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Abstract. Grasslands provide many important ecosystem services globally and projecting grassland productivity in the coming

decades will provide valuable information to land managers. Productivity models can be well-calibrated at local scales, but

generally have some maximum spatial scale in which they perform well. Here we evaluate a grassland productivity model to

find the optimal spatial scale for parameterization, and thus for subsequently applying it in future productivity projections for

North America. We also evaluated the model on new vegetation types to ascertain its potential generality. We find the model5

most suitable when incorporating only grasslands, as opposed to also including agriculture and shrublands, and only in the

Great Plains and Eastern Temperate Forest ecoregions of North America. The model was not well suited to grasslands in North

American Deserts or Northwest Forest ecoregions. It also performed poorly in agriculture vegetation, likely due to management

activities, and shrubland vegetation, likely because the model lacks representation of deep water pools. This work allows us

to perform long-term projections in areas where model performance has been verified, with gaps filled in by future modelling10

efforts.

Copyright statement. Copyright 2020 The Authors

1 Introduction

Grassland systems span nearly 30% of the global land surface (Adams et al., 1990) and play a prominent role in terrestrial

carbon cycles (Parton et al., 2012). Grasslands in North America provide a large proportion of food and fiber agricultural15

products for the region. Annual productivity of grasslands in central and western North America is driven in large part by

precipitation (Sala et al., 2012). Future changes in the amount, intensity, and timing of precipitation will be heterogeneous

across North America (Easterling et al., 2017), resulting in heterogeneous changes to grassland productivity. For example,

even with consistent shifts in climate, different locations can experience different changes in productivity due to local-scale

responses (Zhang et al., 2011; Sala et al., 2012; Knapp et al., 2017). This highlights the need for models which can be resolved20

at small spatial and temporal scales, thus making long-term grassland productivity projections as informative as possible.

A promising method for this is low-dimensional models, which are process based models with some simplified compo-

nents (Choler et al., 2010, 2011). For example, a low-dimensional model might approximate transpiration as a function of

potential evapotranspiration, soil available water, and live vegetation cover along with a single parameter. As opposed to a
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high-dimensional model with multiple functions accounting for leaf area index, stomatal conductance, rooting depth and sur-

face area, etc (Caylor et al., 2009; Asbjornsen et al., 2011). The low-dimensional model is advantageous since it can generalize

across broad regions with relatively few inputs. Yet they are still susceptible to over-fitting to local conditions since parameters

or model structure can be tied to specific locations or plant functional groups (Fisher and Koven, 2020). Thus parameterizing

low-dimensional models must be done with care such that they are applicable to a broad area while maintaining an acceptable5

level of accuracy.

Here we evaluate a low-dimensional model with the intention of it driving productivity projections. The PhenoGrass model

developed by Hufkens et al. (2016) is a pulse-response productivity model with temperature and precipitation as the primary

drivers. The model is parameterized using observations from the PhenoCam network, which have a small spatial resolution

(footprints of < 1ha), sub-daily sampling and sites across all major biomes. These attributes make the PhenoGrass model10

potentially widely applicable. We expand on the evaluation of the original study by using 84 PhenoCam sites, totalling 89

distinct time series, with 463 site-years of data. Using the original methods and input datasets we test the model’s performance

with this expanded dataset. We also evaluate the model across different combinations of North American ecoregions and

vegetation types to find an optimal spatial scale in which to parameterize and apply the model. Finally we address where the

model performs poorly and how productivity projections for these areas could be implemented or improved.15

2 Methods

2.1 PhenoGrass Model

The PhenoGrass model is an ecohydrology model which has interacting state variables for soil water, plant available water, and

plant fractional cover (Hufkens et al., 2016). Model inputs are daily precipitation, temperature, potential evapotranspiration

