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Abstract. Estimates of the gross terrestrial carbon uptake exhibit large uncertainties. Sun-induced chlorophyll fluorescence 

(SIF) has an apparent near-linear relationship with gross primary production (GPP). This relationship will potentially facilitate 

the monitoring of photosynthesis from space. However, the exact mechanistic connection between SIF and GPP is still not 15 

clear. To explore the physical and physiological basis for their relationship, we used a unique dataset comprising continuous 

field measurements of leaf and canopy fluorescence and photosynthesis of corn over a growing season. We found that, at 

canopy scale, the positive relationship between SIF and GPP was dominated by absorbed photosynthetically active radiation 

(APAR), which was equally affected by variations in incoming radiation and changes in canopy structure. After statistically 

controlling these underlying physical effects, the remaining correlation between far-red SIF and GPP due solely to the 20 

functional link between fluorescence and photosynthesis at the photochemical level was much weaker (𝜌𝜌 = 0.30). Active leaf-

level fluorescence measurements revealed a moderate positive correlation between the efficiencies of fluorescence emission 

and photochemistry for sunlit leaves in well-illuminated conditions but a weak negative correlation in the low-light condition, 

and which was negligible for shaded leaves. Differentiating sunlit and shaded leaves in the light use efficiency (LUE) models 

for SIF and GPP facilitates a better understanding of the SIF-GPP relationship at different environmental and canopy 25 

conditions. Leaf-level fluorescence measurements also demonstrated that the sustained thermal dissipation efficiency 

dominated the seasonal energy partitioning while the reversible heat dissipation dominated the diurnal leaf energy partitioning. 

These diurnal and seasonal variations in heat dissipation underlie, and are thus responsible for, the observed remote sensing-

based link between far-red SIF and GPP.   
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1 Introduction 

For our understanding of the Earth's climate, estimates of the gross carbon uptake by terrestrial ecosystems are crucial. Despite 

considerable progress in measurement systems and models, contemporary estimates of the gross terrestrial carbon uptake still 

exhibit large uncertainties (Ryu et al., 2019). On the one hand, eddy covariance flux towers provide point measurements of net 

carbon flux at selected locations on all continents, but such in situ measurements are sparse. On the other hand, optical remote 35 

sensing provides spatially continuous and dense data, but these observations are only indirectly related to the carbon flux. In 

this respect, the development of sun-induced chlorophyll fluorescence (SIF) measurement techniques from satellites has raised 

expectations. This is because chlorophyll fluorescence (ChlF) as a by-product of photosynthesis has long been used as a probe 

of photochemistry in laboratory and field studies (Mohammed et al., 2019). Ever since satellite SIF data products related to 

the far-red fluorescence peak became available during the past decade, numerous studies have reported a strong correlation 40 

between far-red SIF and gross primary production (GPP) at the local, regional and global scales (e.g., Campbell et al., 2019; 

Damm et al., 2015; Guanter et al., 2014; He et al., 2017; Wieneke et al., 2016). This SIF-GPP link has been employed to 

estimate photosynthetic capacity (Zhang et al., 2014) and crop yield (Guan et al., 2016). 

 

The rising expectations of far-red SIF rely on a contestable closer relationship with GPP than other optical remote sensing 45 

signals, such as well-chosen reflectance indices. In order to make use of SIF quantitatively, it is necessary to understand the 

physical and physiological meaning of SIF, and to establish mechanistic understanding of its relation to GPP (Gu et al., 2019; 

Magney et al., 2019; Miao et al., 2018; Yang et al., 2015). In recent studies, the light use efficiency (LUE) model of Monteith 

(1977) has been the common starting point for describing GPP and SIF as a function of the absorbed photosynthetically active 

solar radiation (APAR): 50 

GPP =  iPAR ∙ fAPAR ∙ Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃          (1a), 

SIF =  iPAR ∙ fAPAR ∙ Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒        (1b), 

where iPAR denotes the available incoming photosynthetically active radiation for a vegetation canopy; fAPAR is the fraction 

of APAR absorbed by green vegetation; and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  describe the canopy-scale light use efficiencies for 

photochemistry and fluorescence, respectively, which are related to the plant physiological status. 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  is the fraction of the 55 

emitted far-red fluorescence that escapes the canopy in the viewing direction (per solid angle), which depends on the viewing 

and illumination geometries and canopy structure (Porcar-Castell et al., 2014; Yang et al., 2020; Yang and Van der Tol, 2018). 

 

From the LUE model, it is evident that the common terms iPAR and fAPAR are primarily responsible for the often-reported 

linear relationship between SIF and GPP (Campbell et al., 2019; Dechant et al., 2020; Miao et al., 2018; Rossini et al., 2010; 60 

Yang et al., 2018). The combined contribution of Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 to the SIF-GPP relationship is much less clear. It has been 
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argued that Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  may also contribute to the positive correlation between GPP and far-red SIF, while 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 is viewed as an 

interfering factor. Guanter et al. (2014) implicitly assumed that a positive relationship between Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  exists 

and that 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  in the near-infrared region is isotropic and close to unity when explaining the SIF-GPP relationship. However, 

these assumptions need to be verified, and we still lack a clear conclusion on the physical and physiological basis for the 65 

relationship between far-red SIF and GPP.  

 

Dechant et al. (2020) explored the relationship between SIF and GPP for three in situ crop datasets. They found that correcting 

SIF for canopy scattering (𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒) improved the correlation between SIF and APAR but not GPP. Furthermore, they reported that 

their estimates of physiological SIF yield (Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  = SIF/APAR/𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒) showed no clear seasonal patterns and were unlikely 70 

to contribute to the positive correlation between GPP and far-red SIF. In contrast, Qiu et al. (2019) reported that the similar 

correction of SIF for canopy scattering resulted in a better correlation to GPP, and Yang et al. (2020) showed that the estimates 

of canopy-scale light use efficiency of fluorescence (Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) were clearly higher in young and mature stages than for the 

senescent stages, and were correlated with  Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . The inconsistent findings could partly be caused by considerable 

uncertainties in the estimates of 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 and Φ𝐹𝐹𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , especially since the physiological indicators (Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) are 75 

still contaminated by canopy structural effects (Yang et al., 2020). 

 

More fundamental understanding can be obtained by returning to the established physiological methods of in vivo active 

fluorescence measurements to discern the relative energy distribution among the four pathways in plants via photosynthesis, 

fluorescence and heat losses (both sustained and reversible). At the photochemical level in leaves, it is clear that a change in 80 

fluorescence emission efficiency can be attributed to a change in the combined efficiencies of photochemistry and heat 

dissipation, expressed as photochemical quenching (PQ) and non-photochemical quenching (NPQ) of fluorescence (Baker, 

2008; Maxwell and Johnson, 2000). The relationship between the photochemical-level photosynthetic light use efficiency (Φ𝑃𝑃) 

and fluorescence reduction (i.e., quenching) was described with the Genty equation as (Fm- Fs)/Fm (Genty et al., 1989) which 

compares the relative fluorescence change from a steady state (Fs)  to its maximal level (Fm) when the photochemical pathway 85 

is completely inhibited (e.g., by using a saturating light) . Semi-empirical generalized relationships have further been developed 

to model these maximal and steady-state fluorescence levels as a function of photosynthetic light use efficiency and 

temperature (Rosema et al., 1991; Van Der Tol et al., 2014). However, the universal applicability of the latter models has not 

been validated, and continuously collected field measurements of active fluorescence at the leaf level along with canopy 

photosynthesis and SIF measurements are rare, which limits our understanding of their relationship in natural conditions. 90 

 

The present study aims to assess the drivers of the apparent SIF-GPP relationship using independent measurements of all terms 

in the light use efficiency model (Eq. 1), collected under different illumination conditions and at different growth stages, at the 

leaf and canopy levels. We chose a corn crop (Zea mays L.), also referred to as maize, because it provides a relatively simple 
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canopy, typically a row crop with plants nominally having a spherical shape. As a C4 species, corn does not lose carbon 95 

through photorespiration, which makes GPP observations from flux towers more representative to the actual photosynthesis 

of the canopy. Maize is also a globally important crop that comprises the “bread-basket” to feed the world.  Some have claimed 

(e.g., Guanter et al., 2014) that the observed far-red SIF obtained from space reveals that the US cornbelt achieves the highest 

carbon sink of any of Earth’s ecosystems. On that basis alone, and because of the importance of agricultural surveys from 

space for food security reasons, we are justified to conduct a more comprehensive examination of the photosynthetic function 100 

and associated fluorescence activity of this crop. 

 

We drew upon a unique dataset comprising growing season-long continuous measurements of a corn crop for leaf active 

fluorescence, canopy SIF, hyperspectral reflectance, and GPP. With partial correlation analysis we evaluated the contributions 

of iPAR, fAPAR and APAR to the SIF-GPP relationship at the canopy scale. In parallel, we used active fluorescence 105 

measurements to investigate the energy partitioning in leaves to reveal the relationship between fluorescence and 

photosynthesis at the photochemical level.     

2 Materials and methods 

2.1 Study site  

Field measurements were collected in 2017 at the Optimizing Production inputs for Economic and Environmental 110 

Enhancement (OPE3) field site (De Lannoy et al., 2006) at the US Department of Agriculture’s (USDA) Agricultural Research 

Service (USDA-ARS) in Beltsville, MD, USA (39.0306o N 76.8454o W, UTC-5). The site is instrumented with a 10 m eddy-

covariance tower and a height-adjustable tower (i.e., 1.5-4 m tall) supporting the optical spectral measurements and surrounded 

by corn (Zea mays L.) fields. The two towers were located within the same field that was provided the optimal (100%) nitrogen 

application for this climate zone, separated by approximately 120 m. Three distinct growth phases of the corn canopy were 115 

discerned: Young stage (Y) from DOY 192 to 209, Mature stage (M) from DOY 220 to 235 and Senescent stage (S) from 

DOY 236 to 264.  

2.2 Field measurements  

The field measurements included active fluorescence observations made on individual leaves, as well as canopy reflectance 

and SIF retrievals. These were supplemented by carbon fluxes and meteorological data from the site’s instrumented tower. 120 

These measurements cover the 2017 growing season from day-of-year (DOY) 192 to DOY 264, except for the period from 

DOY 210 to DOY 219. The main field measurements used in this study are listed in Table 1. In what follows, we briefly 

introduce the measurements used in the present study (the field campaign was described in detail in Campbell et al., 2019). 

[Insert Table 1 here] 

 125 
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The site’s eddy covariance tower-based system provided 30-minute GPP fluxes continuously collected throughout the growing 

season. An infrared gas analyzer (Model LI-7200, LI-COR Inc., Lincoln, NE, USA) measured net ecosystem productivity 

(NEP), which was further partitioned into GPP and ecosystem respiration (Re) using a standard approach (Reichstein et al., 

2005) which extrapolated nighttime values of Re into daytime values using air temperature measurements. 

