- 1 Sub-alpine grassland productivity increased with warmer and
- 2 drier conditions, but not with higher N-deposition, in an
- 3 altitudinal transplantation experiment

- 6 Matthias Volk¹, Matthias Suter², Anne-Lena Wahl¹, Seraina Bassin^{1,3}
- 7 ¹Climate and Agriculture, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- 8 ²Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- 9 ³Pädagogische Hochschule Schaffhausen, Ebnatstrasse 80, 8200 Schaffhausen, Switzerland

10

11 Corresponding author: Matthias Volk (matthias.volk@agroscope.admin.ch)

12 Abstract

13 Multiple global change drivers affect plant productivity of grasslands and thus ecosystem services like forage 14 production and the soil carbon sink. Subalpine grasslands seem particularly affected and may serve as a proxy 15 for the cold, continental grasslands of the northern hemisphere. Here, we conducted a four-year field-experiment 16 (AlpGrass) with 216 turf monoliths, subjected to three global change drivers: warming, moisture and N-17 deposition. Monoliths from six different sub-alpine pastures were transplanted to a common location with six 18 climate scenario sites (CS). CS' were located along an altitudinal gradient from 2360 to 1680 m a.s.l., 19 representing an April - October mean temperature change of -1.4 °C to +3.0 °C, compared to CS_{reference} with no 20 temperature change and with climate conditions comparable to the sites of origin. To uncouple temperature 21 effects along the altitudinal gradient from soil moisture and soil fertility effects, an irrigation treatment (+12-22 21 % of ambient precipitation) and an N-deposition treatment (+3 kg and +15 kg N ha⁻¹ a⁻¹) was applied in a 23 factorial design, the latter simulating a fertilizing air pollution effect. 24 Moderate warming led to increased productivity. Across the four-year experimental period, the mean annual 25 yield peaked at intermediate CSs (+43 % at +0.7 °C and +44 % at +1.8 °C), coinciding with c. 50 % of days 26 with less than 40 % soil moisture during the growing season. The yield increase was smaller at the lowest, warmest CS (+3.0 °C), but was still 12 % larger than at CS_{reference}. These yield-differences among CSs were well 27 28 explained by differences in soil moisture and received thermal energy. Irrigation had a significant effect on yield 29 (+16-19 %) in dry years, whereas atmospheric N-deposition did not result in a significant yield response. We 30 conclude that productivity of semi-natural, highly diverse subalpine grassland will increase in the near future. 31 Despite increasingly limiting soil water content, plant growth will respond positively to up to +1.8 °C warming 32 during the growing period, corresponding to +1.3 °C annual mean warming.

1 Introduction

33

34 The present period of global warming is most pronounced in the cold regions of high altitude and high latitude 35 (Core writing team, IPCC 2014). The productivity of these ecosystems is temperature-limited, and even though 36 the temporal distribution of total annual radiation differs, they share many similarities. After the temperature 37 decline following the Holocene climate optimum (ca. 9000 - 6000 a BP; Vinther et al., 2009), they are now 38 experiencing a rapid rewarming. 39 In cold environments, the perspective on climate change is different compared to temperate and warm 40 environments. First, mitigation of the thermal growth limitation is likely to have beneficial effects on plant 41 growth. Second, the warming-associated drought-risk is lower. The evaporative demand is much lower and at 42 least the initial water supply for plant growth is granted because even a small winter snowpack supplies a large 43 soil moisture resource in spring. Third, in many regions the warming comes along with rising atmospheric 44 nitrogen (N) deposition, originating from agriculture and fossil fuel burning. Atmospheric N deposition can be 45 as little as <5 kg N ha⁻¹ a⁻¹ at remote mountain sites (Rihm and Kurz, 2001), but can reach rates >40 kg N ha⁻¹ a⁻¹ 46 elsewhere in Switzerland (Rihm and Achermann, 2016). This fertilizing air pollution agent promotes plant 47 growth and has the potential to reduce plant species diversity by favoring fast growing species (Vitousek et al., 48 1997; Bobbink et al., 2010; Phoenix et al., 2012). Alone and in interaction, all three factors increase the 49 ecosystem plant productivity potential in cold regions. Given that essential ecosystem services strongly co-50 depend on plant productivity (e.g., forage supply for livestock and wildlife, soil erosion control and support of 51 the biological carbon sink), an improved knowledge on how climate warming affects productivity of colder 52 grassland systems is required. 53 However, previous warming experiments on plant productivity have shown inconsistent results. For example, 54 tundra vegetation showed an up to twofold productivity increase in response to increased summer temperature 55 (Van der Wal and Stien, 2014). In contrast, Liu et al. (2018) combined long-term observations with a 56 manipulative experiment to find that total net primary productivity (NPP) in Tibetan grassland remained 57 unaffected, though the relative abundance of grasses was increased at the expense of forbs and sedges by 58 drought and warmth. In yet another meta-analysis, only 13 out of 20 experimental grassland sites revealed small 59 increases of plant productivity due to warming (Rustad et al., 2001): while grassland ecosystems in general 60 showed both positive and negative responses, the colder tundra systems (high latitude or altitude) with lower 61 precipitation had positive and larger productivity responses to warming. 62 To make matters more complicated, evapotranspiration will increase in warming experiments. The resulting, 63 temperature-confounded lower soil moisture makes it impossible to determine the proper temperature effect on 64 plant growth. Only comparing the plant growth response at warming-confounded, reduced soil moisture and at 65 experimentally mitigated soil moisture allows to distinguish warming effects from moisture effects. 66 A common restriction for the usability of climate change experiments for ecosystem productivity projections 67 lies in the low number of concurrently manipulated environmental factors (Rustad 2008; but see Dukes et al., 68 2005 for an exception). This potentially leads to an overestimation of effects when data from several, single 69 factor experiments are combined in meta-analyses or models (Leuzinger et al., 2011). Indeed, productivity 70 responses to combined factors are usually less than additive in size, compared to single treatment responses 71 (Dieleman et al., 2012; Xu et al., 2013). Not only can a low number of treatment factors, but also a low number 72 of treatment levels invite overly simplistic interpretation of experimental results, if only a short or linear

segment out of a larger range of biologically possible responses is represented in the data. For example, a hump-shaped response curve (2-dimensional) under atmospheric N-deposition best described the properties of a soil C-sink in subalpine grassland (Volk et al., 2016). Similarly, a ridge-shaped response surface (3-dimensional), driven by temperature and precipitation during 17 experimental years, was needed to explain NPP data (Zhu et al., 2016). These findings suggest that the outcome of a global change productivity-experiment depends to some degree on the chosen treatment levels and their interaction with the ambient climate during the experiment. Combining multiple treatments with many levels might thus improve interpretation of experimental outcomes and related climate change predictions.

Here, we present four years of results from a field experiment in the Swiss Alps. Turf monoliths from a variety of grassland communities at six different sites of origin were transplanted to one common experimental site to test for a plant productivity response that is not restricted to a specific species composition. At the common site, transplanted turf monoliths were distributed over six levels of altitude to generate a climate gradient. Doing so, we included not only the temperature change, but also the changing length of the growing period. The between-year weather variability created a large variety of climate situations within the range of potential growth

1) The effect of warming on plant growth would be beneficial at moderate warming levels, but detrimental at high warming levels.

conditions. Additionally, to uncouple temperature effects along the altitudinal gradient from soil moisture and

soil fertility effects, a two-level irrigation treatment and a three-level atmospheric N-deposition treatment were

2) Increased soil water content would mitigate the detrimental effects of excessive warming levels.

set up in a factorial design. We hypothesized that

3) N-deposition would exhibit a generally favorable effect on plant growth. This effect would further increase with higher temperatures and irrigation due to their mitigating effect on thermal and water colimitations.