(derived from the Hargreaves equation, Hargreaves and Samani (1985)), and solar radiation. The primary output is fractional20

vegetation cover (fCover). The original model form, derived in Choler et 2010 and Choler et al. 2011, used only temperature

and potential evapotranspiration and was parameterized using satellite-derived NDVI data. Hufkens et al. (2016) expanded on

the original Choler model by incorporating growth and senescence restraints from temperature and solar radiation, and also

included a scaling factor to convert PhenoCam Gcc data to a fractional cover estimate (see supplemental equations). Hufkens

et al. (2016) evaluated the PhenoGrass model using 14 grassland PhenoCam sites across Western North America with a total25

of 34 site years. They found the modelled fractional cover correlated well with annual productivity at both a daily and annual

timescale. Despite it’s name the PhenoGrass model can theoretically apply to any vegetation type with a distinct growth signal

in response to precipitation, as hypothesized in the original threshold-delay model (Ogle and Reynolds, 2004). Here we evaluate

two additional vegetation types, shrubs and agricultural plots, to test how applicable it is beyond grasslands.
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Figure 1. Locations of Phenocam sites. Color indicates the vegetation type represented at each site. Vegetation type is defined by the

PhenoCam Network. Shading indicates E.P.A. North American Level 1 Ecoregions.

2.2 Phenocam Data30

The PhenoCam network is a global network of fixed, near-surface cameras capturing true-color images of vegetation throughout

the day (Richardson et al., 2018a). Using a ratio of the three RGB bands a greenness metric (green chromatic coordinate, Gcc)

is calculated from each image, resulting in a daily scale time series of canopy greeness. Gcc is a unitless metric which is highly

correlated with satellite derived NDVI (Richardson et al., 2018b) and flux tower derived primary productivity (Yan et al., 2019;

Toomey et al., 2015). Each Phenocam image is subset to one to several different plant vegetation types based on the field of

view. These regions of interest (ROI) serve as the basis for the Gcc calculation and subsequent post-processing (Seyednasrollah5

et al., 2019).

We downloaded all Phenocam data with ROIs of the grasslands (GR), shrublands (SH), and agricultural (AG) vegetation

types for the years 2012 to 2018, totalling 89 distinct time series and 463 site-years (Fig. 1, Table S2). As input to the

PhenoGrass model we used the 3-day smoothed Gcc scaled, for each ROI, from 0-1. In the model parameterization each

ROI time series is further transformed to fractional vegetation cover (fCover, see supplmental equations) using the local mean10

annual precipitation (MAP) combined with a scaling factor (Hufkens et al., 2016; Donohue et al., 2013).

2.3 Environmental Data

For historic precipitation and temperature we used the 1-km resolution Daymet dataset (Thornton et al., 2018), extracting daily

time series for the pixel at each PhenoCam tower location. Daily mean temperature was calculated as the average between the
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Daymet daily minimum and maximum temperature, and smoothed with a 15 day moving average. Potential evapotranspiration15

was calculated using the Hargreaves equation (Hargreaves and Samani, 1985). Soil wilting point and field capacity were

extracted at each Phenocam location from a global dataset (Global Soil Data Task Group, 2000). Despite other options being

available we chose to use the same climate and soil datasets as those used in Hufkens et al. (2016) so that any differences in

results can be attributed to the expanded PhenoCam dataset used here.

2.4 Model Evaluation5

To find the most appropriate spatial scale we evaluated the model using three different combinations of ecoregion and vegetation

type, with 11 total model parameterizations (Fig. 2). Here we use the term “spatial scale” to refer to the combination of

ecoregion/s and vegetation type/s used within each model. This includes using all sites of one vegetation types within an

ecoregion, or all sites of a specific vegetation type from several ecoregions (Fig. 2). The largest spatial scale used all Phenocam

locations described above (89 sites). Next were all sites, respectively, within the three vegetation types indicated by the ROI10

(grasslands, shrublands, and agricultural). Finally, we parameterized models for each vegetation type within each Level 1 North

American Ecoregion (eg. All grassland sites within the Great Plains ecoregion). All sets of parameterized models were limited

to have at least five sites.