 130 

Canopy spectral measurements were collected by using a field spectroscopy system, the FLoX (JB Hyperspectral Devices UG, 

Germany), between 7:00 and 20:00 (local time) with a time sampling interval from 1-3 minutes. The system consists of two 

spectrometers: a QEpro spectrometer (Ocean Optics, Dunedin, FL, USA) and a FLAME-S spectrometer (Ocean Optics, 

Dunedin, FL, USA). The QEpro measured down-welling irradiance and up-welling radiance with a 0.3 nm spectral resolution 

at Full Width at Half Maximum (FWHM) between 650 and 800 nm, which were used to retrieve SIF. The FLAME-S measured 135 

the same up-welling and down-welling fluxes but between 400 to 1000 nm with a lower spectral resolution (FWHM of 1.5 

nm), which were used to compute canopy values for reflectance (R) and to estimate incident PAR (iPARcanopy) and fAPARcanopy. 
 

Leaf fAPAR (fAPARleaf) was measured on six days spaced across the growing season (n= 18 samples per day). The leaf 

absorptance spectra between 350 and 2500 nm for nine leaves were measured in the laboratory with an ASD FieldSpec 4 140 

spectrometer (Malvern Panalytical, Longmont, CO, USA) and an ASD halogen light source coupled with an integrating sphere. 

The mean fAPARleaf values per date were computed: 0.92 ± 0.007 (i.e., mean ± stdv) on DOY 192; 0.92 ± 0.01 on DOY 199; 

0.91 ± 0.01 on DOY 221; 0.90 ± 0.03 on DOY 222; 0.82 ± 0.03 on DOY 240; and 0.75 ± 0.05 on DOY 263. Finally, fAPARleaf 

on the rest of the days was linearly interpolated/extrapolated from those measurements. Therefore, fAPARleaf values ranged 

from 0.93 to 0.70 across the growing season.  145 

 

Leaf-level active fluorescence measurements were collected by using an automated MoniPAM fluorometer system (Walz, 

Germany) and five MoniPAM emitter-detector probes, which were operated using a MoniPAM Data Acquisition system 

(Porcar-Castell et al., 2008). Three probes were positioned to measure sunlit leaves in the upper canopy and the remaining two 

probes collected measurements on shaded leaves within the lower canopy. The fluorometer collected continuous steady state 150 

fluorescence (Fs) and maximal fluorescence (Fm) every 10 minutes during the day and night. The MoniPAM measured 

chlorophyll fluorescence induced by an internal, artificial light source, which produces modulated light with constant intensity 

(Baker, 2008; Schreiber et al., 1986). In addition to leaf fluorescence measurements, the MoniPAM also measured leaf 

temperature by an internal temperature sensor and incident PAR (iPARleaf) by a PAR quantum sensor. Leaf APAR (APARleaf) 

was computed as the product of iPARleaf and fAPARleaf. 155 

2.3 Data quality control and sampling 

Data quality control of canopy reflectance, SIF and GPP measurements was conducted prior to the analysis. First, 

measurements collected on 29 rainy or densely clouded days were excluded. Second, a window-based outlier detection was 
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applied to incident PAR data collected by the FLoX to identify unrealistic short-term fluctuations in atmospheric conditions 

leading to unreliable SIF retrievals. The fluctuations were detected by finding the iPARcanopy measurements that were not 160 

within ± 3 times the standard deviation for the mean of seven consecutive measurements. Once all cases with fluctuating 

atmospheric conditions were identified, the reflectance, GPP and SIF measurements acquired within ±half hour of their 

occurrence were excluded from the analysis. Finally, the remaining FLoX measurements were re-sampled into the 30-minute 

temporal resolution of the eddy covariance measurements.  

2.4 Calculation of canopy SIF, fAPAR and APAR  165 

The QEpro spectral measurements were used to compute Top-of-Canopy (TOC) SIF in the O2-A absorption feature at around 

760 nm (F760). SIF was retrieved using the spectral fitting method (SFM) described in Cogliati et al. (2015). Canopy iPAR 

(iPARcanopy) was computed from the irradiance spectra collected with the FLAME-S spectrometer as the integral of irradiance 

over the spectral region from 400 to 700 nm. Canopy fAPAR was approximated by using the Rededge NDVI (Normalized 

Difference Vegetation Index) (Miao et al., 2018; Viña and Gitelson, 2005): 170 

fAPAR =  1.37 ∙ RededgeNDVI − 0.17        (2a), 

where  

RededgeNDVI =  𝑅𝑅750−𝑅𝑅705
𝑅𝑅750+𝑅𝑅705

         (2b), 

where reflectance at specific wavelengths is utilized (𝑅𝑅𝜆𝜆:705 and 750 nm). Rededge NDVI is a widely used index for estimating 

fAPAR, and Viña and Gitelson (2005) suggest it as an optimal index for fAPAR among various other vegetation indices in 175 

corn canopies. We, however, have tested several other indices for estimating fAPAR, including the enhanced vegetation index 

(EVI) (Huete et al., 2002; Xiao et al., 2004) and the green NDVI (Viña and Gitelson, 2005), and found that the choice among 

the three indices had little impact on the results in section 3.1. We also computed the photochemical reflectance index PRI=  
𝑅𝑅531−𝑅𝑅570
𝑅𝑅531+𝑅𝑅570

  (Gamon et al., 1992), as an indicator of diurnally reversible canopy heat dissipation efficiency Φ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

2.5 Quantifying energy partitioning from leaf fluorescence measurements 180 

The continuous MoniPAM measurements offered a way for assessing the dynamics of energy partitioning in photosystem II 

(PSII). The pathways include photochemistry (P), fluorescence emission (F) and heat dissipation (H). H is further categorized 

as a sustained thermal dissipation (D) and a reversible energy-dependent heat dissipation (N). N is controlled by mechanisms 

that regulate the electron transport of the photosystems and is related to photo-protection mechanisms and NPQ (Baker, 2008).  

 185 

Relative fluorescence emission efficiency (Φ𝐹𝐹
∗ ) was derived from the MoniPAM steady state fluorescence measurements Fs 

with a correction for time-varying leaf absorption in the growing season. The correction is needed because Fs responds to the 

absorbed measurement light rather than the incident measurement light: 
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Φ𝐹𝐹
∗ =  𝐹𝐹s

fAPARleaf
           (3) 

 190 

MoniPAM maximal fluorescence measurements (Fm), together with the steady state fluorescence (Fs), allows the assessment 

of the absolute efficiencies of absorbed light energy for photochemistry (Φ𝑃𝑃 ) and the reversible energy-dependent heat 

dissipation (Φ𝑁𝑁) of PSII. The usual approach to obtain Φ𝑃𝑃 is to ‘switch off’ photochemistry by applying a saturating light to 

leaves, so that the fluorescence measurements in the presence and absence of photochemistry (Fs and Fm), can be estimated 

(Maxwell and Johnson, 2000). A generic expression of Φ𝑃𝑃 proposed by Genty et al. (1989) was used: 195 

Φ𝑃𝑃 =  1 − 𝐹𝐹s
𝐹𝐹m

           (4) 

 

Unlike photochemistry, it is difficult to fully inhibit heat dissipation. Nevertheless, long duration dark-adaptation can reduce 

reversible heat dissipation to zero. Then, fluorescence measurements acquired in the presence and absence of reversible heat 

dissipation can be estimated. We took the expression proposed by Hendrickson et al. (2004) for Φ𝑁𝑁:      200 

Φ𝑁𝑁 =  𝐹𝐹s
𝐹𝐹𝑚𝑚
− 𝐹𝐹s

𝐹𝐹𝑚𝑚𝑜𝑜
           (5) 

where 𝐹𝐹𝑚𝑚𝑜𝑜  is the highest (or maximal) value obtained for dark-adapted leaf fluorescence measurements in the absence of 

reversible heat dissipation; the pre-dawn value of Fm is typically used as an estimate of true maximal dark-adapted fluorescence 

(Maxwell and Johnson, 2000). Alternative expressions of Φ𝑁𝑁  can be found in the literature, but they are equivalent and 

convertible to each other. For example, Eq. 5 can be rewritten as Φ𝑁𝑁 =  (1 −Φ𝑃𝑃)(1 − 𝐹𝐹𝑚𝑚
𝐹𝐹𝑚𝑚𝑜𝑜

). Furthermore, it can be expressed 205 

as a function of a commonly used fluorescence parameter NPQ, which is defined as 𝐹𝐹𝑚𝑚
𝑜𝑜

𝐹𝐹𝑚𝑚
− 1  (Baker, 2008). In that 

formulation, Φ𝑁𝑁 =  (1 −Φ𝑃𝑃) 𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁+1

. 

 

The expression of the sum of Φ𝐹𝐹 and Φ𝐷𝐷 (symbolized as Φ𝐹𝐹+𝐷𝐷) is straightforward, because the sum of the efficiencies of the 

four pathways (Φ𝐹𝐹, Φ𝑃𝑃, Φ𝐷𝐷 and Φ𝑁𝑁) is always unity and Φ𝐹𝐹+𝐷𝐷 =  1 −Φ𝑁𝑁 − Φ𝑃𝑃, and 210 

Φ𝐹𝐹+𝐷𝐷 =  𝐹𝐹s
𝐹𝐹𝑚𝑚𝑜𝑜

           (6) 

 

Further separation of Φ𝐹𝐹 and Φ𝐷𝐷 from Φ𝐹𝐹+𝐷𝐷 is difficult, because neither can be inhibited. However, relative efficiency of the 

sustained heat dissipation (Φ𝐷𝐷
∗ ) across the growing season can be inferred from the pre-dawn values of Fm (i.e., 𝐹𝐹𝑚𝑚𝑜𝑜). Because 

𝐹𝐹𝑚𝑚𝑜𝑜 was measured during the night in the absence of both reversible heat dissipation and photochemistry, a change in 𝐹𝐹𝑚𝑚𝑜𝑜 must 215 

be caused by a change in the sustained heat dissipation. Therefore, we can take the maximal pre-dawn Φ𝐹𝐹𝑚𝑚
∗ =  𝐹𝐹m𝑜𝑜

fAPARleaf
, (when 

Φ𝐷𝐷
∗  is minimal) as a reference and express Φ𝐷𝐷

∗  across the growing season as: 
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Φ𝐷𝐷
∗ =  1 −

𝐹𝐹m𝑜𝑜
fAPARleaf
�

max
192≤DOY≤264

[𝐹𝐹m
𝑜𝑜
fAPARleaf
� ] 

          (7) 

 

Photosynthetic light use efficiency can be predicted as a function of leaf temperature, ambient radiation levels, intercellular 220 

CO2 concentrations Ci, and other leaf physiological parameters (e.g., photosynthetic pathways, maximum carboxylation rate 

at optimum temperature Vcmo) by using a conventional photosynthesis model of Collatz et al., (1992; 1991). Van der Tol et al., 

(2014) established empirical relationships between fluorescence emission efficiency and photosynthetic light use efficiency 

under various environmental conditions by using active fluorescence measurements. With these relationships, the fraction of 

the absorbed radiation by a leaf emitted as fluorescence and dissipated as heat can be simulated. The MoniPAM system 225 

measured leaf temperature and incoming radiation intensity. We reproduced the efficiencies of photochemistry, fluorescence, 

and reversible and sustained heat dissipation by using the biochemical model of Van der Tol et al., (2014). The two most 

influential model input variables, leaf temperature and incoming radiation, were measured by using the  MoniPAM. Vcmo was 

set to 30 μmol m-2 s-1 at 25 °C,  a recommended value for the corn crop (Houborg et al., 2013; Wullschleger, 1993; Zhang et 

al., 2014). The rest of the model parameters (e.g., Ci) to their default values. In this way, we simulated the efficiencies for the 230 

temporal resolution of the MoniPAM measurements (i.e., 10 minutes) and examined the relationship among the efficiencies 

as predicted by the biochemical model.  

