgar, 2016). 

2.8 Statistical analyses 10 

Statistical differences between C isotope signatures of macrofauna and C pools, and of percentages of bacterial 16S rRNA, 

mcrA and pmoA gene copy numbers relative to total 16S rRNA gene copy numbers across macrofauna, larval tubes, and 

sediment were determined using Wilcoxon Sign Rank Tests for paired data. All tests were performed in R (Team, 2018) using 

the command: wilcox.test (A, B, paired = TRUE, alternative = “two.sided” for (a), “greater/less" for (b), mu = 0.0, exact = 

TRUE, correct = TRUE, conf.int = TRUE, conf.level = 0.95). Principal Coordinates Analysis (PCoA) on bacterial communities 15 

at the phylum, class, order, family, and genus level were performed using Bray-Curtis distances in R (Team, 2018).  

3 Results 

3.1 Macrofaunal distribution in relation to lake trophic state 

Macrofauna are present at all stations except the hypoxic deep station of Lake Zurich and are dominated by oligochaetes and 

chironomid larvae. While oligochaetes are present in all lakes, no chironomid larvae were found in Lake Greifen. Oligochaete 20 

densities increase with trophic state, from 7586 ind. m-2 in Lake Lucerne to 48494443 ind. m-2 in Lake Baldegg (number of 

individuals are expressed as averages per lake with standard deviations of 3 stations). Numbers of chironomid larvae show the 

opposite trend, decreasing from 641346 ind. m-2 in Lake Lucerne and 849160 ind. m-2 in Lake Zurich to less than 7586 

ind. m-2 in the three eutrophic lakes (Fig. 2, Table S5). Other macrofauna, e.g. copepods, Daphnia, and leeches were only 

occasionally found, and will not be discussed further.  25 

The depth distributions of oligochaetes and chironomid larvae follow different trends (Fig. 3). Chironomid larvae are 

most abundant in surface sediment (0-5 cmblf), while oligochaetes occur over a greater depth interval (Fig. 3). In Lake Greifen 

and Lake Baldegg, oligochaetes are present in high numbers to 12 and 15 cm sediment depth, respectively, including layers 

that are distinctly laminated (see horizontal lines in Fig. 3). In Lake Zug, oligochaetes are present to even greater depths (22 

cm). In sediments of Lake Zurich, where oligochaetes and chironomids occur at similar abundances, chironomids dominate 30 

the top ~2-3 cm, whereas oligochaetes dominate below. Despite depth ranges extending significantly below the sediment 

surface, macrofaunal sediment reworking is minimal based on radionuclide measurements. These show 137Cs peaks that match 

the 1986 (Chernobyl) and 1963 (bomb test) time markers, and clear 210Pbunsupported decreases from the top 2 cm downward at 

all faunated stations  (Fig. S6; data analyzed but not shown in Fiskal et al. (2019)). Light microscopic images of the two 

dominant macrofaunal groups and depth distributions of individual macrofaunal species can be found in the SI (Fig. S1). 35 

3.2 Macrofaunal community structure and diversity across lakes 

Oligochaetes and chironomid larvae were assigned to 9 and 14 different taxonomic groups, respectively (Fig. 4; for station-

specific data, see Fig. S2). All oligochaetes belong to the family Naididae (Syn. Tubificidae) and all chironomid larvae to the 
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family Chironomidae. Two oligochaete morphotypes, Tubificidae +bristles and Tubificidae -bristles, could not be assigned to 

a known genus. 

Oligochaete group overlap between lakes. Four of the nine groups (Tubificidae +bristles, Tubificidae -bristles, P. 

hammoniensis, L. hoffmeisteri) occur in 4/5 lakes. E. velutinus (Lake Zurich), L. profundicula (Lake Baldegg) and P. vejdovskyi 

(Lake Lucerne) were the only species that were only found in one lake. Comparing the dominant oligochaete groups reveals 5 

dominance of uncharacterized Tubificidae (+bristles) in Lake Zurich, Lake Zug, and Lake Greifen, but very different 

communities in Lake Baldegg, which is dominated by uncharacterized Tubificidae (-bristles) and L. hoffmeisteri. All identified 

tubificids except E. velutinus are subsurface deposit feeders that are believed to mainly feed on sedimentary bacteria, whereas 

E. velutinus is a surface deposit feeder (Table S6). 

Chironomid larval communities in Lake Zurich and Lake Lucerne share many members, but the dominant groups 10 

only partially overlap. Lake Zurich sediment is dominated by Micropsectra sp., Tanytarsus sp., Chironomus riparius/piger 

gr., and S. coracina, whereas Lake Lucerne is dominated by Procladius sp., Micropsectra sp., M. fehlmanni, Tanytarsus sp., 

and S. coracina. Micropsectra sp., Tanytarsus sp., and S. coracina are mainly sedimentary detritus feeders, whereas 

Chironomus riparius/piger gr. is known to mainly filter feed. Both Procladius sp. and M. fehlmanni are predators (Table S6).  

3.3 C isotope composition of macrofauna and bulk C pools 15 

Average C isotope compositions of macrofaunal specimens are displayed with those of the potential C sources methane, TOC 

and DOC in Fig. 5 (for depth profiles, see Fig. S3). Macrofaunal values are lowest in Lake Baldegg (oligochaetes: -36.7±3.3‰, 

N=14; larvae: -37.6±1.9‰, N=4) and Lake Greifen (oligochaetes: -37.6±2.5‰, N=12; no larvae found) and highest in Lake 

Lucerne (oligochaetes: -31.7±0.4‰, N=2; larvae: -31.5±2.2‰, N=24) and Lake Zurich (oligochaetes: -32.8±0.9‰ N=5; 

larvae: -32.5±2.1‰, N=24). There was no apparent trend between δ13C-values of macrofauna and sediment depth (Fig. S3). 20 

Average δ13C-methane values are in all cases ~35 to 50‰ more negative than those of macrofauna. The most negative 

methane values are present in Lake Lucerne (-78.8±4.3‰, N=18) and Lake Zurich (-76.7±2.4‰, N=25) followed by Lake 

Baldegg (-74.3±2.6‰, N=20), Lake Greifen (-73.6±3.7‰, N=21) and Lake Zug (-70.1±4.5‰, N=23). All stations except the 

middle station in Lake Baldegg have 13C-methane increases indicative of methane oxidation in surface layers (Fig. S3). 

