
Referee #1 

 

Comment 1.1 

General points 

In this study, the authors investigated the historical carbon emissions caused by land-use change using 

a reduced-form Earth system model, OSCAR. They conducted a series of ensemble simulations to 

obtain the best guess and its associated uncertainty of the land-use-induced emission. The estimated 

historical cumulative emission, 206±57 Pg C, is substantial and looks consistent with those obtained 

by previous global carbon budget studies. Land-use change is an important anthropogenic CO2 source 

and related to various human activities such as agriculture and urbanization. Therefore, clearly, this 

study falls within the journal scope and will carry implications on the global carbon budget.  

 

Response 1.1 

We thank the referee their comments and for recognizing the potential impact of our work. 

 

 

Comment 1.2 

On the other hand, the methodology they adopted is slightly complicated. They proposed a unifying 

approach for the bookkeeping model and dynamic global vegetation models, but I could not 

understand how these approaches were integrated into the OSCAR model. It was impressive for me 

that the model allowed a large number (10,000) of ensemble simulations, but how biogeochemical 

parameterizations were perturbed was not adequately described. Although the authors provided long 

appendix, the methodology should be clarified in the main text (section 2.).  

 

Response 1.2 

Done. The following text was added to section 2. 

 

These parameterizations are drawn randomly and with equiprobability from a pool of potential sets of 

parameters. This main pool is obtained by combining smaller pools of available parameterizations for 

separate processes (or group of processes), as described by (Gasser et al., 2017). For instance, 

recalibration of the preindustrial steady-state led to 11 possible parameterizations for preindustrial 

net primary productivity and turnover times, 4 for preindustrial wildfire rates, 5 for preindustrial export 

fractions from crop harvesting, and 2 for those from animal grazing. This is already a total of 11 × 4 × 

5 × 2 = 440 parameterizations. These are further combined with available parameterizations for other 

elements such as the transient response of the land carbon cycle to atmospheric CO2 and climate 

change, or the handling of harvested wood products, which leads to a main pool of ~1.5 million sets of 

parameters. 

 

 

Comment 1.3 

The evaluation of the loss of additional sink capacity (LASC) is the remarkable feature of this study, 

although it looks to depend heavily on previous studies such as GCP2019 and FRA2015. Overall, the 

manuscript is well written and I recommend a few amendments as seen below. 

 

Response 1.3 



Thank you for the support. We note that our study uses GCB2019 and FRA2015 data as input, and so 

it does depend on that data as much as any other modelling study depends on their own input data. 

We do not see that as a weakness. 

 

 

Comment 1.4 

Specific points 

Line 79: Please provide more specifications of the OSCAR model, such as spatial resolution, spin-up 

method, time step, etc. 

 

Response 1.4 

The first paragraph of section 2 has been extended with this information: OSCAR is not spatially 

explicit, but the global land C cycle is divided into 10 broad world regions; it does not require spin-up 

because the preindustrial steady-state is directly calibrated on TRENDY models; it works with a yearly 

time-step. 

 

Further information is available in Appendix, and ultimately in the description paper of the model 

(Gasser et al., 2017). 

 

 

Comment 1.5 

Line 83: Can you explain more about the “10,000 different biogeochemical parameterizations”? 

 

Response 1.5 

Done. See response 1.2. 

 

 

Comment 1.6 

Line 92: In general, Results section should present exclusively the outcomes obtained in the present 

study and so should not include citations to other studies. The present “3. Results” section looks more 

like a “Results and Discussion” section. Please consider restructuring of the manuscript. 

 

Response 1.6 

We fully understand the referee’s point of view, and acknowledge that our structure somewhat differs 

from that of a typical paper. However, we are reluctant to change the structure for one main reason. 

The way we wrote the “Results” section is meant to take the reader progressively through several 

aspects of our simulations, each time comparing our results with reference studies to give confidence 

as to the performance of the model and the robustness of the subsection’s results and those of the 

next subsections. Separating results and comparison would somehow suspend the reader’s validation 

of our results until the discussion section, or force a tedious back-and-forth between both sections. 

Additionally, it seems a stand-alone section for comparing our results to existing ones would imply 

having a significant amount of repeat in the text. 

 

Therefore, we stick to the initial structure. Nevertheless, to make it clear from the start, we renamed 

section 3 “Results and comparison to existing estimates”. 



 

 

Comment 1.7 

Line 107: Can you specify what is “the change in empirical constraint” responsible for the larger LASC? 

 

Response 1.7 

This is specified in the following sentence (and already was in the previous version of the manuscript). 

 

 

Comment 1.8 

Line 223: Please explain what are the “seven categories of LUCCC activities”, in a consistent manner 

with those in the “2. Overview of the methodology” section (only three activities in Line 69-70). 

 

Response 1.8 

Done. We have added the following text at the beginning of section 3.5. 

 

These categories are essentially a subdivision of the main three LULCC activities mentioned previously 

in the short description of OSCAR. Category 1 corresponds to land-cover change (LCC) where forest is 

replaced by cropland. Category 2 is LCC where forest is replaced by anything else (but forest). Category 

3 is the opposite of 1 and 2: LCC where any type of land but forest is replaced by forest. Category 4 is 

LCC where non-forested natural land is replaced by any anthropogenic land. Category 5 is the opposite 

of 4. Category 6 is any LCC happening among anthropogenic land (e.g. pasture to cropland). Category 

7 is the sum of wood harvest and LCC happening from any type of natural land to the same type of 

natural land (e.g. forest to forest). Note that because of the model’s structure, the effects of shifting 

cultivation are included in their corresponding LCC categories. 

  



Referee #2 

 

Comment 2.1 

CO2 emissions from land use and land cover change (LULCC) are uncertain as theyare not directly 

observable. In the annually updated Global Carbon Budget, two methods are used to estimate the 

emissions: a book-keeping approach based on LULCC data and empirical response functions, and 

results from process-based dynamic global vegetation models. T. Gasser and co-authors present 

results from a model (OSCAR) which combines book-keeping approaches with process-based 

modelling. There are several benefits to this approach, including an additional, constrained estimate 

of annual CO2 emissions from the land and a method for evaluating sources of uncertainty. This 

manuscript describes some of these results. Overall I think this is a very strong manuscript, it is well 

written and forms an important contribution to the Global Carbon Project. I appreciated having an 

explanation of the model in the Appendix (although I have noted a few questions about this below). 

My primary concern is about the choice of constraint and sensitivity of model results to the choice, 

which I explain below. There a couple of other ’substantial’ comments, and a few minor comments. 

 

Response 2.1 

We thank the referee the detailed comments and for her support. 

 

 

Comment 2.2 

The constraint: 

First, what is the constraint used in reducing the ensemble of simulations (as in, what is the value)?  I 

see it is given at Line 112, but I think this is an important piece of information to include in the Methods 

and in Section A.5. 

 

Response 2.2 

This value is now given in section (overview of the methodology) and in section A5. 

 

 

Comment 2.3 

The choice of constraint seems very important. It’s not clear how robust the results are to the choice 

of constraint (which is important given how uncertain the constraint is). Although this is not discussed 

in the manuscript, some information about sensitivity of results to the constraint is provided within 

the figures and tables. From examining Table 2 – in general there is overlap between the annual and 

cumulative emissions when comparing the two methods of constraining OSCAR. The biggest 

differences are for cumulative land carbon sink (which I think makes sense given that the original 

constraint mostly impacted the land carbon sink in Figure 1c, indicating this is a large source of 

potential uncertainty), and for LASC (which has a strong dependence on the land carbon sink, so that 

makes sense as well). I think the manuscript should include discussion of this sensitivity; and 

justification for choosing the constraint in this study.  

 

Response 2.3 

Thank you for this comment. We added the following paragraph in the discussion section to discuss 

the sensitivity and explain our choice. We note that our choice of constraint was also motivated by 



simplicity, as we see this part of our work more like a proof of concept that can be refined at a later 

stage, within the whole GCB process. 

 

Table 2 shows that the choice of constraint does not drastically impact our results, as there is a large 

overlap between the estimates obtained with both old and new constraints. More precisely, LULCC 

emissions do not show a large impact, whereas the land sink and the LASC do. This is however 

somewhat artificial, as both our constraints are aimed at constraining the processes that dictate the 

land sink (such as the fertilization effect), which is visible in Figure 1c where the unconstrained 

distribution of the land sink exhibits a large spread that is reduced after constraining. Other (or 

additional) constraints focused on LULCC emissions, such as constraints on carbon densities, could be 

envisioned – although we deemed it unnecessary for this study. Because the constraining is done after 

the simulations are actually run, it is indeed possible to decide ex-post on the best constraint (or 

combination thereof) depending on one’s ultimate goal. Our choice of constraint was driven by our will 

to make our estimates of LULCC emissions compatible with the overall GCB2019, our scientific 

conviction that it is preferable to use physical (i.e. observable) variables as constraints, and our own 

expert judgement as to which parts of the GCB are the most reliable. Our choice can be debated, 

however, and we invite the community to download our raw estimates and apply their own constraints 

if they so wish (see data availability). Ultimately, a Bayesian synthesis framework could be used at the 

GCB scale (Li et al., 2016) to avoid having to make such an arbitrary choice. 

 

 

Comment 2.4 

A related question I have (although maybe not for this paper): The uncertainty analysis revealed that 

biogeochemical parameters contribute to large proportion of the model uncertainty. This is attributed 

to the carbon densities (Lines 175-176), so it makes me think an additional constraint could be carbon 

stored in soils and vegetation. Have the authors considered using present-day carbon stocks as an 

additional constraint? 

 

Response 2.4 

It is entirely possible to add constraints to this setup. As written in the added text of response 2.3, It 

is even fairly easy to do so, because the constraining happens ex-post (i.e. after the simulations are 

done). 

 

Two very much interlinked points to consider, however. First, using carbon stocks or carbon densities 

as constraints likely implies to do it at the regional scale, which means adding at least 10 constraints. 

Second, the more constraints are used, the more “dissolved” their effect, which can lead to relax all 

the constraints in the end. This explains why we were reluctant to do it in this study. 

 

Ultimately, we decided to use our unique constraint as an example of the setup, leaving the question 

of which constraint or combination thereof is best open for a discussion within the GCP or possibly a 

follow-up study. Since we will provide our raw outputs, the referee or anyone can actually look into 

it. (Another constraint, along carbon stocks, could be NPP.) 

 

 

Comment 2.5 



Other comments: 

Lines 435-438: The pre-industrial steady state carbon pools are determined using average climate 

variables from 1901-1930. I’m not sure how much IAV occurred during this time period, but using 

average climate, rather than looping through years (as in GCB), will neglect the impact of IAV on the 

pools. Is it possible this has an impact on the steady state pool values, and would cause spurious 

transient responses when switching to the historical transient simulations? 

 

Response 2.5 

Thank you for this comment. 

 

First, there is a slight misunderstanding: the preindustrial steady-state is immediately obtained after 

calibration on the DGVMs (on the S0 simulation of TRENDY), i.e. we do not spin-up our model. This is 

now explicit in the main text, following comment 1.4. Therefore, our model simulates a deviation to 

that preindustrial steady-state, as discussed in (Gasser et al. 2017). 

 

It is however true that in our transient simulations, the climate variables before 1901 (i.e. before 

reconstructions are available) are assumed constant and equal to the average over 1901-1920 (and 

not 1930; this was a mistake in our text – it is now corrected). We believe the referee’s concerns are 

about this second aspect, as DGVMs actually recycle the first 20 years of the climate data, for this 

period over which we do not have data. 

 

We made a quick test, using 2000 unweighted Monte Carlo elements, and produced the attached 

figure. The first line of panels shows the simulations results when using our ‘flat’ climate assumption 

or the recycled climate. The second line of panels shows the absolute difference (i.e. recycled minus 

flat simulations). One can see that the impact on the land sink is as expected: a cycle with >1 GtC/yr 

of amplitude appears before 1901. However, this virtually does not affect the LULCC emissions (which 

are the focus of our paper). The cumulative net change in land carbon stock is also extremely limited: 

it is about 1 GtC in 1901 – which is very low compared to the ~40 GtC already emitted at that point – 

and it slowly decays to be nearly nothing after 1950. We note that this behavior is likely specific to 

OSCAR: it is not a process-based model, it has a yearly time-step, its sensitivities were calibrated to 

reproduce the effect of climate change (and not climate!), and it has a fairly linear formulation. 

 



 

 

Therefore, we believe this confirms that our experimental setup is sound, if not exactly in line with the 

GCB’s. And thus we will not redo our simulations. We also note that in future simulations (e.g. for 

future GCBs), this could easily be changed and aligned with the TRENDY exercise. Nevertheless, we 

added to the relevant appendix mention of this test and the fact that it does not impact our results. 

 

 

Comment 2.6 

Lines 284-286: Annual emissions would be less without changes in environmental conditions 

(according to the model): in terms of what the model is simulating, why is this? (e.g. is it increasing 

fire emissions? More land carbon without the changes resulting in higher emissions? Etc) 

 

Response 2.6 

This is mainly caused by a lower carbon density that is itself caused by the absence of fertilisation 

effect (as atmospheric CO2 remains constant to preindustrial levels in this extra simulation). This was 

added to the corresponding section of the main text. 

 

 

Comment 2.7 

Minor comments OSCAR calculates carbon stocks and fluxes for average biomes within 5 regions –

what are the biomes? I think these should be stated up front in Section 2 and in A.1.Also state number 

of regions. 

 

Response 2.7 

Done in both places. 

 

 

Comment 2.8 

Line 181: Typo; I think you mean Table 3. 

 



Response 2.8 

Corrected throughout section 3.3. 

 

 

Comment 2.9 

Lines 358-359: Could you clarify what “definition 3” and “definition B” are? 