2.6 Statistical analysis 

Pearson correlation coefficients (𝜌𝜌) were computed to evaluate the relationships between pairs of observations, such as Φ𝑃𝑃 

and Φ𝐹𝐹
∗ , or GPP and SIF. In addition to the correlation coefficients, partial correlation coefficients were computed to measure 235 

the degree of association between GPP and SIF, where the effect of a set of controlling variables was removed, including 

fAPAR, iPAR and APAR. Partial correlation is a commonly used measure for assessing the bivariate correlation of two 

quantitative variables after eliminating the influence of one or more other variables (Baba et al., 2004). The partial correlation 

between x and y given a controlling single variable z was computed as 

𝜌𝜌𝑥𝑥,𝑦𝑦(𝑧𝑧) =  𝜌𝜌𝑥𝑥,𝑦𝑦− 𝜌𝜌𝑥𝑥,𝑧𝑧𝜌𝜌𝑦𝑦,𝑧𝑧

�1−𝜌𝜌𝑥𝑥,𝑧𝑧
2 �1−𝜌𝜌𝑦𝑦,𝑧𝑧

2
           (8) 240 

where 𝜌𝜌𝑥𝑥,𝑦𝑦 is the Pearson correlation coefficient between x and y. 

 

Partial correlation can be calculated to any arbitrary order. 𝜌𝜌𝑥𝑥,𝑦𝑦(𝑧𝑧) is a first-order partial correlation coefficient, because it is 

conditioned solely on one variable (z). We used a similar equation to calculate the second-order partial coefficient that accounts 

for the correlation between the variables x and y after eliminating the effects of two variables z and q (de la Fuente et al., 245 

2004). 

𝜌𝜌𝑥𝑥,𝑦𝑦(𝑧𝑧𝑧𝑧) =  
𝜌𝜌𝑥𝑥,𝑦𝑦(𝑧𝑧)− 𝜌𝜌𝑥𝑥,𝑞𝑞(𝑧𝑧)𝜌𝜌𝑦𝑦,𝑞𝑞(𝑧𝑧)

�1−𝜌𝜌𝑥𝑥,𝑞𝑞(𝑧𝑧)
2 �1−𝜌𝜌𝑦𝑦,𝑞𝑞(𝑧𝑧)

2
          (9) 
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3 Results 

3.1 Relationship between canopy SIF and GPP observations  

Fig. 1a confirms the linear SIF-GPP relationship reported in previous studies and shows that F760 and GPP were strongly 250 

correlated with an overall correlation 𝜌𝜌 = 0.83. This correlation was slightly stronger than the relationship between APARcanopy 

and GPP (an overall 𝜌𝜌 = 0.80, Fig. 1b). The APARcanopy-GPP relationship was apparently comprised of parallel groups of 

responses (colors) with large variation in GPP exhibited for the same levels of APARcanopy (Fig. 1b). This relationship complies 

with the common understanding of the response of photosynthesis to light showing the well-known saturation with irradiance 

as photosynthesis of the whole canopy gradually shifts from light limitation to carbon limitation, while the unexplained (by 255 

light intensity) variation in GPP can be attributed to stomatal aperture responses and a time-varying carboxylation capacity, 

especially in the upper sunlit canopy, which experienced larger variations of light intensity. SIF, which is affected by both 

light and carbon limitations, shows a more linear response to GPP than APARcanopy (Figs. 1a vs. 1b). 

[Insert Figure 1 here] 

 260 

Incoming radiation (i.e., iPARcanopy) had a strong, positive linear relationship with SIF, GPP and APARcanopy (as shown in Figs. 

1 and 2). We investigated these canopy-scale relationships with partial correlation analysis as diagrammed in Fig. 2, where for 

simplicity's sake, the subscripts denoting “canopy” variables were omitted in the diagram. Our team (Yang et al., 2020) and 

others (Miao et al., 2018; Migliavacca et al., 2017) have previously demonstrated that in addition to incoming radiation 

intensities, the energy available for photochemistry and fluorescence (i.e., APARcanopy) is strongly affected by canopy structure 265 

and leaf biochemistry. As a result, there were cases of low SIF, GPP and/or APARcanopy values at high iPARcanopy (Fig. 1, red 

and orange dots), and vice versa high SIF, GPP and/or APARcanopy values at low iPARcanopy (Fig. 1, blue and violet dots). This 

is shown in the correlation diagram as well (Fig. 2) which indicates that SIF, GPP and APARcanopy were all moderately 

dependent on leaf biochemistry as well as on canopy structure according to their correlations with fAPARcanopy, i.e., 𝜌𝜌SIF,fAPAR= 

0.60, 𝜌𝜌GPP,fAPAR= 0.58 and 𝜌𝜌APAR,fAPAR= 0.70 (i.e., numbers in bold, blue text, Fig. 2). Compared with either iPARcanopy or 270 

fAPARcanopy, APARcanopy as their product (located in center, Fig. 2) can better explain the variations in SIF and GPP 

observations, with Pearson correlations of 𝜌𝜌 = 0.92 and 0.80, respectively.  

[Insert Figure 2 here] 

 

After removing the effects of this important controlling variable that affects both SIF and GPP, namely APARcanopy, the 275 

correlation between GPP and SIF was weak (𝜌𝜌SIF,GPP(APAR)= 0.27; refer to results below the triangle’s baseline). In contrast, 

the correlation between SIF and GPP remained significant after controlling for the effects of the components of canopy APAR, 

either fAPARcanopy or iPARcanopy, i.e., 𝜌𝜌SIF,GPP(fAPAR)= 0.72, 𝜌𝜌SIF,GPP(iPAR)= 0.66 (equations below the triangle, Fig. 2). 
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We further investigated how the SIF-GPP relationship varied seasonally with growth stage and diurnally with time of the day 280 

(Fig. 3). The SIF-GPP correlation was significantly lower (by 22-27%) for the senescent canopy than for the young and mature 

canopy. The Pearson correlation coefficient was highest when the canopy was fully developed with the underlying surface 

covered in the mature stage (𝜌𝜌 = 0.77, Fig. 3b). As for the different times of a day, we found that their correlations were the 

strongest in the afternoon (𝜌𝜌 = 0.89) while 𝜌𝜌 was only 0.76 when the data were acquired in the morning (Figs 3d vs. 3f). 

[Insert Figure 3 here] 285 

 

3.2 Dynamics of energy partitioning in photosystems 

The continuously acquired active fluorescence measurements offered a way to assess the dynamics of energy partitioning in 

photosystems and facilitated the understanding of the relationship between fluorescence and photosynthesis before aggregation 

to the canopy, at the photochemical level. We investigated how the partitioning evolved over time. 290 

 

During the nighttime, as can be seen from the responses in the dark-bars in Figs. 4a and 4b, the photosystem energy partitioning 

was stable for all leaves, whether they were designated as sunlit or shaded during the day. Three efficiencies (Φ𝑃𝑃, Φ𝐹𝐹
∗  and Φ𝐷𝐷

∗ ) 

showed little overnight change, and the reversible heat dissipation Φ𝑁𝑁 was always close to zero. This null response for 

Φ𝑁𝑁 agrees with the known status/behavior of the most important driver of reversible heat dissipation, the xanthophyll pigment 295 

cycle, which reverts overnight to the energy-neutral form violaxanthin, and then converts during the day to antheraxanthin in 

moderately high light levels and subsequently to zeaxanthin at high light levels by chemical de-epoxidation (Middleton et al., 

2016; Müller et al., 2001). 

[Insert Figure 4 here] 

 300 

During the daytime, there were dramatic day-to-day changes in energy partitioning to photochemistry, fluorescence and 

reversible heat dissipation (Figs. 4a and 4b). Generally, both Φ𝐹𝐹
∗  and Φ𝑁𝑁 increased during mornings to midday and decreased 

afterwards, except that Φ𝑁𝑁  exhibited unexplained midday dips during the senescent stage. On the other hand, Φ𝑃𝑃 decreased 

during mornings to midday lows and increased afterwards (i.e., Φ𝑃𝑃 diurnals were bowl-shaped, as shown in many studies). 

The changes in Φ𝑁𝑁  and Φ𝑃𝑃  corresponded closely with the changes in incident radiation, while Φ𝐹𝐹
∗  changes corresponded 305 

closely with the dynamics in incident radiation in the morning but not at midday when the radiation level was high.   

 

At the seasonal scale (Fig. 4), however, the nighttime energy partitioning over the three other pathways (Φ𝑃𝑃, Φ𝐹𝐹
∗  and Φ𝐷𝐷

∗ ) 

displayed substantial variations. The nighttime Φ𝑃𝑃 was about 0.82 on all days during the young and mature stages, which is 

close to the theoretical maximal value (Zhu et al., 2008), but it was only about 0.64 during the senescent stage. Similarly, the 310 

nighttime relative light use efficiency of fluorescence Φ𝐹𝐹
∗  clearly decreased as the canopy development progressed from the 
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physiologically robust (young and mature) stages to the senescent stage. For example, the nighttime Φ𝐹𝐹
∗  for both the sunlit and 

shaded leaves was above 60 in the young stage but was around 50 in the senescent stage. The seasonal/growth stage decreases 

during nighttime in both Φ𝐹𝐹
∗  and Φ𝑃𝑃 were attributed to an increase of sustained heat dissipation Φ𝐷𝐷

∗  since nighttime Φ𝑁𝑁  was 

always close to zero. In extrapolating Φ𝐷𝐷
∗  to daytime, we assumed that the sustained heat dissipation remained unchanged 315 

within any full day (from 0:00 to 24:00), but noticeable changes in Φ𝐷𝐷
∗  sometimes occurred between two consecutive days, 

e.g., between Φ𝐷𝐷
∗  on DOY 194 and DOY 195, and between DOY 230 and DOY 231, as indicated in Fig. 4.  

