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Abstract. Grasslands provide many important ecosystem services globally and forecasting grassland productivity in the coming

decades will provide valuable information to land managers. Productivity models can be well-calibrated at local scales, but

generally have some maximum spatial extent in which they perform well. Here we evaluate a grassland productivity model to

find the optimal spatial extent for parameterization, and thus for subsequently applying it in future forecasts for North America.

We also evaluated the model on new vegetation types to ascertain its potential generality. We find the model most suitable5

when incorporating only grasslands, as opposed to also including agriculture and shrublands, and only in the Great Plains

and Eastern Temperate Forest ecoregions of North America. The model was not well suited to grasslands in North American

Deserts or Northwest Forest ecoregions. It also performed poorly in agriculture vegetation, likely due to management activities,

and shrubland vegetation, likely because the model lacks representation of deep water pools. This work allows us to perform

long-term forecasts in areas where model performance has been verified, with gaps filled in by future modelling efforts.10

1 Introduction

Grassland systems span nearly 30% of the global land surface (Adams et al., 1990) and play a prominent role in terrestrial

carbon cycles (Parton et al., 2012). Grasslands in North America provide a large proportion of food and fiber agricultural

products for the region. Annual productivity of grasslands in central and western North America is driven in large part by15

precipitation (Sala et al., 2012). Future changes in the amount, intensity, and timing of precipitation will be heterogeneous

across North America (Easterling et al., 2017), resulting in heterogeneous changes to grassland productivity. For example,

even with consistent shifts in climate, different locations can experience different changes in productivity due to local-scale

responses (Zhang et al., 2011; Sala et al., 2012; Knapp et al., 2017). This highlights the need for models which can be resolved

at small spatial and temporal scales, thus making long-term grassland productivity forecasts as informative as possible.20

There are several potential limitations in the underlying productivity models which can drive such a forecast. Process-based

models parameterized with observed data have limited transferability beyond the spatial extent from which their training data

came (Taylor et al., 2019). For any location the most accurate model will be one which was parameterized from locally col-

lected data, yet these site-specific models will not generalize to new locations (Basler, 2016). Incorporating more, and diverse,
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locations into the model building process will allow it to be more generalizable, yet this comes at a cost of decreased profi-

ciency at all locations (García-Mozo et al., 2008; Basler, 2016). Thus there is an optimal extent in the building and subsequent

application of productivity models, which depends on a tradeoff between proficiency at the local scale and applicability at the

larger scale.

Here we evaluate a productivity model with the intention of it driving long-term forecasts. The PhenoGrass model developed5

by Hufkens et al. (2016) is a pulse-response productivity model with temperature and precipitation as the primary drivers. The

model is parameterized using observations from the PhenoCam network, which have a small spatial resolution (footprints of

< 1ha), sub-daily sampling and sites across all major biomes. These attributes make the PhenoGrass model potentially widely

applicable. We expand on the evaluation of the original study by using 84 PhenoCam sites, totalling 89 distinct time series,

with 463 site-years of data. We test the model’s performance across varying combinations of North American ecoregions and10

vegetation types to find an optimal spatial extent in which to parameterize and apply the model. Finally we address where the

model performs poorly and how productivity forecasts for these areas could be implemented or improved.

2 Methods

2.1 PhenoGrass Model

The PhenoGrass model is an ecohydrology model which has interacting state variables for soil water, plant available water, and15

plant fractional cover (Hufkens et al., 2016). Model inputs are daily precipitation, temperature, potential evapotranspiration

(derived from the Hargreaves equation, Hargreaves and Samani (1985)), and solar radiation. The primary output is fractional

vegetation cover (fCover). The original model form, derived in Choler et 2010 and Choler et al. 2011, used only temperature

and potential evapotranspiration and was parameterized using satellite-derived NDVI data. Hufkens et al. (2016) expanded on

the original Choler model by incorporating growth and senescence restraints from temperature and solar radiation, and also20

included a scaling factor to convert PhenoCam Gcc data to a fractional cover estimate. Hufkens et al. (2016) evaluated the

PhenoGrass model using 14 grassland PhenoCam sites across Western North America with a total of 34 site years. They found

the modelled fractional cover correlated well with annual productivity at both a daily and annual timescale.