We evaluated each of the 11 models using the Nash Sutcliffe coefficient of efficiency (NSE, Eq. 2) as well as the mean

coefficient of variation of the mean absolute error (F, Eq. 3) of the daily fractional cover estimates. NSE was calculated for15

each site and then averaged across all sites within the respective spatial scale (NSE, Eq. 1). There was no cross-validation

using out of sample data in the initial fitting as it would have been computationally expensive. Rather, error metrics from these

in-sample tests were treated as a best case scenario in what each model parameterization can achieve. From these results we

used a threshold to select which models to evaluate further using cross-validation. The threshold value was an NSE of 0.65,

which is viewed as “acceptable” for time-series models (Ritter and Muñoz-Carpena, 2013). Parameterization was done using20

differential evolution, a global optimization algorithm, to minimize F.

NSE =
1

N

N∑
j=1

NSEj (1)

NSEj = 1−
∑n

i=1(fCoveri,obs− fCoveri,pred)
2∑n

i=1(fCoveri,obs− fCoverobs)2
(2)

F =
1

N

N∑
j=1

CVMAEj (3)

CVMAEj =
1
n

∑n
i=1 |fCoveri,obs− fCoveri,pred|

fCoverobs
(4)25
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Figure 2. Scaling representation of the 11 model parameterizations. Numbers in parentheses represent the number of sites and site years,

respectively. Each model uses a different subset of sites ranging from the entire dataset (All Site Model) to one vegetation type within an

ecoregion (e.g., Eastern Temperate Forest Grasslands).

where N is the number of sites within the spatial scale evaluated and n is the number of daily values at each site, fCoveri,obs

and fCoveri,pred are observed and predicted values, respectively. fCoverobs is the average observed fCover at each site.

Models which exceeded the threshold were subject to further evaluation. For each model we performed a leave one out cross-

validation, where the model was re-fit with one Phenocam site not included in the training data, and then evaluated against this

left out site. In this step a scaling coefficient to link mean annual precipitation with PhenoCam Gcc was held constant at the

value obtained in the first fitting. The resulting NSE and F are from all modelled sites using their respective out of sample5

test.

All phenocam data were downloaded using the phenocamr R package (Hufkens et al., 2018). Other packages used in the

R 3.6 language were dplyr (Wickham et al., 2017), tidyr (Wickham and Henry, 2018), ggplot2 (Wickham, 2016), daymetr

(Hufkens et al., 2018), rgdal (Bivand et al., 2019), and sf (Pebesma, 2018). Python 3.7 packages included scipy (Virtanen

et al., 2020), numpy (van der Walt et al., 2011), pandas (McKinney, 2010), and dask (Team, 2016). All code and data used10

in the analysis is available in the repository at https://github.com/sdtaylor/PhenograssReplication, the PhenoGrass model is

implemented in a python package https://github.com/sdtaylor/GrasslandModels. Both are archived permanently on Zenodo

(https://doi.org/10.5281/zenodo.3897319).
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Figure 3. Observed and predicted daily fCover values of the All Site model and the three vegetation type models, each using all available

sites and years with the respective spatial scale. NSE is the average Nash Sutcliffe coefficient of efficiency among sites, and F is the mean

coefficient of variation of the mean absolute error. The correlation line (blue) represents the overall trend in predicted versus observed values,

while the 1:1 line (red) represents a perfect fit.

3 Results

At the largest spatial scale, where the PhenoGrass model was parameterized using all 89 sites, the model performed poorly

with an NSE value of 0.31 (Table 1; Fig. 3). Models built using all sites of a respective vegetation type performed poorly as

well, though were slightly better than the all site model (Fig. 3). The best model performance was achieved when models were5

built using a single vegetation type subset to a single ecoregion. Grasslands within the Great Plains and Eastern Temperate

Forests ecoregions were the only instances where NSE exceeded the 0.65 threshold, though Grasslands within N.W. Forests

came close (NSE = 0.64).
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Figure 4. Observed and predicted daily fCover values for models from seven spatial scales, where only specific vegetation types within a

single ecoregion were used in model fitting. Each uses all available sites and years with the respective spatial scale. NSE is the average Nash