 

Although the sunlit and shaded leaves had similar seasonal and diurnal patterns, some interesting differences are observed. As 

expected, the radiation levels were higher for the sunlit leaves than for the shaded leaves, which produced higher Φ𝐹𝐹
∗  for the 320 

sunlit leaves and slightly lower Φ𝑃𝑃 at the young and mature stages. In comparison to the difference in Φ𝐹𝐹
∗ , the difference in 

Φ𝑃𝑃 was less pronounced. At the senescent stage Φ𝑃𝑃 of the shaded leaves was substantially lower than sunlit leaves despite 

receiving lower radiation, which normally would lead to higher Φ𝑃𝑃. This could be attributed to the different leaf ages and 

functionality of sunlit and shaded leaves; for example, shaded corn leaves senesce earlier than sunlit leaves. Additionally, Φ𝐷𝐷
∗  

of sunlit leaves was higher than the shaded leaves while Φ𝑁𝑁 of the sunlit and shaded leaves was similar.  325 

 

It is evident that the contribution to the photosynthetic process by the combined nighttime fluorescence and sustained heat 

dissipation group (Φ𝐹𝐹+𝐷𝐷, red color in Fig. 5) increased through the growing season, to competitively reduce photochemical 

efficiency (Φ𝑃𝑃, green color), especially during senescence. The increase of sustained heat dissipation (Fig. 4) also resulted in 

a decrease of  Φ𝑃𝑃 in the daytime as the young and mature stages progressed through the senescent stage, although Φ𝑃𝑃 can vary 330 

substantially during the daytime. Additionally, the diurnally reversible heat dissipation (Φ𝑁𝑁, gold color) was generally higher 

at the senescent stage than at the young and mature stages, which contributed to the reduction in photochemical efficiency as 

well. In the pie charts, we focus on the energy partitioning in both nighttime and midday since they portray the potential 

maximal Φ𝑃𝑃 (i.e., the photosynthetic reaction centers in the nighttime are mostly open) and the steady-state Φ𝑃𝑃  at the most 

common time of day for satellite observations, respectively.  335 

[Insert Figure 5 here] 

 

The pie charts (Fig. 5) clearly show how the partitioning of the relative efficiency pathway contributions changed with growth 

stage on the three representative clear sky days. The nighttime Φ𝑃𝑃 was reduced by 20% between the young and senescent 

stages, while Φ𝐹𝐹+𝐷𝐷 increased by 19% during senescence. The pie charts also clearly show the very strong role of reversible 340 

heat dissipation in limiting midday photosynthesis throughout the growing season. For example, the per cent contribution for 

the pathways from the young crop (DOY 196) was 35% for Φ𝑃𝑃, 23% for Φ𝑁𝑁, and 42% for Φ𝐹𝐹+𝐷𝐷. The corresponding values 

for leaves in the mature crop (DOY 232) were 31%, 14%, and 56%.  And for the leaves in the senescing crop (DOY 254), the 



12 
 

corresponding values were 14%, 26%, and 61%. Combining these together, Fig. 5 further highlights the complexity of energy 

efficiency dynamics underlying the photosynthetic process.  345 

3.3 Relationships among photosynthesis, fluorescence and heat dissipation at leaf level 

Next, we examine the leaf-level efficiency terms obtained from in situ measurements, in terms of their combined responses. 

The first set compares Φ𝐹𝐹
∗  and Φ𝑃𝑃 , in the context of variable iPARleaf  (Figs. 6a, b).  This figure clearly shows that the 

relationship between Φ𝐹𝐹
∗  and Φ𝑃𝑃 during daylight (9:00 - 17:00) was different for the sunlit (sun adapted) vs. shaded (shade 

adapted) leaves, since the sunlit leaves were more often exposed to iPAR above 1000 μmol m-2 s-1. The higher Φ𝑃𝑃 values were 350 

obtained for relatively low iPARleaf, whether sunlit or shaded. For sunlit leaves, Φ𝐹𝐹
∗  and Φ𝑃𝑃 were positively correlated overall 

(𝜌𝜌 = 0.53, Fig. 6a) and in conditions with moderate to high light intensity (iPARleaf >500 μmol m-2 s-1, excluding blue and teal 

colored dots), 𝜌𝜌 = 0.60. In contrast, at low light intensity (iPARleaf <500 μmol m-2 s-1, blue dots), correlation between Φ𝐹𝐹
∗  and 

Φ𝑃𝑃 was weak and negative for Φ𝑃𝑃>0.4. These two efficiency terms were uncorrelated in shaded leaves (Fig. 6b), and Φ𝐹𝐹
∗  was 

much lower in the shaded than in sunlit leaves. The correlations on individual days are presented in Fig. 8a, which shows that 355 

positive correlations between Φ𝐹𝐹
∗  and Φ𝑃𝑃 are more often for sunlit leaves than shaded leaves.   

 [Insert Figure 6 here] 

 

At the seasonal scale, the midday Φ𝐹𝐹
∗  and Φ𝑃𝑃 values (the average of all values acquired between 11:00 and 14:00) had a quasi-

linear, positive relationship for both the sunlit and shaded leaves when iPARleaf >500 μmol m-2 s-1 (Fig. 6c). In contrast, at low 360 

average midday light intensities, the relationships were clearly negative. The Φ𝑃𝑃 values tended to decrease with the increasing 

light intensities while the relationship between Φ𝐹𝐹
∗  and iPARleaf was not definite. However, the ranges for Φ𝐹𝐹

∗  in sunlit and 

shaded leaves clearly represent two populations: Φ𝐹𝐹
∗  shaded was < 110 (Fig. 6c) whereas Φ𝐹𝐹

∗  sunlit > 100 (Fig. 6c). These 

results could have implications for interpreting canopy-scale measurements. 

 365 

The linear relationship obtained between Φ𝑃𝑃 and Φ𝑁𝑁  was considerably stronger for both sunlit and shaded leaves (Figs. 7a, b) 

than the correlation between Φ𝐹𝐹
∗  and Φ𝑃𝑃  previously shown for sunlit leaves (Fig. 6a). Here, both sunlit and shaded leaves 

showed consistent and strong linear decreases in Φ𝑃𝑃 as Φ𝑁𝑁  increased (Figs. 7a, b) in response to increase in the intensity of 

incoming light (iPARleaf , Fig. 4). Furthermore, the Φ𝑃𝑃 and Φ𝑁𝑁   relationships definitely varied in response to the sustained heat 

dissipation (Φ𝐷𝐷
∗ , levels represented in the color bar) in a similar fashion for both sunlit and shaded leaves, although higher Φ𝐷𝐷

∗  370 

values (orange and red dots) were obtained in sunlit leaves. The efficiency of photochemistry obviously declined at higher Φ𝐷𝐷
∗ , 

as indicated with the arrows in Fig. 7, especially pronounced in sunlit leaves. For shaded leaves, there were cases with higher 

Φ𝐷𝐷
∗  that did not result in lower Φ𝑃𝑃 (the orange dots in Fig. 7b). When both thermal dissipations were fully manifested, the Φ𝑃𝑃 

was greatly reduced; in sunlit leaves, this reduction was ~40%. The correlations on individual days are presented in Fig. 8b, 

which shows Φ𝑁𝑁 and Φ𝑃𝑃 are negatively correlated for both sunlit and shaded leaves.   375 
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[Insert Figure 7 here] 

[Insert Figure 8 here] 

 

At the seasonal scale, as can be seen from Figs. 4 and 5, Φ𝑃𝑃 decreased while Φ𝐷𝐷
∗  increased as the canopy progressed through 

its growth stages. Their seasonal relationship is depicted in Fig. 7c, showing a same-day comparison of the midday Φ𝑃𝑃 value 380 

(the average between 11:00 and 14:00), as a function of Φ𝑁𝑁 across the growing season noting that Φ𝐷𝐷
∗  remained unchanged 

within any full day. Generally, Φ𝑁𝑁 and Φ𝑃𝑃  exhibited an overall negative correlation, but clearly their relationship was 

regulated by Φ𝐷𝐷. This is seen in the different midday Φ𝑃𝑃 responses at high vs. low Φ𝐷𝐷
∗  values. At the same level of Φ𝑁𝑁 (around 

0.05), the magnitudes of midday Φ𝑃𝑃 varied by up to 0.45 (65%, from 0.37 to 0.61 in Fig. 7c) due to variations in the efficiency 

of the sustained heat dissipation which varied between 0.1 and 0.6.   385 

 

We have shown that Φ𝑃𝑃 was regulated by heat dissipation (Figs. 5 and 7), and was moderately correlated with Φ𝐹𝐹
∗  for the sunlit 

leaves (Fig. 6). With the dynamics of energy partitioning within the photosystem now quantified, we interpret the emerging 

relationship between photochemical and fluorescence efficiencies, namely Φ𝑃𝑃  and Φ𝐹𝐹
∗  (Table 2), in the context of thermal 

dissipation efficiencies (Φ𝑁𝑁, Φ𝐷𝐷
∗ ). After eliminating the effects of both sustained and reversible heat dissipation, Φ𝑃𝑃   and Φ𝐹𝐹

∗  390 

were negatively and equally correlated (𝜌𝜌 = -0.75) for both sunlit and shaded leaves. As surprising as this is, the presence of 

either sustained or reversible heat dissipations changed this underlying negative relationship (Φ𝑃𝑃 vs. Φ𝐹𝐹
∗ ) into an observed 

apparent positive relationship at leaf scale, which contributes to the positive relationship of GPP and SIF at canopy scale. In 

fact, accounting for the effects of either Φ𝑁𝑁  or Φ𝐷𝐷
∗  reduced the correlation coefficients between Φ𝑃𝑃  and Φ𝐹𝐹

∗ . For sunlit leaves, 

controlling for only Φ𝑁𝑁 reduced the correlation from 0.53 to 0.05 (by ~0.48 units); after controlling for only Φ𝐷𝐷
∗ , the correlation 395 

dropped by 0.45 units to 0.08. For shaded leaves this reduction was from 0.10 to -0.31 after controlling for Φ𝑁𝑁, or to -0.35 

after controlling for Φ𝐷𝐷
∗ .  The reduction of the correlation between Φ𝑃𝑃  and Φ𝐹𝐹

∗  were caused by diurnal variations in Φ𝑁𝑁 and 

seasonal variations in both  Φ𝑁𝑁 and Φ𝐷𝐷
∗ . 