2 Materials and Methods

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

This experiment (AlpGrass experiment) used grassland monoliths to investigate climate change effects on subalpine pasture ecosystems in the central Alps. At six different sites in the Canton Graubünden, Switzerland, areas of 1 ha on southerly exposed, moderate slopes were selected at an altitude of ca. 2150 m a.s.l. to serve as 'sites of origin'. All six sites were mountain grassland used for summer livestock grazing, within ≤ 55 km distance of each other, but their soil (typical depth 20-30 cm) developed either on basic or on acidic bedrock. Thus, the sites of origin shared very similar climatic conditions, but represented a wide range of soil properties and plant communities. Plant communities at the sites of origin were generally dominated by grass and sedge species, but comprised also a substantial share of forbs and a few legume species. Two of the summer pastures were characterized by Sesleretalia vegetation (with Sesleria caerulea, Anthyllis vulneraria, Helianthemum nummularium present at both); the other four were dominated by Nardetalia vegetation (with typical species Nardus stricta, Leontodon helveticus, and Potentilla aurea). Nardus stricta, Polygonum viviparum, and Carex sempervirens were present in almost all monoliths, regardless of grassland type. Detailed information on soil properties and species composition of the different origins can be found in Wüst-Galley et al. (2020). In June 2012 a total of 252 monoliths (6 sites of origin \times 42 monoliths) of 0.1 m² surface area (L \times W \times H = 37 × 27 × 22 cm) were excavated at the sites of origin. Randomly generated X-Y-coordinates were used to choose the location of excavation. If a distinct location had sufficiently deep soil and no rocks, if bare soil and woody species were < 10 %, and if there was no apparent dominance of single plant species, then monoliths were extracted. Else, the next pair of coordinates was probed. Monoliths were placed into precisely-fitting, welldrained plastic boxes to facilitate future transport and avoid potential side effects of experimental treatments applied later (Appendix Fig. A1). To minimize the disturbance of temperature and moisture conditions, monoliths were immediately reinserted into the ground at their respective site of origin. Half a year later, in November 2012, 36 monoliths were transported from each site of origin to the common AlpGrass experimental site, while 6 monoliths each remained at their original site to allow for an assessment of the transplanting effect. Standardizing harvests were done in 2012 and 2013 to homogenize the canopy of the previously grazed monoliths that had more heterogeneous canopies than mown grassland.

121122

123

124

125

126

127

128

129

130

131

132

133

134

2.1 Experimental site and treatment design

The AlpGrass experimental site is located on the south slope of Piz Cotschen (3029 m), above Ardez in the Lower Engadine valley (Graubünden, Switzerland). The site as a whole covers a 680 m altitudinal gradient, characterized by a vegetation change from montane forest (WGS 84 N 46.77818°, E 10.17143°) to subalpine grassland (WGS 84 N 46.79858°, E 10.17843°). Along the gradient, six separate climate scenario sites (CS) were located at different altitudes (CS1: 2360 m, CS2: 2170 m, CS3: 2040 m, CS4: 1940 m, CS5: 1830 m, CS6: 1680 m a.s.l.). Photographs of the environment can be found in the Appendix (Photographs A 1-4). Because CS2 had a similar altitude as the sites of origin, it was chosen as a reference site (hereafter CS2_{reference}). CS2_{reference} and sites of origin are all characterized by cold winters with permanent snow cover. The snow-free period lasts approximately from May to October, with a mean April – October air temperature of 6.5 °C during the experiment (Tab. 1). Annual mean temperature at CS2_{reference} was 3.2 °C and mean precipitation sum was 748 mm (Tab. 2).

At each of the 6 CS, 6 monoliths from each of the six sites of origin were installed in the ground within their drained plastic boxes, flush with the surrounding grassland surface, resulting in 36 monoliths per CS and a total of 216 transplanted monoliths (Appendix Figs. A2-A4). Monoliths in their containers were arranged side by side without a separating gap or buffer zone. The grassland surrounding the monoliths was frequently mown to prevent the introduction of new species/genotypes by seed dispersal.

At each CS, an irrigation and an N-deposition treatment were set up in a full-factorial design. One half of the 36

monoliths (3 monoliths per site of origin) received only ambient precipitation and no additional water, the other half received additional water during the growing season. Within each irrigation treatment, monoliths were subjected to an N treatment representing three levels of atmospheric N-deposition (treatment details below, and see Appendix Tab. A1 for a schematic description). At each CS, irrigation and N treatments were arranged in a randomized complete block design (six blocks each containing all six irrigation × N treatment combinations). Moreover, monoliths of the six sites of origin were assigned to the six blocks by restricted randomization so that an equal distribution of sites of origin to all blocks was ensured.

		Air temp. (Mean, $^{\circ}$ C) ± 1 SE		Δ T (°C)	$DD0^{\circ}C_{total}$	Pre-harvest period
Site	Alt. (m)	Apr. – Oct.	annual	Apr. – Oct.	Mean ±1SE	# Days ±1SE
CS1	2360	5.1 ±0.17	1.6 ±0.20	-1.4	1156 ±50	78 ±4.3
$CS2_{reference}$	2170	6.5 ± 0.17	3.2 ± 0.23	0.0	1440 ± 43	91 ±3.8
CS3	2040	7.2 ± 0.17	3.7 ± 0.20	0.7	1649 ± 67	107 ± 4.4
CS4	1940	8.0 ± 0.16	4.7 ± 0.25	1.5	1746 ± 71	104 ± 2.8
CS5	1830	8.3 ± 0.17	4.6 ± 0.21	1.8	1829 ± 10	97 ±3.4
CS6	1680	9.5 ± 0.17	5.8 ± 0.21	3.0	2095 ± 14	104 ± 3.5

Table 1 Climatic parameter means across years (± 1 SE) at the climate scenario sites (CS) during the experiment: Mean air temperature from April to October and for the whole year, April – Oct. air temperature difference (Δ T) of respective CS' compared to CS2_{reference}. Degree days above 0 °C for the snow free period between annual harvests (DD0°C_{total}). Pre-harvest period length is the number of days between snow-melt and harvest.

		Precipitation (sum, mm)		Dry days	Harvest	
Site	Alt. (m)	Apr. – Oct.	annual	not irrigated	irrigated	Date (Ø)
CS1	2360	674 ±18	752 ±20	27 ±5.3	17 ±5.1	12 Aug
$CS2_{reference}$	2170	656 ± 27	748 ±27	31 ± 1.7	$20\ \pm2.7$	26 July
CS3	2040	$629 \hspace{0.1cm} \pm \hspace{0.1cm} 26$	732 ±21	42 ±5.2	$24\ \pm\!4.3$	22 July
CS4	1940	$614 \hspace{0.1cm} \pm \hspace{0.1cm} 20$	739 ±22	33 ± 2.2	$24\ \pm 3.5$	14 July
CS5	1830	$628 \hspace{0.1cm} \pm \hspace{0.1cm} 20$	780 ± 17	55 ±4.4	$41\ \pm5.0$	09 July
CS6	1680	570 ±19	687 ±21	73 ±3.1	53 ±4.5	05 July

Table 2 Precipitation sums for the climate scenario sites, aggregated from April to October and annually. For comparison: The closest Swiss Federal Office for Meteorology station (Scuol, 1303 m a.s.l., 9 km distance) reported 662 mm mean annual precipitation during the experiment. Dry days (%) indicates the percentage of

- days during the pre-harvest period with SWC <40 %. The phenology triggered harvest date reflects the delayed
- vegetation development at higher altitudes.

