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Referee 1 Comments are in plain text, with Author responses in bold

The manuscript “Multi-scale assessment of a grassland productivity model“ uses the
PhenoGrass model to evaluate vegetation cover predictions among sites grouped by
ecoregions and vegetation types in North America (focusing on the lower 48 US).
The main insights include that the model performs poorly when applied for across
ecoregions and across vegetation types, but performs well for non-desert ecoregion x
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grassland combinations. Phenological studies make important contribution to climate
change impact science and also to climate change science by providing long-term ob-
served records. Understanding and modelling what drives phenological patterns in dif-
ferent regions and ecosystems and how these are responding to climate change are
important scientific question with direct applications for land management, farming,
and forestry. I found the discussion on why the model may have performed poorly for
shrubs or in agricultural settings (8.4-9.15; all numbers refer to page.line) and how the
model may be improved particularly interesting and a great addition to the manuscript.

General comments - Data and code are made available online, but I have not tested
whether I can re-create the analysis.

- Terminology of forecasts * page 1.line 1 (“forecasting . . . in the coming decades”),
1.10, 1.20, and throughout: I would welcome a more careful representation of what
exactly is implied with forecast claims, e.g., “this work allows us to perform long-term
forecasts” (1.10). While I agree that the term “forecast” is used quite generally (e.g.,
White et al. 2019), it can also be interpreted more specifically for quantitative predic-
tions (e.g., Clark et al. 2001), e.g., weather forecasts. I interpret that the claims made
here include time-frames over which a considerable amount of climate change is con-
tinuing to occur and thus entail “projections” under specific climate scenarios which
then “provide an indication of pos- sibility” instead of “definitive probabilities” (Clark
et al. 2001). To make this distinction clear, the climate change community including
IPCC do not talk about “predictions”– instead, they are “projections”, e.g., quote from
the glossary of the AR5 (IPCC 2014 p. 1451): “A climate projection is the simulated
response of the climate system to a sce- nario of future emission or concentration of
greenhouse gases and aerosols, generally derived using climate models. Climate pro-
jections are distinguished from climate pre- dictions by their dependence on the emis-
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sion/concentration/radiative forcing scenario used, which is in turn based on assump-
tions concerning, for example, future socioeconomic and technological developments
that may or may not be realized. See also Climate scenario.”

We will change the term “forecast” to “projection” in the text.

* This study does not appear to evaluate/discuss the capability of the model to transfer
in time or under climate change type conditions. Thus, the conclusion that “this work
allows us to perform long-term forecasts” (1.10) appears to be not based on results
and insights generated by this study.

It’s true that we do not test model transferability across time. With a median
length of 4.3 years per site we do not feel the current dataset has ample length
for a proper temporal out of sample test. Validation of models under current con-
ditions is the 1st step toward applying them toward climate projections though,
thus the above statement is still valid.

We’ll include the following caveat at the end in the discussion to highlight the
importance of model transferability in time.

“This highlights the need for longer time series in evaluating small scale models
as it may take several years for a single location to experience the full range of
variability. As PhenoCam data collection continues then temporally out of sam-
ple validation can be done to better model performance into novel conditions.”

- Confusing terminology: spatial scale, iteration, spatial extent and spatial resolution
(grain) appear to be used as interchangeable, but see, e.g., Wiens 1989. I interpret
that the study didn’t explicitly assess spatial scale or extent or resolution, but rather
differences among ecoregions and ecoregion x vegetation type combinations (e.g.,
Fig. 2, Table 1). This has implications for the framing, discussion, and conclusions

C3

(inclusive title).

We admit this can be confusing. There is a clear distinction between 1) using
all available sites versus 2) only sites within a specific ecoregion, as distinct
spatial extents, but vegetation types are not described well using these terms.
We settled by using the term “spatial scale” throughout since it’s viewed as more
generic than “spatial resolution/grain” or “spatial extent”. On revision we will
include the following text to explicitly state the definition, used here, for “spatial
scale” as the combination of different ecoregions and vegetation types.

“Here we use the term “spatial scale” to refer to the combination of ecoregion/s
and vegetation type/s used within each model. This includes using all vegetation
types with an ecoregion, or all sites of a specific vegetation type from several
ecoregions”

We’ll also remove all mentions of extent when discussing our own results. Our
use of “resolution” was only used to describe the daymet and phenocam data
attributes, thus we will keep those in place.