[Insert Table 2 here] 

 400 

Results of model simulations are presented in Figs 9 and 10.  In comparison with Figs. 6 and 7 that describe our in situ 

measurements, these two figures show that the biochemical model outputs were more successful in describing photosynthetic 

efficiency as a function of reversible heat dissipation (Φ𝑁𝑁) than fluorescence efficiency (Φ𝐹𝐹).  Specifically, for the Φ𝑃𝑃-Φ𝐹𝐹 

relationships, the Fig. 9 simulation shows some similarity to the Fig. 6 measurements, but clearly does not capture the different 

responses we obtained for sunlit versus shaded leaves. However, Fig. 10 does generally replicate the general responses 405 

expected based on in situ measurements (Fig. 7), portraying the strong negative impact of Φ𝑁𝑁 on Φ𝑃𝑃, but it doesn’t convey the 

variability captured under field conditions. These differences occurred in the simulations because we did not consider the 

physiological (i.e., enzyme activity) or physical (i.e., thickness, pigment ratios) differences among leaves at different growth 
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stages.  Neither did we consider the physical differences or photochemical potential differences (e.g., total chlorophyll content 

and Chl a/b ratios; rubisco activity) between sunlit and shaded leaves in this modelling experiment. Therefore, it is to be 410 

expected that the simulations for sunlit and shaded leaves would be similar, and not displaying the differences observed in 

field measurements. Furthermore, we did not include changes in leaf display geometry induced by low water stress (i.e., 

drought) in the simulation, but it is a common phenomenon in corn plants in the field. Another likely reason contributing to 

the differences between simulations and observations is that in using the model of Van der Tol et al. (2014) to derive Φ𝐹𝐹 from 

Φ𝑃𝑃,  Φ𝐷𝐷 is assumed to be a constant and Φ𝑁𝑁 is empirically estimated as a function of Φ𝑃𝑃/Φ𝑃𝑃0. The observations shown in 415 

Figs. 4 and 5 prove that Φ𝐷𝐷 varied over the growing season, and therefore, cannot be considered as a constant. These findings 

may help improve the modelling of Φ𝐹𝐹  at the biochemical level and thus improve our understanding of the relationship 

between SIF and GPP at the canopy scale.  

 

 [Insert Figure 9 here] 420 

[Insert Figure 10 here] 

3.4 Comparison of light use efficiencies at leaf and canopy levels 

The responses of the efficiencies to APAR and the relationships between these efficiencies are diagrammed in Fig. 11, showing 

the Pearson correlation coefficients between pairs of variables, for leaves (Fig. 11a) that were either sunlit or shaded (indicated 

in bold, blue text), and for canopy (Fig. 11b).  425 

[Insert Figure 11 here]  

 

At the leaf level, we see that Φ𝐹𝐹
∗  showed moderate correlation to Φ𝑃𝑃 for sunlit leaves (𝜌𝜌 = 0.53) but very low correlation to 

Φ𝑃𝑃 for shaded leaves (𝜌𝜌 = 0.10). The highest correlations were negative, denoting inverse relationships between Φ𝑁𝑁 and Φ𝑃𝑃 

(-0.74 sunlit and -0.87 shaded), whereas similar positive correlations (0.64 sunlit and 0.68 shaded) were obtained between 430 

Φ𝑁𝑁 and APARleaf (located in center, Fig. 11a), as expected since Φ𝑁𝑁 is well known to be light-level sensitive when invoking 

the xanthophyll cycle. Notice that all of the high correlations (>0.64 or <-0.74), whether positive or negative, are located on 

the left-hand side of Fig. 11a, which compares efficiencies of photochemistry with efficiencies of reversible thermal dissipation 

(Φ𝑁𝑁) and their connection through APARleaf. The remaining correlations on the right-hand side, between Φ𝐹𝐹
∗  and either Φ𝑃𝑃, 

Φ𝑁𝑁, or APARleaf, are significantly lower (from -0.33 to 0.53).  435 

 

At the canopy level, Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 also showed moderate correlation to Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  with 𝜌𝜌 = 0.37 (Fig. 11b, for the scatter plot 

between Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 , see Fig. A1), which falls between the values for sunlit and shaded leaves (Fig. 11a). An 

inverse relationship between Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and APARcanopy (-0.41) was found at the canopy level, but this correlation was much 

weaker than that at the leaf level (-0.75 for both sunlit and shaded leaves). The photochemical reflectance index PRI=  𝑅𝑅531−𝑅𝑅570
𝑅𝑅531+𝑅𝑅570

  440 
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(Gamon et al., 1992), as an indicator of Φ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , appeared to have no correlations with either APARcanopy or Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, while 

at the leaf level these three variables had strong correlations (located on the left-hand side of Fig. 11a). Comparing the 

efficiencies obtained from the leaf- and canopy-level measurements (i.e., Φ𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐vs. Φ𝑃𝑃  or Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹vs. Φ𝐹𝐹
∗ ), no clear 

relationships were found (𝜌𝜌 <0.1, data are shown in Fig. A2).  

 445 

[Insert Figure 12 here] 

[Insert Table 3 here] 

 

Comparison of Fig 11a with Fig. 12a reveals that the strength of correlations between pairs of variables describing energy 

partitioning for both sunlit and shaded leaves increased for most pairs when evaluated at midday vs. diurnal measurements 450 

(Table 3).  For example, three pairs showed notable correlation enhancements for sunlit leaves in midday across the growing 

season: the negative correlations between Φ𝑁𝑁 and Φ𝐹𝐹
∗  (from -0.33 to -0.45) and between APARleaf and Φ𝐹𝐹

∗  (from -0.10 to -

0.27), and the positive correlation between Φ𝑃𝑃 and Φ𝐹𝐹
∗   (from 0.53 to 0.62).  Shaded leaves showed similar but even stronger 

responses than sunlit leaves overall at midday, and especially for these same three pairs:  Φ𝑁𝑁 vs. Φ𝐹𝐹
∗  (shaded, from -0.23 to -

0.45), and Φ𝑁𝑁 vs. Φ𝐹𝐹
∗  (from 0.10 to 0.27).  In addition, for shaded leaves, the midday positive correlation between APARleaf 455 

and Φ𝑁𝑁 also was higher (from 0.68 to 0.77) as was the negative correlation between Φ𝑁𝑁 and Φ𝑃𝑃 (from -0.87 to -0.92), while 

the positive correlation between APARleaf and Φ𝐹𝐹
∗  became a weak negative association (from 0.25 to -0.14).  No noticeable 

correlation changes occurred for sunlit leaves at midday vs. daily measurements for these two pairs: Φ𝑁𝑁 –  Φ𝑃𝑃 (ρ ≈ -0.75) or 

APARleaf - Φ𝑁𝑁 (ρ ≈ 0.61).  The negative correlations were equal for sunlit and shaded leaves between Φ𝑁𝑁 and Φ𝑃𝑃 whether 

determined for daily or at midday, but the midday correlation was stronger (from -0.75 to -0.81). Especially noteworthy are 460 

the strong negative correlations that were observed (Table 3) in sunlit and shaded leaves for Φ𝑁𝑁 and Φ𝑃𝑃 (between -0.74 and -

0.92) and APARleaf  and Φ𝑃𝑃 (between -0.75 and -0.81). 

 

Comparison of Fig. 11b and Fig. 12b reveals that at the canopy scale all correlations between variable pairs were relatively 

modest (e.g., ρ ≤ ±0.55) but were higher at midday than for daily observations across the growing season, except for Φ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 465 

(as estimated with the PRI) vs. Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  (≤ -0.07, indicating no relationship).  For the remaining five pairs, the strongest and 

most improved responses at midday were between Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  (from 0.37 to 0.53) and between APARcanopy and 

Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (from -0.41 to -0.55), with a stronger association also seen for APARcanopy vs. Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  (from -0.25 to -0.32). It is 

apparent that the canopy responses based on remote sensing, without including critical information on the sunlit/shaded canopy 

illumination fractions (Figs 11b, 12b), were less successful in describing the energy partitioning that was provided at the leaf 470 

level (Figs. 11a, 12a).  
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4 Discussion 

4.1 Physical basis for the SIF-GPP relationship 

Incoming radiation intensity, leaf biochemistry, leaf and canopy structure all affect APARcanopy, the energy source for 

photosynthesis, SIF and heat dissipation. We found an equal contribution of iPARcanopy and fAPARcanopy to the observed SIF-475 

GPP canopy relationship. The correlation coefficients between SIF and GPP remained relatively high after controlling either 

term. In stark contrast, after holding APAR (their product, iPARcanopy x fAPARcanopy) constant, the SIF-GPP canopy correlation 

coefficient was reduced from 0.83 to 0.27. This demonstrates the dominance of APARcanopy in determining the relationship 

between SIF and GPP. Compared to APARcanopy, SIF was slightly better correlated with GPP (Fig. 1). The physiological 

information implied in GPP was seemingly better expressed with SIF than APARcanopy. 480 

 

The interfering effects of 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  at canopy scale have not been considered explicitly. They are implicit in the relations of 

𝜌𝜌SIF,GPP(APAR) (Qiu et al., 2019). When accounted for, they may provide a better estimate of the correlation attributable to the 

physiological response of photosystems (i.e., 𝜌𝜌SIF,GPP(APAR,fesc) > 0.27). The magnitude and sign of 𝜌𝜌SIF,GPP(APAR)  are 

nevertheless consistent with the moderate correlation we found between leaf Φ𝐹𝐹
∗  and Φ𝑃𝑃  for sunlit leaves and the weak 485 

correlation for shaded leaves (Figs. 6 and 11a). In addition, we found that the positive relationship between Φ𝐹𝐹
∗  and Φ𝑃𝑃   at the 

seasonal time scale is dominated by the progressive increase of sustained heat dissipation (Φ𝐷𝐷
∗ ) during senescence. In contrast, 

there was significant diurnal but no clear seasonal variation of Φ𝑁𝑁.  

4.2 Physiological basis for the SIF-GPP relationship    

 Clear differences between the responses of sunlit and shaded leaves influence the correlation for the canopy as a whole. The 490 

Φ𝐹𝐹  and Φ𝑃𝑃 of sunlit leaves exposed to moderate or high iPARcanopy exhibited a moderately strong linear relationship, while no 

such relationship existed for leaves at low iPARcanopy (independent of whether the leaves were classified as sunlit or shaded 

leaves). Leaves regularly receiving sunlight during development (sunlit leaves) differ structurally and biochemically from 

leaves in lower light positions in the canopy. Shaded leaves are often thinner, smoother, and larger in surface area (Dai et al., 

2004). The larger shaded leaves provide a larger area for absorbing light energy for photosynthesis where light levels are lower. 495 

In contrast, smaller sunlit leaves provide less surface area for the loss of water through transpiration which is higher due to 

direct exposure to solar radiation. The greater mesophyll thickness of sunlit leaves produces more inter-cellular spaces to 

facilitate increased carbon dioxide conductance into their smaller chloroplasts, producing greater rates of photosynthesis per 

unit leaf area in sunlit leaves (Givnish, 1988; Jackson, 1967).  