2.2 Climate scenario site (CS) climate change treatment

The different altitudes of the CSs created a climate change scenario treatment, commencing in November 2012, when the monoliths were installed at the AlpGrass site, and ending in 2017 with the final harvest. The difference in altitude between the sites of origin and the respective CS at the AlpGrass experimental site determined the change of climatic conditions that the transplanted monoliths experienced. These conditions include the mean growing period temperature, from April to October. We assumed the evenly moderate temperature (ca. 0 °C) under the winter snow cover to be of little importance for differences in ecosystem productivity. The CS temperature treatment was specified as the deviation from CS2_{reference} temperature. The available thermal energy was expressed as degree days (DD) above a threshold of 0 °C (DD0°C). To derive DD, the sum of hourly temperature means above 0°C during one day was calculated and then divided by 24 hours. To quantify the total thermal energy available for growth, DD during the snow-free period between the annual harvests (DD0°Ctotal) was summed up, considering that the perennial vegetation continues to grow after mowing.

Differences in volumetric soil water content (SWC) were quantified as the proportion of days during the growing period with a SWC < 40 % (hereafter 'dry days'). This < 40 %-threshold does not necessarily imply plant growth limitation, but it was developed to reliably contrast the soil moisture status between the CSs and between years. Thus, more time below the threshold indicates a 'drier period' in relative terms.

2.3 Irrigation treatment

An irrigation treatment with two levels was set up to distinguish the warming effect from the soil moisture effect, driven by warming. In several applications throughout the growing period, precipitation equivalents of 20 mm were applied to the monoliths under the irrigation treatment. The total amount of water added per monolith was 80, 120, 120 and 80 mm in 2014, 2015, 2016 and 2017, respectively. These amounts were equivalent to 12-21 % of the recorded precipitation sum during the growing periods.

2.4 N-deposition treatment

The N-deposition treatment consisted of three levels. Atmospheric N-deposition from air pollution was simulated to amount to a deposition of 3 and 15 kg N ha⁻¹ a⁻¹, on top of the present background deposition. We used a 200 ml ammonium nitrate (NH₄⁻ NO₃⁺)/water solution per monolith, which was applied in twelve, ca. biweekly fractions, covering the growing period. Monoliths without additional N-deposition received water without ammonium nitrate.

2.5 Meteorology

At all six CS we measured air temperature, relative humidity (Hygroclip 2 in an unaspirated radiation shield, Rotronic, Switzerland), and precipitation (ARG100 tipping bucket raingauge, Campbell Scientific, UK). Soil temperature and SWC were measured at 8 cm depth in 6 monoliths each at topmost CS1 and intermediate CS3, CS4 and CS5, using a SWC reflectometer with 12 cm rods (CS655, Campbell Scientific, UK). At CS2_{reference} and lowest CS6 these values were measured in 18 monoliths and two points in the surrounding grassland. The measurement interval for all parameters was 10 minutes originally and was later integrated for longer periods as necessary.

199 At each site of origin, we installed Hobo U12-008 data loggers with TMC-HD sensors (Onset Computer 200 Corporation, USA) in three monoliths and one spot in the undisturbed, surrounding grassland for comparison with the reference climate scenario site CS2_{reference}.

Ambient wet N-deposition was measured at CS2_{reference} and lowest CS6 using bulk samplers (VDI 4320 Part 3, 2017; c.f. Thimonier et al., 2019) between April 2013 and April 2015. Nitrate (NO₃⁻) in rainwater and melted snow was analyzed by ion chromatography (ICS-1600, Dionex, USA) and NH₄⁺ was analyzed using a flow injection analyzer (FIAstar 5000, Foss, Denmark) with gas diffusion membrane, detection was completed with UV/VIS photometry (SN EN ISO 11732).

206 207 208

209

210

211

212

201

202

203

204

205

2.6 Plant productivity

All plant material (including mosses and lichens) of the monoliths was cut 2 cm above the soil surface once per year at canopy maturity. This plant removal serves as a proxy for the short, but intensive summer grazing period of the traditional management. As a result of the phenology-triggered harvests (anthesis of Festuca rubra), the topmost CS1 was cut on average 38 days later than the lowest CS6. Plants were dried at 60 °C, allowed to cool in a desiccator and weighed to determine dry matter yield (hereafter biomass yield).

Data were analyzed by linear mixed-effects models. First, we were interested in the overall response of biomass

213 214 215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

2.7 Data analyses

yield over years as affected by the treatment factors. To this aim, biomass yield was averaged across the four experimental years (2014-2017) and was modeled as function of CS (factor of 6 levels), irrigation (factor of 2 levels), and N-deposition (factor of 3 levels), including all interactions. 'Site of origin' (6 sites) and block (36 levels: 6 CS × 6 blocks) were modeled as random factors (random intercepts). Restricted maximum likelihood was used for parameter estimation. For the inference on fixed effects, the Kenward-Roger method was applied to determine the approximate denominator degrees of freedom (Kenward and Roger 1997), and the marginal and conditional R² of the model were computed following Nakagawa and Schielzeth (2013). Differences in biomass yield between single CSs and the CS_{reference} were tested based on the model contrasts (post-hoc t-tests, without using multiple comparisons). To receive additional insight into within year treatment effects, this very same model was also applied to data of each of the four individual years. Second, to consider the time effect and the repeated structure of the data, biomass yield of all four years was modeled as function of year (factor of 4 levels), CS, irrigation, and N-deposition (factor levels as described), including all interactions. Here, random factors consisted of an identifier for monolith (216 levels) to consider the potential correlation of monoliths' biomass yield over years (modeled as random intercept). In addition, the model included the random factor 'site of origin' and allowed for a separate block term at each of the four years (details as described). Residuals of all models were evaluated for normality and homoscedasticity and fulfilled assumptions of linear mixed-effects models. Finally, to gain insight into effects of thermal energy and drought on plant productivity, biomass yield was modeled as function of each DD0°Ctotal and percent days with less soil moisture ('dry days') using generalized additive models (GAM). Generalized additive models had to be used as simple linear models could not appropriately handle these relationships. The GAMs included the fixed factor irrigation and a smooth term for the continuous variables DD0°Ctotal and percent dry days, respectively, for both levels of the irrigation treatment. Model validation revealed that the assumptions of GAMs were met; more

information on the model specification is given in the Appendix. All data was analyzed with the statistics
software R, version 4.0.2 (R Core Team 2020) and packages lme4 for linear-mixed effect models (Bates et al.,
2015) and mgcv for GAMs (Wood, 2017).

242 3.	Results
--------	---------

- 244 3.1 Climate scenario site (CS) environmental conditions
- 245 3.1.1 Low atmospheric background N-deposition
- Total N-deposition was 3.3 kg N ha⁻¹ a⁻¹ at CS2_{reference} and 4.3 kg N ha⁻¹ a⁻¹ at the lowest CS6. The seasonal
- distribution showed peak deposition rates in June and July.

248249

- 3.1.2 Consistent temperature, precipitation and drought changes with altitude
- 250 The mean Apr. Oct. temperature gradient of up to +3 °C compared to CS2_{reference}, distributed over four
- altitudinal levels (CS3 CS6), constituted the warming treatment. Conversely, temperature at the topmost CS1
- 252 constituted a cooling treatment (Δ temp. -1.4 °C), extending the range of temperature responses tested (Δ temp.,
- Tab. 1). As intended, the DD0°Ctotal steadily increased from CS2reference to lowest CS6. The pre-harvest period
- 254 (PHP) length was fairly similar among CSs, because the early snow-melt at the lower CS was compensated by
- an early harvest (Tab. 1).
- We observed a small, non-linear increase of precipitation with altitude during April October. The recorded
- annual precipitation sum was somewhat larger than the sum for the growing period (Tab. 2).
- The length of the period with less soil moisture (% dry days) doubled along the altitudinal gradient: At the two
- 259 top CSs only one third of the pre-harvest period was dry, compared to two thirds of the time at the lowest site
- 260 CS6 (compare Tables 1 & 2). The irrigation treatment reduced the incidence of days with < 40 % soil moisture
- to 60-80 % of the non-irrigated situation (Tab. 2).