 

Response 2.9 

Those definitions are introduced in the respective referenced papers: (Gasser and Ciais, 2013) and 

(Pongratz et al., 2014). This sentence was just to make it clear which definition the structure of OSCAR 

corresponds to, for anyone comparing our study and those two papers. It feels unnecessary, however, 

to detail the definitions and add another layer of complexity, especially as the definitions are 

somewhat dependent on other definitions introduced in their respective papers… 

 

This sentence was slightly rephrased to make it clearer that the definitions are introduced in the cited 

papers: 

 

This bookkeeping approach corresponds to the “definition 3” introduced by (Gasser and Ciais, 2013) 

and to the “definition B” of (Pongratz et al., 2014). 

 

Alternatively, that sentence could be deleted entirely. 

 

 

Comment 2.10 

Line 383: Recommend replacing ‘a fortiori’, I had to look it up 

 

Response 2.10 

Simply deleted. 

 

 

Comment 2.11 

Line 439: The word “past” here is a little vague; in my mind it can mean either ‘beyond1950’ or ‘further 

in the past than 1950’; perhaps just change to ‘after’ (I think that’s what is meant here). 

 

Response 2.11 

Agreed. 

 

 

Comment 2.12 

Lines 435-455: Perhaps reference Figure 1 and related discussion here to note that there is further 

discussion of the effect of the constraint in the main text. 

 

Response 2.12 

Done. 

 



 

Comment 2.13 

Lines 451-453: It would be helpful if you state here the number of model parameters, and refer to 

section A.7 where they are introduced.  

 

Response 2.13 

Done. 

 

 

Comment 2.14 

Section A.7: Which CMIP5 experiments were used for calibrating the sensitivity functions? 

 

Response 2.14 

They are calibrated on 1pctCO2 experiments and their variants (esmFixClim1 and esmFdbk1). 

Information added. Note that the details of the calibration are given in Gasser et al. (2017). 

 

 

Comment 2.15 

Eq 19: How is tau_shift determined? Also it’s not clear how Eq. 13 is used to derive Eq. 19. Is this a 

typo? 

 

Response 2.15 

The value of tau_shift is 15 years, taken as the average turnover time of shifting cultivation according 

to Hurtt et al. (2006). We acknowledge this is an old value that could be reevaluated.  

 

It was indeed a typo: Eq. 19 is derived from Eq. 3, i.e. the differential equation describing the biomass 

growth (that is exponential in OSCAR). We added these two pieces of information to the text. 

 

 

Comment 2.16 

I can’t see where Fslash comes into the overall equations, other than the initialization step in Eq. 31.  

 

Response 2.16 

The referee is right: the slash only impacts initialization, since it is then considered to be part of the 

litter or soil pool. We do not treat it separately. We added the following sentence:  

 

The slash is not accounted for separately in OSCAR. Therefore, slash fluxes only appear at the 

initialization step, since this carbon is added to the litter and soil pools, and then follow the 

biogeochemistry of these pools. 

 

 

Comment 2.17 

Sorry if I have missed it, but I also don’t see an explanation of how the LASC is calculated. I assume it’s 

related to Eq. 42 but without transient LULCC?  

 



Response 2.17 

It is indeed missing! We added the following short paragraph at the end of section A7: 

 

In OSCAR, the LASC is naturally a subcomponent of the land carbon sink. It is deduced from Eq. (42) 

by difference to a case without transient land-cover change (i.e. with fixed preindustrial land-cover, 

noted Aland,0): 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ ��𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖,𝑏𝑏 − 𝑒𝑒ℎ𝑎𝑎𝑓𝑓𝑎𝑎𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑔𝑔𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ1𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ2𝑖𝑖,𝑏𝑏� �𝐴𝐴𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖,𝑏𝑏 − 𝐴𝐴𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙,0𝑖𝑖,𝑏𝑏 ��𝑖𝑖,𝑏𝑏   

 

 

Comment 2.18 

Table A2: What are the units (Mha?)? 

 

Response 2.18 

Yes. Units added. 

 

 

Comment 2.19 

Figure A1: Is the brown line in panel (e) mislabelled? 

 

Response 2.19 

Yes. Corrected. 
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Abstract. Emissions from land-use and land-cover change are a key component of the global carbon cycle. Models are 

required to disentangle these emissions and the land carbon sink, however, because only the sum of both can be physically 

observed. Their assessment within the yearly community-wide effort known as the Global Carbon Budget remains a major 

difficulty, because it combines two lines of evidence that are inherently inconsistent: bookkeeping models and dynamic 15 

global vegetation models. Here, we propose a unifying approach relying on a bookkeeping model that embeds processes and 

parameters calibrated on dynamic global vegetation models, and the use of an empirical constraint. We estimate global CO2 

emissions from land-use and land-cover change were 1.36 ± 0.42 PgC yr-1 (1-σ range) on average over 2009–2018, and 206 

± 57 PgC cumulated over 1750–2018. We also estimate that land-cover change induced a global loss of additional sink 

capacity – that is, a foregone carbon removal, not part of the emissions – of 0.68 ± 0.57 PgC yr-1 and 32 ± 23 PgC over the 20 

same periods, respectively. Additionally, we provide a breakdown of our results’ uncertainty following aspects that include 

the land-use and land-cover change data sets used as input, and the model’s biogeochemical parameters. We find the 

biogeochemical uncertainty dominates our global and regional estimates, with the exception of tropical regions in which the 

input data dominates. Our analysis further identifies key sources of uncertainty, and suggests ways to strengthen the 

robustness of future Global Carbon Budgets. 25 
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1. Introduction 

The annual flux of carbon dioxide to the atmosphere caused by land use and land cover change (LULCC) is a key part of 

the global carbon budget (Friedlingstein et al., 2019) (GCB). It is one of the two historical anthropogenic sources of CO2 

(along with fossil fuel burning and industry emissions), and when added to the land carbon sink it gives the net land-to-30 

atmosphere carbon exchange. In fact, it is so closely connected to the land carbon sink that choosing incompatible definitions 

for these two fluxes can lead to double counting or missing part of the budget (Gasser and Ciais, 2013). Models are required 

to disentangle these emissions and the land carbon sink, however, because only the sum of both can be physically observed. 

The GCB2019 assessment (Friedlingstein et al., 2019) estimated LULCC emissions were 1.5 ± 0.7 PgC yr-1 (1-σ range) on 

average over 2009–2018. This value relied on two lines of evidence: dynamic global vegetation models (DGVMs), that are 35 

complex process-based and spatially explicit models of the terrestrial carbon cycle (and related processes), and bookkeeping 

models, that are parametric models that convolute time-series of LULCC areal perturbations with empirical response 

functions describing changes in ecosystem carbon stocks after these perturbations. 

The strengths and weaknesses of those two types of models are opposite: the DGVMs are developed to precisely describe 

the biogeochemistry of plants and ecosystems albeit without overly focusing on LULCC, whereas bookkeeping models are 40 

specifically designed to evaluate LULCC emissions but without any explicit representation of biogeochemical processes. 

Any comparison between those models is rendered even more difficult by two factors. First, DGVMs and bookkeeping 

models do not naturally follow the same definition of LULCC emissions, as DGVMs tend to include the “loss of additional 

sink capacity” (LASC) in their estimate (Gasser and Ciais, 2013; Pongratz et al., 2014). The LASC is defined as the 

difference between the actual land sink under changing land cover and the counterfactual (stronger) land sink under 45 

preindustrial land cover. The LASC, however, is not an actual physical flux: it is a foregone carbon removal. (A few 

DGVMs are now capable of providing LULCC emissions that are consistent with the bookkeeping definition, however, but 

these estimates are not used to establish the GCB’s best-guess estimates (Friedlingstein et al., 2019).) The second source of 

discrepancy is the different historical LULCC data sets used to drive the models. In the GCB2019, the DGVMs and one of 

the two bookkeeping models (Hansis et al., 2015) used spatially explicit LULCC drivers from the land use harmonization 50 

(LUH) project (Hurtt et al., 2011; Hurtt et al., 2006). The second bookkeeping model (Houghton and Nassikas, 2017), 

however, used independent driving data compiled from national statistics of the UN’s Food and Agriculture Organization 

(FAO), and especially from its 2015 Forest Resources Assessment (FAO, 2015) (FRA2015). 

Here, using the OSCAR reduced-form Earth system model, we bridge the gap between these approaches and estimates. 

OSCAR embeds a bookkeeping module as well as simplified biogeochemical processes calibrated on DGVMs, which makes 55 

it a valuable tool to consistently bridge across the different estimates used in the GCB, as illustrated in Table 1. The goal of 

this paper is threefold. First, it is to provide another bookkeeping estimate of global and regional LULCC emissions – 

hopefully to be used in the future GCB – obtained with an original model. Second, it is to revise and investigate further the 

LASC estimates we provided in an earlier version of the GCB (Le Quéré et al., 2018b). Third, it is to investigate the 
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uncertainty range in both these fluxes along the three axes of analysis shown in Table 1: inclusion of the LASC, driving 60 

LULCC data sets, and biogeochemical parameterization. 

2. Overview of the methodology 

OSCAR is a reduced-complexity model built to emulate the behavior of more complex (typically three-dimensional and 

process-based) models at the yearly timescale (although it cannot generate inter-annual variability by itself). Its land carbon 

cycle is calibrated on DGVMs; it is not spatially resolved, but it isand spatially aggregated subdivided over into ten broad 65 

world regions and five biomes . A brief description of its land carbon cycle is provided in (see also Appendix A1 for a more 

detailed description). The model’s preindustrial steady-state is based calibrated on the exact same simulations made for the 

GCB (also called the TRENDY exercise), and does not require any spin-up. Tthe transient responses of net primary 

productivity, wildfires and heterotrophic respiration to changes in atmospheric CO2 and climate are calibrated on CMIP5 

simulations (Arora et al., 2013). Its bookkeeping module keeps track of ecosystems affected by LULCC separately, offering 70 

a consistent and easy way to isolate LULCC emissions from the land sink (Gasser and Ciais, 2013; Gasser et al., 2017). 

LULCC activities accounted for are gross land-cover change transitions, wood harvest (without land-cover change), and 

shifting cultivation (i.e. rapid rotations between young natural ecosystems and cropland). OSCAR does not include fire as a 

land management tool (Houghton et al., 2012), emissions caused by the draining and burning of peatlands (Carlson et al., 

2015; Guillaume et al., 2018; Houghton and Nassikas, 2017), or the impact of LULCC on the export of terrestrial organic 75 

carbon to the ocean through the land-ocean aquatic continuum (Regnier et al., 2013). Here, we use OSCAR v3.1: an iteration 

over v3.0 in which the land carbon cycle’s structure was slightly altered, and its preindustrial steady-state recalibrated. Both 

changes are described in Appendix A2, and older changes that led from v2.2 to v3.0 are summed up in Appendix A3. 

OSCAR v2.2 was comprehensively described by (Gasser et al., 2017). These and Eearlier versions have beenwere used 

previously in the past to investigate LULCC emissions (Arneth et al., 2017; Bastos et al., 2016; Eglin et al., 2010; Gasser 80 

and Ciais, 2013; Gitz and Ciais, 2003). 

We follow an experimental protocol similar to the one used in the recent GCBs (and fully described in Appendix A4). The 

model is driven with observed changes in environmental conditions (global atmospheric CO2, regional temperature and 

precipitation), and with specific LULCC driving data. Thanks to the model’s flexibility and low computing requirements, we 

also run different LULCC data sets, sensitivity experiments in which either changes in environmental conditions or LULCC 85 

are turned off, and a Monte Carlo ensemble of 10,000 different biogeochemical parameterizations. These parameterizations 

are drawn randomly and with equiprobability from a pool of potential sets of parameters. This main pool is obtained by 

combining smaller pools of available parameterizations for separate processes (or groups of processes), as described by 

(Gasser et al., 2017). For instance, recalibration of the preindustrial steady-state led to 11 possible parameterizations for 

preindustrial net primary productivity and turnover times, 4 for preindustrial wildfire rates, 5 for preindustrial export 90 

fractions from crop harvesting, and 2 for those from animal grazing. This is already a total of 11 × 4 × 5 × 2 = 440 
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parameterizations. These are further combined with available parameterizations for other elements such as the transient 

response of the land carbon cycle to atmospheric CO2 and climate change, or the handling of harvested wood products, 

which leads to a main pool of ~1.5 million sets of parameters. 

Our best-guess estimate is derived by combining results obtained with two LULCC data sets: the latest iteration of the 95 

LUH2 data set used for the GCB2019 (Friedlingstein et al., 2019), and the FRA2015 data set used by (Houghton and 

Nassikas, 2017). The latter data set ends in 2015, however, so we extended its results with constant values over 2016–2018 

equal to the average of the 2011–2015 period. To constrain this best-guess ensemble, each of the 20,000 elements is given a 

weight based on how well it compares to a reference value. All results presented in this study are the ensuing weighted 

averages and weighted standard deviations (see Appendix A5). The chosen constraining value isof the net change in land 100 

carbon stock between 1850 and 2018, estimated to be −25 ± 30 PgC (see Appendix A5). All values presented in this study 

are the resulting weighted averages and weighted standard deviations. The constraining valueIt is calculated as the through 

carbon balance over the chosen period, using the GCB2019 estimates of cumulative fossil-fuel emissions minus the and 

changes in atmospheric and oceanic carbon stocks over the period, as well as standard uncertainty propagation. – all taken 

from the GCB2019. 105 

3. Results and comparison to existing estimates 

3.1. Global LULCC emissions and LASC 

Our primary results are shown in Table 2 and Figure 1. We find global LULCC emissions of 1.36 ± 0.42 PgC yr-1 on 

average over 2009–2018, which is consistent with the GCB2019 estimate (Friedlingstein et al., 2019) of 1.5 ± 0.7 PgC yr-1. 

Our reported value follows a bookkeeping definition (Gasser and Ciais, 2013; Pongratz et al., 2014) and is therefore 110 

comparable to that of the GCB. We simulate that historical LULCC emissions peaked in 1959, at a value of 1.61 ± 0.55 PgC 

yr-1. Since then, they have remained roughly steady, but reached a local minimum in 1999 of 1.14 ± 0.52 PgC yr-1. Overall, 

we estimate that a total of 206 ± 57 PgC was emitted between 1750 and 2018, and 178 ± 50 PgC between 1850 and 2018. 