 500 

The investigated crop has a C4 photosynthetic pathway, in which dark and light reactions are separated, and carboxylation 

takes place under a high CO2 concentration. This strongly suppresses photorespiration in C4 vegetation, resulting in a higher 

water use efficiency and lower sensitivity to heat and high vapour pressure deficit than for C3 vegetation. Liu et al. (2017) 
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reported that the GPP–SIF relationship was much stronger for a C4 crop (corn) than a C3 crop (wheat). They showed that 

while Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  of the C3 and C4 crops were similar, the Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  of corn was much higher than for wheat. Because of 505 

different photosynthetic pathway and the contribution of photorespiration, the SIF-GPP relationship of C3 vegetation is more 

complicated in the corn crop examined in this study.  

 

Compared to the relationship between leaf fluorescence emission efficiency, total heat dissipation (both D and N) provided a 

robust and direct indicator of leaf photosynthetic light use efficiency (Fig. 7). In particular, the variation of reversible heat 510 

dissipation better explains the diurnal variation of leaf photosynthetic light use efficiency, whereas the sustained heat 

dissipation contributes to the seasonal variation. Reversible heat dissipation is the main regulating mechanism for the 

dissipation of absorbed photosynthetically active radiation energy (Adams et al., 1989; Demmig-Adams et al., 1996; Heber et 

al., 2006; Huang et al., 2006). Our study confirms its dominant role for the corn crop with field measurements and finds that 

the reversible heat dissipation is responsible for the positive relationship between Φ𝐹𝐹  and Φ𝑃𝑃 of sunlit leaves at diurnal scales, 515 

though less so at seasonal scales when sustained heat dissipation is dominant (Fig. 6). Remote sensing monitoring at the 

canopy/landscape scale of the reversible efficiency of heat dissipation is still challenging. It is well known that changes in Φ𝑁𝑁 

are often associated with changes in leaf green reflectance due to changes in the de-epoxidation state (DEPS) of xanthophyll 

cycle pigments. The photochemical reflectance index (PRI) utilized the link between the biochemical changes within 

xanthophyll cycle expressed with a narrow-band green reflectance, providing a way to remotely assess photosynthetic light 520 

use efficiency (Gamon et al., 1992; Garbulsky et al., 2011), but the link becomes partially obscured at canopy scale due to the 

effects of canopy structure and sun-observer geometry (Hilker et al., 2009; Middleton et al., 2009). Because of these interfering 

effects, canopy PRI showed very weak overall relationship with APARcanopy (𝜌𝜌=0.28, Fig. 11b), which clearly differed from 

the connection between Φ𝑁𝑁 and APARleaf at the leaf level (𝜌𝜌 ≥ 0.64, Fig. 11a). 

 525 

Since the reversible heat dissipation pathway is such a strong competitor to photochemistry, especially in the sunlit canopy 

fraction, it seems very important to fully understand the green reflectance link to the energy regulation via the xanthophyll 

cycle, and then develop radiative transfer modelling approaches to translate this link to the canopy level. In this regard, Vilfan 

et al. (2018) extended the Fluspect leaf radiative transfer model to simulate xanthophyll driven leaf reflectance dynamics. 

Further efforts on implementing this extended model in canopy radiative transfer models will connect efficiencies of 530 

photochemistry and reversible heat dissipation to canopy reflectance observations. This may open new opportunities to 

estimate photosynthetic light use efficiency and improve GPP estimation using remote sensing methods in situ and from space. 

4.3 Physically and physiologically joint effects on the SIF-GPP relationship 

 The canopy equivalent efficiencies (Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) are composed of integrals of the efficiencies of leaves of the 

sunlit and shaded canopy fractions. The correlation between the canopy effective equivalents of Φ𝐹𝐹 and Φ𝑃𝑃  may be expected 535 
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to take a value between the equivalent correlation of leaf-level Φ𝐹𝐹 and Φ𝑃𝑃 for sunlit leaves (𝜌𝜌 = 0.53) and for shaded leaves 

(𝜌𝜌 = 0.10). This means that the ability to view the SIF and reflectance hot spots (whether they occur together or not) from 

sunlit leaves varies with viewing angle and time of day (e.g., illumination angle, diffuse light).  We suggest that these factors 

strongly affect 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒. Therefore, they must, in turn, affect the success of remote sensing relationships for SIF-GPP (Yang and 

Van der Tol, 2018). Likewise, these factors also affect the variability of the APAR-GPP relationship (Dechant et al., 2020; 540 

Qiu et al., 2019), and the relationship of photosynthetic light use efficiencies at leaf and canopy levels (i.e., Φ𝑃𝑃  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 

(e.g., Middleton et al., 2019). However, it is worth noting that active fluorescence measurements are spectrally integrated 

signals, whereas canopy passive SIF observations are obtained at one wavelength. As a result, the leaf-level fluorescence 

emission and photosynthetic light use efficiencies derived from active fluorescence measurements differ spectrally from the 

canopy-level efficiencies (Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). This difference may also play a role in upscaling leaf-level to canopy-545 

level relationship between Φ𝐹𝐹 and Φ𝑃𝑃.  

 

 The exact correlation between Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  at canopy scales depends on both the relative contributions of sunlit 

and shaded leaves to the canopy equivalents and the native correlation of the efficiencies at leaf level (Köhler et al., 2018; 

Mohammed et al., 2019). Canopy structure dictates the relative abundance and thus the relative weights of these contributing 550 

factors to the canopy equivalent Φ𝐹𝐹 and Φ𝑃𝑃. The weight is not only determined by leaf class abundance, but also by the relative 

magnitude of the SIF and GPP response of the leaf classes. Sunlit leaves during daytime usually constitute a greater 

contribution to the effective canopy efficiencies than shaded leaves, simply because sunlit leaves tend to emit a higher SIF 

signal and, at the same time, produce a higher GPP. This suggests that the correlation between the canopy effective equivalents 

of Φ𝐹𝐹 and Φ𝑃𝑃tends to be closer to the correlations of leaf-level Φ𝐹𝐹 and Φ𝑃𝑃for sunlit leaves (𝜌𝜌 =0.53) than for shaded leaves. 555 

 

The LUE models as shown in Eq. 1 are, essentially, one-big-leaf models. The one-big-leaf approach assumes that canopy 

photosynthesis or SIF have the same relative responses to the environment as any single leaf, and that the scaling from leaf to 

canopy is therefore linear (Friend, 2001). However, sunlit and shaded leaves clearly showed a different Φ𝐹𝐹-Φ𝑃𝑃relationship 

(Figs. 6 and 11). In order to better interpret the SIF-GPP relationship, we recommend a revision of the LUE model of SIF and 560 

GPP (Eq. 1) by separating the contributions of sunlit and shaded leaves:  

GPP =  ∑ iPAR ∙ fAPARn
n=sunlit,shaded ∙ Φ𝑃𝑃

n        (10a), 

SIF =  ∑ iPAR ∙ fAPARn
n=sunlit,shaded ∙ Φ𝐹𝐹

n ∙ 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒n        (10b),  

 

This approach updates the existing one-big-leaf LUE models into two-leaf (or two-big-leaf) LUE models. The idea of 565 

differentiating sunlit and shaded leaves in vegetation modelling has been applied in predicting canopy temperature and 

photosynthesis, and an improved ability of PRI to track canopy light use efficiency was shown when including both sunlit and 

shaded leaves in model simulations of field results (Dai et al., 2004; Luo et al., 2018; Wang and Leuning, 1998; Zhang et al., 
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2017). Qiu et al, (2019) incorporated a fluorescence simulation in the Boreal Ecosystem Productivity Simulator (BEPS, Liu et 

al., 1997), which is a two-leaf process-based model. More classes of leaves with varying ambient temperatures and incident 570 

radiation levels can be examined using more explicit models, such as SCOPE (Soil-Canopy-Observation of Photosynthesis 

and Energy fluxes, Van Der Tol et al., 2009), BETHY-SCOPE (the Biosphere Energy Transfer Hydrology model coupled with 

SCOPE, Norton et al., 2018) or DART (the Discrete Anisotropic Radiative Transfer model, Gastellu-Etchegorry et al., 2017). 

Although the concept of differentiating sunlit and shaded leaves is implemented in these model, the functional variation of the 

two categories of leaves is not considered. Moreover, the role of sunlit fraction in explaining SIF-GPP relationship has not 575 

been explored. The two-leaf LUE models consider the major difference of leaves in a canopy, and are relatively simpler 

compared with SCOPE and DART (Parazoo et al., 2020) but more realistic compared with one-big-leaf LUE models in linking 

SIF and GPP.  

 

The fraction of sunlit canopy is determined by canopy structure and the direction of incoming light as well as the fraction of 580 

diffuse light. Hence, it is expected that these factors will affect the contribution of sunlit and shaded leaves to the canopy SIF-

GPP correlation. Furthermore, the instantaneous sun-view angle geometry affects where the sunlit leaves occur during the day 

and the likelihood of their being viewed at particular angles (e.g., nadir). This means that the ability to view the SIF hot spot 

emitted from sunlit leaves varies with viewing angle and time of day. We suggest that these factors strongly affect 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 which 

must, in turn, affect the SIF-GPP remote sensing relationship (Yang and Van der Tol, 2018). 585 

 

Intuitively, in fully contiguous vegetation canopies the leaves in the upper layer (which are often sunlit) contribute a major 

fraction to the whole canopy of APAR, whereas fAPARshaded is small. Therefore, Φ𝐹𝐹
sunlit and Φ𝑃𝑃

sunlit have much larger relative 

contributions to Φ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and Φ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , respectively. Hence, a stronger relationship between SIF and GPP for dense canopies 

is expected since Φ𝐹𝐹
sunlit and Φ𝑃𝑃

sunlit are more tightly connected than Φ𝐹𝐹
shaded  and Φ𝑃𝑃

shaded. This insight can provide some 590 

explanation for the seasonally varying results describing canopy SIF and GPP (Fig. 3 a-c), where the SIF-GPP relationship 

varied with the growth stages: for the Young crop (𝜌𝜌= 0.72); Mature crop (𝜌𝜌 = 0.77); and the Senescent crop (𝜌𝜌 = 0.50).  