The δ13C-values of TOC are much closer to those of macrofauna (Fig. 5; Fig. S3), with averages ranging from equal 25 

(Lake Zurich) to ~5‰ higher (Lake Baldegg). The lowest average δ13C-TOC was measured in Lake Greifen (-34.5±1.5‰, 

N=35) followed by Lake Baldegg (-32.4±1.2‰, N=37), Lake Zurich (-32.2±1.9‰, N=29), Lake Zug (-30.8±1.3‰, N=35), 

and Lake Lucerne (-29.7±1.2‰, N=32). Isotopic values of TOC increase by 4-6 ‰ with sediment depth at all sites (Fig. S3). 

Despite the small differences between δ13C-TOC and δ13C-macrofauna, δ13C-TOC values are significantly higher than those 

of oligochaetes and larvae in all lakes except Lake Zurich (Fig. 5). Average δ13C-DOC is slightly higher than δ13C-TOC in all 30 

lakes, and significantly higher than the δ13C of macrofaunal biomass (Fig. 5). Additional analyses on water column algal 

material and algae bloom layers in sediment (Fig. S3 and Table S4) suggest δ13C-values similar to those of TOC.  

3.4 Average contributions of methane-derived carbon and TOC to macrofaunal biomass C 

A two end member mixing model suggests that on average ≥88% of macrofaunal biomass-C can be explained with assimilation 

of detrital organic C (TOC) (Table 2). By contrast, methane-derived carbon accounts for ≤12.1% or ≤6.3% of biomass-C 35 

depending on the assumed isotopic fractionation factor during aerobic methane oxidation (for further details see Table 1 

caption). Chironomid larvae and oligochaetes from the same lakes have highly similar average methane-derived carbon 

contributions to biomass. Consistent with past studies (Hershey et al., 2006; Jones and Grey, 2011), the contribution of 

methane-derived carbon to macrofaunal biomass increases with trophic state, with lowest contributions in Lake Zurich and 

Lake Lucerne and highest contributions in Lake Baldegg followed by Lake Zug and Lake Greifen.  40 
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3.5 Microbial communities of macrofauna, larval tubes, and surrounding sediments 

To investigate the nature of macrofauna-microbiota associations, e.g. with respect to microbial gardening or grazing of 

methane-cycling microorganisms, or symbiotic relationships, we studied 16S rRNA gene sequences of macrofauna (whole 

organisms, guts, residual body without guts) and chironomid larval tubes, and compared these to those in surrounding 

sediments (Fig. 6).  5 

3.5.1 Bacteria 

Sediment and tube samples share similar bacterial communities across all lakes, stations, and sediment depths (Fig. 6). Both 

sample types are dominated by β-, δ- and γ-Proteobacteria, Chloroflexi (mainly Anaerolineae), Acidobacteria, Bacteroidetes 

(dominated by Sphingobacteriia), Planctomycetes, and Verrucomicrobia. Furthermore, sediments and tubes from Lake Zurich 

and Lake Lucerne share elevated fractions of Nitrospirae. Conspicuous differences are the higher fractions of δ-Proteobacteria 10 

in sediments and of Chloroflexi, Actinobacteria, Gemmatimonadetes, and Ignavibacteriae in tubes, and the virtual absence of 

Aminicenantes in tubes. By comparison, chironomid larvae and oligochaetes have very different bacterial communities, which 

moreover vary greatly between and within both macrofaunal groups.  

Depending on the specimens, bacterial communities of chironomid larvae are dominated by γ-, β-, and α-

Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and/or Fusobacteria. Many larval specimens are dominated (>50% 15 

of reads) by a single group of α-, β-, or γ-Proteobacteria or Firmicutes, and guts of two specimens from Lake Lucerne contain 

≥99% γ-Proteobacteria. With respect to dominant groups or ZOTUs, there is no clear trend in relation to lake, trophic state, or 

water depth. Yet, gut, and to a lesser extent body, bacterial communities from the same samples are sometimes highly similar. 

Furthermore, bacterial communities in guts often differ clearly from those in the remaining body. For instance, Firmicutes in 

several specimens dominate larval guts, but are virtually absent from the rest of the body. By contrast, the fractions of α- and 20 

β-Proteobacteria are often lower in guts than the remaining body. Compared to tubes, chironomid larvae generally have lower 

abundances of Chloroflexi (nearly absent), Verrucomicrobia, Gemmatimonadetes, Nitrospirae, and/or Ignavibacteria.  

Bacterial communities of oligochaetes are also variable and differ clearly from those in chironomid larvae. As for 

chironomid larvae, these bacterial communities do not follow clear trends related to lake, trophic state or water depth. About 

half of all specimens are strongly dominated (≥80% of 16S reads) by Fusobacteria (Fusobacteriales), a phylum that accounts 25 

for on average only 0.01±0.02% of total 16S reads in sediment samples and was only detected in ~20% of larval specimens. 

Several other oligochaete specimens are dominated (>50%) by single groups of α-, β-, δ-, and ε-Proteobacteria, or 

Parcubacteria, or have elevated relative abundances of Spirochaetae or Cyanobacteria. Most phyla that are abundant in 

sediment and/or larval tubes (Chloroflexi, Acidobacteria, Gemmatimonadetes, Nitrospirae, Verrucomicrobiae, Aminicenantes) 

are less common or nearly absent from oligochaetes. Unlike chironomid larvae, no systematic phylogenetic differences 30 

between guts and the rest of the body were detected in oligochaetes. This could, however, be due to the greater difficulty of 

separating guts from the rest of the body in oligochaetes. 