Sutcliffe coefficient of efficiency among sites, and F is the mean coefficient of variation of the mean absolute error. The correlation line

(blue) represents the overall trend in predicted versus observed values, while the 1:1 line (red) represents a perfect fit.
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In all 11 models the PhenoGrass model tended to underestimate the highest fCover values, and to a lesser degree overpredict

the lowest values (Figs. 3,4). The best performing models (Grasslands in the Great Plains and Eastern Temperate forests)

minimized this effect (Fig. 4). The worst performing models, Grasslands in N.A. Deserts, had little variation in predicted

fCover values, resulting in the lowest NSE overall.

The grassland vegetation type, subset to specific ecoregions, predominantly outperformed models built with other spatial

scales (Table 1). Models built using grasslands within the Eastern Temperate Forest and Great Plains ecoregions had the highest5

NSE values of 0.82 and 0.69, respectively. Using leave one out cross-validation on these two grassland models resulted in

similar errors of 0.79 and 0.67 for the Eastern Temperate Forest and Great Plains, respectively. Though N.W. Forests grasslands

had an in-sample NSE just below the 0.65 threshold, the cross-validation was well below it (0.52). Grasslands in the North

American deserts were not modelled well at any spatial scale and had the lowest NSE values in the entire analysis. The

observed greenness patterns of these desert grasslands had extremely high variability in their magnitude and timing, with short10

distinct peaks in greenness and numerous off-peak fluctuations. The fitted model, which minimized F among the 5 sites, was

not able to reproduce this high variability and instead produced fCover values that were severely constrained to a narrow range

(Fig. S1).

Agriculture and shrubland sites were poorly modelled at all spatial scales. Performance of agriculture within the E. Temper-

ate Forest ecoregion (NSE = 0.33) improved over the All Agriculture model (NSE = 0.18), but decreased in the Great Plains

(NSE from 0.24 to 0.18). There was only a single ecoregion with a minimum of five shrubland sites, N.A. Deserts, and it

performed only slightly better than the All Shrubland model. Shrublands in N.A. Deserts did not have the high variability seen5

in desert grasslands.

4 Discussion

We performed an extensive evaluation of the PhenoGrass model across ecoregions and vegetation types to determine the best

spatial scale at which to parameterize and apply the model. We found the model most suitable to grassland vegetation when

constrained to the ecoregion level, though it did not perform well in grasslands in the North American Deserts ecoregion.10

Shrublands and agriculture were not well represented by the model regardless of the spatial scale. Results from this study will

facilitate long-term projections of grassland productivity constrained to an appropriate vegetation type and scale.

The PhenoGrass model performed best in grassland sites embedded within ecoregions. Studies using earlier forms of the

model applied it exclusively to grasslands (Choler et al., 2010, 2011; Hufkens et al., 2016), and results here confirm that it

performs well in grassland vegetation with two exceptions. The model did not work in the desert grasslands, nor did it generalize15

well when built using all North American grasslands simultaneously. Grasslands in the N.A. Desert biome coexist with shrubs,

resulting in complex water use dynamics described in more detail below. The pulse-response design of PhenoGrass, which

makes it well suited in areas with high cover of perennial grass, is likely not applicable when grasses are interspersed with

woody plants.
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Table 1. Average site-level Nash Sutcliffe coefficient of efficiency (NSE) and mean coefficient of variation of the mean absolute error (F)

for each model parameterization. Bold indicates when the NSE was greater than the acceptable threshold of 0.65. Values in parentheses

represent the NSE or F in leave-1-out cross validation.