 

Furthermore, the effects of diffuse light (the diffuse/direct iPAR ratio) on the relationship between SIF and GPP can be 

explained by the revised equation (Eq. 10).  When the fraction of diffuse light is higher (e.g., a hazy, or cloudy day), there is 595 

greater iPAR penetration into lower canopy layers (the shaded leaves). As a result, fAPARshaded increases while fAPARsunlit 

decreases. This leads to a higher contribution of shaded leaves to the SIF-GPP relationship at canopy level, and weakens the 

SIF-GPP correlation. This was indeed observed in earlier field measurements reported in Miao et al. (2018), which showed 

that both the SIF-GPP correlation and the correlation between the SIF/APAR and GPP/APAR ratios were significantly weaker 

under cloudy conditions than sunny conditions. The relative fraction of diffuse light is also a possible cause for the diurnally 600 

varying correlation between SIF and GPP (Fig. 3 d-f), where the SIF-GPP relationship varied at different times of day: for the 
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data acquired in the morning (𝜌𝜌 = 0.76); for the data acquired in the midday (𝜌𝜌 = 0.83); and for the data acquired in the 

afternoon (𝜌𝜌 = 0.89). This highlights the unique physiological information of SIF for monitoring GPP, and the joint effects of 

incoming radiation, canopy structure and leaf physiology on the SIF-GPP relationship. We suggest that the canopy structure, 

illumination and viewing conditions, and especially the foliage thermal dissipation must be taken into account to accurately 605 

represent the physiological underpinnings of the observed SIF-GPP relationships. 

 

A simple model was used to examine the sensitivity of the fraction of sunlit canopy to LAI, leaf angle distribution function 

(LIDF) and solar zenith angles (𝜃𝜃𝑠𝑠). Considering a vegetation canopy as a turbid medium consisting of leaves, the instantaneous 

sunlit fraction can be estimated as a function of the direction of incoming light, canopy LAI (L) and leaf angle distribution. In 610 

stochastic models describing the transfer of radiation in plant canopies, the probability of the leaves being sunlit at a specified 

vertical height 𝑥𝑥 (i.e., x= 0 referring to top of canopy, x= -1 referring to bottom of canopy) can be estimated as 𝑃𝑃𝑠𝑠 =  exp(𝑘𝑘𝑘𝑘𝑘𝑘),  

where L is canopy LAI and k the extinction coefficient, which is determined by the solar direction and leaf angle distribution 

(He et al., 2017; Stenberg and Manninen, 2015). The computation of k is explicitly given in Verhoef (1984) by projecting the 

leaf area into the direction of the sun. In the model SCOPE (Van Der Tol et al., 2009), the total fraction of sunlit canopy LAI 615 

is the integral of Ps in the vertical direction given as: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 =  1
𝑘𝑘𝑘𝑘

(1 − exp(−𝑘𝑘𝑘𝑘))        (11) 

 

The effects of LAI, leaf angle distribution function (LIDF) and solar zenith angles (θs) on the instantaneous sunlit canopy 

fraction are presented in Fig. 13. In line with our intuitive understanding, the fraction of sunlit canopy decreases with increasing 620 

canopy LAI in denser canopies. This fraction also decreases with increasing solar zenith angle, which are also affected by the 

leaf angle distribution. The important quantity for our purposes is the relative (not absolute) angular difference between the 

sun and leaf positions. Eq. 11 gives the prediction for the total fraction of sunlit canopy, but the fraction of sunlit LAI at a 

given height and thus the vertical variation of 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 can be predicted in a similar way. The calculation of the fraction of sunlit 

canopy LAI shown in Eq. 11 is based on a turbid assumption of the vegetation canopy. Corn has a simple canopy architecture 625 

and a corn canopy can be considered as turbid medium. However, for forests or other more complex canopies, other structural 

characteristics, e.g., the clumping of foliage (Liu et al., 1997; Qiu et al., 2019), affect the gap probability of a vegetation canopy 

layer and the associated light penetration, and should be considered when separating sunlit and shaded leaves in the canopy.  

 

 [Insert Figure 13 here] 630 

 

A limitation of the current SCOPE capability for describing physiological responses is related to capturing the changing light 

environments that affect estimates of the sunlit/shaded fractions. This is because SCOPE and most radiative transfer models 

for vegetation assume steady state conditions and lack temporal memory of state variables at different times.  SCOPE predicts 
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the sunlit/shaded fractions at one moment while the shaded and sunlit leaves discussed in this paper are a result of long-term 635 

adaption to the light conditions (i.e., sun-adapted and shade-adapted leaves). Nevertheless, we can gain insights into 

relationships under specified conditions, which can serve as new information to be used in updating the models. A possible 

way is to predict the light distribution inside the canopy with varying sun positions (e.g., a diurnal cycle). In this way, sun-

adapted and shade-adapted leaves can be differentiated according to the probability of being illuminated for a longer period 

instead of for a single moment in time. A leaf is sun-adapted when it is almost always illuminated at various sun positions or 640 

different time in a day. In contrast, a shade-adapted leaf is rarely or occasionally illuminated for various sun positions. 

Furthermore, different physiological traits of sun-adapted and shade-adapted can be taken into account in the model.  

4.4 Combined use of TOC reflectance and SIF for GPP estimation  

SIF observed at the top of a canopy is a fraction of total emitted SIF by all the leaves in the canopy due to the reabsorption and 

scattering effects. In section 4.1, we inferred that the correction of TOC SIF for 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 can result in a better correlation to GPP, 645 

and in section 4.3 we discussed the difference between leaf- and canopy-level efficiencies caused by the canopy structural and 

sun-observer geometry. Apart from separating sunlit and shaded leaves in the LUE models proposed in section 4.3, employing 

corrections to SIF for interfering structural and angular effects are possible ways to enhance understanding of the relationship 

between SIF and GPP.  

 650 

Several studies have been conducted to convert TOC SIF to total emitted SIF by the canopy (SIFtot) for a better estimation of 

GPP (e.g., Lu et al., 2020; Qiu et al., 2019). A direct way to estimate 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 or SIFtot is by using a radiative transfer model (e.g., 

SCOPE and DART), but this approach requires leaf and canopy characteristics to drive the models and has obvious limitations 

in applications. Because TOC reflectance and TOC SIF are similarly determined by leaf biochemistry, canopy structure and 

sun-observer geometry, we can use TOC reflectance to explain vegetation biochemical and structural, and bidirectional effects 655 

on TOC (Yang et al., 2019, 2020; Yang and Van der Tol, 2018). This can be achieved by retrieving required leaf and canopy 

characteristics for running the radiative transfer model from TOC reflectance (Yang et al., 2019). Alternatively, we can 

establish a direct link between TOC reflectance and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 skipping the retrieval of vegetation properties by inverting a radiative 

transfer model. This can be achieved by exploring the similarity of radiative transfer of intercepted incident light and emitted 

SIF. We established such a link, which states that the ratio of far-red reflectance (R) to the product of canopy interceptance 660 

(𝑖𝑖0) and leaf albedo (𝜔𝜔) is an accurate estimate of canopy scattering of far-red SIF (i.e., 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  = R/𝑖𝑖0𝜔𝜔) (Yang and Van der Tol, 

2018). Furthermore, we found that the product of 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 and fAPARcanopy can be well approximated by a reflectance index, which 

is called fluorescence correction vegetation index (FCVI) and is given as the difference of near-infrared (NIR) and broadband 

visible (VIS) reflectance acquired under identical sun-canopy-observer geometry of the SIF measurements (i.e., 

FCVI = Rnir − 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 ≈ 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 × fAPARcanopy) (Yang et al., 2020). With the above mentioned link and index, it is possible to 665 

estimate 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 and canopy total emitted SIF at 760 nm 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡 . 
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𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 =  FCVI/fAPARcanopy         (12) 

𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡  = 𝜋𝜋𝐹𝐹760/𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒         (13) 

 

[Insert Figure 14 here] 670 

 

We estimated 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡  using Eqs. 12 and 13 and found that 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡  is not better correlated with GPP compared with 𝐹𝐹760 as indicated 

by the similar correlation coefficients and RMSEs (Fig. 1a vs Fig. 14). For 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡
  and GPP, the Pearson correlation coefficient 

was 0.82 and RMSE was 0.29 mg m-2 s-1, while the values were 0.83 and 0.28 mg m-2 s-1 for 𝐹𝐹760 and GPP. The reason is likely 

to be the uncertainties in the 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 estimation. The accuracy of 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 estimation with FCVI is largely determined by fAPARcanopy, 675 

which is difficult to accurately estimate from TOC reflectance alone. In most studies including the present study, fAPARcanopy 

is usually estimated by using vegetation indices and the accuracy is not always guaranteed. Because SIF is a weak signal, the 

uncertainties in fAPARcanopy estimation may have a considerable impact on estimating 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡
.  Similar problems also 

exist when using the NIRv (near infrared vegetation index, NDVI×Rnir) to correct TOC SIF for 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒, since fAPARcanopy is 

required (i.e., 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 =  NIRv/fAPARcanopy ) (Zeng et al., 2019). Nevertheless, Lu et al. (2020) found that canopy GPP was 680 

bettered correlated with 𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡
 and 𝐹𝐹760 . Instead of fAPARcanopy  and either FCVI or NIRv, they used the original link we 

established  (Yang and Van der Tol, 2018) between TOC far-red reflectance and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 when estimating 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  (i.e., 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 = R/𝑖𝑖0𝜔𝜔). 

The important variables 𝑖𝑖0  and 𝜔𝜔 for applying this link were estimated by using field measurements of leaf and canopy 

characteristics (e.g., leaf chlorophyll contenta and LAI). The study of  Lu et al. (2020) not only confirms that canopy total 

emitted SIF is a better estimate of GPP than TOC SIF, but also supports the importance of fAPARcanopy in estimating 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 685 

when using either NIRv or FCVI. We, therefore, recommend that canopy interceptance 𝑖𝑖0  be included into measurement 

protocols in future field campaigns to better monitor GPP based on SIF remote sensing retrievals.   

5 Conclusions 

We have used a unique dataset to explore the relationship between fluorescence and photosynthesis at leaf and canopy levels 

over a growing season in a corn canopy. We have quantified the contribution of incoming radiation, canopy structure and plant 690 

physiology to the SIF-GPP relationship by using partial correlation analysis.   

 

We demonstrate that the observed positive relationship between SIF and GPP is largely due to the fact that both of them are 

dependent on APAR (i.e., not on iPAR). Incoming radiation and canopy structure had comparable contributions to the SIF-

GPP relationship. After eliminating the effects of variable APAR on the SIF-GPP relationship, the apparent positive 695 

relationship between SIF and GPP became much weaker. However, there is still some remaining connection due to the 
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functional link between fluorescence and photosynthesis at the leaf level, which is confirmed by active fluorescence 

measurements.   