Ordination plots based on PCoA at the order level (Fig. 7) and at the phylum, class, family and genus level (Fig. S5) 

confirm the trends observed in Fig. 6. Sediment and tube samples from all lakes and sediment depths are highly similar and 

form tight clusters, which only become separated at the order level and below. Chironomid larvae and oligochaetes are 35 

phylogenetically very different from sediments and tubes, and phylogenetically highly heterogeneous due to dominance by 

Fusobacteria or α-Proteobacteria, or varying relative abundances of diverse proteobacterial classes and orders.  

3.5.2 Archaea 

Archaea only account for low percentages (<10%) of prokaryotic 16S rRNA gene sequences in chironomid larvae, larval tubes, 

and oligochaetes and were even below detection in 69% of chironomid larval and 39% of oligochaete samples analysed (Fig. 40 
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S4; also see following section). Yet, distinct trends are evident. Larval tubes have a lower diversity than sediments, being 

dominated by Woese-, Pace- and Thaumarchaeota and to a lesser degree Diapherotrites. In sediments, Eury- and 

Bathyarchaeota were additionally present at high percentages along with low percentages of Altiarchaeales, Lokiarchaeota 

and an unclassified phylum-level cluster of Asgardarchaeota. The archaeal community of larvae was highly variable and 

dominated by Pace-, Eury- and Woesearchaeota, with typically only 1-2 phyla present per sample. The oligochaete archaeal 5 

community was more diverse and dominated by essentially the same groups as sediments, i.e. Woese-, Pace-, Bathy-, Eury- 

and/or Thaumarchaeota, and to a lesser degree Lokiarchaeota, Altiarchaeales, and Diapherotrites.  

3.6 Abundance analysis of Bacteria, Archaea and functional genes related to methane-cycling 

To further investigate potential interactions between macrofauna and microorganisms in general, and methane-cycling 

microorganisms in particular, we compared the contributions of Bacteria, methane-cycling Archaea, and methane-oxidizing 10 

bacteria across sample types. Trends related to lake trophic state, gardening of or preferential grazing on methane-cycling 

microorganisms are largely absent, but we observe other trends.  

Bacteria account for >80% of total 16S gene copies in all samples (Fig. 8, left panel). Significantly higher proportions 

are present in oligochaetes, larvae and tubes relative to sediments (Table 3). The contribution of Bacteria decreases from 94-

98% in surface sediments to 82-86% below 12 cmblf. By comparison, Bacteria contribute ≥99% in most macrofauna samples. 15 

The lowest bacterial contributions are ~98% in chironomid larvae, 90% in oligochaetes, and 96% in tubes.  

In the vast majority of samples, mcrA gene copy numbers are ≥100 times lower than total 16S rRNA gene copy 

numbers (range: below the detection limit of ~0.0001% to 2%) (Fig. 8, mid panel), suggesting very low contributions of 

methanogenic and/or anaerobic methanotrophic archaea. mcrA contributions are significantly higher in sediments compared 

to oligochaetes, larvae and tubes (Table 2), and are even below qPCR detection in all but one larval specimen. While the 20 

contribution of mcrA increases with depth in larval tubes, oligochaetes and sediments show no depth-related trends. 16S rRNA 

genes of methane-cycling Archaea were found in sediments (mainly Methanobacteria and M. fastidiosa), and at very low read 

numbers in a few tubes (M. fastidiosa) and oligochaetes (M. fastidiosa, M. peredens), but not in larvae. 

pmoA contributions range from below detection (≤~0.001%) to ~15% (Fig. 8, right panel), and are – compared to 

sediments – significantly elevated in oligochaetes, but not in larval specimens or larval tubes (Table 3). This suggests the 25 

potential for preferential grazing by, or elevated populations of symbiotic aerobic methanotrophic bacteria within, 

oligochaetes. Nonetheless, it is worth mentioning that the median calculated pmoA percentage in oligochaetes was only ~1%, 

and that based on the maximum calculated value of 15% methane oxidizing bacteria in no case dominated oligochaete bacterial 

communities. As for mcrA, pmoA was only detected in very few (2) larval samples. While pmoA contributions decrease with 

depth in sediments, there is no clear depth trend in oligochaete or larval tube samples. 16S rRNA gene sequences indicate that 30 

all methane-oxidizing bacteria are Gammaproteobacteria, dominated by Crenothrix (Methylococcales). Crenothrix are 

moreover the only methane-oxidizing bacteria detected in oligochaetes, whereas low read percentages of Methylococcaceae 

(Methylobacter, -caldum, -coccus, and -paracoccus) were detected in larvae, larval tubes and sediments. In addition, the 

denitrifying methanotroph Methylomirabilis (Candidate phylum NC10) was detected in low read numbers in several tube and 

sediment samples (mostly from Lake Lucerne). Despite the significantly higher calculated abundance of methane-oxidizing 35 

bacteria in oligochaetes based on ratios of pmoA to total 16S rRNA gene copy numbers, we did not detect significantly different 

16S read percentages between larvae, tubes, oligochaetes, or sediments (data not shown). 

4 Discussion 

Methane has been indicated as an important C source to lacustrine sedimentary macrofauna (Kankaala et al., 2006; Deines et 

al., 2007a; Jones et al., 2008; Jones and Grey, 2011). Yet, open questions remain regarding the conditions under which this 40 
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methane-derived carbon is an important C source, or how it is incorporated into macrofaunal biomass. We investigate these 

questions by analyzing macrofaunal community structure, isotopic compositions of macrofauna and possible C sources, and 

microbial community structure across five temperate lakes with widely differing trophic states. 

We observe a clear macrofaunal community shift, with oligochaetes dominating eutrophic lakes, chironomid larvae dominating 

the oligotrophic lake, and similar abundances of both in the mesotrophic lake (Fig. 2). Maximum abundances of oligochaetes 5 

are higher than those of chironomid larvae, and oligochaetes extend deeper into sediments than chironomid larvae, matching 

the different feeding behaviours of the two groups (Fig. 3). Taxonomic analyses reveal overlaps but also clear differences in 

oligochaete and chironomid larval communities between lakes (Fig. 4).  