These values are also consistent with the GCB2019 estimates of 235 ± 75 PgC and 205 ± 60 PgC over the same periods, 

respectively. 115 

We estimate a global loss of additional sink capacity of 0.68 ± 0.57 PgC yr-1 on average over 2009–2018. It amounted to a 

cumulative 32 ± 23 PgC between 1750 and 2018, and 31 ± 22 PgC between 1850 and 2018. This extremely low difference 

between the two periods is explained by the nature of the LASC. It is a foregone land carbon sink; a product of both land-

cover change and environmental condition changes. Since, environmental conditions were only marginally changing during 

the early 1750–1850 period, the land sink and the LASC were extremely low. As this change in environmental conditions 120 

became more intense in the recent past, both fluxes also increased in intensity. Our new estimates of the LASC are larger 

than those we reported in a past GCB (Le Quéré et al., 2018b), owing to the change in empirical constraint. Table 2 shows 

that we can indeed obtain estimates similar to the older ones by reverting back to the old constraint (that is,which was the 
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cumulative land sink over 1850–2018 without LULCC simulated by DGVMs). Performance of this alternative constraint is 

further discussed later in this paper, and presented shown in Figure A1. 125 

The effect of the constraint is further detailed in Figure 1c. Since the constraint is applied to the cumulative net land-to-

atmosphere flux over 1850–2018, Cconstraining corrected the overestimate and substantially reduced the range spread of this 

valuethe cumulative net land-to-atmosphere flux over 1850–2018: from an unconstrained value of −4 ± 84 PgC to −22 ± 29 

PgC (compared to the constraining value of −25 ± 30 PgC). Applying the constraint essentially resulted in the exclusion of 

aberrant values of the land carbon sink without significantly affecting LULCC emissions. The cumulative LULCC emissions 130 

over 1850–2018 were indeed 176 ± 48 PgC before constraining (and 178 ± 50 PgC after). Since similar processes drive the 

LASC and the land sink, Tthe stronger constraining effect on the land sink is also logically visible on the LASC,: however, 

as the unconstrained cumulative LASC over 1850–2018 was 25 ± 23 PgC (and the constrained one is 32 ± 23 PgC). 

3.2. Comparison to GCB models 

Comparability between our best guess estimates and those of the GCB2019 is limited (because of differing definitions or 135 

driving data), and we therefore dedicate this section to comparing like to like. Figure 2a compares the annual land sink over 

1959–2018 in the absence of LULCC perturbation (i.e. with a preindustrial land cover). OSCAR simulates a slightly larger 

land sink by the end of the period than DGVMs, although it remains within their uncertainty range. It also reproduces fairly 

well the inter-annual variability of the complex models. Note that this specific simulation is used by the GCB to define the 

land sink. This implies that their land sink is not comparable to ours (except in this figure), since theirs does not include the 140 

LASC. Figure 2b compares LULCC emissions calculated using the DGVMs’ definition (Gasser and Ciais, 2013; Pongratz et 

al., 2014) (i.e. including the LASC) over 1959–2018. OSCAR is in line with the DGVMs, although it estimates a slightly 

larger flux over the beginning of the period. More importantly, it displays a much lower uncertainty range than the spread 

among DGVMs. Since OSCAR emulates well the carbon densities of the DGVMs (Appendix, and Table A1), we attribute 

this difference in spread to the large variance in the land cover map used by the DGVMs (Table A2) and their processing of 145 

the input LULCC data set. 

Figure 2c compares OSCAR and BLUE estimates of the bookkeeping LULCC emissions (i.e. without the LASC). BLUE is 

one of the two bookkeeping models used in the GCB2019, and both models are driven by the LUH2-GCB2019 data set. 

OSCAR and BLUE display similar annual variations in their LULCC emissions, but BLUE is systematically higher than 

OSCAR, and above the 1-σ range of our estimates by the end of the simulation. Figure 2d compares OSCAR and H&N 150 

estimates (also without the LASC). H&N is the second bookkeeping models of the GCB2019, and both models are this time 

driven by the FRA2015 data set. Again, both models display similar annual variations, except near the end of the simulation, 

and this time H&N is systematically lower than OSCAR, although it remains mostly within its 1-σ range. Given that BLUE 

and H&N are parameterized with the same carbon densities, one would expect that OSCAR’s estimates would systematically 

be either higher or lower. The fact that it is not the case suggests part of the differences between the three bookkeeping 155 
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models comes from other factors, possibly such as structural assumptions or ways of processing and implementing the 

LULCC data sets. 

3.3. Uncertainty analysis 

Although we cannot investigate the aforementioned structural differences between bookkeeping models, our experimental 

setup allows investigating several factors within OSCAR that affect the spread in our global results. Figure 3 and Table 3 160 

summarize this. The first factor is whether the LASC is included in the estimate of LULCC emissions, as it is usually the 

case when they are calculated with DGVMs, which is illustrated in Figure 3a. The difference between including and 

excluding the LASC corresponds, over the last decade, to a debiased 1-σ range of ± 0.43 PgC yr-1 and a coefficient of 

variation (CV) of ± 25% (see Appendix A6). This rather substantial value is in line with previous studies that quantified this 

discrepancy (Gasser and Ciais, 2013; Stocker and Joos, 2015). Because the LASC became non-negligible only in the recent 165 

past, the effect of its inclusion or exclusion on cumulative LULCC emissions is smaller than for recent annual emissions: we 

estimate it is only ± 20 PgC (± 9%) over 1750–2018. It is however crucial to understand that the intensity of this discrepancy 

will keep increasing and accumulating as long as changes in environmental conditions do not stabilize (Gasser and Ciais, 

2013). This is illustrated in Figure 3a by the positive trend in the CV. In our view, this ever-growing discrepancy strongly 

pleads in favor of choosing, retaining and consistently applying one clear definition of the LULCC emissions. In the 170 

following, we exclude the LASC from LULCC emissions, and therefore discuss it separately. 

The second factor of uncertainty is the driving LULCC data set. Figure 3b shows the difference between the average 

bookkeeping emissions estimates based on LUH2-GCB2019 and those based on FRA2015. We find the annual emissions 

from the two data sets are in particularly good agreement on average over the last decade (Table 32), although this is purely 

fortuitous as the discrepancy is ± 0.30 PgC yr-1 (± 24%) over 1995–2004, and even peaks at ± 0.39 PgC yr-1 (± 34%) in 1999. 175 

More worrying, perhaps, is the two data sets’ disagreement on the trend in emissions after 1990. This discrepancy is hidden 

in our best-guess emissions that are rather even over the last 30 years. In terms of cumulative emissions over 1750–2018, 

however, results from the two data sets are in good agreement, with only a ± 8 PgC (± 4%) discrepancy. Additionally, Figure 

3c and 3d display the same source of uncertainty but among different versions of each of the two main data sets. This 

variation caused by updating the data sets is visible, for instance, when comparing older versions of the GCB together. We 180 

find that the difference among several versions of the same data set is of the same order of magnitude as the one between our 

two main data sets. For the LUH data set, this is explained by several factors, from the simple update of the historical land-

cover data used as input (Klein Goldewijk et al., 2017; Klein Goldewijk et al., 2011) to the complete overhaul of how 

shifting cultivation is estimated (Heinimann et al., 2017). Among the FRA-based data set’s versions, this difference is found 

to be somewhat larger. This likely owes to the concomitant update of some biogeochemical parameters of the H&N model 185 

(Houghton and Nassikas, 2017) that we cannot separate here, because the results shown in Figure 3d are not based on 

OSCAR. 
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The third and last factor of uncertainty is the parameterization of the model (for biogeochemistry). Through our Monte 

Carlo ensemble, we find a weighted standard deviation of ± 0.40 PgC yr-1 (± 29%) for annual emissions averaged over 

2009–2018, and of ± 55 PgC (± 27%) for emissions cumulated over 1750–2018. Except in some specific years, this source of 190 

uncertainty in annual emissions is the largest of the three we studied, and it dominates without exception in cumulative 

emissions. Carbon densities (and parameters determining them) are the key modeling factors explaining this spread (Gasser 

and Ciais, 2013). Figure 3f and Table 32 show the spread in our results when looking only at the variation caused by the 

parameters that relate to harvest wood products (HWPs). It is found to be one order of magnitude smaller than the total 

uncertainty caused by all parameters, confirming that biogeochemical parameters explain most of the uncertainty. However, 195 

we acknowledge that OSCAR likely underestimates the HWP-related uncertainty, because there is only one option to choose 

from, in the Monte Carlo setup, as to how HWPs are split between pools with different decay timescales (Appendix A7). 

Finally, a similar uncertainty breakdown for the LASC is reported in Table 32. We find that between our two main LULCC 

data sets, the uncertainty in the average annual LASC over the last decade is ± 0.21 PgC yr-1 (± 31%); and it is ± 10 PgC (± 

31%) for the cumulative LASC since year 1750. The much higher CV in cumulative LASC compared to that in cumulative 200 

LULCC emissions suggests that the latter is kept relatively low thanks to compensation effects that do not come into play in 

the former. We also find that the biogeochemical uncertainty in the LASC is high: ± 0.50 PgC yr-1 (± 77%) for the annual 

flux over 2009–2018, and ± 19 PgC (± 63%) for the cumulative flux over 1750–2018. Those values reflect the large 

uncertainty in the ecosystems’ response to transiently changing environmental conditions, despite our constraining 

(unconstrained CVs are ± 98% and ± 86%, respectively). 205 

3.4. Breakdown by region 

Figure 4 and Table 4 provide our best-guess estimates of the bookkeeping LULCC emissions in our ten broad world 

regions. Without surprise, tropical regions (Latin America, Sub-Saharan Africa, and South and Southeast Asia, in decreasing 

order) are found to be the main LULCC emitters over the last decade, with a positive trend over the last 50 years. 

Conversely, North America, Europe, Former Soviet Union, and China are all found to have a decreasing trend over the last 210 

50 years, to the point of North America, Europe and China being net carbon absorbers over the last decade. Looking at a 

larger historical period, Latin America and South and Southeast Asia were the top two emitters over 1750–2018, with North 

America being the third one. It must be noted, however, that because of uncertainties this ranking is not statistically 

significant. When the subset of our simulations driven by the FRA2015 data set is isolated, our estimates compare very well 

with that of H&N (Houghton and Nassikas, 2017), (Table A3). 215 

The uncertainty in our regional bookkeeping LULCC emissions can be attributed to the LULCC data sets and the 

biogeochemical parameters using Figure 4 and Table 4. For North America, Former Soviet Union, and to a lesser extent 

Europe, the two LULCC data sets lead to emissions that are in rather good agreement, which implies the regional uncertainty 

is dominated by the biogeochemical parameterization. In tropical regions, however, the two data sets show substantial 

disagreement, to the point of being the main source of uncertainty in Sub-Saharan Africa, and in South and Southeast Asia. 220 
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Remarkably, the disagreement in the emissions of Latin America around year 1990 seems to explain the global opposite 

trends at this date shown in Figure 3b. China is another region in which the discrepancy between the two data sets leads to a 

substantial uncertainty range. On the one hand, FRA2015 exhibits large-scale forest plantation in China based on national 

declarations, which leads to a significant atmospheric carbon removal. On the other hand, the LUH2-GCB2019 ignores those 

declarations and considers that – over the same period – China lost a large amount of forest. Ultimately, it is not the goal of 225 

this paper to provide a detailed analysis of the regional discrepancies between the two data sets, or to recommend one over 

the other. Nevertheless, we produced Figure A2 showing regional LULCC drivers, to offer a starting point for such an 

endeavor. 

Our estimate of the LASC is also broken down regionally in Figure 4. The annual LASC of most regions follows a similar 

trend as the global one. In North Africa and Middle East, and Oceania, however, the noise produced by the inter-annual 230 

variability appears to dominate over the trend. It is unclear what exactly causes this noise, but the fact that both regions 

include large non-vegetated areas suggests that the parameterization of OSCAR is not very robust in such a case. The noise 

intensity in Oceania is even larger than the signal in any other region, suggesting that some of the uncertainty in our LASC 

estimates could be an artefact of this weakness in our modeling approach. As to the regional split of the cumulative LASC 

over 1750–2018, it follows roughly that of the cumulative LULCC emissions, although it is modulated by the land sink’s 235 

relative efficiency in each region. Latin America is the region in which the largest part of this loss of sink capacity occurred 

(almost one third), followed by North America, South and Southeast Asia, and Sub-Saharan Africa. Uncertainties in the 

LASC are too high, however, for this ranking to be determined with good statistical confidence. 

3.5. Breakdown by transition 

Figure 5 and Table 5 show a breakdown of our global bookkeeping LULCC emissions and LASC following seven 240 

categories of LULCC activities. These categories are essentially a subdivision of the main three LULCC activities mentioned 

previously in the short description of OSCAR. Category 1 corresponds to land-cover change (LCC) where forest is replaced 

by cropland. Category 2 is LCC where forest is replaced by anything else (but forest). Category 3 is the opposite of 1 and 2: 

LCC where any type of land but forest is replaced by forest. Category 4 is LCC where non-forested natural land is replaced 

by any anthropogenic land. Category 5 is the opposite of 4. Category 6 is any LCC happening among anthropogenic land 245 

(e.g. pasture to cropland). Category 7 is the sum of wood harvest and LCC happening from any type of natural land to the 

same type of natural land (e.g. forest to forest). Note that because of the model’s structure, the effects of shifting cultivation 

are included in their corresponding LCC categories. 

Forest-related land-cover change dominates historical bookkeeping emissions. Over the last decade, we estimate an 

average of 1.86 ± 0.57 PgC yr-1 was emitted by deforestation for establishing cropland, an additional 0.55 ± 0.26 PgC yr-1 250 

was from other types of deforestation (e.g. for pastoral land, or simply forest degradation), and a capture of −1.36 ± 0.49 

PgC yr-1 came from reforestation and afforestation. These estimates include the effect of our shifting cultivation driver that 

encompasses traditional activities such as “slash-and-burn”, which leads to large but compensating gross carbon fluxes 
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caused by back-and-forth deforestation/reforestation activities (Houghton et al., 2012; Li et al., 2018; Yue et al., 2018). The 

cumulative emission over 1750–2018 was 213 ± 93 PgC by deforestation for cropland, 77 ± 27 PgC by other types of 255 

deforestation, and 60 ± 33 PgC through the loss of other natural land. This was partly compensated by −144 ± 99 PgC from 

reforestation and afforestation, and −20 ± 18 PgC when other natural land was regained. 