262263

- 3.1.3 Small transplantation effects on soil temperature and moisture
- At the sites of origin, the mean April October soil temperatures in the undisturbed grassland were 8.8° (± 0.3)
- compared to 8.9 °C (± 0.3) in the monoliths. At CS2_{reference} this difference was 9.2 ° vs. 9.5 °C. Thus, the
- surrounding grassland at CS2_{reference} site was on average 0.4 °C warmer than at the sites of origin, and monoliths
- at CS2_{reference} were 0.3 °C warmer than the undisturbed grassland surrounding the experiment. Volumetric SWC
- in the undisturbed grassland was 1 % lower on average compared to SWC in the monoliths at CS2_{reference} and
- lowest CS6.

270271

- 3.2. Yield
- 272 3.2.1 Insignificant transplantation effect
- The mean annual yield was 20 % larger at CS2_{reference} (control treatment monoliths), compared to the origins
- 274 (162 g m⁻²; ± 12.7), but not significantly different (P = 0.19; paired, two-sided t-test). Equally important, the
- difference showed no trend, as in some years the yield at CS2_{reference} was higher, in some years it was lower
- 276 compared to the sites of origin.

- 278 3.2.2 Strongest climate scenario site effect at intermediate CS
- Across the four years, we found a highly significant effect of the CS on aboveground biomass yield (Tab. 3). At
- intermediate sites, yields increased by +43 %, +18 % and +44 % (CS3, CS4 and CS5, respectively; Tab. 4, $P \le$
- 281 0.05 at least), related to +0.7, +1.5, and +1.8 °C of the warming component of the respective CS (compare Table

1). Even at the warmest site CS6 the yield was still +12 % larger compared to the $CS2_{reference}$ site ($\Delta T = +3$ °C, $\Delta DD0$ °C_{total} = 655). The coldest site CS1 was not less productive than $CS2_{reference}$. In the year of the overall maximum productivity (2016), also the coldest site CS1 and the warmest site CS6 produced their respective record yield (Tab. 4). Overall, the yields of the 24 combinations of year × CS varied by a factor of 2.1 (yields averaged across irrigation and N-deposition treatments). The yield response to CSs differed between years (Appendix Tab. A2, year × CS interaction: P < 0.001) in that the CS effect became weaker towards the end of the experiment (Appendix Tab. A3).

Variable	$\mathrm{df}_{\mathrm{num}}$	$\mathrm{df}_{\mathrm{den}}$	<i>F</i> -value	P
Climate Scenario (CS)	5	29.1	14.9	< 0.001
Irrigation	1	145.2	6.5	0.012
N	2	145.2	1.3	0.287
CS × Irrigation	5	145.2	1.1	0.352
$CS \times N$	10	145.2	0.5	0.864
Irrigation × N	2	145.2	1.1	0.348
$CS \times Irrigation \times N$	10	145.2	1.3	0.241

 df_{num} : degrees of freedom of term; df_{den} : degrees of freedom of error (which can be fractional in restricted maximum likelihood analysis)

Table 3 Summary of analyses for the effects of climate scenario site (CS), irrigation and N deposition on aboveground biomass yield of subalpine grassland. Data were averaged across the four experimental years (total n = 216). *F*-tests refer to the fixed effects of the linear mixed-effects model. The marginal and conditional R^2 were 0.41 and 0.50, respectively.

300

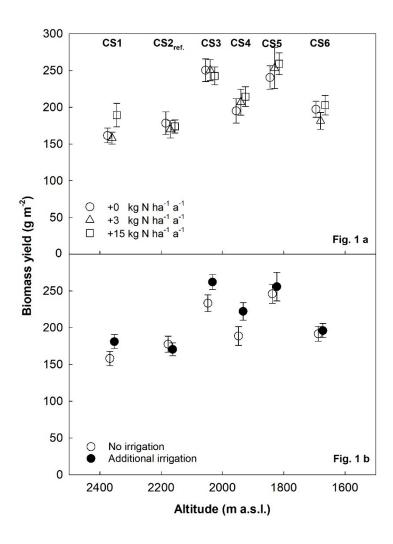
301

 $CS2_{reference}$

Aboveground biomass yield (g m⁻², means ± 1 SE)

Year	% dry days	DD0°C _{total}	CS1	CS2 _{reference}	CS3	CS4	CS5	CS6	CS mean
2014	30	1353	149^{ns} ±8.0	170 ±11.0	238*** ±8.8	203* ±11.6	255*** ±15.2	152^{ns} ± 10.5	194 ±5.3
2015	38	1359	$147^{ns} \pm 8.1$	138 ± 5.8	248*** ±12.1	171^{\dagger} ± 8.9	310*** ±13.6	198*** ±8.8	202 ± 5.7
2016	22	1509	$230^{ns} \pm 8.7$	222 ± 9.1	297*** ±10.2	$247^{ns} \pm 11.1$	271** ±15.3	250^{\dagger} ± 9.8	253 ± 4.7
2017	34	1541	$152^{ns} \pm 8.5$	166 ± 7.8	208* ±10.0	$201* \pm 11.7$	$169^{ns} \qquad \pm 9.1$	$176^{ns} \qquad \pm 8.3$	178 ± 4.0
Mean	36	1440	170 ^{ns} ±7.1	174 ±6.9	248*** ±7.9	205* ±9.0	251*** ±11.5	194 ^{ns} ±6.9	

*** $P \le 0.001$, ** $P \le 0.01$, * $P \le 0.05$, † $P \le 0.1$, ns P > 0.1


Table 4 Aboveground biomass yield (means $\pm 1SE$) per CS and year, averaged across irrigation, N-deposition treatments, and site of origin. Within each year, significance tests are against $CS2_{reference}$, based on contrasts derived from linear mixed-effects models (see Table 3 and Appendix Tab. A1, for the respective model summaries). Shaded values indicate the CS with the greatest aboveground biomass yield per year and across years.

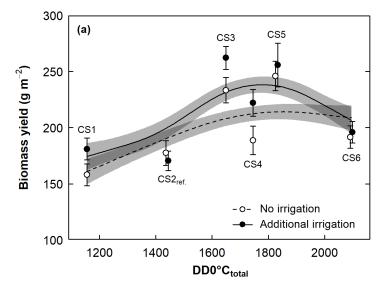
3.2.3 Irrigation effect in dry years

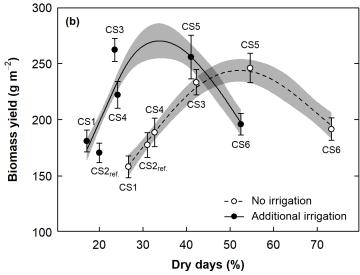
Despite a mere +7.7 % average yield increase (Fig. 1 b), irrigation turned out to be a significant factor across years (Table 3). Yet, the effect of irrigation differed between years (Appendix Tab. A2, year × irrigation interaction: P < 0.001), and single years analysis detected positive effects of irrigation only in 2015 (+15.8 %) and 2017 (+18.8 %) (Appendix Tab. A3). In these years, the percentage of days with < 40 % soil moisture was highest.

3.2.4 No nitrogen deposition effect

Five years of experimentally increased atmospheric nitrogen deposition (+3 and +15 kg N ha⁻¹ a⁻¹) did not cause a significant response of biomass yield. Moreover, there was no significant interaction detected between the N-treatment and the factors CS or irrigation (Fig. 1 a; Tab. 3). Single years analysis, to test for a late response to accumulating amounts of N, revealed a marginally significant effect only in 2016 (Appendix Tab. A3).