While chironomid communities vary strongly with water depth in the same lakes, oligochaete communities are more similar 

across different locations within the same lake. This suggests that chironomid larval and oligochaete communities are 10 

controlled by different environmental factors.  

Comparing  13C isotopic compositions, 13C-methane is always far more negative (-35 to -50‰) while 13C-TOC is 

similar or slightly enriched (+0.3 to +5.2‰) relative to macrofaunal biomass. This suggests that detrital organic matter is the 

main C source of macrofauna (Fig. 5). Estimated contributions of methane-derived carbon range from statistically insignificant 

to at most 12% and increase with trophic state (Table 2). Despite differences in feeding behaviour and environmental drivers 15 

of their species compositions, the calculated contribution of methane-derived carbon is highly similar across chironomid larval 

and oligochaete specimens from the same lakes, suggesting an important role of lake-specific variables. 

Bacterial communities of macrofauna differ clearly from those in chironomid tubes or sediments. The majority of 

reads in many macrofaunal specimens belong to single ZOTUs, implying potential symbiotic relations with their hosts (Fig. 

6, Fig. 7; discussed in detail later). Consistent with the calculated minor contributions of methane-derived C to macrofaunal 20 

biomass, pmoA copy numbers indicate that methane-oxidizing bacteria are minor, yet significant, components of bacterial 

communities in numerous macrofaunal specimen (~1-10%; Fig. 8, right panel; Table 3). This is not the case for methane-

cycling archaea, whose contribution, based on mcrA copy numbers, was always small (≤1%) and significantly lower in 

oligochaetes, chironomid larvae, and chironomid larval tubes than in surrounding sediment (Fig. 8, mid panel; Table 3). 

In the following sections, we discuss in detail the potential drivers of macrofaunal community structure, the likely 25 

carbon sources of macrofauna, and the potential trophic roles of observed (endo)symbiotic bacteria in their macrofaunal hosts.  

4.1 Abundance and taxonomy of macrofauna along trophic state 

Oligochaete abundances follow the environmental index proposed previously by Milbrink (1983), which predicts a strong rise 

in worm abundance with increasing trophic state. Chironomid abundances are also within the range previously reported for 

lakes (Mousavi, 2002). While chironomid larvae show typical depth distributions (e.g. Panis et al., 1996), oligochaetes have 30 

unusually deep ranges, with high abundances to 10-14 cm in eutrophic lakes. By contrast, most publications report that 

oligochaetes are mainly present at 2-8 cm sediment depth (reviewed in McCall and Tevesz, 1982).  

The observed shift in dominance from chironomid larvae to tubificids with increasing trophic state (Fig. 2, Fig. 3) 

matches past studies reporting dominance of oligochaetes in eutrophic lakes (Saether, 1980; Lang, 1985; Timm, 1996; Bürgi 

and Stadelmann, 2002), and changes from chironomid larvae- to oligochaete-dominated communities as first signs of 35 

eutrophication (Saether, 1979). This dominance of oligochaetes in eutrophic lakes is possibly related to an overall higher 

tolerance of low O2 conditions, as many oligochaetes feed in anoxic parts of sediments (McCall and Tevesz, 1982) and 

efficiently exchange gases through their body walls (Martin et al., 2008). Longer survivorship of anoxic conditions among 

oligochaetes is also possible (Hamburger et al., 1998), though anaerobic respiration and tolerance of extended anoxic periods 

is also known frofor certain species of chironomid larvae (Pinder, 1995). Additional reasons could be superior ability of 40 

oligochaetes to exploit high organic matter supplies, or that deeper burrows of oligochaetes provide better protection from 

benthic predators, such as bottom-feeding fish, which are abundant in eutrophic lakes (Scheffer et al., 1993). 
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While most oligochaete specimens could only be classified to the family-level (Tubificidae (+bristles); Tubificidae (-bristles);  

Fig. 4 

Fig. 4; Table S7), distributions of those that were taxonomically classifiable to the species-level match published distributions. 

On one hand, subsurface deposit feeders known to rely on bacteria and algae as food sources dominated eutrophic lakes. L. 

hoffmeisteri, an indicator species of eu- to hypertrophic lakes (Brinkhurst, 1982), occurs at high abundances in Lake Baldegg 5 

(Table S7). P. hammoniensis and T. tubifex, which frequently co-occur at high abundances in meso- to eutrophic lakes (Lang, 

1990; Timm, 1996), dominate Lake Zurich, Lake Zug, and/or Lake Greifen. On the other hand, surface-deposit-feeding E. 

velutinus, which indicate oligo- to mesotrophic conditions (Martin et al., 2008), were only found in Lake Zurich.  

Even though many tubificids are subsurface conveyor feeders, the lakes investigated show little evidence of sediment 

mixing. We observed clear laminations at the deep station in Lake Baldegg and the deep and middle station in Lake Greifen 10 

in sediments that were deposited until the mid 1980s and ~2010, respectively (Fig. 3, Fig. S7; Fiskal et al. (2019)), so until the 

onset of artificial water column mixing and oxygenation in these lakes (Lake Baldegg: 1984; Lake Greifen: 2009; Fiskal et al. 

(2019)). While the subsequent disappearance of laminae suggests rapid re-colonization by macrofauna, it appears that mixing 

has remained limited to surface sediments, even though burrows of tubificids extend far into laminated layers. Depth profiles  

of radionuclides confirm this interpretation and even indicate minimal sediment mixing in the presence of macrofauna (Fig. 15 

S7). Independent of faunal presence, 137Cs peaks that match the 1986 (Chernobyl) and 1963 (bomb test) time markers, and 

clear 210Pbunsupported decreases from the top 2 cm downward, are present at all stations. These findings contrast with the rapid 

sediment homogenization to 10 cm by tubificids in the laboratory (Fisher et al., 1980; Matisoff et al., 1999) and homogeneous 

radionuclide profiles to 6 cm in tubificid-dominated natural lake sediments (Robbins et al., 1977; Krezoski et al., 1978). 