- Gaps in method section: no definition or details provided on “parametrization”
(e.g.,p3.3, p3.14, and throughout)

* Does “parametrization” refer to the “estimation of model parameters” or is it rather how
other branches of science use it, e.g., climate scientists as defined in the Glossary
to AR5 (IPCC 2014): “technique of representing processes that cannot be explicitly
resolved at the spatial or temporal resolution of the model (sub-grid scale processes)
by relationships between model-resolved larger-scale variables and the area- or time-
averaged effect of such subgrid scale processes.”

* I would like to know what was parametrized, e.g., number and types of parameters or
processes respectively.
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* And it would be valuable to know how this was achieved (estimation method or repre-
senting structure respectively). For instance, the result section writes in 5.26 “The fitted
model, which minimized the mean CVME among the 5 sites”; I interpret that ecoregion
x vegetation-type wide optimization pooled data from 5 sites whereby a metric “CVME”
(that is not mentioned or defined elsewhere) was minimized.

Parameterization is indeed estimating the 8 model parameters via minimizing a
loss function. We will include the following main text in the method to clarify
this.

“Parameterization was done using differential evolution, a global optimization
algorithm, to minimize the mean coefficient of variation of the mean absolute
error (F), which accounts for variation among average Gcc values among sites
(Choler et al. 2011).

F =
1
N

N∑

j=1

CV MAEj

CV MAEj =
1
i

∑n
i=1 |fCoveri,obs − fCoveri,pred|

fCoverobs

Where N is the number of sites, i is the number of daily values in each site,
fCoveri,obs and fCoveri,pred are observed and predicted values, respectively.
fCoverobs is the average fCover at each site.”

The PhenoGrass model is described fully in Hufkens et al. 2016 and we used it
here without modification, but we will include the full model description, includ-
ing equations, in the appendix for clarity.
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We will also include the following table in the appendix describing the final pa-
rameter values for the two models which met the threshold.

parameter Great Plains E. Temperate Forests
b2 0.0021756 0.0143214
b3 0.0607134 0.0269089
b4 0.2630305 9.8632117
Phmax 48.1106340 49.6940973
Phmin 25.5471298 33.1345876
Topt 29.7376494 35.6335041
L 3.0685254 3.1769617
h 10.3601586 949.5914722
mean_cvmae 0.3882550 0.2734598

- Model evaluation (section 2.4)

* What is the impact of unequal sample size (both number of sites and number of
years) among ecoregions (Fig. 2) on model evaluation, particularly based on means
across sites? It seems possible that a model may appear to perform worse/better
just by chance in ecoregions with fewer data points. Maybe assess sensitivity with
rarefaction?

Different sample sizes and time series lengths were accounted for in two ways.
The loss function, the mean CVMAE, gave each site the same weight regardless
of time series length. The evaluation metric, R2, is also robust against sample
size differences as long as sample sizes are not extremely low (McCuen et. al
2006).

McCuen, Richard H., Zachary Knight, and A. Gillian Cutter. "Evaluation of the
Nash–Sutcliffe efficiency index." Journal of hydrologic engineering 11.6 (2006):
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597-602.

* How exactly was R2 calculated? It seems that there are a number of different possi-
bilities (4.3).

This is the coefficient of determination and it has the following equation:

R2 = 1−
∑n

i=1(fCoverobs − fCoverpred)2∑n
i=1(fCoverobs − fCoverobs)2

Where n is the number of observations for a single site, and fCoverobs is the mean
fCover for the site. As opposed to a regression R2, this metric uses observed
versus predicted values in relation to the 1:1 line. It’s common in the ecological
literature, but in the hydrology literature this same equation is known as the Nash
Sutcliffe coefficient of efficiency (NSE, see Ritter Muñoz-Carpena, 2013). On
revision we will remove R2 from the manuscript and replace it with NSE, with the
above equation and definition, to avoid any confusion. We will also emphasize
the reported results as the mean NSE across sites (eg. NSE).

Ritter, A., Muñoz-Carpena, R. (2013). Performance evaluation of
hydrological models: Statistical significance for reducing subjectivity
in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45.
https://doi.org/10.1016/j.jhydrol.2012.12.004

* I don’t believe that RMSE (4.3) is a very useful metric to compare different datasets
(e.g., comparisons among ecoregions) because mean cover values differ among re-
gions (see Fig. 3). For instance, a RMSE of 0.09 for shrublands cannot be directly
compared to the RMSE of 0.16 for grasslands if grasslands have on average higher
cover than shrublands. Unfortunately, mean cover values are not reported (e.g., they

C7

could be added to Table 1). A normalized form of RMSE (e.g., the coefficient of vari-
ation of RMSE = RMSE / mean) would make among-region comparisons easier to
interpret.

