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The manuscript “Multi-scale assessment of a grassland productivity model” uses the
PhenoGrass model to evaluate vegetation cover predictions among sites grouped by
ecoregions and vegetation types in North America (focusing on the lower 48 US).
The main insights include that the model performs poorly when applied for across
ecoregions and across vegetation types, but performs well for non-desert ecoregion x
grassland combinations. Phenological studies make important contribution to climate
change impact science and also to climate change science by providing long-term ob-
served records. Understanding and modelling what drives phenological patterns in
different regions and ecosystems and how these are responding to climate change are
important scientific question with direct applications for land management, farming,
and forestry. | found the discussion on why the model may have performed poorly for
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shrubs or in agricultural settings (8.4-9.15; all numbers refer to page.line) and how the
model may be improved particularly interesting and a great addition to the manuscript.

# General comments

- Data and code are made available online, but | have not tested whether | can re-create
the analysis.

- Terminology of forecasts

* page 1.line 1 (“forecasting ... in the coming decades”), 1.10, 1.20, and throughout: |
would welcome a more careful representation of what exactly is implied with forecast
claims, e.g., “this work allows us to perform long-term forecasts” (1.10). While | agree
that the term “forecast” is used quite generally (e.g., White et al. 2019), it can also
be interpreted more specifically for quantitative predictions (e.g., Clark et al. 2001),
e.g., weather forecasts. | interpret that the claims made here include time-frames over
which a considerable amount of climate change is continuing to occur and thus entalil
“projections” under specific climate scenarios which then “provide an indication of pos-
sibility” instead of “definitive probabilities” (Clark et al. 2001). To make this distinction
clear, the climate change community including IPCC do not talk about “predictions™—
instead, they are “projections”, e.g., quote from the glossary of the AR5 (IPCC 2014 p.
1451): “A climate projection is the simulated response of the climate system to a sce-
nario of future emission or concentration of greenhouse gases and aerosols, generally
derived using climate models. Climate projections are distinguished from climate pre-
dictions by their dependence on the emission/concentration/radiative forcing scenario
used, which is in turn based on assumptions concerning, for example, future socioe-
conomic and technological developments that may or may not be realized. See also
Climate scenario.”

* This study does not appear to evaluate/discuss the capability of the model to transfer
in time or under climate change type conditions. Thus, the conclusion that “this work
allows us to perform long-term forecasts” (1.10) appears to be not based on results
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and insights generated by this study.

- Confusing terminology: spatial scale, iteration, spatial extent and spatial resolution
(grain) appear to be used as interchangeable, but see, e.g., Wiens 1989. | interpret
that the study didn’t explicitly assess spatial scale or extent or resolution, but rather
differences among ecoregions and ecoregion x vegetation type combinations (e.g.,
Fig. 2, Table 1). This has implications for the framing, discussion, and conclusions
(inclusive title).

- Gaps in method section: no definition or details provided on “parametrization” (e.g.,
p3.3, p3.14, and throughout)

* Does “parametrization” refer to the “estimation of model parameters” or is it rather how
other branches of science use it, e.g., climate scientists as defined in the Glossary
to AR5 (IPCC 2014): “technique of representing processes that cannot be explicitly
resolved at the spatial or temporal resolution of the model (sub-grid scale processes)
by relationships between model-resolved larger-scale variables and the area- or time-
averaged effect of such subgrid scale processes.”

* | would like to know what was parametrized, e.g., number and types of parameters or
processes respectively.

* And it would be valuable to know how this was achieved (estimation method or repre-
senting structure respectively). For instance, the result section writes in 5.26 “The fitted
model, which minimized the mean CVME among the 5 sites”; | interpret that ecoregion
X vegetation-type wide optimization pooled data from 5 sites whereby a metric “CVME”
(that is not mentioned or defined elsewhere) was minimized.