Similar to tubificids, chironomid larval communities change in relation to trophic state (Fig. 4; Table S7). Large free-20 

living and predatory larvae account for half of the specimens in Lake Lucerne, whereas tube-building herbivorous, surface 

detritus-feeding, and/or gardening larvae dominate Lake Zurich and the small sample sizes in eutrophic lakes. The shift in diet 

at higher trophic levels matches the higher input of algae and algal detritus (Fiskal et al., 2019), whereas the potential increase 

in microbial gardening matches observed increases in gardening by C. riparius and other Chironomus spp. under hypoxic or 

eutrophic conditions (Stief et al., 2005; Yasuno et al., 2013). By contrast, the reasons for the high abundances of predatory 25 

larvae in Lake Lucerne are unclear. Possible reasons are the low hypoxia tolerance of large predatory Macropelopia and 

Procladius spp. (Hamburger et al., 1998; Brodersen et al., 2008), higher availability of zooplankton food in oligotrophic lakes 

(Jeppesen et al., 1990; Jeppesen et al., 1999), and/or stronger predation pressure in meso- and eutrophic lakes, which often 

have high populations of bottom-feeding fish (Scheffer et al., 1993).  

4.2 Carbon sources of lake sedimentary macrofauna  30 

Similar to previous studies (e.g. Grey et al., 2004; Jones et al., 2008) we calculate an increase in the contribution of methane-

derived carbon with increasing trophic state (Fig. 5; Table 2). Yet, this contribution is at most 12%, even in the highly eutrophic 

lakes. Other studies have estimated methane-derived carbon contributions of >40% for chironomid larvae in eutrophic lakes 

(e.g. Deines and Grey, 2006; Eller et al., 2007; Jones et al., 2008) and reported strong δ13C-depletions in oligochaete specimens 

from profundal sediment (Premke et al., 2010). Yet, minor contributions of methane-derived carbon to the biomass of benthic 35 

invertebrates are not new. A survey of 87 lakes suggested that marked 13C-depletions were only present in chironomid larvae 

from lakes with seasonal stratification and bottom water anoxia (Jones et al., 2008). Moreover, the limited published δ13C data 

on lake oligochaetes are mostly similar to those of TOC (Kiyashko et al., 2001; Premke et al., 2010). 

In support of C-isotopic interpretations, DNA-based analyses indicate that neither methane-oxidizing bacteria nor 

methanogens are dominant microorganisms in surface sediments or chironomid larval tubes. Thus, strong enrichment or 40 

gardening of methane-oxidizing bacteria or methanogens as observed elsewhere in chironomid tubes (e.g. Kajan and Frenzel, 

1999; Kelly et al., 2004) or surface sediments (e.g. Eller et al., 2005; Deines et al., 2007a) is absent for reasons that are unclear. 
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Despite being artificially oxygenated, bottom water in Lake Baldegg and Lake Greifen experiences seasonally low O2 

conditions (0.5-4 mg L-1) or hypoxic conditions (<0.5 mg L-1), respectively (Fiskal et al., 2019). These values are within or 

below the seasonal O2 threshold (2-4 mg L-1) that is characteristic of lakes with marked 13C-depletions in chironomid biomass 

(Jones et al., 2008). Jones et al. (2008) argued that the contribution of methane-derived carbon increases inversely with the 

depth of the oxic-anoxic interface. In June 2016, this interface was ≤1 mm at all stations in Lake Baldegg and ≤2 mm at those 5 

in Lake Greifen, while methanogenesis occurred into the top 1 cm of sediment (Fiskal et al., 2019). Thus, conditions were 

potentially well-suited for strong enrichment of methane-cycling microorganisms. It is possible that growth of methane-

oxidizing bacteria is mainly promoted at narrow oxic-anoxic (high O2-methane) interfaces produced by ventilating and tube-

building chironomid larvae (Brune et al., 2000). Tubificids, which dominated our eutrophic lakes, do not produce such stable 

oxic-anoxic interfaces and also perform less burrow ventilation than chironomid larvae (Gautreau et al., 2020 and references 10 

within). Yet, the fact that all three identified larvae from Lake Baldegg belong to tube-building taxa, and that the four 

isotopically analysed larvae from this lake only had minor methane-derived carbon contributions, suggests that yet unknown 

factors contribute to the enrichment of methane-oxidizing bacteria by tube-building chironomids in surface sediment.   

Instead of methane-derived carbon, our C-isotopic data indicate that algal or detrital organic carbon, or 

microorganisms that have assimilated the isotopic signatures of algal or detrital organic carbon, are the main food sources of 15 

dominant macrofauna (Table 2). Rather than methane-derived carbon, selective feeding on isotopically depleted subportions 

of the TOC pool could even, in principle, explain the minor isotopic depletions of oligochaete and chironomid larval biomass 

in eutrophic lakes. Yet, our limited data on algal bloom layers in sediments and phytoplankton from overlying water indicate 

similar 13C-values relative to TOC (Fig. S5). Preferential feeding on organic C from surface sediments, which in many cases 

has the lowest C-isotopic values, or isotopic fractionations during C-assimilation and biosynthesis are also not plausible. As 20 

bottom-up conveyor feeders, tubificids feed mostly at several centimetres depth (McCall and Tevesz, 1982), and C-isotopic 

fractionation during biosynthesis of bulk animal biomass are typically low (Fry and Sherr, 1989).  