The uncertainty in the bookkeeping LULCC emissions is largely dominated by the discrepancy between the two main 

LULCC data sets. For annual emissions, this is even reinforced by the fact that shifting cultivation is included in our 

estimates. Figure A3 indeed shows that both data sets have a very different level of shifting cultivation area, although this is 260 

somewhat artificial as it is caused by the difference in the data sets’ starting year. Therefore, our uncertainty ranges for 

deforestation and reforestation categories are overestimated. For cumulative emissions, however, this overestimation is much 

lower, since in OSCAR shifting cultivation has a long-term effect of zero net emissions (Appendix A7). Notwithstanding 

this, a few other clear differences between the two data sets remain, such as the opposite trend in 1990 in the “other 

deforestation” category, or the difference in wood harvest. 265 

When we split the LASC between these transitions types, we obtain a slightly different picture. Our three categories of 

natural land appropriation caused roughly similar amounts of cumulative LASC: 14 ± 6 PgC from deforestation for cropland, 

15 ± 6 PgC from other deforestation, and 24 ± 25 PgC from loss of other natural land. This was partially compensated by 

negative LASC (i.e. increase in sink capacity) of −7 ± 5 PgC caused by reforestation and afforestation, and −3 ± 4 PgC 

caused by other natural land gain. Other types of LULCC led to negligible LASC. As to the uncertainty in the LASC, the 270 

noise we identified in the previous section can be attributed to the “other natural land” biome. Combined to the diagnosis 

from the previous section, this suggests OSCAR could maybe benefit from separating desert areas (i.e. bare soils) from the 

Non-Forest biome. However, this would make processing the LULCC data sets more difficult, as new assumptions should 

then be made as to how much of this new biome is affected by LULCC. 

3.6. Breakdown by carbon pool 275 

A final axis of analysis OSCAR can provide is a breakdown along the model’s carbon pools, and therefore indirectly 

following its biogeochemical processes. Figure 6 shows such a breakdown into our three main carbon pools: vegetation 

carbon, soil carbon, and HWPs. Bookkeeping LULCC emissions over the last decade consisted in a combination of −3.66 ± 

0.96 PgC yr-1 of vegetation carbon (i.e. biomass) regrowth, 2.84 ± 0.85 PgC yr-1 emitted by equilibrating soils, and 2.18 ± 

0.65 PgC yr-1 emitted by HWPs being oxidised. The equilibration of soils here includes both the heterotrophic respiration in 280 

originally carbon-rich soils that is not compensated by enough primary productivity (e.g. when deforesting to establish 

cropland) and the oxidation of slash products (i.e. of dead biomass left on site after land-cover change). The three sub-fluxes 

have been steadily increasing over the past century or so. Cumulated over 1750–2018, these three pool-specific values 

amount to −443 ± 155 PgC, 373 ± 137 PgC, and 276 ± 84 PgC, respectively. 

For the LASC, this pool-based decomposition concerns only the vegetation and soil pools, as no HWPs are involved in the 285 

processes driving the land sink. Both components of the annual LASC are positive, with notable inter-annual variability, and 
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with positive trend, reaching 0.33 ± 0.25 PgC yr-1 for the vegetation and 0.35 ± 0.36 PgC yr-1 for soils, on average over 

2009–2018. Over 1750–2018, the cumulative component fluxes are 16 ± 7 PgC for the vegetation and 16 ± 16 PgC for soils. 

These positive values must be interpreted as a storage of carbon that did not happen, because the preindustrial land-cover 

was modified and the new ecosystems could not provide as strong a land sink as the preindustrial ones. The breakdown 290 

shows how this storage would have been split between vegetation and soil carbon pools, had it occurred. Since it is implicitly 

determined by the model’s processes, this breakdown is heavily model-dependent, and largely dominated by the 

biogeochemical uncertainty. 

4. Discussion 

4.1. On the constraint 295 

Table 2 shows that the choice of constraint does not drastically impact our results, as there is a large overlap between the 

estimates obtained with both old and new constraints. More precisely, LULCC emissions do not show a large impact, 

whereas the land sink and the LASC do. This is however somewhat artificial, as both our constraints are aimed at 

constraining the processes that dictate the land sink (such as the fertilization effect), which is visible in Figure 1c where the 

unconstrained distribution of the land sink exhibits a large spread that is reduced after constraining. Other (or additional) 300 

constraints focused on LULCC emissions, such as constraints on carbon densities, could be envisioned – although we 

deemed it unnecessary for this study. Because the constraining is done after the simulations are actually run, it is indeed 

possible to decide ex-post on the best constraint (or combination thereof) depending on one’s ultimate goal. Our choice of 

constraint was driven by our will to make our estimates of LULCC emissions compatible with the overall GCB2019, our 

scientific conviction that it is preferable to use physical (i.e. observable) variables as constraints, and our own expert 305 

judgement as to which parts of the GCB are the most reliable. Our choice can be debated, however, and we invite the 

community to download our raw estimates and apply their own constraints if they so wish (see data availability). Ultimately, 

a Bayesian synthesis framework could be used at the GCB scale (Li et al., 2016) to avoid having to make such an arbitrary 

choice. 

4.2. On the OSCAR model 310 

OSCAR satisfactorily emulates the carbon densities and stocks of DGVMs (Table A1), but these stocks are in the lower 

end of existing assessments. The DGVMs we calibrated OSCAR upon have global preindustrial pools of 457 ± 77 PgC for 

the vegetation and 1140 ± 336 PgC for the soil, whereas the IPCC fifth assessment (Ciais et al., 2013) reports 450–650 PgC 

and 1500–2400 PgC, respectively. Some of the difference in soil carbon comes from the absence of peatland in DGVMs 

(Nichols and Peteet, 2019), and some may be explained by the existence of “passive” soil carbon that is not mobilized under 315 

the timescales we consider here (Barré et al., 2010; He et al., 2016), and that may not have been reported or modeled by the 

DGVMs. Nevertheless, the relatively low carbon pools suggest that our bookkeeping LULCC emissions could be 
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underestimated. Alternatively, our preindustrial land-cover taken from the LULCC data sets could be inaccurate (Table A2). 

We ran the LUH2 data set starting in 850, and did not find substantial carbon loss between 850 and 1750 (23 ± 15 PgC in 

total). Other studies specifically focused on the older past have found much higher carbon loss over that early period (Erb et 320 

al., 2018; Kaplan et al., 2011; Pongratz et al., 2008), again suggesting this part of our results could be underestimated. 

A key feature of OSCAR is that the model’s carbon densities transiently change as a response to changes in environmental 

conditions. This change in carbon densities is fully coupled to the bookkeeping module, and therefore impacts bookkeeping 

LULCC emissions. This feature contrasts with the fixed carbon densities of other bookkeeping models, and it makes possible 

accounting for processes such as CO2-fertilisation, wildfire changes, and climate feedbacks. Without any change in 325 

environmental conditions, we find annual bookkeeping LULCC emissions would have been 1.11 ± 0.35 PgC yr-1 on average 

over the last decade, and cumulative emissions would have been 191 ± 52 PgC over 1750–2018. This is respectively 19% 

and 7% less than our best guesses with environmental changes. , and firstly driven by the lower carbon densities that are 

caused by the absence of fertilisation effect. The effect on cumulative emissions is in line with an older estimate (Gasser and 

Ciais, 2013). The effect on annual emissions, however, is higher. This suggests that this effect increases with time, and will 330 

keep increasing in the future, as environmental conditions change and get further away from the preindustrial ones. This 

underscores the importance of building hybrid bookkeeping models like OSCAR capable of capturing such an effect. 

A structural limitation of this version of OSCAR is the absence of any age-specific process. This means that none of the 

model’s parameters depends on the time elapsed since a given LULCC perturbation (i.e., it has no age classes). For instance, 

5-years old forests grow and die at the same rate as 50-years old ones. This, by construction, means that the biomass 335 

regrowth of disturbed ecosystems follows an exponential response curve, which we acknowledge is unrealistic. The impact 

of this structural choice is difficult to estimate, but since it affects only dynamics and not carbon densities, we can speculate 

annual emissions are more impacted than cumulative emissions. Other regrowth curves could be introduced (Fekedulegn et 

al., 1999), although it would require introducing age-dependent functions in the model’s formulation, which would in turn 

make it heavier and slower. Actually, when OSCAR v2.4 was developed, the only process that had been age-dependent until 340 

then, namely the decay of HWPs (Gasser et al., 2017), was reformulated to be age-independent. The reason for this 

simplification is that, beyond being a carbon-cycle model, OSCAR is also an Earth system model, and the complexity of 

each of its modules has to be kept in check. It is not excluded, however, that future variants of the model will see 

implementation of such a feature. 

A final structural element that we find worth mentioning is the biome aggregation of our model. The final list of five 345 

biomes in OSCAR (Appendix A2) is a trade-off between the PFTs of the DGVMs and the land-cover classes of the LULCC 

data sets. Typically, DGVMs tend to focus on natural ecosystems (i.e. they have many types of forests), while LULCC data 

sets focus on anthropogenic ecosystems (i.e. more types of croplands and pastures). Our list of biomes aimed at limiting the 

number of assumptions made when processing both types of data for implementation within OSCAR, but some were 

necessary nonetheless. Qualitatively, we see two important caveats caused by our biome aggregation. First, since we have 350 

only one natural biome to cover all natural land but forests, we average actual natural ecosystems with relatively high carbon 
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densities such as shrubland with almost carbon-empty ecosystems like deserts. We saw in previous sections that this may 

explain part of the large uncertainty in our LASC estimates, but it likely also affects our bookkeeping LULCC emissions. 

Second, we do not distinguish between primary and secondary natural land. In other words, pristine and disturbed natural 

ecosystems are assumed to have the same steady-state carbon densities. This does not mean that the actual carbon densities 355 

are the same, however. It means that it is assumed that, if left undisturbed, previously disturbed ecosystems will grow back 

to the exact same steady state as that of never-disturbed ones. Because they relate to carbon densities, these structural aspects 

are likely to have the largest impact on our estimates. Quantifying it would require a significant amount of work, however, 

and it would undoubtedly require making new assumptions that would in turn introduce additional uncertainty and potential 

biases. 360 

5. Conclusion 

In spite of those caveats, this study has introduced an innovative method to estimate historical LULCC emissions and 

LASC, whereby a bookkeeping approach, data from processed-based models, several LULCC data sets and an empirical 

constraint are consistently combined. We have also identified key sources of uncertainty that must be reduced to improve 

future GCBs. One easy improvement is to decide on where to account for the LASC. We argued elsewhere (Gasser and 365 

Ciais, 2013) that it is ill-advised to include the LASC into LULCC emissions, because it is a theoretical flux that cannot be 

observed and that does not tend to zero after LULCC activities cease. Reducing the other sources of uncertainty is a more 

challenging endeavor, however. Although satellite data (Hansen et al., 2013) and crowd-sourcing (Fritz et al., 2019) are a 

promising way to establish more accurate land-cover maps in present days, these must be backcast over the past to be 

relevant for the long-term dynamic of the global carbon cycle. Such backcasting generates new uncertainty (Peng et al., 370 

2017), and additional data perhaps in the form of historical records (Bastos et al., 2017; Houghton and Nassikas, 2017) is 

required to mitigate the lack of direct observations. We found the biogeochemical uncertainty dominated, although that is a 

reflection of the uncertainty in the DGVMs’ own parameterization, and not the one stemming from direct observations of 

real-life carbon densities. Improving the DGVMs’ calibration, for instance by assimilating observational data, is an obvious 

albeit resource-intensive way of reducing this source of uncertainty. Posterior evaluation and weighting of the DGVMs is 375 

another approach, be it through a specifically designed protocol such as ILAMB (Collier et al., 2018) or a synthesis setup 

like ours. 
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A. Appendices 

A.1. Brief description of the land carbon cycle module 380 

The land carbon cycle module of OSCAR v3.1 is used in “offline” mode: it is not coupled to the rest of the Earth system, 

and in particular, permafrost carbon release (Gasser et al., 2018) is not accounted for. The global terrestrial biosphere is 

divided in pairs of regions and biomes, noted (i,b), representing the “average” biome b of the i-th region with assumed 

homogeneous biogeochemical characteristics. The module is therefore not spatially explicit, and the regional aggregation for 

this study follows the ten regions defined in (Houghton and Nassikas, 2017) (their Table 2), and five biomes (forests, other 385 

natural lands, croplands, pastures, and urban lands). A detailed analytical description of the module is provided hereafter in 

Appendix A7. 

The first part of the module describes the evolution of vegetation, litter and soil carbon densities (i.e. carbon stocks per unit 

area) and the areal carbon exchanges between these pools and/or the atmosphere, within each set (i,b) and in the absence of 

LULCC. The preindustrial steady-state values of these carbon densities and areal fluxes are calibrated on DGVMs. During a 390 

transient simulation, these values are affected by environmental conditions: changes in atmospheric CO2 concentration 

impact net primary productivity (NPP) – the "fertilization” effect – and wildfire intensity, while changes in regional yearly 

temperature and precipitation alter NPP, wildfire intensity and heterotrophic respiration rate. 

The second part of the module describes the effect of LULCC using a bookkeeping approach. When a LULCC 

perturbation occurs, carbon from the originally undisturbed (i,b) pools is redistributed to other pools, including an 395 

anthropogenic pool of harvested wood products (HWPs). The new pools can also be within another biome b’ in the case of 

land-cover change. This displaced carbon follows the biogeochemical properties of the new pools, thus slowly tending 

toward a new steady-state. Following the discussion and recommendation of (Gasser and Ciais, 2013), the carbon fluxes and 

pools of these transitioning ecosystems are defined as a difference to their expected but yet-to-be-reached new steady-state, 

so that the effect of any LULCC perturbation tends toward zero on the long run. This bookkeeping approach corresponds to 400 

the “definition 3” introduced byof (Gasser and Ciais, 2013) and to the “definition B” of (Pongratz et al., 2014). 