Figure 1 a, b Aboveground biomass yield as a function of the altitude of CSs. Data were averaged across years; circles denote means ±1 SE. Warming and dry days (%) increase with decreasing altitude from left to right. **a)** Yield values grouped by N-deposition treatment (0, 3 and 15 kg N ha⁻¹ a⁻¹, in addition to 4-5 kg N background deposition).


b) Yield values grouped by irrigation treatment. Overlapping means and SEs are shifted horizontally to improve their visibility.


3.2.5 Yield at climate scenario sites strongly relates to changes in thermal energy and soil moisture

Biomass yield at the different CSs was significantly related to thermal energy, expressed as growing DD0°C_{total}. Here, intermediate CSs (CS3, CS5) had greatest yields at intermediate values of DD0°C_{total}, indicated by the curvature of the predicted line in particular under irrigated conditions (Fig. 2 a, Appendix Tab. A4, smooth term for DD0°C_{total}: P < 0.001).

Similarly, biomass yield was significantly related to days with soil moisture < 40% ('dry days') during the growing season, with intermediate CS3 and CS5 having highest yields at around 50% of dry days under no irrigation and at around 30% dry days under additional irrigation (Fig. 2 b, Appendix Tab. A5, smooth term for dry days: P < 0.001). Under unirrigated conditions, in parallel with a doubling of dry days (from 27% at topmost CS1 to 55% at intermediate CS5), yield consistently rose and only fell at the driest and warmest site CS6, with 73% dry days.

Figure 2 a, b Aboveground biomass yield at the six CS as a) a function of total received thermal energy (DD0°C_{total}), and b) percent of days with dry soil (SWC < 40 %) during the growing season (dry days %). Data were averaged across years; circles denote means ± 1 SE per CS and irrigation treatment. The predicted line is based on a generalized additive model using all data (± 1 SE light grey shaded). Dark grey indicates the cross-section of the two SE bands. Overlapping means and SEs in (a) are shifted horizontally to improve their visibility.

4 Discussion

We found a substantial and significant positive effect of climate scenarios, equivalent to warming of up to + 1.8 °C (Apr. – Oct. mean), on aboveground biomass of subalpine grasslands (up to +44 % yield). Contrary to expectation, additional resource supply through irrigation and N-deposition had only marginal (water) or no effects (N) on yield, respectively. Our transplanting experiment proved to be efficient in assessing several linked climate change drivers in their effect on plant growth.

341342343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371372

336

337

338

339

340

4.1 Climate scenario temperature effects

The phenology-triggered harvest opened the possibility to extend the growing period in cool years and shorten the exposure to drought stress in warm years. Thus, beneficial thermal effects were maximized, while detrimental drought effects were minimized. As a consequence, we displayed the yield over a continuous x-axis of degree days between harvests (DD0°Ctotal, Fig. 2 A). This represents the available thermal resource, associated with a particular yield, much better than mean temperatures of CS, or categorical values for CS1-CS6. In cold environments, the warming is so important because the metabolic growth processes, which utilize the assimilated energy, are strongly temperature dependent, much more so than the assimilation process per se (Körner 2003). In a meta-analysis of grassland responses to warming that included 32 sites, distinctly positive warming effects on growth were found in the colder portion of those ecosystems (Rustad et al., 2001), very similar to responses in the subalpine grassland of the current study. Interestingly, also the response size of our effects is in the same range as that reported by Rustad et al., (2001). Plant growth at the intermediate climate scenarios that represented a warming of 0.7 °C, 1.5 °C and 1.8 °C (Apr.-Oct.) clearly benefitted from greater warmth. However, the increase of responses was somewhat inconsistent (CS4 ca. +18 %, CS3 and CS5 both > +40 %), matching only partly our first hypothesis. The erratic response of intermediate CS4 is likely the result of an interaction of micro-topography effects on climate that were not detected by our meteorological measurements, cockchafer infestation (Melolontha melolontha: bug whose larvae fed on roots), or the occurrence of mast years in some species at that CS. In the extreme treatment at lowest CS6 (+3 °C Apr.-Oct., +2.4 °C annual mean) the positive response to warming finally ceased to increase, but yield was still somewhat larger than at CS2_{reference}. This comparatively low growth response suggests that the water supply at CS6 had already reached critically low levels; yet, the larger thermal energy resource must have partly compensated for the radically smaller soil water resource, leading also to some growth benefit at CS6 (compare Figure 2 a & b). Despite substantial cooling at topmost CS1, coinciding with a temperature decline of -1.4 °C, the mean yields for CS1 and CS2_{reference} were very similar (Tab. 4, Fig. 1). This is indicative of a plant community that is well coldadapted. Indeed, local historical records from the Swiss Federal Office for Meteorology (MeteoSwiss) show that only 100 years ago the local April-October mean air temperature was 1.4-1.5 °C lower than today (30 a running mean, courtesy P. Calanca using MeteoSwiss data from Segl-Maria site at 1804 m a.s.l.). In effect, the cooling upward-transplantation represented a climatic time travel of 100 years into the past, and the similar yield responses between CS1 and CS2_{reference} indicate that subalpine grassland productivity may not have changed much during the

past century. Moreover, the dramatic temperature dynamics during the past 12,000 years of the Holocene

interglacial suggest that temperature adaptations in modern plant genotypes may actually match not only today's weather, but also warmer and cooler climate conditions. From this perspective, and with respect to the genetic memory of plants, the undiminished productivity at topmost CS1 illustrates that assumed 'control' temperatures in warming experiments only represent the most recent point of an extremely dynamic climatic history.

377378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

373

374

375

376

4.2 Climate scenario soil moisture effects

The differences in soil moisture content that resulted naturally from 24 different climatic situations (6 CS/altitude levels × 4 years) created a hump-shaped response curve of yield over drought (Fig. 2 b). This does imply that, with decreasing altitude and increasing warmth, productivity rose despite more days with soil moisture < 40 %. The importance of soil moisture for plant growth has been shown predominantly in much drier grasslands, e.g., in warmer prairie (Xu et al., 2013) or cold alpine grassland (Wang et al., 2013), where release from drought stress benefitted growth. For example, along a temperature and altitude gradient in semiarid Tibetan alpine grassland, productivity increased with altitude due to reduced drought stress, but despite decreasing temperatures. Only after an 800 m rise in altitude, productivity eventually became smaller, and further reduced drought stress did not constitute a further advantage on plant growth (Wang et al., 2016). In our experiment, soil moisture values and its proxies integrate information on moisture and temperature. Thus, the two-dimensional growth response curve along the altitudinal gradient, peaking at the least detrimental situation between moisture limitation and thermal limitation (Fig. 2 b), is analogous to the three-dimensional response surface found in the Jasper Ridge experiment (Zhu et al., 2016). Unfortunately, our experiment did not produce a sufficient number of data points for a 3-D presentation. Based on these results, we infer that a joint evaluation of soil moisture and temperature is mandatory to assess reliably warming effects of climate change on plant growth in the subalpine environment.

394395396

397

398

399

400

401

402

403

4.3 Irrigation treatment

We had assumed that increased SWC would mitigate detrimental effects of excessive warming. Surprisingly however, the overall irrigation effect on yield was not very substantial, despite large differences in the percentages of days with soil moisture < 40% during the growing season (Table 2, Fig. 2 b). Moreover, the positive responses did not increase consistently with warmth, but were strongest at the intermediate CS3 and CS4 (Fig. 1 b). Analyses of individual years showed that the two significant responses of annual yield to irrigation coincided with the two driest years. This evidence suggests that maximum mitigation of (low) temperature limitation requires simultaneous release of water limitation, while at the same time the amount of water applied in our study was insufficient to compensate for increased evapotranspiration at CS5 and the warmest site CS6.