4.3 Potential diet and host-microorganism interactions in tubificid worms  

Minimal sediment reworking and deep sedimentary distributions of tubificids suggest that shallow subsurface deposit-feeding 

may not be the main dietary mode of these worms in the lakes studied, raising questions concerning their main foraging 25 

strategy. One possibility is that oligochaetes selectively graze on microbial biofilms inhabiting the walls of their deep and 

extensive gallery-type burrow networks. Under this scenario one might expect large amounts of DNA of sediment 

microorganisms in oligochaete intestines. This is not the case, however, suggesting that grazed communities are very different 

from those in sediments or their DNA rapidly digested. Another foraging strategy may not involve ingestion via the oral cavity, 

but diffusive uptake. T. tubifex can actively take up short-chain organic acids, such as acetate and propionate, through their 30 

body wall (Hipp et al., 1985; Sedlmeier and Hoffmann, 1989). The subsequent respiration of these organic acids can account 

for up to 40% of T. tubifex energy turnover (Hipp et al., 1986). Other species of tubificids take up amino acids through the 

body wall (Brinkhurst and Chua, 1969). Tubificid body walls are also permeable to dissolved gasses, which is why tubificids 

acquire O2 by undulating movements of their tail ends in oxic water above sediments (Brinkhurst, 1996). Permeability to gases 

could also provide energy, if, e.g., methane or H2 diffusing from pore water into worms support symbiotic microorganisms.  35 

Matching the slight increase in methane-derived carbon in oligochaetes from eutrophic lakes, we observe higher 

contributions of pmoA in oligochaetes compared to surrounding sediment. Assuming that these pmoA belong to living methane-

oxidizing bacteria, movement of oligochaetes between methane-rich, deeper layers and the oxic sediment surface could favor 

their growth and result in an endosymbiotic relationship. The potential for annelid hindguts to make excellent microbial 

habitats was previously demonstrated in the polychaete Abarenicola vagabunda (Plante et al., 1989). How this methane-40 

derived carbon would be assimilated is unclear, however. Potential mechanisms include uptake of organic intermediates of 

methane oxidation, e.g. methanol, through the hindgut, or ingestion of faeces that are enriched in methane-oxidizing bacteria. 
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The overwhelming majority of microbial DNA from oligochaetes, however, belongs to bacteria, often single ZOTUs, 

which are not linked to methane oxidation. In 22 of the 30 specimens sequenced a single ZOTU accounted for >50% of the 

total reads (Table S8). In 15 specimens, this dominant ZOTU belonged to a single genus-level cluster of unclassified 

Fusobacteriaceae (Fusobacteriaceae Cluster I) that was previously found in earthworm and aquatic vertebrate intestines, 

anaerobic sediments, bioreactors, soil and diverse water samples (Fig. S7A). The high percentages of this cluster are striking 5 

considering that Fusobacteriaceae account for on average only 0.01±0.02% of total 16S reads in the surrounding sediments. 

All cultivated members of Fusobacteriaceae are anaerobes that fermentatively degrade polymeric organic compounds, in 

particular proteins and carbohydrates, with acetate, butyrate, and other short-chain organic acids as main end products (Olsen, 

2014). Given previous evidence for the preference of proteinaceous organic matter by tubificids (de Valk et al., 2017), these 

Fusobacteriaceae could be primary degraders of proteins within the digestive tracts of oligochaetes. This relationship could 10 

be mutually beneficial, commensal, or parasitic. A mutually beneficial relationship could entail symbionts gaining energy by 

fermenting proteins that are not digestible to the host, and the host respiring the resulting fermentation products. 

The remaining 7 dominant ZOTUs belong to the phyla Proteobacteria (, ß, and -classes), Bacteroidetes, and 

Parcubacteria (Fig. S8, Table S8). ZOTU18 falls into the anaerobic -proteobacterial genus Wolinella (order 

Campylobacterales), isolates of which use H2 or formate as electron donors and fumarate and nitrate as electron acceptors 15 

(Tanner and Paster, 1992). Succinate is the main end product of fumarate reduction by Wolinella and could benefit hosts under 

low O2 conditions, given that succinate is the main intermediate during anaerobic metabolism of tubificids (Seuβ et al., 1983). 

ZOTU8 falls into the facultatively aerobic ß-proteobacterial genus Deefgea (order Neisseriales), members of which ferment 

carbohydrates to organic acids (Stackebrandt et al., 2007) and could benefit hosts as proposed for Fusobacteriaceae. The -

proteobacterial ZOTU4 falls into the family Holosporaceae, members of which are obligately intracellular, potentially parasitic 20 

symbionts of ciliates (Santos and Massard, 2014). ZOTU4 could derive from commensal ciliates, which often inhabit guts of 

freshwater oligochaetes (Falls, 1972). Alternatively, given the high percentage of 16S reads in one specimen (93%), a novel 

form of (intracellular) symbiosis with tubificids cannot be discounted. Similarly unclear is the host relationship with ZOTU199, 

which belongs to the candidate phylum Parcubacteria of the Candidate Phyla Radiation (Brown et al., 2015). Members of this 

phylum have been retrieved from diverse, mostly anoxic habitats, have genes linked to carbohydrate fermentation, and have 25 

been implicated with ectosymbiotic or parasitic lifestyles (Wrighton et al., 2012; Nelson and Stegen, 2015). The remaining 

ZOTUs fall into an unclassified genus-level subcluster of ß-Proteobacteria (ZOTU6; order Rhodocyclales) and an unclassified 

order-level cluster of -Proteobacteria (ZOTU9). Based on existing knowledge, it is not possible to infer the potential roles of 

these ZOTUs within their hosts. 

4.4 Potential host-microorganism interactions in chironomid larvae 30 

Similar to tubificids, most chironomid larvae (12/19 sequenced specimens) are dominated by single ZOTUs (Table S8). 

Interestingly, more specimens are dominated by single ZOTUs in Lake Lucerne (9/10) than in Lake Zurich (3/7) or Lake 

Baldegg (0/2), suggesting that the frequency and/or importance of these associations is linked to trophic state. These single 

dominant ZOTUs are mostly Proteobacteria (10/12; , ß, and -classes). In addition, single specimens were dominated by the 

same unclassified Fusobacteriaceae (Fusobacteriaceae Cluster I) that dominate tubificids, and an unclassified sister group of 35 

Bacteroides (Bacteroidetes), which we call “Unclassified Wastewater & Gut Group” based on reported occurrences.  