A.2. Recalibration of the preindustrial land carbon cycle 

The carbon cycle in each combination of region and biome (i,b) is represented by a three-box model, illustrated in Figure 

A3. In OSCAR v3.1, the three-box model was slightly altered but remains very close to that of earlier versions (Gasser et al., 

2017). Concretely, a flux going directly from the vegetation carbon pool to the soil carbon pool (and therefore bypassing the 405 

litter carbon pool) was added (“fmort2” in Figure A3). This simple change enables using the three-box model as a two-box 

model without changing its structure or equations. In turn, this enables emulating complex models that do not provide 

enough information to be properly emulated with the three-box model without making any additional assumption. In 

addition to this increased flexibility, the model was extended with two new fluxes: emissions from harvested crop products 

(“eharv”), and emissions caused by pasture grazing (“egraz”). 410 
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In OSCAR v3.1, the parameters describing the preindustrial steady-state of the land carbon cycle module were recalibrated 

on outputs of the DGVMs that took part in the GCB2018 (Le Quéré et al., 2018a) (i.e. the TRENDYv7 models). We used 

outputs from the control experiment (named “S0” in their protocol), in which no LULCC occurs and environmental 

conditions such as atmospheric CO2 and climate are maintained at their preindustrial level, to calibrate the parameters of the 

natural biomes (“Forest” and “Non-Forest”). However, because it follows preindustrial (here, 1700) land-cover data, the area 415 

extent of anthropogenic biomes (“Cropland”, “Pasture” and “Urban”) is very low in the S0 experiment. For these 

anthropogenic biomes, in order to avoid any bias in their parameters potentially caused by this low land-cover fraction, we 

decided to use the last years of another experiment instead (namely, “S4”), in which historical LULCC occurs but 

environmental conditions are still maintained at preindustrial levels. We acknowledge the existence of LULCC in S4 is not 

in line with our aim of calibrating a steady-state, but it is a necessary compromise to have a large enough area extent of 420 

anthropogenic biomes for proper calibration. Note that some DGVMs did not provide enough data and could therefore not be 

used for calibration at all, which led to a total of 11 models used out of the 16 original DGVMs (see Table 1). Detailed 

calibration protocol is given in Appendix A8. 

Table A1 shows a comparison of the global net primary productivity and carbon pools in the OSCAR v3.1 and in the 

original DGVMs. The emulation is not perfect, and the preindustrial global (and a fortiori regional) carbon pools of OSCAR 425 

do not exactly match those of the emulated DGVMs, for three main reasons. First, since we average and homogenize 

biogeochemical properties over large world regions, we lose some accuracy, as unevenly distributed carbon pools are not 

explicitly represented in OSCAR. This bias is somewhat reduced by defining regions that show a certain bio-climatic 

consistency (e.g. separated tropical regions). Second, OSCAR works with clearly defined biomes, and we therefore have to 

map the DGVMs’ plant functional types (PFTs) onto the biomes of our model. Since few DGVMs provide detailed fluxes 430 

and pools on a PFT basis, we further have to use an ad hoc method to distribute aggregated variables between our biomes 

(see detailed calibration protocol). Third, we calibrate carbon densities and not stocks, and some discrepancy is introduced 

by the fact that we do not use the DGVMs’ preindustrial land-cover map (Table A2). Despite these three caveats, Table A1 

demonstrates that the emulation remains largely satisfactory. 

A.3. Changes between OSCAR v2.2 and v3.1 435 

v3.1. Changes to the land carbon cycle are described hereinabove (Appendix A2). The new structure made it necessary to 

adapt the wetlands module, so that CH4 emissions from wetlands now scale with the relative change in total heterotrophic 

respiration (and not the change in litter respiration). 

v3.0.1. An error in the overlap function for the radiative forcing of CH4 and N2O was corrected. This error appeared during 

the rewriting of v3.0 and did not affect earlier versions. 440 

v3.0. OSCARv3 was completely recoded from scratch in Python 3 (instead of Python 2), with an entirely new structure and 

solving scheme. This version heavily relies on the “xarray” Python library (Hoyer and Hamman, 2017) to parallelize Monte 

Carlo simulations and/or scenarios. The default solving scheme was changed to a forward-Eulerian exponential integrator. 
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All underpinning physical equations and parameter values remain the same as in v2.4. Both versions were compared, and no 

significant difference was found beyond the effect of the new solving scheme. 445 

v2.4. This version was developed as a bridge version between v2 and v3. Our goal was that v2.4 be as close to v3.0 as 

possible, without changing the overall structure of the model, at this point. The preindustrial land-cover map was changed to 

being that of the LULCC data set used to drive the model. The dependency of the fractional area of wetlands to the 

preindustrial land-cover map was removed, taken as the average of all previous parameterizations. The possibility of having 

HWPs follow a non-exponential decay was removed. To compensate, beyond the original parameterization of the HWP 450 

lifetimes (called “normal”), two new options were added in which these lifetimes are rescaled by 0.5 (“fast”) or by 1.25 

(“slow”). Finally, the biome aggregation was fixed to that of v3: the five biomes described in this paper. 

v2.3.1. A number of minor errors were fixed, and additional adjustments were made. Land carbon-cycle parameters for the 

urban biome were corrected. So were one parameterization for the radiative efficiency of tropospheric O3, and one for the 

semi-direct effect of BC aerosols. One parameterization for the effect of N2O on stratospheric O3, and one for fractional 455 

release factor of ozone depleting substances were removed. One parameterization for the radiative efficiency of tropospheric 

O3 was added. All these changes had almost no impact on the model’s performance. Two additional changes had more 

impact, however. First, the discretization of the response functions for HWPs was corrected, which led to higher LULCC 

emissions after correction. Second, a new parameter was introduced to account for the fact that too much of the HWPs were 

assumed burnt. This amount was reduced by half, leading to better endogenous non-CO2 biomass burning emissions, but 460 

having no impact on the CO2 budget. 

v2.3. The permafrost carbon model described by (Gasser et al., 2018) was implemented in the model’s main branch. 

v2.2.2. A minor error in one parameterization for the lifetimes of POA and BC was fixed. This had very little impact on the 

overall performance of the model. 

v2.2.1. Two errors in the code were fixed. The first was in the function linking the surface ocean carbon pool to the surface 465 

ocean partial pressure in CO2, which was leading to a too efficient ocean carbon sink under high warming and high 

atmospheric CO2. The effect was however negligible under historical conditions. The second was in the function linking 

atmospheric CO2 and surface ocean pH change. This function was not described by (Gasser et al., 2017); it was taken from 

(Bernie et al., 2010) but was incorrectly implemented. 

v2.2. This version was comprehensively described by (Gasser et al., 2017). 470 

A.4. Experimental setup 

The land carbon cycle module of OSCAR is driven by: (i) global atmospheric CO2 concentrations over 1700–2018 created 

for the GCB2019 exercise (Friedlingstein et al., 2019); (ii) observation-based reconstructions of regional air temperature and 

precipitation over 1901–2018 from the CRU-TS v4.03 (Harris et al., 2014) (iii) several LULCC data sets detailed hereafter. 

Atmospheric CO2 before 1700 is assumed to be constant and equal to the preindustrial value used in OSCAR (Gasser et al., 475 

2017), which is a very slight deviation from the GCB protocol, as our model’s preindustrial reference year is 1750 and not 
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1700. Climate variables are offset by their average over the 1901–19230 period, assuming this corresponds to a preindustrial 

climate that is further extended backward before 1901. This is similar to the GCB protocol with the exception that we use the 

average of 1901–1930, whereas the GCB recycles the individual years of this period (leading to a 30-year cycle). This 

difference was tested, and we found only a negligible effect on our results (not shown). 480 

Our best-guess estimates are based on two significantly differing LULCC data sets. The first one is an update of the LUH2 

data set made for the GCB2019 exercise, in which only the years past after 1950 differ slightly from the original data set. 

The second one is the data set used and created by (Houghton and Nassikas, 2017) on the basis of FAO and FRA2015 data. 

Although these two data sets have several data sources in common, they remain mostly independent given the way they 

internally process these input data. Additionally, for Figure 3, we ran simulations with older variants of the LUH data set. 485 

These are: the first land use harmonization (LUH1) data set (Hurtt et al., 2011) originally produced for the CMIP5 modeling 

exercise; an updated version of LUH1 made for the GCB2015 exercise, that was based on then-preliminary HYDE3.2 data 

(Klein Goldewijk et al., 2017) instead of HYDE3.1 data (Klein Goldewijk et al., 2011); and the original LUH2 data set 

produced for CMIP6, as well as its two “Low” and “High” variants (Lawrence et al., 2016). All the data sets required some 

slight processing described in Appendix A9. Our simulations start in the earliest year of the LULCC data sets: in 850 for 490 

LUH2 variants, in 1500 for LUH1 variants, and in 1700 for FRA2015. This significantly differs from the GCB protocol that 

starts in 1700. 

A.5. Constrained Monte Carlo ensemble 

All those simulations were made following a probabilistic Monte Carlo setup in which 10,000 sets of the model’s 

parameters are drawn randomly (with equiprobability). Note that these parameters include the nine parameters introduced in 495 

Appendix A7 (multiplied by the number of (i,b) pairs), but also additional parameters described by (Gasser et al., 2017) for a 

total of more than 1,300. The combination of Monte Carlo elements, LULCC data sets and variant runs led to a total of 

140,000 simulations and about 100 million simulated years. We constrained this large ensemble to limit the bias and spread 

that typically results from using OSCAR in such a probabilistic fashion (Gasser et al., 2017). This is done in a way similar to 

what we did for the GCB2017 (Le Quéré et al., 2018b). Each element of the Monte Carlo ensemble is given a weight (w) 500 

equal to: 𝑤𝑤(𝑥𝑥) =
1𝜎𝜎√2𝜋𝜋 exp �− (𝑥𝑥−𝜇𝜇)22𝜎𝜎2 �           (1) 

where μ and σ are the mean and standard deviation of the constraint, respectively, and x is the value of the corresponding 

variable for this element of the ensemble. The constraint we use in this study is the cumulative net land-to-atmosphere flux 

over 1850–2018, calculated as the residual of the carbon emitted by fossil-fuel burning and industry minus the carbon stored 505 

in the atmosphere and the ocean. These values were taken from the GCB2019 (Friedlingstein et al., 2019)(, their Table 8), 

leading to μ = −25 PgC and σ = 30 PgC. See Figure 1 and discussion section for more on the effect of the constraint. 
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A.6. Debiased uncertainty 

To analyze and separate each uncertainty factor, we average our simulations ensemble over all uncertainty axes but the one 

investigated, and then quantify the absolute (standard deviation) and relative (coefficient of variation; CV) uncertainty along 510 

the remaining axis. Because the size of the remaining ensemble can be as small as only two elements, both values are 

debiased by multiplying them by a factor κσ (Brugger, 1969): 𝜅𝜅𝜎𝜎 = �𝑁𝑁−12  Γ �𝑁𝑁−12 � Γ �𝑁𝑁2��           (2) 

where N is the size of the remaining ensemble, and Γ is the gamma function. This approach differs from a proper variance 

decomposition, but it is simpler to handle given the number of simulations we performed, and it does provide a relative 515 

ranking of the importance of each uncertainty factor. 

A.7. Analytical description of the land carbon cycle module  

Following Figure A3, the evolution of vegetation (cveg), litter (csoil1) and soil (csoil2) carbon densities is determined by a 

number areal fluxes: net primary productivity (npp), emission from wildfire (efire), emission from harvested crop products 

(eharv), emissions from grazing (egraz), mortality to litter (fmort1) and to soil (fmort2), metabolization from litter to soil (fmet), and 520 

heterotrophic respiration from litter (rh1) and soil (rh2). Using superscripts i and b to note regions and biomes, respectively, 

and a dot on top of a variable to note its first time differential, the associated differential system for all (i,b) is: �̇�𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏        (3) �̇�𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏
= 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏 − 𝑓𝑓𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ1𝑖𝑖 ,𝑏𝑏          (4) �̇�𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏
= 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏

+ 𝑓𝑓𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ2𝑖𝑖 ,𝑏𝑏          (5) 525 

Each of these fluxes is then formulated as follows: 𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑏𝑏 = 𝜂𝜂𝑖𝑖,𝑏𝑏 ℱ𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑏𝑏 (𝐶𝐶𝐶𝐶2,  𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖)          (6) 𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝜄𝜄𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 (𝐶𝐶𝐶𝐶2,  𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏           (7) 𝑒𝑒ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝜖𝜖ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏

 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (8) 𝑒𝑒𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏
= 𝜖𝜖𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏

 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (9) 530 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏
= 𝜇𝜇1𝑖𝑖,𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (10) 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏
= 𝜇𝜇2𝑖𝑖,𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (11) 𝑓𝑓𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏

= 𝜇𝜇𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏
 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏

           (12) 𝑟𝑟ℎ1𝑖𝑖 ,𝑏𝑏 = 𝜌𝜌1𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏           (13) 𝑟𝑟ℎ2𝑖𝑖 ,𝑏𝑏 = 𝜌𝜌2𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏           (14) 535 
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where the three functions noted with script F are sensitivity functions to atmospheric CO2, regional air temperature (Ti) and 

precipitation (Pi), all calibrated on CMIP5 models (Arora et al., 2013) (on the 1pctCO2, esmFdbk1 and esmFixClim1 

experiments) and described in earnest by (Gasser et al., 2017). 