404405406

407

408

409

4.4 N-deposition treatment

We hypothesized a generally positive effect of N-deposition on plant growth, but found no significant overall effect of N-deposition on yield after four years and only a marginal effect in one year. Historically, the responsiveness of (sub-)alpine vegetation to improved nutrient supply was considered to be restricted due to an overriding effect of

410 thermal energy limitation. Yet, studies with very high rates of N application (40-100 kg N ha⁻¹ a⁻¹; Körner et al., 411 1997; Heer and Körner 2002) showed substantial yield responses, also at alpine sites. Low N-dose responses of total 412 plant yield may require N-accumulation over years or a compound interest effect in plant biomass. For example, 413 only in the seventh treatment year a strong, +31 % total yield growth response to 5 kg N ha⁻¹ a⁻¹ was reported by 414 Volk et al., (2014) from subalpine grassland. 415 Low dose experiments (5-30 kg N ha⁻¹ a⁻¹), however, can induce a species composition change (Bowman et al., 416 2012), indicating a growth benefit for some species at the expense of others. Yet, such single species responses may 417 be only transient: a strong Carex species response to as little as 5 kg N ha⁻¹ a⁻¹ in similar subalpine vegetation was 418 recently found to cease after five years (Bassin et al., 2009 and 2013). Taken together, we conclude that the cold-419 adapted, mature and low productivity grassland either responds with a >4 year time lag, or that the N-deposition 420 treatment was below the critical load for aboveground biomass responses.

4.5 Transplantation

421 422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

The turf monoliths at CS2_{reference} were only slightly warmer and moister compared to the sites of origin, suggesting a low transplantation impact (we have found no transplantation effect data from other experiments to compare with). However, within the experimental site similar temperature increases between CS2_{reference} and CS3 caused a much larger productivity increase (+43 %). We reason that this incongruence can be explained by the difference in meltout time, which was on average only 3 days earlier at CS2_{reference} (julian day 118) than at the sites of origin, but 21 days earlier at CS3 than at CS2_{reference}. We thus assume that the substantially earlier start of the growing season caused the stronger growth response, despite a similar temperature change. This effect, induced by the transplantation of the grassland monoliths along the altitudinal gradient, demonstrates the importance of integrating multiple drivers in climate change experiments to allow for a multi-factor driven plant response. In our study, the effect of altitude on photosynthesis substrate limitation was considered negligible, compared to the climate effects. The assimilation conditions of alpine plants have been the subject of investigation for decades. Since the theoretical considerations of Gale (1972) and the field studies by Körner and Diemer (1987) and Körner et al., (1988), a predominant 'altitude-tolerance' of photosynthesis is widely accepted. Relevant environmental parameters that change with altitude (temperature, CO₂ and O₂ partial pressure, vapor-pressure deficit and photosynthetic photon flux density) have antagonistic effects on assimilation efficiency (see Wang et al., (2016) for a recent discussion on the topic).

5 Conclusions

Despite dwindling soil water content, the subalpine grassland growth increased to up to +1.8 °C warming during the growing period (corresponding to +1.3 °C annual mean), compared to present temperatures. Even at the maximum warming (corresponding to +2.4 °C annual mean) the yield was larger than at the reference site. At the same time - 1.4 °C cooling during the growing period (corresponding to -1.7 °C annual mean) did not reduce plant growth. This implies that subalpine grassland productivity has likely not increased during the past century warming, but, despite growing soil moisture deficits, will do so with continued warming in the near future.

446 **Author contribution** 447 MV and SB designed the experiment, MV, ALW and SB conducted field work. MV and MS analyzed the data. MV 448 led the writing of the manuscript, with significant contribution from MS. All authors contributed critically to the 449 drafts and gave final approval for publication. 450 451 Data availability 452 The data analyzed for the current study are available in the Dryad Digital Repository at ... 453 454 **Competing interests** 455 The authors declare that they have no conflict of interest. 456 457 Acknowledgements 458 We received essential financial support through the Federal Office for the Environment (contract No. 00.5100.PZ/ 459 R442-1499). The Federal Office for Meteorology (MeteoSwiss) is kindly acknowledged for providing access to 460 meteorological data. We thank Pierluigi Calanca for handling these data. The Gemeinde Ardez and Alpmeister 461 Claudio Franziscus generously allowed us to work on the Allmend. N-concentration analyses courtesy of 462 Forschungsstelle für Umweltbeobachtung (FUB-AG, Rapperswil, Switzerland). We are grateful to Robin Giger for 463 his untiring support in the field and the lab, and to the scientific site manager Andreas Gauer, who was in charge of 464 the field sites.

- 465 References
- Bassin, S., Volk, M., Suter, M., Buchmann, N., Fuhrer, J.: Nitrogen deposition but not ozone affects productivity
- and community composition of subalpine grassland after 3 yr of treatment. New Phytologist 175, 3, 523-534,
- 468 2007.
- Bassin, S., Werner, R. A., Sörgel, K., Volk, M., Buchmann, N., Fuhrer, J.: Effects of combined ozone and nitrogen
- deposition on the in situ properties of eleven key plant species of a subalpine pasture. Oecologia 158, 4, 747-756,
- 471 2009.
- Bassin, S., Volk, M., Fuhrer, J.: Species composition of subalpine grassland is sensitive to nitrogen deposition, but
- 473 not to ozone, after seven years of treatment. Ecosystems 16, 6, 1105-1117, 2013.
- Bates, D., Maechler, M., Bolker, B., Walker, S.: lme4: Linear mixed-effects models using Eigen and S4. Version
- 475 1.1-10. https://CRAN.R-project.org/package=lme4, 2015.
- Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S.,
- Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., De Vries,
- W.: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological
- 479 applications 20, 1, 30-59, 2010.
- Bowman, W. D., Gartner, J. R., Holland, K., Wiedermann, M.: Nitrogen Critical Loads For Alpine Vegetation And
- Terrestrial Ecosystem Response: Are We There Yet? Ecological Applications 16, 1183-1193, 2006.
- Bowman, W. D., Murgel, J., Blett, T., Porter, E.: Nitrogen critical loads for alpine vegetation and soils in Rocky
- Mountain National Park. Journal of Environmental Management 103, 165-171, 2012.
- 484 Core Writing Team, Pachauri, R. K., Meyer, L. A. editors: IPCC, 2014: Climate change 2014: Synthesis Report.
- Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
- Climate Change. IPCC, Geneva, Switzerland. 151p, 2014.
- Dieleman, W. I., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M.J., Larsen, K.S., ... & King, J.: Simple
- additive effects are rare: a quantitative review of plant biomass and soil process responses to combined
- manipulations of CO₂ and temperature. Global Change Biology 18, 9, 2681-2693, 2012.
- Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., Tobeck, T., Mooney, H. A.,
- 491 Field, C. B.: Responses of grassland production to single and multiple global environmental changes. PLoS
- 492 Biology 3, 10, e319, 2005.
- Heer, C. and Körner, C.: High elevation pioneer plants are sensitive to mineral nutrient addition. Basic and Applied
- 494 Ecology, 3, 1, 39-47, 2002.
- Gale, J.: Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology, 53,
- 496 3, 494-497, 1972.
- Inauen, N., Körner, C., Hiltbrunner, E.: No growth stimulation by CO₂ enrichment in alpine glacier forefield plants.
- 498 Global Change Biology, 18, 3, 985-999, 2012.
- Kenward, M. G., Roger, J. H.: Small sample inference for fixed effects from restricted maximum likelihood.
- 500 Biometrics, 53, 3, 983-997, 1997.