NSE F Num. Sites Site Years

All Sites 0.31 0.50 89 462.5

All Agriculture 0.24 0.51 38 175.7

All Grasslands 0.45 0.44 37 205.8

All Shrublands 0.44 0.40 14 81.0

E. Temperate Forests

Agriculture 0.33 0.45 20 99.2

Grasslands 0.82 (0.79) 0.28 (0.30) 6 35.7

Great Plains

Agriculture 0.18 0.57 13 54.3

Grasslands 0.69 (0.67) 0.39 (0.40) 15 71.5

N. American Deserts

Grasslands -0.04 0.44 5 20.3

Shrublands 0.52 0.33 8 39.7

N.W. Forests

Grasslands 0.64 0.34 7 50.7

Shrublands were not well modelled at any spatial scale. Dryland shrubs, representing 8 of the 15 shrubland PhenoCams20

analysed here, coexist with grasses by accessing different pools of soil water (Weltzin and McPherson, 2000; Muldavin et al.,

2008), thus have different responses to precipitation and resulting greenness patterns (Browning et al., 2017; Yan et al., 2019).

A prior form of the PhenoGrass model was designed to work with dryland shrubs by using two soil water pools (Ogle and

Reynolds, 2004), yet here PhenoGrass, with a single soil water pool, was less effective for shrubland vegetation. The single

pool of the PhenoGrass model is coupled with fluxes from precipitation and evapotranspiration, thus is not well-suited for25

representing the deeper water pools that shrubs can routinely access (Schenk and Jackson, 2002; Ward et al., 2013). Potential

improvements would likely need to incorporate a deep soil water pool, in addition to the shallow, which are each utilized by the

respective plant functional groups. This has already been implemented in highly parameterized ecohydrology models (Scanlon

et al., 2005; Lauenroth et al., 2014) and could potentially be used here to make a more generalized PhenoShrub model to apply

across large scales. This approach could also help in modelling N.A. Desert grasslands which coexist among shrubs.30

Agriculture areas performed poorly with the PhenoGrass model. Management practices of crops artificially increase produc-

tivity beyond what would naturally occur, and planting and harvest result in abrupt changes in greenness metrics (Bégué et al.,

2018). While the results were not necessarily surprising, to our knowledge this is the first attempt to use near-surface images to

drive an productivity model for agricultural vegetation. We have shown that the PhenoGrass model, designed for natural sys-
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Figure 5. Smoothed time series for all 14 grassland sites used in Hufkens et al 2016 (A) and 24 additional grassland sites added in the current

study (B). Each line represents the long-term average Green Chromatic Coordinate of a single site across all available years, smoothed using

a GAM model.

tems, does not generalize to actively managed agricultural systems. Future work in using PhenoCam data to model agricultural

productivity would likely need to incorporate crop specific parameters and management activity, which other cropland mod-

elling systems use (Fritz et al., 2019). The integration of the PhenoCam network within the Long-Term Agricultural Research

(LTAR) will likely be beneficial for this, as the timing and intensity of management activities or experimental treatments can

be incorporated into modelling efforts.5

Hufkens et al. (2016) originally evaluated the PhenoGrass model using 14 grassland sites distributed among seven North

American ecoregions. In their evaluation they had an average NSE of 0.71, while here the model performed poorly when using

more than one ecoregion. It’s likely that the original 14 grassland sites were ideal locations for the PhenoGrass model, since

on average they have a single greenup season every year in the spring or summer (Fig. 5A). The additional 24 grassland sites

used in the current study have high seasonal variability and elongated growing seasons (Fig. 5B, Fig. S1), and were thus more10

difficult to represent in a single continental scale grassland model. This highlights the need for longer time series in evaluating

low-dimensional models as it may take many years for a single location to experience the full range of variability. As the

PhenoCam data archive grows, temporally out of sample validation can be done to better evaluate performance into novel

conditions. Further work could use the expanded PhenoCam timeseries to compare with flux tower derived productivity, which

Hufkens et al. (2016) found was well correlated at the five original locations with available flux data.15

5 Conclusions

Replication is an important step in the scientific process, especially given newly available data. Here we have validated prior

modelling work and highlighted its limitations. Newer vegetation models can be validated in the same framework and applied
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to areas where PhenoGrass performs poorly. This can result in a spatial ensemble where the output for any one location

and vegetation type is represented by the most appropriate model. Our current work will allow for long-term projections of

grassland productivity for a large fraction of North America.5
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