- Model evaluation (section 2.4)

* What is the impact of unequal sample size (both number of sites and number of
years) among ecoregions (Fig. 2) on model evaluation, particularly based on means
across sites? It seems possible that a model may appear to perform worse/better
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just by chance in ecoregions with fewer data points. Maybe assess sensitivity with
rarefaction?

* How exactly was R2 calculated? It seems that there are a number of different possi-
bilities (4.3).

* | don'’t believe that RMSE (4.3) is a very useful metric to compare different datasets
(e.g., comparisons among ecoregions) because mean cover values differ among re-
gions (see Fig. 3). For instance, a RMSE of 0.09 for shrublands cannot be directly
compared to the RMSE of 0.16 for grasslands if grasslands have on average higher
cover than shrublands. Unfortunately, mean cover values are not reported (e.g., they
could be added to Table 1). A normalized form of RMSE (e.qg., the coefficient of vari-
ation of RMSE = RMSE / mean) would make among-region comparisons easier to
interpret.

* Why was the estimate of the “scaling coefficient” not part of the cross-evaluation
(4.12)? Depending on the sensitivity of the model to this parameter, the “out-of-sample”
estimate may be considerably influenced (as in augmented) by this estimate based on
all data.

* | agree that mean R2 and mean RMSE among sites may provide a reasonable esti-
mate of average performance across sites (4.14); however, use cases at specific sites
would likely need to also consider expected worst case performance. For instance,
Fig. 3 hints at (not possible to know for sure because point density is not shown) that a
large number of data points are predicted at O cover irrespective of the observed cover
value (all but “All Shrubland” model) — this could be driven by to one or a few poorly
performing site or by some years, etc.

* A blue line is shown and labelled “Correlation” in Fig. 3. This looks rather like a
simple linear regression line than a “correlation” (point estimate)? Was this regression
the basis to estimate R2 (see comment to 4.3)?
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* Result section (5.8ff): The entire result section focuses on R2 only and does not
report on RMSE results — despite method section and figures.

# Specific comments

- It is not clear to me why the manuscript argues that the theoretical expectation is that
process-based transfer in general worse to new conditions than others, e.g., statistical
models (1.21f.). It seems that at least several authors have argued for exactly the
opposite expectation, e.g., Grimm and Berger 2016, Radchuk et al. 2019, while others
have pointed out real-world limitations while maintaining the theoretical expectation,
e.g., that process-based models are often limited because they require large amounts
of data and a complete understanding of relevant processes, e.g., Pennekamp et al.
2017, Yates et al. 2018, Bouchet et al. 2019).

- 1.23-2.4 appear to refer to the problematic of overfitting versus building a general-
izable model without referring to relevant literature and without defining what exactly
is meant by “most accurate”. It seems that approaches to minimize overfitting have
been frequently discussed in the literature including parsimony (e.qg., likelihood-based
or information theoretic approaches).

- 2.18: Maybe clarify whether “fractional vegetation cover” includes all vegetation cover
combined (whether grasses or not) or estimates are produced separate for grass,
shrub, and “agricultural” vegetation types (as hinted at in 3.1)

- 3.7: It seems that the original Daymet product has a 1-km resolution. Is this a typo or
was it aggregated here to 4-km. If the latter, explain why and how.

- 3.7: “Climate time series”: daily meteorological time series data rather sound like
weather data to me

- 3.11: Why use a 20+ year old global soil dataset instead of using one of the many
updated and improved ones, e.g., WISE-based HWSD (Batjes 2016), SoilGrids (Hengl|
et al. 2017) etc., and why not use a regional dataset, e.g., gNATSGO (NRCS 2020),
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POLARIS (Chaney et al. 2019), etc.? How sensitive is the PhenoGrass model to
differences in soil variables that occur typically between Global Soil Data Task Group
(2000) and others?

- 5.15: Why are the different model fits/parametrizations now suddenly called “itera-
tions™? This is confusing because “iteration” can have a specific and different meaning
in parameter estimation/model fitting than what appears to be implied here.

- Fig. 3: Explain what the individual data points are, days pooled from all sites and
years?
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