The Greek letters introduced in Equations (6–14) are the parameters of the system: η is the preindustrial NPP; ι is the 

preindustrial wildfire intensity; εharv and εgraz are the export fractions from crop harvesting and animal grazing respectively; 540 

μ1 and μ2 are the mortality rates to litter and soil, respectively; μmet is the metabolization rate; ρ1 and ρ2 are the preindustrial 

heterotrophic respiration rates of litter and soil, respectively. Mathematically, these nine parameters are sufficient to define 

the preindustrial steady-state of the system, noted with subscript 0: 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣,0𝑖𝑖,𝑏𝑏
= 𝜂𝜂𝑖𝑖,𝑏𝑏 �𝜄𝜄𝑖𝑖,𝑏𝑏 + 𝜖𝜖ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏

+ 𝜖𝜖𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏
+ 𝜇𝜇1𝑖𝑖,𝑏𝑏 + 𝜇𝜇2𝑖𝑖,𝑏𝑏��         (15) 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1,0𝑖𝑖,𝑏𝑏

= �𝜇𝜇1𝑖𝑖,𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣,0𝑖𝑖,𝑏𝑏 � �𝜌𝜌1𝑖𝑖,𝑏𝑏 + 𝜇𝜇𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏 ��           (16) 545 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2,0𝑖𝑖,𝑏𝑏
= �𝜇𝜇2𝑖𝑖,𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣,0𝑖𝑖,𝑏𝑏

+ 𝜇𝜇𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏
 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1,0𝑖𝑖,𝑏𝑏 � 𝜌𝜌2𝑖𝑖,𝑏𝑏�          (17) 

These nine parameters are the ones recalibrated on the GCB2018 models. 

In OSCAR, the LULCC perturbation is represented by three anthropogenic forcings: land-cover change (δAcover), wood 

harvest (δHwood), and shifting cultivation (δAshift). The first forcing describes area transitions from one biome to another, and 

it is therefore defined along two biome axes b and b’ representing the initial and final biomes of the transition. It is the only 550 

forcing that actually alters the area extent (Aland) of the different biomes, following: �̇�𝐴𝑠𝑠𝑎𝑎𝑛𝑛𝑙𝑙𝑖𝑖,𝑏𝑏
 = ∑ 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ − ∑ 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏→𝑏𝑏′𝑏𝑏′          (18) 

The second forcing describes biomass harvested from woody biomes that then regrow, and it is defined along only one 

biome axis. The third forcing describes reciprocal area transitions between one natural biome and another anthropogenic 

biome, typical of practices such as slash-and-burn. It is defined along two axes, but its matrix representation in the (b,b’) 555 

space is symmetrical, which implies a net zero land-cover change. To account for this last forcing in a computationally 

efficient way, one key simplification is made in OSCAR. Shifting cultivation is assumed equivalent to harvesting the 

biomass of ecosystems that are τshift years old (Gasser et al., 2017). The τshift value is taken from (Hurtt et al., 2006). This 

amount of harvested biomass is calculated as the vegetation carbon density multiplied by the δAshift driver and by a reduction 

factor (pshift) based on the (exponential) growth of the biomass described in Eq. (13): 560 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏
= 1 − exp�−�𝜂𝜂𝑖𝑖,𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣,0𝑖𝑖,𝑏𝑏� � 𝜏𝜏𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚�         (19) 

To manage the bookkeeping itself, OSCAR keeps track of LULCC-perturbed extensive variables as a difference to the 

steady-state they would reach after a long enough time period (and that is described in the previous section). These variables 

use uppercase letters (in opposition to the lowercase letters of the previous section), and have the subscript “bk” to denote 

they are under bookkeeping. It is also necessary to introduce a new carbon pool for harvested wood products (Chwp) that is 565 

itself split into several subpools noted with superscript w. The differential system describing this part of the model is: �̇�𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝑁𝑁𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑖𝑖 ,𝑏𝑏 − 𝐸𝐸𝑏𝑏𝑏𝑏,𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝐸𝐸𝑏𝑏𝑏𝑏,ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝐸𝐸𝑏𝑏𝑏𝑏,𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏 − 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏 − 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏

+ 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏     (20) 



19 

�̇�𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏
= 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏 − 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏 − 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,1𝑖𝑖,𝑏𝑏

+ 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏
+ 𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ1       (21) �̇�𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏

= 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏
+ 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏 − 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,2𝑖𝑖,𝑏𝑏

+ 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏
+ 𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ2       (22) �̇�𝐶ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤

= 𝐹𝐹ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤 − 𝐸𝐸ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤           (23) 570 

Equations (20–23) introduce new fluxes that correspond to the initialization step of the bookkeeping. δCbk,veg, δCbk,soil1 and 

δCbk,soil2 represent the initial carbon in the vegetation, litter and soil pools, respectively, as a difference to their respective 

future steady-state. For the vegetation pool, it is assumed that the new ecosystems start without any biomass: 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏
= −∑ 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏

 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ − 𝛿𝛿𝛿𝛿𝑤𝑤𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖,𝑏𝑏 − ∑ 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏
 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏

 𝛿𝛿𝐴𝐴𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′       (24) 

For the litter and soil pools, it is assumed that they start with the carbon of the old ecosystems: 575 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏
= ∑ 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏′

 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ − ∑ 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏
 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′         (25) 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏

= ∑ 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏′
 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ − ∑ 𝑐𝑐𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏

 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′         (26) 

From the old ecosystems, the above-ground biomass fraction (πagb) is partly harvested and allocated to harvest wood product 

pools (Fhwp), following pool-specific allocation coefficients (πhwp): 𝐹𝐹ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏
= ∑ 𝜋𝜋ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏′,𝑤𝑤

 𝜋𝜋𝑎𝑎𝑣𝑣𝑏𝑏𝑖𝑖,𝑏𝑏′
 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′

 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ + 𝜋𝜋ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤
 𝛿𝛿𝛿𝛿𝑤𝑤𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖 ,𝑏𝑏

+ ∑ 𝜋𝜋ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏′,𝑤𝑤
 𝜋𝜋𝑎𝑎𝑣𝑣𝑏𝑏𝑖𝑖,𝑏𝑏′

 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′
 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′

 𝛿𝛿𝐴𝐴𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′    (27) 580 

The fraction of biomass of the old ecosystem that is left on site (pslash) is made of the rest of the above-ground biomass and 

the below-ground biomass: 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏
= �1 − 𝜋𝜋𝑎𝑎𝑣𝑣𝑏𝑏𝑖𝑖,𝑏𝑏 � + �1 − ∑ 𝜋𝜋ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤𝑤𝑤 �         (28) 

This defines the so-called “slash” fluxes to the litter (Fslash1) and soil (Fslash2) pools:  𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ1𝑖𝑖,𝑏𝑏
= ∑ 𝜇𝜇1𝑖𝑖,𝑏𝑏′𝜇𝜇1𝑖𝑖,𝑏𝑏′+𝜇𝜇2𝑖𝑖,𝑏𝑏′ 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏′

 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′
 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ +

𝜇𝜇1𝑖𝑖,𝑏𝑏𝜇𝜇1𝑖𝑖,𝑏𝑏+𝜇𝜇2𝑖𝑖,𝑏𝑏 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏
 𝛿𝛿𝛿𝛿𝑤𝑤𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖,𝑏𝑏

+ ∑ 𝜇𝜇1𝑖𝑖,𝑏𝑏′𝜇𝜇1𝑖𝑖,𝑏𝑏′+𝜇𝜇2𝑖𝑖,𝑏𝑏′ 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏′
 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′

 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′
 𝛿𝛿𝐴𝐴𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′   (29) 585 

𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ2𝑖𝑖,𝑏𝑏
= ∑ 𝜇𝜇2𝑖𝑖,𝑏𝑏′𝜇𝜇1𝑖𝑖,𝑏𝑏′+𝜇𝜇2𝑖𝑖,𝑏𝑏′ 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏′

 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′
 𝛿𝛿𝐴𝐴𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣𝑓𝑓𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′ +

𝜇𝜇2𝑖𝑖,𝑏𝑏𝜇𝜇1𝑖𝑖,𝑏𝑏+𝜇𝜇2𝑖𝑖,𝑏𝑏 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏
 𝛿𝛿𝛿𝛿𝑤𝑤𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖,𝑏𝑏

+ ∑ 𝜇𝜇2𝑖𝑖,𝑏𝑏′𝜇𝜇1𝑖𝑖,𝑏𝑏′+𝜇𝜇2𝑖𝑖,𝑏𝑏′ 𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑖𝑖,𝑏𝑏′
 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏′

 𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′
 𝛿𝛿𝐴𝐴𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖,𝑏𝑏′→𝑏𝑏𝑏𝑏′  (30) 

The slash is not accounted for separately in OSCAR. Therefore, slash fluxes only appear at the initialization step, since this 

carbon is added to the litter and soil pools, and then follow the biogeochemistry of these pools. It should also be noted that 

this initialization step is carbon neutral with respect to the atmosphere: ∑ �𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏
+ 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏

+ 𝛿𝛿𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏
+ 𝐹𝐹ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏

+ 𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ1𝑖𝑖,𝑏𝑏
+ 𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠ℎ2𝑖𝑖,𝑏𝑏 �𝑏𝑏 = 0      (31) 590 

Notwithstanding the initialization fluxes, there is a clear similarity between Eq. (20–22) and Eq. (3–5). With the exception 

of NPPbk, all the natural fluxes then follow a similar formulation as Eq. (6–14) for the intensive cycle: 𝑁𝑁𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑖𝑖 ,𝑏𝑏 = 0            (32) 𝐸𝐸𝑏𝑏𝑏𝑏,𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝜄𝜄𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖 ,𝑏𝑏 (𝐶𝐶𝐶𝐶2,  𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏          (33) 𝐸𝐸𝑏𝑏𝑏𝑏,ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏
= 𝜖𝜖ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏

 𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (34) 595 𝐸𝐸𝑏𝑏𝑏𝑏,𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏
= 𝜖𝜖𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏

 𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (35) 



20 

𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚1𝑖𝑖,𝑏𝑏
= 𝜇𝜇1𝑖𝑖,𝑏𝑏 𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (36) 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚2𝑖𝑖,𝑏𝑏
= 𝜇𝜇2𝑖𝑖,𝑏𝑏 𝐶𝐶𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑏𝑏            (37) 𝐹𝐹𝑏𝑏𝑏𝑏,𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏

= 𝜇𝜇𝑚𝑚𝑣𝑣𝑚𝑚𝑖𝑖,𝑏𝑏
 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏

          (38) 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,1𝑖𝑖,𝑏𝑏
= 𝜌𝜌1𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠1𝑖𝑖,𝑏𝑏           (39) 600 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,2𝑖𝑖,𝑏𝑏
= 𝜌𝜌2𝑖𝑖,𝑏𝑏 ℱ𝑓𝑓ℎ𝑖𝑖,𝑏𝑏(𝑇𝑇𝑖𝑖 ,𝑃𝑃𝑖𝑖) 𝐶𝐶𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠2𝑖𝑖,𝑏𝑏           (40) 

Recall that the extensive cycle is formulated as a difference to the steady-state that the perturbed ecosystems would reach in 

an infinite amount of time. Equation (32) therefore means that there is no difference in NPP between undisturbed and 

disturbed ecosystems, in OSCAR. See Discussion of this model feature. Finally, harvested wood products decay following a 

product-specific timescale (τhwp), which leads to carbon emission (Ehwp): 605 𝐸𝐸ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤
= 𝐶𝐶ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤 𝜏𝜏ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤�            (41) 

All the parameters introduced specifically for the extensive cycle follow the definitions and values of earlier versions of 

OSCAR (Gasser et al., 2017), with two exceptions. First, the above-ground biomass fractions (πagb) were recalibrated on the 

DGVMs, along with the intensive cycle parameters. Second, change from v2.3 to v2.4 simplified the treatment of harvested 

wood products, but also introduced more uncertainty in their lifetime (τhwp). 610 

The global land carbon sink (Fland) is defined as: 𝐹𝐹𝑠𝑠𝑎𝑎𝑛𝑛𝑙𝑙 = ∑ ��𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ1𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ2𝑖𝑖,𝑏𝑏� 𝐴𝐴𝑠𝑠𝑎𝑎𝑛𝑛𝑙𝑙𝑖𝑖,𝑏𝑏 �𝑖𝑖,𝑏𝑏       (42) 

and the emissions caused by land-use and land-cover change (Eluc) are defined as: 𝐸𝐸𝑠𝑠𝑙𝑙𝑐𝑐 = ∑ �∑ 𝐸𝐸ℎ𝑤𝑤𝑛𝑛𝑖𝑖,𝑏𝑏,𝑤𝑤𝑤𝑤 + 𝐸𝐸𝑏𝑏𝑏𝑏,𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏
+ 𝐸𝐸𝑏𝑏𝑏𝑏,ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏

+ 𝐸𝐸𝑏𝑏𝑏𝑏,𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏
+ 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,1𝑖𝑖 ,𝑏𝑏

+ 𝑅𝑅ℎ𝑏𝑏𝑏𝑏,2𝑖𝑖,𝑏𝑏 − 𝑁𝑁𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑖𝑖 ,𝑏𝑏�𝑖𝑖,𝑏𝑏     (43) 

The combination of both equals the net land-to-atmosphere flux, as demonstrated in (Gasser and Ciais, 2013). In OSCAR, 615 

the LASC (FLASC) is naturally a subcomponent of the land carbon sink. It is deduced from Eq. (42) by difference to a case 

without transient land-cover change (i.e. with fixed preindustrial land-cover, noted Aland,0): 𝐹𝐹𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ ��𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒ℎ𝑎𝑎𝑓𝑓𝑣𝑣𝑖𝑖,𝑏𝑏 − 𝑒𝑒𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ1𝑖𝑖,𝑏𝑏 − 𝑟𝑟ℎ2𝑖𝑖 ,𝑏𝑏� �𝐴𝐴𝑠𝑠𝑎𝑎𝑛𝑛𝑙𝑙𝑖𝑖,𝑏𝑏 − 𝐴𝐴𝑠𝑠𝑎𝑎𝑛𝑛𝑙𝑙,0𝑖𝑖,𝑏𝑏 ��𝑖𝑖,𝑏𝑏     (44) 

A.8. Detailed calibration protocol 

In this section, we make explicit the link between our model’s parameters and DGVMs’ carbon fluxes and pools, using the 620 

standardized CMIP variable names . These variables are: “cLitter” (litter pool), “cRoot” (biomass in root), “cSoil” (soil 

pool), “cVeg” (vegetation pool), “gpp” (gross primary productivity), “fDOC” (flux of dissolved organic carbon), “fFire” 