2.2 Phenocam Data

The PhenoCam network is a global network of fixed, near-surface cameras capturing true-color images of vegetation throughout25

the day (Richardson et al., 2018a). Using a ratio of the three RGB bands a greenness metric (green chromatic coordinate, Gcc)

is calculated from each image, resulting in a daily scale time series of canopy greeness. Gcc is a unitless metric which is highly

correlated with satellite derived NDVI (Richardson et al., 2018b) and flux tower derived primary productivity (Yan et al., 2019;

Toomey et al., 2015). Each Phenocam image is subset to one to several different plant vegetation types based on the field of

view. These regions of interest (ROI) serve as the basis for the Gcc calculation and subsequent post-processing (Seyednasrollah30

et al., 2019).
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Figure 1. Locations of Phenocam sites. Color indicates the vegetation type represented at each site. Vegetation type is defined by the

PhenoCam Network. Shading indicates E.P.A. North American Level 1 Ecoregions.

We downloaded all Phenocam data with ROIs of the grasslands (GR), shrublands (SH), and agricultural (AG) vegetation

types for the years 2012 to 2018, totalling 89 distinct time series and 463 site-years (Fig. 1, Table A1). As input to the

PhenoGrass model we used the 3-day smoothed Gcc scaled, for each ROI, from 0-1. In the model parameterization each ROI

time series is further transformed to a fractional cover estimate using the local mean annual precipitation (MAP) combined

with a scaling factor (Hufkens et al., 2016; Donohue et al., 2013).5

2.3 Environmental Data

For historic precipitation and temperature we used the daily 4-km resolution Daymet dataset (Thornton et al., 2018). Climate

time series were extracted for the pixel at the location of each phenocam tower. Daily mean temperature was calculated as

the average between the Daymet daily minimum and maximum temperature, and smoothed with a 15 day moving average.

Potential evapotranspiration was calculated using the Hargreaves equation (Hargreaves and Samani, 1985). Soil wilting point10

and field capacity were extracted at each Phenocam location from a global dataset (Global Soil Data Task Group, 2000).

2.4 Model Evaluation

To find the most appropriate scale we evaluated the model using three different scales of vegetation type, with 11 total model

parameterizations (Fig. 2). The largest scale used all Phenocam locations described above (89 sites). Next were all sites,

respectively, within the three vegetation types indicated by the ROI (grasslands, shrublands, and agricultural). Finally, we15
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Figure 2. Scaling representation of the 11 model parameterizations. Numbers in parentheses represent the number of sites and site years,

respectively. Each model uses a different subset of sites ranging from the entire dataset (All Site Model) to one vegetation type within an

ecoregion (e.g., Eastern Temperate Forest Grasslands).

parameterized models for each vegetation type within each Level 1 North American Ecoregion (eg. All grassland sites within

the Great Plains ecoregion). All sets of parameterized models were limited to have at least five sites.

We evaluated each of the 11 models using the coefficient of determination (R2) and root mean square error (RMSE) of

the daily fractional cover estimates. R2 and RMSE were calculated for each site and then averaged across all sites within the

respective scale. There was no cross-validation using out of sample data in the initial fitting as it would have been computa-5

tionally expensive. Rather, error metrics from these in-sample tests were treated as a best case scenario in what each model

parameterization can achieve. From these results we used a threshold to select which models to evaluate further using cross-

validation. The threshold value was an R2 threshold of 0.65, which is viewed as “acceptable” for time-series models (Ritter

and Muñoz-Carpena, 2013).

Models which exceed the threshold were subject to further evaluation. For each model we performed a leave one out cross-10

validation, where the model was re-fit with one Phenocam site not included in the training data, and then evaluated against this

left out site. In this step a scaling coefficient to link mean annual precipitation with PhenoCam Gcc was held constant at the

value obtained in first fitting. The resulting R2 and RMSE are the average among all modelled sites using their respective out

of sample test.
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All phenocam data were downloaded using the phenocamr R package (Hufkens et al., 2018). Other packages used in the

R 3.6 language were dplyr (Wickham et al., 2017), tidyr (Wickham and Henry, 2018), ggplot2 (Wickham, 2016), daymetr

(Hufkens et al., 2018), rgdal (Bivand et al., 2019), and sf (Pebesma, 2018). Python 3.7 packages included scipy (Virtanen

et al., 2020), numpy (van der Walt et al., 2011), pandas (McKinney, 2010), and dask (Team, 2016). All code and data used

in the analysis is available in the repository at https://github.com/sdtaylor/PhenograssReplication, the PhenoGrass model is5

implemented in a python package https://github.com/sdtaylor/GrasslandModels. Both are archived permanently on Zenodo

(https://doi.org/10.5281/zenodo.3897319).