Two proteobacterial groups most commonly dominate chironomid larvae. ZOTU2 of the -proteobacterial genus 

Wolbachia (Rickettsiales) dominates four specimens. Members of this genus are widespread intracellular symbionts of insects 

whose relationships with their hosts range from parasitic to mutualistic (Correa and Ballard, 2016), though, to our knowledge, 

dietary contributions have not been demonstrated. ZOTU3 and -21 of the -proteobacterial genus Aeromonas dominate three 40 

specimens. Members of this facultatively anaerobic genus are widespread in aquatic habitats (Huys, 2014) and were previously 
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found in aquatic invertebrates, including chironomid larvae (Eller et al., 2007). Aeromonads can ferment carbohydrates to 

organic acids, which might supplement the diet of chironomid larvae, but have also been shown to degrade the egg masses of 

chironomids (Senderovich et al., 2008). Similar functions, ranging from mutualistic to detrimental, are likely for the -

proteobacterial genus Serratia (-Proteobacteria) and an unclassified cluster of Moraxellaceae (Pseudomonadales), and for 

the Unclassified Wastewater & Gut Group. ZOTUs of these groups each dominate one larval specimen (ZOTU11, ZOTU26, 5 

and ZOTU28, respectively). All three groups degrade carbohydrates anaerobically (Serratia, Bacteroidetes) or 

aerobically/facultatively anaerobically (Moraxellaceae) to organic acids, which may provide energy to larvae, but can also be 

pathogenic, or mutualistic in ways unrelated to diet (Grimont and Grimont, 2006; Sabri et al., 2011; Teixeira and Merquior, 

2014; Wexler, 2014). The remaining ZOTUs belong to unclassified genus-level subclusters of ß-proteobacterial Rhodocyclales 

(ZOTU6) and Burkholderiales (ZOTU12). Due to the very diverse ecophysiologies of Rhodocyclales and Burkholderiales the 10 

potential roles of these ZOTUs within their hosts are highly uncertain. 

5 Conclusions  

Our study indicates clear changes in lacustrine sedimentary macrofaunal communities with increasing trophic state, including 

a shift in dominance from chironomid larvae to tubificid oligochaetes. Carbon isotopic and genetic analyses show that, 

independent of faunal group or trophic state, detritus-derived organic carbon rather than methane-derived carbon is the main 15 

carbon source of these animals. Yet, the exact carbon sources remain unclear and may include actual detritus, detrital carbon-

assimilating microorganisms, and/or waste products of microbial detritus degradation. Hereby bacterial symbionts, that are 

abundant within tubificids and chironomids but rare in surrounding sediment, could be important. Known carbon sources of 

these symbionts provide potential clues to predominant tubificid and larval food sources. Given that most tubificid specimens 

are dominated by known protein-degrading bacteria (Fusobacteriaceae), selective feeding on protein-rich organic matter 20 

fractions, such as microbial cells, is likely for these specimens. Similarly, given that half of the dominant ZOTUs in chironomid 

larvae belong to carbohydrate-degrading taxa (Aeromonas, Serratia, Moraxellaceae, Bacteroidales), preferential feeding on 

algal detritus in surface sediments is plausible for these chironomid taxa. Though more research is needed, both macrofaunal 

groups may benefit from their endosymbionts through the production of short-chain organic acids, which can be taken up 

through the hindgut wall and subsequently used for energy conservation or biosynthesis.   25 
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Fig. 1: Map of the study area from Fiskal et al., (2019). The sampling stations within each of the five lakes are indicated by red 

dots and numbered 1 to 3. Color indicates trophic state from light blue (oligotrophic) to dark blue (eutrophic). The map is based 

on aerial images from DigitalGlobe (CO) and CNES/Airbus (France) as provided by Google (CA) and was created with the 5 
software R (South, 2011).  The small insert map is from d-maps (https://www.d-maps.com/carte.php?num_car=2648&lang=en). 

 

 

Fig. 2: Average abundances of macrofauna in each lake. Error bars indicate standard deviations of 3 stations per lake, except for 

Lake Zurich, where the macrofauna-free deep station was not considered and error bars indicate the range of the two shallower 10 
stations. The degree of eutrophication is based on water column phosphorous concentrations measured by the Swiss Federal Office 

of the Environment (BAFU), which uses the OECD model (Vollenweider and Kerekes, 1982) to declare trophic state. According to 
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the OECD model, lakes with average total P concentration values of ≤15 mg m-3 are oligotrophic, lakes with 15-45 mg P m-3 are 

mesotrophic, and lakes with >45 mg P m-3 are eutrophic. 

 

Fig. 3: Depth distributions of oligochaetes and chironomid larvae at each station. Water depths of each station are indicated in each 

subplot. Horizontal lines indicate depth distributions of laminated sediment layers.  5 
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Fig. 4: Pie charts of taxonomic analyses on oligochaetes (A) and chironomid larvae (B) in each lake (Ntax=number of taxonomically 

identified specimens, Ntotal = total number of specimens). No chironomid larvae were found in Lake Greifen. In Lake Lucerne only 5 
4 oligochaetes were found of which 1 was taxonomically analyzed (Potamothrix vejdovskyi; not shown). Numbers show relative 

abundances in %. 
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Fig. 5: Boxplots of 13C isotopic compositions of CH4, TOC, 

DOC, oligochaetes and chironomid larvae for each lake 

(note: no larvae were found in Lake Greifen). Boxes show 

75% and 25% quartiles. Whiskers show minimum and 

maximum values. Wilcoxon signed rank tests were 

applied to check whether 13C-isotopic signatures of 

macrofauna and TOC were significantly different (ns=not 

significant; *=p<0.05; **= p<0.01; ***=p<0.001). For 

each Wilcoxon test, macrofaunal specimens were paired 

with TOC isotopic signatures from the same depth (±2 

cm), and only data were included for which there were 

data macrofauna and TOC data from matching depths. 

Samples with N<5 are displayed as individual data points. 

N indicates the number of data points for each variable 

above.  
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Fig. 6: Relative abundances of Bacteria at the phylum level (Proteobacteria at class level) based on 16S rRNA gene sequences. 