- Körner, C. and Diemer, M.: In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 179–194, 1987.
- Körner, C., Farquhar, G. D., Roksandic, Z.: A global survey of carbon isotope discrimination in plants from high altitude. Oecologia, 74, 623-632, 1988.
- Körner, C., Diemer, M., Schäppi, B., Niklaus, P., Arnone III J.: The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica 18, 3, 165-175, 1997.
- Körner, C.: Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science & Business
 Media. 344p., 2003.
- Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., Körner, C.: Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in ecology and evolution 26, 5, 236-241, 2011.
- Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., ... & Zhao, X.: Shifting plant species composition in
 response to climate change stabilizes grassland primary production. Proceedings of the National Academy of
- 513 Sciences 115, 16, 4051-4056, 2018.
- Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixedeffects models. Methods in ecology and evolution, 4, 2, 133-142, 2013.
- Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J.M., Dise, N. B., Helliwell, R., Jones, L., Leake, J. R.,
- Leith, I. D., Sheppard, L. J., Sowerby, A., Pilkington, M. G., Rowe, E. C., Ashmore, M. R., Power, S. A.:
- Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18, 1197–1215, 2012.
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
 Vienna, Austria, 2020. http://www.R-project.org.
- Rihm, B. and Kurz, D.: Deposition and critical loads of nitrogen in Switzerland. In Acid rain 2000. pp. 1223-1228,
 Springer, Dordrecht, 2001.
- Rihm, B. and Achermann, B. Critical Loads of Nitrogen and their Exceedances. Swiss contribution to the effectsoriented work under the Convention on Long-range Transboundary Air Pollution (UNECE). Federal Office for the Environment, Bern. Environmental studies no. 1642, 78p., 2016.
- Rustad, L. E., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A. ... & Gurevitch, J.: A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 4, 543-562, 2001.
- Rustad, L. E.: The response of terrestrial ecosystems to global climate change: towards an integrated approach.

 Science of the total environment 404, 2-3, 222-235, 2008.
- Thimonier, A., Kosonen, Z., Braun, S., Rihm, B., Schleppi, P., Schmitt, M., ... & Thöni, L.: Total deposition of
 nitrogen in Swiss forests: Comparison of assessment methods and evaluation of changes over two decades.
 Atmospheric Environment 198, 335-350, 2019.
- Van Der Wal, R. and Stien, A.: High-arctic plants like it hot: A long-term investigation of between-year variability in plant biomass. Ecology 95, 12, 3414-3427, 2014.

- Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D. A. ... & Blunier, T.:
- Holocene thinning of the Greenland ice sheet. Nature 461, 7262, 385, 2009.
- Vitousek, P. M., Aber, J., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H.,
- Tilman, G. D.: Human alteration of the global nitrogen cycle: causes and consequences. Ecological Applications
- **541** 7, 737–750, 1997.
- Volk, M., Wolff, V., Bassin, S., Ammann, C., Fuhrer, J.: High tolerance of subalpine grassland to long-term ozone
- exposure is independent of N input and climatic drivers. Environmental Pollution 189, 161-168, 2014.
- Volk, M., Enderle, J., Bassin, S.: Subalpine grassland carbon balance during 7 years of increased atmospheric N
- deposition. Biogeosciences 13, 12, 3807-3817, 2016.
- Wang, Z., Luo, T., Li, R., Tang, Y., Du, M.: Causes for the unimodal pattern of biomass and productivity in alpine
- grasslands along a large altitudinal gradient in semi-arid regions. Journal of Vegetation Science 24, 1, 189-201,
- 548 2013.
- Wang, H., Prentice, I. C., Davis, T. W., Keenan, T. F., Wright, I. J., Peng, C.: Photosynthetic responses to altitude:
- an explanation based on optimality principles. New Phytologist 213, 3, 976-982, 2016.
- Wood, S. N.: Generalized Additive Models: An Introduction with R. 2nd edition. Chapman and Hall/CRC. London,
- **552** 2017.
- Wüst-Galley, C., Volk, M., Bassin, S.: Interaction of climate change and nitrogen deposition on subalpine pastures.
- 554 (in revision) 2020.
- Xu, X., Sherry, R. A., Niu, S., Li, D., Luo, Y.: Net primary productivity and rain-use efficiency as affected by
- warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biology 19, 9, 2753-2764,
- **557** 2013.
- Zhu, K., Chiariello, N. R., Tobeck, T., Fukami, T., Field, C. B.: Nonlinear, interacting responses to climate limit
- grassland production under global change. Proceedings of the National Academy of Sciences 113, 38, 10589-
- 560 10594, 2016.

Sub-alpine grassland productivity increased with warmer and 562 drier conditions, but not with higher N-deposition, in an 563 altitudinal transplantation experiment 564 565 566 Matthias Volk¹, Matthias Suter², Anne-Lena Wahl¹, Seraina Bassin^{1,3} 567 ¹Climate and Agriculture, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland 568 ²Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland 569 ³Pädagogische Hochschule Schaffhausen, Ebnatstrasse 80, 8200 Schaffhausen, Switzerland 570 571 Corresponding author: Matthias Volk (matthias.volk@agroscope.admin.ch)

Appendix for

Appendix Tables

Table A1 Schematic layout of monolith arrangement at each CS of the AlpGrass experimental site. At each CS, six monoliths from each of six sites of origin were transplanted, resulting in 36 monoliths. Two irrigation and three N-deposition treatments were set up in a factorial design, resulting in six irrigation × N treatment combinations, which were assigned to each of the six monoliths per site of origin. The six irrigation × N treatment combinations were arranged in a randomized complete block design of six blocks. Regarding sites of origin, the monoliths were assigned to the six blocks in a restricted randomization, so that an equal distribution of sites of origin to all blocks was ensured. It follows that the six monoliths from each site of origin received all irrigation × N treatment combinations and were evenly distributed on the site. Displayed is a possible randomization of irrigation and N treatments per block; at each CS separate randomizations were performed.

Block 1				Block 2		Block 3		
W0.N15	W1.N0	W0.N3	W0.N3	W0.N0	W1.N15	W1.N15	W0.N0	W1.N0
W0.N0	W1.N3	W1.N15	W1.N3	W0.N15	W1.N0	W1.N3	W0.N15	W0.N3

W1.N15	W1.N0	W0.N0	W1.N3	W0.N3	W1.N0	W0.N0	W1.N0	W0.N15
W0.N3	W0.N15	W1.N3	W0.N0	W1.N15	W0.N15	W1.N3	W1.N15	W0.N3
	Block 4			Block 5			Block 6	

W0: no additional water (ambient precipitation only), W1: additional water during growing period; N0: no N fertilizer, N3: 3 kg N ha⁻¹ a⁻¹, N15: 15 kg N ha⁻¹ a⁻¹

Table A2 Summary of analyses for the effects of climate scenario (CS), irrigation, and N deposition on aboveground biomass yield of subalpine grassland over four experimental years. *F*-tests refer to the fixed effects of a linear mixed-effects model that included all four years for a repeated measures analysis. The marginal and conditional *R*² were 0.68 and 0.80, respectively.