3 Results

At the largest scale, where the PhenoGrass model was parameterized using all 89 sites, the model performed poorly with an

average R2 value among sites of 0.31 (Table 1; Fig. 3). Models built using all sites of a respective vegetation type performed10

poorly as well, though were slightly better than the all site model (Fig. 3). The best model performance was achieved when

models were built using a single vegetation type subset to a single ecoregion. Grasslands within the Great Plains and Eastern

Temperate Forests ecoregions were the only instances where R2 exceeded the 0.65 threshold, though Grasslands within N.W.

Forests came close (R2 = 0.64).

In all 11 iterations the PhenoGrass model tended to underestimate the highest fCover values, and to a lesser degree overpre-15

dict the lowest values (Figs. 3,4). The best performing iterations (Grasslands in the Great Plains and Eastern Temperate forests)

minimized this effect (Fig. 4). The worst performing iteration, Grasslands in N.A. Deserts, had little variation in predicted

fCover values, resulting in the lowest R2 overall.

The grassland vegetation type, subset to specific ecoregions, predominantly outperformed other iterations of the PhenoGrass

model (Table 1). Models built using grasslands within the Eastern Temperate Forest and Great Plains ecoregions had the highest20

average R2 values of 0.82 and 0.69, respectively. Using leave one out cross-validation on these two grassland model iterations

resulted in similar errors of 0.79 and 0.67 for the Eastern Temperate Forest and Great Plains, respectively. Though N.W. Forests

grasslands had an in-sample R2 just below the 0.65 threshold, the cross-validation was well below it (0.52). Grasslands in the

North American deserts were not modelled well at any scale and had the lowest R2 values in the entire analysis. The observed

greenness patterns of these desert grasslands had extremely high variability in their magnitude and timing, with short distinct25

peaks in greenness and numerous off-peak fluctuations. The fitted model, which minimized the mean CVME among the 5 sites,

was not able to reproduce this high variability and instead produced fCover values that were severely constrained to a narrow

range (Fig. S1).

Agriculture and shrubland sites were poorly modelled at all scales. Performance of agriculture within the E. Temperate Forest

ecoregion (R2 = 0.33) improved over the All Agriculture model (R2 = 0.18), but decreased in the Great Plains (from 0.24 to30

0.18). There was only a single ecoregion with a minimum of five shrubland sites, N.A. Deserts, and it performed only slightly

better than the All Shrubland model. Shrublands in N.A. Deserts did not have the high variability seen in desert grasslands.
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Figure 3. Observed and predicted fCover values of the All Site model using all available data, and the three vegetation type models each

using all PhenoCam sites with an ROI in the respective vegetation type.

4 Discussion

We performed an extensive evaluation of the PhenoGrass model across ecoregions and vegetation types to determine the best

scale at which to parameterize and apply the model. We found the model most suitable to grassland vegetation when constrained

to the ecoregion level, though it did not perform well in grasslands in the North American desert ecoregion. Shrublands and

agriculture were not well represented by the model regardless of the scale. Results from this study will facilitate long-term5

forecasts of grassland productivity constrained to an appropriate vegetation type and extent.

The PhenoGrass model performed best in grassland sites embedded within ecoregions. Studies using earlier forms of the

model applied it exclusively to grasslands (Choler et al., 2010, 2011; Hufkens et al., 2016), and results here confirm that it

performs well in grassland vegetation with two exceptions. The model did not work in the desert grasslands, nor did it generalize

well when built using all North American grasslands simultaneously. Grasslands in the N.A. Desert biome coexist with shrubs,10
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Figure 4. Observed and predicted fCover values for seven model iterations where only sites with a specified vegetation type within a single

ecoregion were used in model fitting.
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Table 1. Average site-level coefficient of determination (R2) and root mean square error (RMSE) for each model parameterization. Bold

indicates when the R2 was greater than the acceptable threshold of 0.65. Values in parentheses represent the average R2 in leave-1-out cross

validation.