(wildfire emissions), “fGrazing” (emission from grazing), “fHarvest” (emission from harvested crop products, “fLitterSoil” 

(flux from litter to soil), “fVegLitter” (flux from vegetation to litter), “fVegSoil” (flux from vegetation to soil), 

“landCoverFrac” (land-cover fractions), “npp” (net primary productivity), “ra” (autotrophic respiration), and “rh” 625 

(heterotrophic respiration). 
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First, a given DGVM is considered good for emulation if and only if it provides at least the following key variables: npp 

(or gpp and ra), rh, cVeg, cSoil and landCoverFrac. Second, the calibration on that model will follow the three-box model iff 

cLitter, cSoil and fLitterSoil are all provided; it will follow the two-box model otherwise (see Sect. 2.2). Third, an extra 

variable “grid” is created for each model, corresponding to the area of land in each of the model grid cell, using the land 630 

mask provided with the LUH2 land-use and land-cover change data set. Fourth, for each variable and each GCB simulation, 

the model’s spatially explicit data is aggregated into regional and biome-specific time series (i.e. defined on the i and b axes) 

using a regional mask (“mask”) adapted to the model’s resolution, and its own landCoverFrac data aggregated onto 

OSCAR’s biomes. The latter is used to split a variable’s value in a given grid cell (g) among the model’s biomes. For any 

variable “Var”, the resulting time series (along the t axis) follows: 635 

Var(𝑡𝑡, 𝑖𝑖, 𝑏𝑏) =
∑ mask(𝑣𝑣,𝑖𝑖) Var(𝑚𝑚,𝑣𝑣) grid(𝑣𝑣) landCoverFrac(𝑚𝑚,𝑣𝑣,𝑏𝑏)3𝑔𝑔 ∑ landCoverFrac(𝑚𝑚,𝑣𝑣,𝑏𝑏)3𝑔𝑔        (4445) 

The biome area fraction map is taken to the power 3 to give more importance, in a given region, to the grid cells in which 

biomes are purer, without taking the risk of excluding any of those grid cells (e.g. by setting a threshold of biome area 

fraction instead). This processing is also done with Var being an array full of ones, in which case we obtain the “area” 

variable corresponding to the area of each biome in each region. Fifth, to correspond to our assumption of a steady-state, the 640 

obtained time series are averaged over the whole simulation for S0, and over 1990-2010 for S4. 

In the second-to-last step, intermediate variables are defined, with fallback definitions to overcome the unavailability of 

some DGVMs’ outputs: 

npp′ = � npp, if npp exists

gpp − ra, otherwise
          (4546) 

fMort = � fVegLitter + fVegSoil, if fVegLitter or fVegSoil exists

npp′ − fFire −  fHarvest − fGrazing, otherwise
    (4647) 645 

rh′ = � rh, if rh exists

npp′ − fFire −  fHarvest − fGrazing − fDOC, otherwise
      (4748) 

And assuming any other variables’ value is zero if it was not reported in the GCB2018 data base, we determine OSCAR’s 

parameters over each pair (i,b) as follows: 𝜂𝜂 = npp′ area⁄             (4849) 𝜄𝜄 = fFire cVeg⁄             (4950) 650 𝜖𝜖ℎ𝑎𝑎𝑓𝑓𝑣𝑣 = fHarvest cVeg⁄ ,           (5051) 𝜖𝜖𝑣𝑣𝑓𝑓𝑎𝑎𝑔𝑔 = fGrazing cVeg⁄            (5152) 𝜇𝜇1 = �fVegLitter cVeg⁄ , if 3 boxes

0, otherwise
         (5253) 

𝜇𝜇2 = �fVegSoil cVeg⁄ , if 3 boxes

fMort cVeg⁄ , otherwise
          (5354) 

𝜇𝜇𝑚𝑚𝑣𝑣𝑚𝑚 = �fLitterSoil cLitter⁄ , if 3 boxes

0, otherwise
         (5455) 655 
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𝜌𝜌1 = �(fVegLitter − fLitterSoil) cLitter⁄ , if 3 boxes

0, otherwise
       (5556) 

𝜌𝜌2 = �(fVegSoil + fLitterSoil) cSoil⁄ , if 3 boxes

rh′ (cLitter + cSoil)⁄ , otherwise
        (5657) 𝜋𝜋𝑎𝑎𝑣𝑣𝑏𝑏 = 1 − cRoot cVeg⁄            (5558) 

Finally, two ultimate adjustments are made after this whole processing. First, if a DGVM lacks a given biome (such as 

Cropland, Pasture or Urban), all parameters but εharv and εgraz are assumed the same as those of the Non-Forest biome, with 660 

the only exception of Urban η that is then zero. Second, ι is set to zero in the Urban biome, and εharv and εgraz areis set to zero 

in all biomes but Cropland and Pasture, respectively. 

A.9. Processing of LULCC data sets for OSCAR 

The “natural land” biome of LUH1 variants had to be split between Forest and Non-Forest. We did so on the data set’s 

own grid, following the potential biomass map provided with the LUH1 data set, and a threshold value given by (Hurtt et al., 665 

2006) of 2 kgC m-2 above which a grid cell’s natural land was considered 100% Forest, and below which it was split between 

Forest and Non-Forest. This split was made such that the proportion of Forest equals the potential biomass divided by the 

threshold value. In addition, shifting cultivation transitions were calculated by isolating all reciprocal transitions between 

natural land and anthropogenic biomes within the shifting cultivation mask provided with the LUH1 data set. Note that the 

LUH1-GCB2015 data set does not include urban land. 670 

The natural biomes of the LUH2 variants match those of OSCAR. The anthropogenic biomes, however, are more finely 

defined than in our model (i.e. more cropland and pasture types). We therefore aggregated all the cropland types into one 

unique Cropland biome, and similarly with pasture types. Worthy of note is the fact that we assume rangeland to be pastures, 

which may explain some of the differences shown in Figure A2. Additionally, following information provided by the LUH 

team, shifting cultivation transitions were calculated by isolating reciprocal transitions between any of the two natural 675 

biomes and cropland, and only between the 33°N and 33°S latitudes. 

The FRA2015 data as used by the H&N model of (Houghton and Nassikas, 2017) demanded little processing to be 

compatible with OSCAR. As stated in Discussion, forest plantations were assimilated to natural forests. The two types of 

harvested wood (fuel and industrial) were summed together, which by construction leads to a split between HWP pools that 

is different from that of H&N. We created our shifting cultivation driver by doing the cumulative sum of the yearly 680 

transitions towards what they identified as being newly established shifting cultivation areas. This was taken in tropical 

countries only, and divided by 15 years to assume a 15-year rotation time following (Hurtt et al., 2011). No urban biome is 

included in this data set. 
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Table 1. Availability of LULCC emissions estimates in the GCB2019 and this study. This follows our three main axes of analysis: 
definition (axis i), driving data sets (ii) and biogeochemical parameterization (iii). 840 

 GCB2019 (Friedlingstein et al., 2019) OSCAR (this study) 

(i) Definition (→) excl. LASC incl. LASC excl. LASC incl. LASC 

(ii) LULCC data set (→) LUH FRA LUH FRA LUH FRA LUH FRA 

(iii) Biogeochemical parameters† (↓)         

BLUE X        

H&N  X       

CABLE-POP   X  X X X X 

CLASS-CTEM   X  X X X X 

CLM5.0‡   X      

DLEM   X  X X X X 

ISAM   X  X X X X 

JSBACH   X  X X X X 

JULES   X  X X X X 

LPJ‡   X      

LPJ-GUESS   X  X X X X 

LPX-Bern‡   X      

OCN   X  X X X X 

ORCHIDEE   X  X X X X 

ORCHIDEE-CNP   X  X X X X 

SDGVM‡   X      

SURFEX‡   X      

VISIT   X  X X X X 

† BLUE (Hansis et al., 2015) and H&N (Houghton and Nassikas, 2017) are bookkeeping models; others are DGVMs. 

‡ OSCAR could not be calibrated on these DGVMs because of insufficient data. 

  



30 

Table 2. Estimates of the global net land-to-atmosphere flux, LULCC emissions, land sink and LASC. Estimates following our 
default (i.e. best-guess) and alternative constraints are provided. The land sink includes the LASC, and therefore the net land-to-845 
atmosphere flux is strictly equal to LULCC emissions minus the land sink. 

  annual flux (PgC yr-1) cumulative flux (PgC) 

2018 2009–2018 1850–2018 1750–2018 

Default constraint (net land flux as residual from fossil emissions, atmospheric growth and ocean sink; best guess) 

Net land-to-atmosphere flux† −1.85 ± 0.75 −1.62 ± 0.79 −27 ± 26 −22 ± 29 

Bookkeeping LULCC emissions 1.39 ± 0.43 1.36 ± 0.42 178 ± 50 206 ± 57 

Land carbon sink 3.24 ± 1.02 2.98 ± 1.02 205 ± 53 228 ± 59 

Loss of additional sink capacity 0.78 ± 0.62 0.68 ± 0.57 31 ± 22 32 ± 23 

Alternative constraint (land sink without LULCC perturbation as estimated by the DGVMs) 

Net land-to-atmosphere flux† −1.51 ± 0.66 −1.33 ± 0.71 −16 ± 47 −9 ± 54 

Bookkeeping LULCC emissions 1.27 ± 0.36 1.26 ± 0.36 166 ± 44 192 ± 51 

Land carbon sink 2.78 ± 0.68 2.58 ± 0.73 181 ± 36 201 ± 40 

Loss of additional sink capacity 0.51 ± 0.33 0.44 ± 0.32 21 ± 11 22 ± 11 
† Counted algebraically: negative values denote carbon removal from the atmosphere. 
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Table 3. Uncertainty sources in our estimates of bookkeeping LULCC emissions and LASC. They are expressed as debiased 
standard deviation (1-σ) and coefficients of variation (CV; in parenthesis). 850 

  annual flux (PgC yr-1) cumulative flux (PgC) 

 1995–2004 2009–2018 1850–2004 1750–2018 

Uncertainty breakdown of bookkeeping LULCC emissions 

(i) Definition  ± 0.31 (21%)  ± 0.43 (25%)  ± 14 (8%)  ± 20 (9%) 

(ii) LULCC data set  ± 0.30 (24%)  ± 0.03 (2%)  ± 8 (5%)  ± 8 (4%) 

-- LUH data set version  ± 0.14 (14%) --  ± 14 (8%) -- 

-- FRA data set version†  ± 0.25 (21%) --  ± 15 (10%) -- 

(iii) Biogeochemical parameters  ± 0.40 (32%)  ± 0.40 (29%)  ± 43 (27%)  ± 55 (27%) 

-- only HWP-related parameters  ± 0.03 (2%)  ± 0.02 (2%)  ± 4 (2%)  ± 5 (3%) 

Uncertainty breakdown of the loss of additional sink capacity 

(ii) LULCC data set  ± 0.14 (28%)  ± 0.21 (31%)  ± 7 (31%)  ± 10 (31%) 

(iii) Biogeochemical parameters  ± 0.35 (75%)  ± 0.50 (77%)  ± 13 (62%)  ± 19 (63%) 
† These values are taken directly from (Houghton and Nassikas, 2017) and were therefore not computed with OSCAR. They include 

some biogeochemical uncertainty to a lesser but unknown degree. 
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Table 4. Regional breakdown of bookkeeping LULCC emissions and LASC. This is provided for our best-guess estimates and the 
two main LULCC data sets (LUH2-GCB2019 and FRA2015) separately. Regions are defined in (Houghton and Nassikas, 2017). 855 

annual flux 2009–2018 (PgC yr-1) cumulative flux 1750–2018 (PgC) 

best guess LUH FRA best guess LUH FRA 

Bookkeeping LULCC emissions (ELUC) 

Sub–Saharan Africa 0.46 ± 0.24 0.29 ± 0.11 0.66 ± 0.20 28 ± 13 25 ± 14 31 ± 9 

Latin America 0.63 ± 0.23 0.52 ± 0.14 0.76 ± 0.24 63 ± 18 67 ± 18 59 ± 17 

South and Southeast Asia 0.32 ± 0.11 0.35 ± 0.09 0.29 ± 0.12 39 ± 12 36 ± 8 42 ± 14 

North America 0.00 ± 0.04 0.02 ± 0.03 −0.02 ± 0.03 34 ± 13 34 ± 14 35 ± 13 

Europe −0.03 ± 0.03 −0.02 ± 0.02 −0.05 ± 0.03 2 ± 3 4 ± 2 −1 ± 2 

Former Soviet Union 0.01 ± 0.05 0.03 ± 0.03 −0.02 ± 0.05 20 ± 12 20 ± 12 20 ± 12 

China −0.05 ± 0.21 0.14 ± 0.07 −0.27 ± 0.05 13 ± 13 23 ± 8 1 ± 5 

North Africa and the Middle East −0.01 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −1 ± 2 −1 ± 2 0 ± 2 

East Asia 0.00 ± 0.05 0.01 ± 0.04 −0.01 ± 0.01 3 ± 2 4 ± 2 ~1 

Oceania 0.03 ± 0.06 0.00 ± 0.04 0.07 ± 0.07 6 ± 10 1 ± 8 11 ± 10 

Loss of additional sink capacity (LASC) 

Sub–Saharan Africa 0.12 ± 0.13 0.16 ± 0.17 0.08 ± 0.04 5 ± 6 7 ± 7 2 ± 1 

Latin America 0.18 ± 0.18 0.21 ± 0.21 0.15 ± 0.14 9 ± 5 10 ± 6 7 ± 4 

South and Southeast Asia 0.11 ± 0.08 0.11 ± 0.08 0.11 ± 0.07 4 ± 2 4 ± 3 4 ± 2 

North America 0.10 ± 0.08 0.11 ± 0.09 0.08 ± 0.07 5 ± 4 6 ± 5 5 ± 4 

Europe 0.01 ± 0.02 0.03 ± 0.02 0.00 ± 0.01 1 ± 1 2 ± 1 ~0 

Former Soviet Union 0.06 ± 0.06 0.06 ± 0.06 0.05 ± 0.05 2 ± 3 3 ± 3 2 ± 2 

China 0.07 ± 0.10 0.12 ± 0.10 0.02 ± 0.07 4 ± 4 5 ± 4 2 ± 3 

North Africa and the Middle East 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 ~0 ~0 ~0 