Variable	df_{num}	$df_{\text{den}} \\$	<i>F</i> -value	Р
Year	3	45.5	66.2	< 0.001
Climate Scenario (CS)	5	198.0	18.3	< 0.001
Irrigation	1	166.6	6.2	0.014
N	2	166.6	1.2	0.304
Year × CS	15	63.0	9.6	< 0.001
Year × Irrigation	3	450.5	13.6	< 0.001
$Year \times N$	6	450.5	0.9	0.492
CS × Irrigation	5	166.6	1.1	0.380
$CS \times N$	10	166.6	0.5	0.882
Irrigation × N	2	166.6	1.0	0.365
Year × CS × Irrigation	15	450.5	2.9	< 0.001
$Year \times CS \times N$	30	450.5	0.8	0.749
$Year \times Irrigation \times N$	6	450.5	1.4	0.199
$CS \times Irrigation \times N$	10	166.6	1.2	0.275
$Year \times CS \times Irrigation \times N$	30	450.5	1.4	0.066

 df_{num} : degrees of freedom of term; df_{den} : degrees of freedom of error (which can be fractional in restricted maximum likelihood analysis)

Table A3 Summary of analyses for the effects of climate scenario (CS), irrigation, and N deposition on aboveground biomass yield of subalpine grassland at each of four experimental years (2014 – 2017). *F*-tests refer to the fixed effects of a linear mixed-effects model to each of the four years.

			2014			2015			2016			2017	
Variable	$df_{num} \\$	df _{den}	F-value	P	df_{den}	F-value	P	df _{den}	F-value	P	df _{den}	F-value	P
Climate Scenario (CS)	5	28.9	17.2	< 0.001	29.5	24.9	< 0.001	29.3	4.5	0.004	29.4	4.0	0.006
Irrigation	1	145.2	1.5	0.224	145.1	21.6	< 0.001	145.3	1.1	0.290	145.4	19.2	< 0.001
N	2	145.2	0.7	0.481	145.1	0.5	0.610	145.3	2.6	0.078	145.4	0.3	0.728
CS × Irrigation	5	145.2	2.3	0.048	145.1	2.0	0.080	145.3	1.8	0.126	145.4	0.8	0.563
$CS \times N$	10	145.2	0.5	0.912	145.1	0.7	0.751	145.3	0.9	0.531	145.4	0.5	0.896
Irrigation × N	2	145.2	1.9	0.151	145.1	0.8	0.448	145.3	0.7	0.509	145.4	1.2	0.290
CS × Irrigation× N	10	145.2	1.5	0.157	145.1	1.0	0.429	145.3	1.5	0.157	145.4	1.3	0.226

df_{num}: degrees of freedom of term; df_{den}: degrees of freedom of error (which can be fractional in restricted maximum likelihood analysis)

Parametric terms	df	F-value	P
Irrigation	2	1613.0	< 0.001
Smooth terms	edf	F-value	P
$s(DD0^{\circ}C_{total})$ – No irrigation	1.72	7.7	< 0.001
$s(DD0^{\circ}C_{total}) - Additional \ irrigation$	2.34	10.2	< 0.001

df: degrees of freedom; edf: effective degrees of freedom (which can be fractional in smooth terms of generalized additive models)

Table A5 Summary of analyses for the effects of percent days with soil moisture < 40% during the growing season (dry days %) on aboveground biomass yield of subalpine grassland under two irrigation treatments. Data were averaged across the four experimental years (total n = 216). *F*-values and approximate *P*-values refer to a generalized additive model that used a smooth term for each irrigation treatment.

Parametric terms	df	F-value	P
Irrigation	2	402.9	< 0.001
Smooth terms	edf	F-value	P
s(Dry days %) – No irrigation	2.55	11.3	< 0.001
s(Dry days %) – Additional irrigation	2.59	8.1	< 0.001

df: degrees of freedom; edf: effective degrees of freedom (which can be fractional in smooth terms of generalized additive models)

s: smoothing function applied on term

s: smoothing function applied on term

Appendix Photographs

Photograph A1 Monolith produced at site of origin "Alp Nova" (46.72786°N, 9.72609°E) in June 2012. After monoliths were excavated in the close surroundings, they were fitted tightly into plastic containers. A total of 216 monoliths was produced at six such sites of origin, for later use at the altitudinal transplantation site of the AlpGrass Experiment.

Photograph A2 Topmost climate scenario site CS1 (2360 m, 46.79859°N, 10.17840°E). Monoliths are in the right part of the fenced area. Monolith arrangement in two double rows of nine allows easy access and equal distribution of edge-effects.

Photograph A3 Control climate scenario site CS2_{reference} (2170 m, 46.79264°N, 10.17714°E). Along the altitudinal transplantation gradient this CS is representative of the sites of origin, because the share the same altitude.

Photograph A4 Lowest climate scenario site CS6 (1680 m, 46.77818°N, 10.17143°E). Due to its low altitude this CS is the warmest and driest site along the altitudinal transplantation gradient.

634 Appendix R codes

```
635
      636
      #Linear mixed-effects model to analyze effects of the climate scenario treatment (CS), irrigation
637
      and N deposition (N Treat) on aboveground biomass yield.
638
639
      #Package to load
640
      library(lme4)
641
642
      643
      #Reading in the data
644
      d.data <- read.table("C:/Volk etal 2021 AlpGrass.csv", header=TRUE, sep=";")
645
646
      647
      #Define factors
648
      d.data$CS <- as.factor(d.data$CS)</pre>
649
      d.data$Irrigation <- as.factor(d.data$Irrigation)
650
      d.data$N Treat <- as.factor(d.data$N Treat)</pre>
      d.data$Origin <- as.factor(d.data$Origin)
651
652
      d.data$Block <- as.factor(d.data$Block)</pre>
653
654
655
      656
      #Full model, including all interactions, as described in the first paragraph of the 'Data analyses'
657
      section
658
659
      Model.A \leq- lmer(DM \sim CS + Irrigation + N Treat +
660
                          CS:Irrigation + CS:N Treat + Irrigation:N Treat + CS:Irrigation:N Treat +
661
                          (1 | Origin) + (1 | Block), REML=TRUE, data=d.data)
662
663
      664
      #The model summary, given in Table 3, is received by
665
666
      library(lmerTest)
667
      anova(Model.A, ddf="Kenward-Roger", type=1)
668
669
670
      #Contrasts to test for differences in biomass yield between single CSs and the CS<sub>reference</sub> (across
671
672
      irrigation and the N treatments)
673
674
      summary(update(Model.A, contrasts=list(CS=contr.treatment(levels(d.data$CS),base=2),
      Irrigation="contr.sum", N Treat="contr.sum")), ddf="Kenward-Roger")
675
676
677
678
      679
      #This very same model and contrast code was applied to data of each individual year.
```

```
680
      681
      Generalized additive models to test for the effects of thermal energy (DD0Ctot) and percent days
      with less soil moisture (PercDryDays) on aboveground biomass yield.
682
683
684
      #Package to load
685
      library(mgcv)
686
687
688
      689
     #GAM for the effect of thermal energy on yield
690
691
     Model.B <- gam(DM ~ -1 + Irrigation + s(DD0Ctot, by=Irrigation), gamma=3.6,
692
                   knots=list(DD0Ctot=rep(seq(from=min(d.data$DD0Ctot)+100,
693
                   to=max(d.data$DD0Ctot)-100, length.out=12), each=18)),
694
                   method="REML", data=d.data)
695
696
      697
      #The model summary, given in Table A4, is received by
698
699
      anova(Model.B)
700
701
702
      703
     #GAM for the effect of percent dry days on yield
704
705
     Model.C <- gam(DM ~ -1 + Irrigation + s(PercDryDays, by=Irrigation), gamma=1.7,
706
                   knots=list(PercDryDays=rep(seq(from=min(d.data$PercDryDays)+5,
707
                   to=max(d.data$PercDryDays)-5, length.out=12), each=18)),
708
                   method="REML", data=d.data)
709
710
      711
     #The model summary, given in Table A5, is received by
712
713
      anova(Model.C)
714
715
716
      717
     Note: The fitted lines in Figure 2a) & b) are based on the predicted values from Model.B and
718
      Model.C, respectively.
```