R2 RMSE Num. Sites Site Years

All Sites 0.31 0.14 89 462.5

All Agriculture 0.24 0.19 38 175.7

All Grasslands 0.45 0.16 37 205.8

All Shrublands 0.44 0.09 14 81.0

E. Temperate Forests

Agriculture 0.33 0.12 20 99.2

Grasslands 0.82 (0.79) 0.07 6 35.7

Great Plains

Agriculture 0.18 0.19 13 54.3

Grasslands 0.69 (0.67) 0.13 15 71.5

N. American Deserts

Grasslands -0.04 0.19 5 20.3

Shrublands 0.52 0.16 8 39.7

N.W. Forests

Grasslands 0.64 (0.52) 0.08 7 50.7

resulting in complex water use dynamics described in more detail below. The pulse-response design of PhenoGrass, which

makes it well suited in areas with high cover of perennial grass, is likely not applicable when grasses are interspersed with

woody plants.

Shrublands were not well modelled at any scale. Dryland shrubs, representing 8 of the 15 shrubland PhenoCams analysed

here, coexist with grasses by accessing different pools of soil water (Weltzin and McPherson, 2000; Muldavin et al., 2008),5

thus have different responses to precipitation and resulting greenness patterns (Browning et al., 2017; Yan et al., 2019). A prior

form of the PhenoGrass model was designed to work with dryland shrubs by using two soil water pools (Ogle and Reynolds,

2004), yet here PhenoGrass, with a single soil water pool, was less effective for shrubland vegetation. The single pool of the

PhenoGrass model is coupled with fluxes from precipitation and evapotranspiration, thus is not well-suited for representing the

deeper water pools that shrubs can routinely access (Schenk and Jackson, 2002; Ward et al., 2013). Potential improvements10

would likely need to incorporate a deep soil water pool, in addition to the shallow, which are each utilized by the respective

plant functional groups. This has already been implemented in highly parameterized ecohydrology models (Scanlon et al.,

2005; Lauenroth et al., 2014) and could potentially be used here to make a more generalized PhenoShrub model to apply

across large scales. This approach could also help in modelling N.A. Desert grasslands which coexist among shrubs.
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Figure 5. Smoothed time series for all 14 grassland sites used in Hufkens et al 2016 (A) and 24 additional grassland sites added in the current

study (B). Each line represents the long-term average Green Chromatic Coordinate of a single site across all available years, smoothed using

a GAM model.

Agriculture areas performed poorly with the PhenoGrass model. Management practices of crops artificially increase produc-

tivity beyond what would naturally occur, and planting and harvest result in abrupt changes in greenness metrics (Bégué et al.,

2018). While the results were not necessarily surprising, to our knowledge this is the first attempt to use near-surface images to

drive an productivity model for agricultural vegetation. We have shown that the PhenoGrass model, designed for natural sys-

tems, does not generalize to actively managed agricultural systems. Future work in using PhenoCam data to model agricultural5

productivity would likely need to incorporate crop specific parameters and management activity, which other cropland mod-

elling systems use (Fritz et al., 2019). The integration of the PhenoCam network within the Long-Term Agricultural Research

(LTAR) will likely be beneficial for this, as the timing and intensity of management activities or experimental treatments can

be incorporated into modelling efforts.

Hufkens et al. (2016) originally evaluated the PhenoGrass model using 14 grassland sites distributed among seven North10

American ecoregions. In their evaluation they had an average R2 of 0.71, while here the model performed poorly when using

more than 1 ecoregion. It’s likely that the original 14 grassland sites were ideal locations for the PhenoGrass model, since on

average they have a single greenup season every year in the spring or summer (Fig. 5A). The additional 24 grassland sites

used in the current study have high seasonal variability and elongated growing seasons (Fig. 5B, Fig. S1), and were thus more

difficult to represent in a single continental scale grassland model.15

5 Conclusions

Replication is an important step in the scientific process, especially given newly available data. Here we have validated prior

modelling work and highlighted its limitations. Newer small scale vegetation models can be validated in the same framework
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and applied to areas where PhenoGrass performs poorly. This can result in a spatial ensemble where the output for any one

location and vegetation type is represented by the most appropriate model. Our current work will allow for long-term small

scale forecasts of grassland productivity for a large fraction of North America.

Code and data availability. All code and data used in the analysis is available in the repository at https://github.com/sdtaylor/PhenograssReplication,

the PhenoGrass model is implemented in a python package https://github.com/sdtaylor/GrasslandModels. Both are archived permanently on5

Zenodo (https://doi.org/10.5281/zenodo.3897319).
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