 

We also confirm that heat dissipation is responsible for the positive relationship between the efficiencies of fluorescence and 700 

photochemistry. Sustained (i.e., diurnally stable) heat dissipation increased through the crop's growth into the senescent stage, 

which caused the late season decrease in photosynthetic light use efficiency. The seasonal variation in sustained heat 

dissipation contributed to a moderate positive relationship between the efficiencies of fluorescence and photochemistry at the 

seasonal scale. At the diurnal scale, the reversible heat dissipation is responsible for the change of photosynthetic light use 

efficiency.   705 

 

We propose to use a two-big-leaf LUE model instead of the commonly used one-big-leaf LUE model for interpreting the SIF-

GPP relationship. This is because of clearly different relationships between fluorescence emission and photochemical light use 

efficiencies for sunlit and shaded leaves. The use of the two-big-leaf LUE model leads to a better understanding of the SIF-

GPP relationship and its responses to weather conditions, such as clouds and fraction of diffuse light, as well as its responses 710 

to canopy structure, such as canopy openness and growth stages. We also suggest to include measurements of canopy 

interceptance or fAPAR in future field campaigns to allow estimating canopy total emitted SIF from TOC SIF for a better 

estimation of GPP.    

 

 715 

Appendix A 

[Insert Figure A1 here] 

[Insert Figure A2 here] 
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Tables and figures 

Table 1: Summary of the main canopy and leaf field measurements used in the analyses. 

 Variable Description Measuring system Unit Temporal 

resolution 

 

 

 

Canopy 

GPP gross primary 

production 

eddy covariance system mg m-2 s-1 30 minutes 

F760 canopy SIF at 760nm QEpro (in FLOX) mW m-2 s-1 1-3 minutes 

iPARcanopy TOC incoming PAR FLAME-S (in FLOX) 𝜇𝜇mol m-2 s-1 1-3 minutes 

fAPARcanopy canopy fraction of 

absorbed PAR 

FLAME-S (in FLOX) - 1-3 minutes 

 

 

Leaf 

iPARleaf leaf incoming PAR MoniPAM system 𝜇𝜇mol m-2 s-1 10 minutes 

fAPARleaf leaf fAPAR ASD spectrometer - - 

Fm  maximal fluorescence 

levels 

MoniPAM system - 10 minutes 

Fs steady-state 

fluorescence levels 

MoniPAM system - 10 minutes 
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Table 2: Correlation coefficients and partial correlation coefficients (i.e. controlling for or eliminating separate effects) between 

fluorescence and photosynthesis. 945 

Φ𝐹𝐹
∗  vs. Φ𝑃𝑃 Sunlit leaves Shaded leaves 

Without controls 0.53 0.10 

Controlling Φ𝑁𝑁 0.05 -0.31 

Controlling Φ𝐷𝐷 0.08 -0.35 

Controlling both Φ𝑁𝑁 and Φ𝐷𝐷 -0.75 -0.75 

 
Table 3. Correlations between variables describing energy partitioning at leaf and canopy scales 

         
Scale Time  Types Φ𝑁𝑁 vs. Φ𝐹𝐹 Φ𝑃𝑃  vs. Φ𝐹𝐹 Φ𝑁𝑁 vs. Φ𝑃𝑃 APAR vs. Φ𝐹𝐹 APAR vs. Φ𝑁𝑁 APAR vs. Φ𝑃𝑃 
Leaf All Sunlit -0.33 0.53 -0.74 -0.10 0.64 -0.75 

  Shaded -0.23 0.10 -0.87 0.25 0.68 -0.75 

 Midday Sunlit -0.45 0.62 -0.76 -0.27 0.60 -0.81 

  Shaded -0.45 0.27 -0.92 -0.14 0.77 -0.81 

         
Canopy All  -0.04 0.37 -0.16 -0.25 0.28 -0.41 

 Midday  -0.07 0.53 -0.25 -0.32 0.41 -0.55 
 

 
Figure 1: Relationships between far-red SIF (F760) and GPP, and between APARcanopy and GPP of a corn canopy in the 2017 growing 

season with half-hour temporal resolution during daylight hours. F760 and APARcanopy were retrieved from FLoX canopy 950 
measurements. GPP was obtained from the site's flux tower measurements. 
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Figure 2: Pearson correlation coefficients among the canopy variables iPARcanopy, APARcanopy, fAPARcanopy (indicated in bold, blue 

text), GPP, and SIF for a corn canopy across the 2017 growing season, based on the dataset shown in Fig. 1 (a, b). The partial 

correlation coefficients between SIF and GPP (listed at the base of the triangle) were determined by removing the effects of the 955 
controlling variables, fAPAR, iPAR and APAR, respectively. Measurements had a half-hour resolution. 
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Figure 3: Relationships between far-red SIF (F760) and GPP of a corn canopy across the 2017 growing season with half-hour temporal 

resolution during daytime hours for three growth stages (a-c):young (Y), mature (M) and senescent (S); for three times of a day (d-960 
f): morning (9:00-11:00), midday (11:00-14:00) and afternoon (14:00-17:00). Colors refer to the iPARcanopy values obtained in 

conjunction with the GPP and SIF observations, as shown in the legend bar. 
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Figure 4: Photosystem energy partitioning obtained from in situ active fluorescence measurements made on individual leaves of a 965 
corn canopy during the 2017 growing season. Shown are the absolute light use efficiency of photochemistry (𝚽𝚽𝑷𝑷), the reversible heat 

dissipation (𝚽𝚽𝑵𝑵), the relative light use efficiency of sustained heat dissipation (𝚽𝚽𝑫𝑫
∗ ), the relative light use efficiency of fluorescence 

(𝚽𝚽𝑭𝑭
∗) and the photosynthetically active radiation absorbed by individually leaves (APARleaf, μmol m-2 s-1) for sunlit leaves (red solid 

lines) and shaded leaves (blue dashed lines). The nighttime periods from sunset to sunrise of the next day are marked with grey 

rectangles. 970 
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Figure 5: Summary chart of the efficiency responses presented in Fig. 4 for sunlit leaves. The energy partitioning in both nighttime 

(sunset - sunrise) and midday (11:00 - 14:00) measurements for one representative date per growth stage (Y, DOY 196; M, DOY 

232; and S, DOY 254) is diagrammed in the pie charts. Clearly, the photosynthetic efficiencies (P, green) are constrained, especially 

during daytime, by the combined action of reversible thermal dissipation efficiency (N, yellow) and the F + D (fluorescence and 975 
sustained thermal dissipation, red) efficiency. 
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Figure 6: Relationships between the light use efficiency of photochemistry (𝚽𝚽𝑷𝑷) and the relative fluorescence light emission efficiency 980 
(𝚽𝚽𝑭𝑭

∗) for sunlit leaves and shaded leaves across the 2017 growing season in a corn canopy are shown: all daytime measurements (9:00 

- 17:00, a and b); and midday (11:00 - 14:00) seasonally-averaged measurements (c).  Colors refer to the iPARleaf values shown in 

the legend bar.. The data in (c) were classified into two groups by iPARleaf with a threshold value of 500 μmol m-2 s-1. 
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 985 
Figure 7: Relationships between the light use efficiency of photochemistry (𝚽𝚽𝑷𝑷) and the reversible heat dissipation (𝚽𝚽𝑵𝑵) for sunlit 

leaves and shaded leaves across the 2017 growing season in a corn canopy are shown: all daytime measurements (9:00 - 17:00, a and 

b); and midday (11:00 - 14:00) seasonally-averaged measurements (c).  Colors refer to the midday 𝚽𝚽 ∗𝑫𝑫 values shown in the legend 

bar.  . The arrows indicate the shift in linear response between 𝚽𝚽𝑷𝑷 and 𝚽𝚽𝑵𝑵 as 𝚽𝚽𝑫𝑫
∗  becomes the dominant energy pathway, thus 

lowering the photosynthetic potential. 990 
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Figure 8: Diurnal correlations between 𝚽𝚽𝑭𝑭

∗  and 𝚽𝚽𝑷𝑷, and between 𝚽𝚽𝑵𝑵 and 𝚽𝚽𝑷𝑷  for sunlit and shaded leaves. The Pearson 

correlation coefficients for the days with more than five available observations are presented.   

 995 
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Figure 9: Reproduction of Fig. 6 with simulated variables from the biochemical model of Van der Tol et al. (2014). 
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Figure 10: Reproduction of Fig. 7 with simulated variables from the biochemical model of Van der Tol et al. (2014). 1000 

 

 



41 
 

Figure 11: Pearson correlation coefficients between absorbed PAR (APARleaf and APARcanopy), and light use efficiencies for all data 

obtained for a corn canopy across the 2017 growing season at both leaf (a) and canopy levels (b). Light use efficiency of 

photochemistry (𝚽𝚽𝑷𝑷), relative fluorescence emission efficiency (𝚽𝚽𝑭𝑭
∗), and efficiency of variable heat dissipation (𝚽𝚽𝑵𝑵) of sunlit leaves 1005 

and shaded leaves (indicated in bold, blue text) during daytime (9:00 to 17:00) are obtained from in situ active fluorescence 

measurements made on individual leaves. Canopy light use efficiency of photochemistry (𝚽𝚽𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷) and of fluorescence (𝚽𝚽𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭) 

are approximated by GPP/ APARcanopy and F760/APARcanopy respectively. PRI is used as an indicator of canopy light use efficiency 

of variable heat dissipation (𝚽𝚽𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵), but the exact values of 𝚽𝚽𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 are unknown (noted with “?” markers). The leaf-level and 

canopy-level variables had 10-minute and half-hour resolutions, respectively. 1010 
 

 
Figure 12. Reproduction of Fig. 11 with only midday measurements (11:00-14:00). Data correspond to subsamples previously shown 

in Figs. 3e, 6c, and 7c. 

 1015 
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Figure 13: Fraction of sunlit canopy changing with canopy LAI and solar zenith angle (𝜽𝜽𝒔𝒔) for canopy with spherical 

(a), erectophile (b) and planophile (c).  

 

 1020 
Figure 14: Relationships between far-red total emitted SIF by the canopy (𝐹𝐹760𝑡𝑡𝑡𝑡𝑡𝑡 ) and GPP. 𝑭𝑭𝟕𝟕𝟕𝟕𝟕𝟕𝒕𝒕𝒕𝒕𝒕𝒕  was estimated by using the 

fluorescence correction vegetation index (FCVI).  
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Figure A1: Relationships between 𝚽𝚽𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and 𝚽𝚽𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, estimated as F760/APAR and GPP/APAR, respectively, of a corn canopy 1025 

in the 2017 growing season with half-hour temporal resolution during daylight hours.  

 

 
Figure A2: Relationships between leaf and canopy 𝚽𝚽𝑭𝑭 (a), and leaf and canopy 𝚽𝚽𝑷𝑷 (b).  𝚽𝚽𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and 𝚽𝚽𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 were estimated as 

F760/APAR and GPP/APAR, respectively. 𝚽𝚽𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 and 𝚽𝚽𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 were derived from MoniPAM active fluorescence measurements. 1030 
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