Sequences were obtained from 17 sediment, 10 chironomid larval tube, 26 chironomid larvae (Nbody=7, Ngut=7, Nwhole=12), and 

36 oligochaete (Nbody=5, Ngut=6, Nwhole=25) samples. Station and sample IDs are indicated by sample names, which indicate 5 
station water depth (m), sediment depth (cm) and portion of macrofaunal body analysed (w=whole specimen, g=gut, b=body). Bodies 

and guts of the same specimens are marked by the same symbols. All sediment 16S rRNA gene sequence data are from Han et al. 

(2020). 
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Fig. 7: PCoA analysis of bacterial community structure at the order level using Bray-Curtis distances. All sediment 16S rRNA gene 

sequence data are from Han et al. (2020). 

 

Fig. 8: Ratios (expressed in %) of bacterial (BAC) 16S rRNA gene copy numbers (left panel), mcrA copy numbers (mid panel), and 5 
pmoA copy numbers (right panel) to total 16S rRNA gene copy numbers (sum of bacterial and archaeal 16S rRNA gene copy 

numbers). The three x-axes differ in ranges and scales (linear and log). All sediment 16S rRNA gene values are from Han et al. 

(2020). Values on the lower limit of the x-axis in the mid and right panel indicate samples in which mcrA or pmoA were below qPCR 

detection. 

 10 
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Table 1: Overview of sampled lakes, their trophic status, and maximum water depths, as well as the geographic coordinates, water 

depths, and bottom water dissolved O2 concentrations (ranges are O2 concentrations over the time course of one year) of the stations 

that were sampled. O2 concentrations ≤15.6 µM are termed ‘hypoxic’. All data are from Fiskal et al., (2019). Trophic status and O2 

concentrations are taken from BAFU (https://www.bafu.admin.ch/bafu/de/home/themen/wasser/fachinformationen/zustand-der-

gewaesser/zustand-der-seen/wasserqualitaet-der-seen.html).  5 

 Trophic 

status 

Max. depth 

(m) 

Station 

# 

Latitude 

(°N) 

Longitude 

(°E) 

Water 

depth (m) 
O2 (µM) 

Lake 

Greifen 
eutrophic 32 

1 47° 21.134 8° 40.511 15 
seasonally 

hypoxic 
2 47° 21.118 8° 40.484 32 

3 47° 21.038 8° 40.185 24 

Lake 

Baldegg 
eutrophic 66 

1 47° 11.929 8° 15.613 66 15.6–125 

125–250 

15.6–125 

2 47° 11.759 8° 15.392 45 

3 47° 11.649 8° 15.417 21 

Lake Zug eutrophic 198 

1 47° 10.272 8° 30.036 25 125–250 

2 47° 10.104 8° 29.946 35 125–250 

3 47° 09.834 8° 29.814 50 125–250 

Lake 

Zurich 
mesotrophic 137 

1 47° 16.995 8° 35.624 137 hypoxic 

2 47° 16.708 8° 35.033 45 125–250 

3 47° 16.395 8° 35.195 25 15.6–125 

Lake 

Lucerne 
oligotrophic 214 

1 47° 00.051 8° 20.218 24 >250 

2 46° 59.812 8° 20.820 93 >250 

3 46° 59.915 8° 20.413 45 >250 
 

Table 2: Contributions of TOC and methane to oligochaete and chironomid larval biomass C based on a two end member mixing 

model. Estimates outside of the parentheses are maximum values, as they assume no isotopic fractionation during aerobic methane 

oxidation. Values within parentheses are more conservative and assume a fractionation factor that is in the upper range previously 

determined for freshwater sediments and pure-culture incubations (-39‰) (Kruger et al., 2002; Templeton et al., 2006; Kankaala et 10 
al., 2007). For the calculations, only macrofaunal specimens were included that could be paired with TOC and methane isotopic 

values from the same sediment depth (±2 cm), values display averages ± standard deviation.  

 Contribution of TOC (%) Contribution of methane (%) 

 Oligochaetes Chironomid larvae Oligochaetes Chironomid larvae 

Lake Lucerne --- 97.3±4.1 (98.6±2.0) --- 2.7±4.1 (1.5±2.0) 

Lake Zurich 98.5±3.9 (99.2±1.5)  99.1±4.3 (99.5±2.4) 1.5±3.9 (0.8±1.5) 0.9±4.3 (0.5±2.4) 

Lake Zug 88.3±3.3 (94.0±1.7) --- 11.7±3.3 (6.0±1.7) --- 

Lake Greifen 93.1±7.6 (96.5±3.5) --- 6.9±7.6 (3.5±3.5) --- 

Lake Baldegg 88.2±2.8 (93.9±1.5) 87.9±1.6 (93.9±0.8) 11.8±2.8 (6.2±1.5) 12.1±1.6 (6.3±0.8) 

 

Table 3: Results of Wilcoxon sign rank test (one-sided) to examine whether the ratios of bacterial 16S rRNA gene (BAC), mcrA, and 

pmoA to total 16S rRNA gene copy numbers differ significantly between oligochaete, chironomid larval, and chironomid larval tube 15 
samples relative to surrounding sediment (ns=not significant; *=p<0.05; **=p<0.01; ***=p<0.001), actual p-values can be found in 

brackets below. Only data were included for which matching values existed from the same sediment depth (±2 cm).  

% 
Oligochaetes vs. 

Sediment 

Larvae 

vs. Sediment 

Tubes 

vs. Sediment 

BAC of total 16S 

*** 

Oligochaetes higher 

(p=0.000002) 

** 

Larvae higher 

(p=0.006) 

** 

Tubes higher 

(p=0.001953) 

mcrA of total 16S 

** 

Oligochaetes lower 

(p=0.002921) 

*** 

Larvae lower 

(p=0.000008) 

** 

Tubes lower 

(p=0.004002) 

pmoA of total 

16S 

** 

Oligochaetes higher 

(p=0.005212) 

ns 

Larvae higher 

(p=0.9998) 

ns 

Tubes higher 

(p=0.1792) 
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