On revision we will replace RMSE in the results with the mean CVMAE, which is
the loss function and is normalized to the within site variation (see above).

* Why was the estimate of the “scaling coefficient” not part of the cross-evaluation
(4.12)? Depending on the sensitivity of the model to this parameter, the “out-of-sample”
estimate may be considerably influenced (as in augmented) by this estimate based on
all data.

Holding this value constant in the cross-validation step is how the model was
originally evaluated in Hufkins et al. 2016, which we attempted to replicate as
much as possible.

* I agree that mean R2 and mean RMSE among sites may provide a reasonable esti-
mate of average performance across sites (4.14); however, use cases at specific sites
would likely need to also consider expected worst case performance. For instance,
Fig. 3 hints at (not possible to know for sure because point density is not shown) that a
large number of data points are predicted at 0 cover irrespective of the observed cover
value (all but “All Shrubland” model) – this could be driven by to one or a few poorly
performing site or by some years, etc.

This is correct. The poorly performing models in Fig. 3 were noted as such since
they did not meet the threshold for further evaluation.

* A blue line is shown and labelled “Correlation” in Fig. 3. This looks rather like a
simple linear regression line than a “correlation” (point estimate)? Was this regression
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the basis to estimate R2 (see comment to 4.3)?

The blue is indeed the regression line, but labelling it as such would give the
false impression that the y-axis values are a function of the x-axis value. Here the
figure is showing predicted versus observed results, where a perfect prediction
is shown by the 1:1 line. The blue “correlation” line is meant to indicate an
overall trend relative to a perfect model fit. See above for the equation for R2.

* Result section (5.8ff): The entire result section focuses on R2 only and does not
report on RMSE results – despite method section and figures.

RMSE will be removed from results and replaced with the mean CVMAE (see
above).

Specific comments

- It is not clear to me why the manuscript argues that the theoretical expectation is that
process-based transfer in general worse to new conditions than others, e.g., statistical
models (1.21f.). It seems that at least several authors have argued for exactly the
opposite expectation, e.g., Grimm and Berger 2016, Radchuk et al. 2019, while others
have pointed out real-world limitations while maintaining the theoretical expectation,
e.g., that process-based models are often limited because they require large amounts
of data and a complete understanding of relevant processes, e.g., Pennekamp et al.
2017, Yates et al. 2018, Bouchet et al. 2019).

- 1.23-2.4 appear to refer to the problematic of overfitting versus building a general-
izable model without referring to relevant literature and without defining what exactly
is meant by “most accurate”. It seems that approaches to minimize overfitting have
been frequently discussed in the literature including parsimony (e.g., likelihood-based
or information theoretic approaches).
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Where the PhenoGrass model falls in the process vs. statistical model definition
is ambiguous, since it has elements of both. From a process model perspective
it has elements for a soil water pool and evapotranspiration, but also parameters
for transpiration which are essentially statistical coefficients. Because of the lat-
ter element it is susceptible to overfitting to local conditions, thus transferability
to new locations is limited. On revision we will describe PhenoGrass as a “low
dimensional model” to better reflect this.

Our analysis here cannot be approached with traditional model selection ap-
proaches. Given the problem that the phenograss model can fit very well to
local conditions, but can only generalize so far beyond that, we set out to find an
optimal scale at which it could be parameterized.

Following is new text to replace the the current 2nd introduction paragraph to
reflect the above comments:

“. . . This highlights the need for models which can be resolved at small spatial
and temporal scales, thus making projections of grassland productivity as infor-
mative as possible.

A promising method is low dimensional models, which are process models with
some simplified components (Choler et al. 2010, 2011). For example, a low di-
mensional model might approximate transpiration to a function of potential evap-
otranspiration, soil available water, and live vegetation cover along with a single
parameter. As opposed to a high dimensional model with multiple functions ac-
counting for leaf area index, stomatal conductance, rooting depth and surface
area, etc. (Caylor et al. 2009, Asbjornsen et al. 2011). The low dimensional
model is advantageous since it can generalize across broad regions with rela-
tively few inputs. Yet they are still susceptible to over-fitting to local conditions
since parameters or model structure can be tied to specific locations or plant
functional groups (Fisher Koven 2020). Thus parameterizing low-dimensional
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models must be done with care such that they are applicable to a broad area
while maintaining an acceptable level of accuracy.