East Asia 0.01 ± 0.01 0.02 ± 0.01 ~0.00 1 ± 1 1 ± 1 ~0 

Oceania 0.02 ± 0.11 0.02 ± 0.14 0.03 ± 0.05 1 ± 2 1 ± 3 1 ± 2 
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Table 5. Breakdown of bookkeeping LULCC emissions and LASC by LULCC activity. This is provided for our best-guess 
estimates and the two main LULCC data sets (LUH2-GCB2019 and FRA2015) separately. 

annual flux 2009–2018 (PgC yr-1) cumulative flux 1750–2018 (PgC) 

best guess LUH FRA best guess LUH FRA 

Bookkeeping LULCC emissions (ELUC) 

Deforestation for cropland 1.86 ± 0.57 2.20 ± 0.48 1.47 ± 0.37 213 ± 93 285 ± 62 131 ± 38 

Other deforestation 0.55 ± 0.26 0.41 ± 0.14 0.70 ± 0.27 77 ± 27 88 ± 26 64 ± 24 

Reforestation and afforestation −1.36 ± 0.49 −1.70 ± 0.38 −0.96 ± 0.22 −144 ± 99 −230 ± 48 −45 ± 11 

Other natural land appropriation 0.42 ± 0.31 0.63 ± 0.26 0.17 ± 0.08 60 ± 33 82 ± 30 35 ± 12 

Other natural land (re)establishment −0.21 ± 0.18 −0.33 ± 0.15 −0.07 ± 0.08 −20 ± 18 −34 ± 11 −3 ± 2 

Conversions among anthrop. biomes 0.02 ± 0.02 0.03 ± 0.02 0.01 ± 0.01 1 ± 1 1 ± 1 ~0 

Wood harvest 0.09 ± 0.04 0.10 ± 0.04 0.07 ± 0.03 19 ± 6 21 ± 5 16 ± 6 

Loss of additional sink capacity (LASC) 

Deforestation for cropland 0.29 ± 0.16 0.31 ± 0.17 0.27 ± 0.15 14 ± 6 16 ± 7 12 ± 5 

Other deforestation 0.24 ± 0.15 0.30 ± 0.15 0.17 ± 0.10 12 ± 6 15 ± 6 7 ± 3 

Reforestation and afforestation −0.15 ± 0.10 −0.21 ± 0.10 −0.09 ± 0.04 −7 ± 5 −10 ± 4 −3 ± 1 

Other natural land appropriation 0.39 ± 0.53 0.57 ± 0.63 0.19 ± 0.24 16 ± 21 24 ± 25 8 ± 9 

Other natural land (re)establishment −0.09 ± 0.12 −0.14 ± 0.14 −0.03 ± 0.06 −3 ± 4 −5 ± 5 −1 ± 1 

Conversions among anthrop. biomes 0.00 ± 0.01 0.00 ± 0.01 ~0.00 ~0 ~0 ~0 

Wood harvest 0.00 0.00 0.00 0 0 0 
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 860 

Figure 1. Our best-guess estimates of bookkeeping LULCC emissions and LASC. Panel (a) shows annual fluxes, and panel (b) 
shows cumulative ones. The net land-to-atmosphere flux is also shown in panel (b) and compared to the constraint (red). Shaded areas 
show the 1-σ uncertainty range. Panel (c) shows the detailed probability distributions of the cumulative net land flux, land sink, and 
LULCC emissions, in the unconstrained (dotted histograms) and constrained (plain ones) output ensemble (20,000 Monte Carlo elements), 
compared to the constraint (red) and the GCB estimates (dashed black). 865 
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Figure 2. Comparison of our results to the GCB2019. (a) Annual terrestrial carbon sink in the absence of LULCC perturbation 
simulated by OSCAR (color), the individual GCB DGVMs (light grey) and their multi-model mean (dashed black) (b) Annual LULCC 
emissions deduced from the GCB DGVMs (i.e. including the LASC). (c) Bookkeeping LULCC emissions when the model is driven by the 870 
LUH2-GCB2019 data set, compared to BLUE estimates reported by the GCB2019. Dotted line shows the same emissions but when carbon 
densities are kept at their preindustrial throughout the simulation, and without uncertainty for legibility. (d) Bookkeeping LULCC 
emissions when the model is driven by the FRA2015 data set, compared to H&N estimates from which emissions from peatlands were 
subtracted. All shaded areas show the 1-σ uncertainty range. 
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Figure 3. Variations and uncertainties in time-series of global annual LULCC emissions. (a) Effect of adding the LASC to LULCC 
emissions. (b) Effect of the LULCC driving data sets (only the two data sets used to estimate our best guess). (c) Effect of the data set 
version among LUH variants (not used for our best guess). (d) Effect of the data set version among FRA variants. These emissions were 
not simulated by OSCAR; they were reported by (Houghton and Nassikas, 2017) (their Figure 8). (e) Effect of all the parameters of 880 
OSCAR (using the weighted Monte Carlo ensemble). (f) Effect of the subset of parameters of OSCAR that are related to harvested wood 
products (i.e. the parameters that are not derived from DGVMs). All panels show bookkeeping LULCC emissions, with the obvious 
exception of panel (a). Thick colored lines show the values obtained by averaging over all axes of analysis other than the one investigated 
in the panel. Dashed grey lines with markers show the debiased coefficients of variation (CV), that is the ratio of the debiased standard 
deviation over the average, and refer to the y-axis on the right-hand side of each panel. 885 
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Figure 4. Regional breakdown of our best-guess estimates. Annual bookkeeping LULCC emissions (in brown) and LASC (in green) 
are shown, except in the last two panels where the regional cumulative bookkeeping LULCC emissions (ELUC) and LASC over 1750–
2018 are shown. Shaded areas and uncertainty bars represent the 1-σ uncertainty range. To help identify regional discrepancies between 890 
LULCC driving data sets, we also separate the average estimates for the LUH2-GCB2019 (dashed black line) and FRA2015 (dotted black 
line) data sets, without their own uncertainty for legibility.  
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Figure 5. Breakdown of our best-guess estimates by LULCC activities. Annual bookkeeping LULCC emissions (in brown) and 
LASC (in green) are shown, except in the last two panels that show the regional cumulative bookkeeping LULCC emissions (ELUC) and 895 
LASC over 1750–2018. Shaded areas and uncertainty bars represent the 1-σ uncertainty range. Similarly to Figure 3, we also separate the 
average estimates for the LUH2-GCB2019 (dashed black line) and FRA2015 (dotted black line) data sets, without their own uncertainty 
for legibility. 
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 900 

Figure 6. Breakdown of our best-guess estimates by carbon pools: vegetation (green), soils (brown), and HWPs (red). Shaded areas 
and uncertainty bars represent the 1-σ uncertainty range. 
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Table A1. Preindustrial NPP and carbon stocks in GCB2018 DGVMs and in their emulation by OSCAR. The “DGVM” columns 
show the carbon fluxes or stocks we extracted for the calibration of OSCAR. Because we used our own land area map and regional mask 905 
to process the original DGVM outputs, and then aggregated regional values into global values, these values may slightly differ from a 
direct extraction of the DGVM outputs. The GCB2018 protocol did not require the DGVM teams to provide their own land area map. 

NPP (PgC yr-1) Cveg (PgC) Csoil (PgC) 

Carbon densities: OSCAR DGVM OSCAR DGVM OSCAR DGVM 

Land-cover (1700): LUH2 DGVM DGVM LUH2 DGVM DGVM LUH2 DGVM DGVM 

CABLE-POP 43.0 43.0 43.0 456 474 506 1441 1456 1541 

CLASS-CTEM 45.4 45.5 45.9 384 402 410 1050 1049 1068 

DLEM 51.4 54.4 54.4 412 457 486 1047 1105 1151 

ISAM 50.4 46.4 46.9 598 505 558 958 954 1042 

JSBACH 50.4 45.9 46.6 416 380 365 714 662 670 

JULES 56.2 53.1 53.2 580 529 561 1341 1269 1350 

LPJ-GUESS 50.9 49.1 49.3 422 396 404 1385 1337 1332 

OCN 55.5 57.3 57.6 471 531 566 1619 1665 1754 

ORCHIDEE 41.5 43.3 43.6 316 348 360 627 647 671 

ORCHIDEE-CNP 42.2 43.4 43.8 329 356 380 690 699 740 

VISIT 45.4 46.7 46.4 415 434 435 1208 1244 1218 

mean 48.4 48.0 48.2 436 437 457 1098 1099 1140 

std 4.9 4.7 4.6 85 63 77 317 321 336 
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Table A2. Global preindustrial (1700) land-cover (in Mha) in the GCB2018 DGVMs, compared to that in our two main LULCC 

data sets. 910 

Forest Non-Forest Cropland Pasture Urban 

CABLE-POP 4876 7619 -- -- -- 

CLASS-CTEM 5465 6579 276 -- -- 

DLEM 5129 7435 278 141 1 

ISAM 3205 8824 257 455 -- 

JSBACH 4144 7555 267 236 -- 

JULES 3809 9026 -- -- 18 

LPJ-GUESS 3769 8511 279 432 -- 

OCN 5982 6488 296 -- -- 

ORCHIDEE 5224 7374 387 -- -- 

ORCHIDEE-CNP 5224 7020 387 361 -- 

VISIT 5278 7176 275 -- -- 

mean 4737 7601 300 325 9 

std 826 811 47 119 8 

LUH2-GCB2019 4620 7256 357 756 1 

FRA2015 5013 6074 574 1756 -- 
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Table A3. Comparison of regional bookkeeping LULCC emissions to H&N estimates. H&N values are taken directly from 
(Houghton and Nassikas, 2017): their annual flux is over 2006–2015, and their cumulative flux over 1850–2015. 

best guess LUH2-GCB2019 FRA2015 H&N 

annual flux 2009–2018 (TgC yr-1) 

Sub−Saharan Africa 460 ± 243 290 ± 110 656 ± 201 437 ± 55 

Latin America 632 ± 227 518 ± 136 762 ± 238 527 ± 114 

South and Southeast Asia 321 ± 111 349 ± 89 290 ± 120 441 ± 141 

North America 1 ± 37 20 ± 26 −22 ± 34 −73 ± 79 

Europe −34 ± 30 −17 ± 21 −54 ± 25 −102 ± 46 

Former Soviet Union 8 ± 48 33 ± 34 −20 ± 46 −60 ± 55 

China −53 ± 213 138 ± 71 −271 ± 53 −58 ± 112 

North Africa and the Middle East −8 ± 9 −3 ± 6 −13 ± 8 −3 ± 55 

East Asia 0 ± 48 11 ± 41 −11 ± 8 −3 

Oceania 34 ± 64 4 ± 36 69 ± 71 8 

cumulative flux 1850–2018 (PgC) 

Sub−Saharan Africa 26.8 ± 11.8 23.1 ± 12.6 31.0 ± 9.3 24.1 ± 3.0 

Latin America 60.6 ± 17.3 64.0 ± 17.4 56.6 ± 16.3 37.5 ± 3.4 

South and Southeast Asia 34.3 ± 11.3 30.1 ± 7.2 39.3 ± 13.1 40.5 ± 7.8 

North America 29.0 ± 11.4 30.3 ± 12.1 27.5 ± 10.3 22.7 ± 6.3 

Europe −1.0 ± 3.7 2.0 ± 1.5 −4.4 ± 2.2 −5.2 ± 3.7 

Former Soviet Union 15.2 ± 10.1 15.5 ± 10.1 15.0 ± 10.0 10.7 ± 4.3 

China 7.4 ± 9.9 15.5 ± 5.5 −1.8 ± 4.1 7.3 ± 7.0 

North Africa and the Middle East −0.9 ± 1.4 −1.2 ± 1.6 −0.6 ± 1.2 2.7 ± 6.6 

East Asia 1.9 ± 1.5 3.0 ± 1.2 0.6 ± 0.4 1.4 

Oceania 5.1 ± 9.2 1.0 ± 7.4 9.7 ± 8.9 3.9 
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 915 

Figure A1. Effect of the alternative constraint and comparison to the GCB2019. (a) Probability distributions in the unconstrained 
(dotted histograms) and constrained (plain ones) OSCAR ensembles of the cumulative terrestrial carbon sink over 1850–2018 in the 
absence of LULCC perturbation, compared to the constraint (red). (b) Annual terrestrial carbon sink in the absence of LULCC perturbation 
simulated by OSCAR (colour), the individual GCB DGVMs (light grey) and their multi-model mean (dashed black). (c) Annual LULCC 
emissions deduced from the GCB DGVMs (i.e. including the LASC). (d) Probability distributions of our best-guess estimate of the 920 
cumulative LULCC emissions over 1850–2018, compared to the GCB estimate (dashed black). (e) Bookkeeping LULCC emissions when 
the model is driven by the LUH2-GCB2019 data set, compared to BLUE estimates reported by the GCB2019. (f) Bookkeeping LULCC 
emissions when the model is driven by the FRA2015 data set, compared to H&N estimates from which emissions from peatlands were 
subtracted. All shaded areas show the 1-σ uncertainty range. 
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Figure A2. Summary of LULCC drivers in LUH2-GCB2019 (dashed black lines) and FRA2015 (dotted grey lines). For each 
region (along the rows), the first five columns show net are changes in our five biomes (in order: Forest, Non-Forest, Cropland, Pasture, 
Urban), the second-to-last column shows wood harvest, and the final column shows total area under shifting cultivation. 
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 930 

Figure A3. Diagram of the three-box model describing the intensive land carbon cycle in each (region, biome) set. The three boxes 
correspond to carbon pools in the vegetation (cveg), the litter (csoil1) and the soil (csoil2). Detailed definitions and formulations of the fluxes 
(grey arrows) are provided in Appendix A7. 
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