Here we evaluate a low-dimensional model with the intention of it driving climate
projections. The PhenoGrass model developed by Hufkens et al. (2016) ..... “

Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F.
P., Rietkerk, M., . . . Dawson, T. E. (2011). Ecohydrological advances and applications
in plant-water relations research: a review. Journal of Plant Ecology, 4(1–2), 3–22.
https://doi.org/10.1093/jpe/rtr005

Caylor, K. K., Scanlon, T. M., Rodriguez-Iturbe, I. (2009). Ecohydrological optimization
of pattern and processes in water-limited ecosystems: A trade-off-based hypothesis.
Water Resources Research, 45(8), 1–15. https://doi.org/10.1029/2008WR007230

Choler, P., Sea, W., Briggs, P., Raupach, M., Leuning, R. (2010). A simple ecohydrological
model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands.
Biogeosciences, 7(3), 907–920. https://doi.org/10.5194/bg-7-907-2010

Choler, P., Sea, W., Leuning, R. (2011). A Benchmark Test for Ecohydrological Models
of Interannual Variability of NDVI in Semi-arid Tropical Grasslands. Ecosystems, 14(2),
183–197. https://doi.org/10.1007/s10021-010-9403-9

Fisher, R. A., Koven, C. D. (2020). Perspectives on the future of Land Surface Models
and the challenges of representing complex terrestrial systems. Journal of Advances in
Modeling Earth Systems, 0–3. https://doi.org/10.1029/2018ms001453

- 2.18: Maybe clarify whether “fractional vegetation cover” includes all vegetation cover
combined (whether grasses or not) or estimates are produced separate for grass,
shrub, and “agricultural” vegetation types (as hinted at in 3.1)

Fractional vegetation cover includes vegetation for specific functional groups,
in this case grass, shrubs, or agricultural. The majority of cameras have a single
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vegetation type, but several cameras include both shrubs and grasses and these
are separated using different regions of interest and treated as separate time se-
ries. We will add the following clarification to the section at 2.18 for clarification:

“Despite its name the PhenoGrass model can theoretically apply to any vegeta-
tion type with a distinct growth signal in response to precipitation, as hypothe-
sized in the original threshold-delay model (Ogle Reynolds 2004). Here we use
two other vegetation types, shrubs and agricultural plots, to test how applicable
it is beyond grasslands.”

Ogle, K., Reynolds, J. F. (2004). Plant responses to precipitation in desert
ecosystems: integrating functional types, pulses, thresholds, and delays. Oe-
cologia, 141(2), 282–294. https://doi.org/10.1007/s00442-004-1507-5

- 3.7: It seems that the original Daymet product has a 1-km resolution. Is this a typo or
was it aggregated here to 4-km. If the latter, explain why and how.

This was a typo and the resolution is indeed 1km.

- 3.7: “Climate time series”: daily meteorological time series data rather sound like
weather data to me

We will change this to the following text:

“For historic precipitation and temperature we used the 1-km resolution Daymet
dataset (Thornton et al. 2018), extracting daily time series for the pixel at each
PhenoCam tower location.”

- 3.11: Why use a 20+ year old global soil dataset instead of using one of the many
updated and improved ones, e.g., WISE-based HWSD (Batjes 2016), SoilGrids (Hengl
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et al. 2017) etc., and why not use a regional dataset, e.g., gNATSGO (NRCS 2020),
POLARIS (Chaney et al. 2019), etc.? How sensitive is the PhenoGrass model to
differences in soil variables that occur typically between Global Soil Data Task Group
(2000) and others?

The global soil dataset we used was the one used in Hufkens et al. 2016, and
we sought to replicate that as much as possible. Among the datasets suggested
here, none have both variables required (field capacity and wilting point), thus
we can’t make any comparisons with them.

- 5.15: Why are the different model fits/parametrizations now suddenly called “itera-
tions”? This is confusing because “iteration” can have a specific and different meaning
in parameter estimation/model fitting than what appears to be implied here.

We will remove “iteration” from the text and replace it with just “model”, and
emphasize how it refers to a parameterization of a specific spatial scale as de-
scribed above.

- Fig. 3: Explain what the individual data points are, days pooled from all sites and
years?

Each point is an observed versus predicted daily fCover values from all sites and
years within a single spatial scale (see above). We’ll change the Fig. 3 and 4 text
to clarify that

“ Figure 3. Observed and predicted daily fCover values of the All Site model and
the three vegetation type models, each using all available sites and years with
the respective spatial scale. ”

“ Figure 4. Observed and predicted daily fCover values for models from seven
spatial scales, where only specific vegetation types within a single ecoregion
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were used in model fitting. Each uses all available sites and years with the re-
spective spatial scale. ”
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