

- 1 **Note:** Comments by the Editor and Reviewers on the major review are presented in red, while responses
- 2 (i.e. lines of changes that have been made in the manuscript) of the authors are given in blue, respectively.

3 **By the Editor**

4 Thanks for your careful and comprehensive responses and revisions to the first-round reviews. Both
5 reviewers have assessed the revised manuscript and find it much improved: clearer, strengthened in
6 almost every respect, and stronger. Both now recommend acceptance, although R2 still has a number of
7 minor technical suggestions and questions.

8
9 I have read the manuscript and agree with the reviewers. After addressing R2's remaining comments--
10 which should not take much work--I think this will be fully acceptable for final publication in
11 Biogeosciences. Congratulations on an interesting and well-done study.

12 *Dear Editor,*

13
14 *Thank you for your suggestions and comments. We have changed or answered the additional*
15 *comments of Referee 2.*

16
17 *Kind regards,*

18

19 **By Anonymous Referee #1**

20 The authors made a nice work in revising their manuscript. They clearly justified and discussed their
21 choices, as well as the results and limits of their work. I have no further comments on their manuscript.

22 *Dear Anonymous Referee 1,*

23
24 *Thank you for your kind words and review.*

25
26 *Kind regards,*

27
28 **By Anonymous Referee #2**

29 *Dear Authors,*

30
31 Thank you for your answer and work on the manuscript. I think the manuscript improved a lot compared
32 to the previous version. Please find below few additional clarifications in my opinion needed before
33 acceptance

34
35 1) Lines 81-82: Despite its relevance, literature on autumn senescence has maintained a wide variety
36 of definitions and observational methods (Gill et al., 2015; Fracheboud et al., 2009; Gallinat et al.,
37 2015). Please clarify what you exactly mean with this statement. I think is meant that there isn't
38 too much clarity in the definition of senescence and on the observational methods.

39
40 2) Figure 1: Solid lines represent regressions of half-hourly measurements of the relative humidity. I
41 do not completely understand what does it mean, you mean that the points were interpolated?
42 Also the lines seems extremely smooth, therefore please clarify how the smoothing was done.
43 Why not reporting the original data?

44
45 3) Lines 178-179 "significantly lower ($P < 2 \times 10^{-16}$) in comparison 178 to the glasshouses with the
46 +0 °C treatment". Please add which test was conducted to assess this and use $p < 0.001$ to indicate
47 highly significance ($P < 2 \times 10^{-16}$ is extremely unusual).

48
49 4) Line 180: Please indicate in between which treatment you have the difference. Wasn't the soil
50 moisture not available for reference plot? This was indicated at line 172-174 (please clarify).

51
52 5) Caption Table 1: "The degree of abnormality of the values is represented by (a; abnormal values
53 that happen on average once every 6 years) and (e; exceptional values that happen on average

54 once every thirty years). Since 2019, the KMI uses a new system to show the degree of
55 abnormality." Please clarify what is abnormality, how is calculated, it is not really clear what that
56 table is showing.

57

58 6) Line 244: Interannual variability – specify of meteorological variables or driver

59

60 7) Line 328: The model assumptions were tested following Zuur et al. (2010) and using R/ggpubr
61 (Kassambara, 2019). I am confused, ggpubr is a package mostly for visualization and few features
62 for data analysis.

63

64 8) Line 336: "and R/DPLYR". This was the same comment in the previous revision. Dplyr is a package
65 for data manipulation and for sure does not contain any function to fit GAMM. I guess the author
66 should refer only to mgcv or other packages but not dplyr.

67

68 9) Table 2: I would include the AIC and remove the equation (and keeping only the Model number
69 as the equation is already reported in the text)

70

71 10) Line 419: "Trees that did not show a clear breakpoint (13 in the manipulative experiment) were
72 not considered in the analysis". Isn't this a bit critical? I think they should be kept in the analysis .
73 Or perhaps the authors can try to bootstrap the dataset and identify for each tree the breakpoint
74 and the uncertainty, and then use an objective criteria to exclude some of trees

75

76 11) Paragraph 3.2: I think the authors should also describe the big differences in CCI in the +3 C
77 treatment better. I cannot see a description of that interesting behavior in the result section
78 (unless I missed it). Also I think that in Fig 4 the GAMM make up some of the differences between
79 the treatments toward the end of the seasonal development (e.g. Fig 4A particularly for Fig 4A
80 +3C treatment). The authors do not over interpret this issue but I think they should first check
81 that the parameter of the smoothing functions in the GAMM is correctly set, and second mention
82 this aspect in the results.

83

84 12) The discussion section is very nice. Still I think that some of the statement should be re-discussed
85 after some of the concerns raised above are clarified.

89 Dear Anonymous Referee 2,

90
91 Thank you for your review and additional suggestions. We will respond here to your comments:

92

93 1. The Referee asks whether L. 81-82 (Despite its relevance, literature on autumn senescence has
94 maintained a wide variety of definitions and observational methods (Gill et al., 2015; Fracheboud
95 et al., 2009; Gallinat et al., 2015) means that there isn't too much clarity in the definition of
96 senescence and on the observational methods. This is indeed how this sentence should be
97 interpreted. We have clarified this sentence to avoid confusion. Now it reads as follow: "Literature
98 reports several definitions of autumn senescence and of multiple observational methods to
99 measure autumn senescence (Gill et al., 2015; Fracheboud et al., 2009; Gallinat et al., 2015)." (L.
100 80 - 81).

101

102 2) The Referee asks whether we mean with "Solid lines represent regressions of half-hourly
103 measurements of the relative humidity" that the points concerning the relative humidity in figure
104 1 were interpolated. The Referee also asks how the smoothing was done and why the original data
105 is not reported instead. The points concerning the relative humidity in figure 1 were indeed
106 interpolated using the geom_smooth argument from the R/ggplot2 package. Because, the
107 geom_smooth arguments used GAMs for the interpolation they represent in fact regressions (info
108 on this is now reported in the legend of Figure 1; L. 154 - 155). Given that the data is measured
109 every half-hour, with the logical differences throughout the day, we chose to represent the trend
110 here rather than the original data. This would have made the graph less clear. Original data of
111 relative humidity are available at Zenodo doi: 10.5281/zenodo.4559535.

112

113 3) The Referee asks to specify the test that was used to support the statement in L. 178 – 179
114 ("significantly lower ($P < 2 \times 10^{-16}$) in comparison 178 to the glasshouses with the +0 °C
115 treatment"). The Referee also suggest to use $p < 0.001$ to indicate the high significance. This p-
116 value is derived from the application of GAMMs, as described in the supplementary file
117 'Test_SWC'. This file was made in response to a previous suggestion concerning the lack of
118 statistical testing of the difference in the soil water content results and it is available for readers
119 (see Data availability Zenodo doi: 10.5281/zenodo.4559535 to find the document). In the text, we
120 have changed the value to $p < 0.001$ and now refer the reader to the Data availability section for
121 more information (L. 175 179).

122

123 4) The Referee asks to indicate the treatments in L. 180 to which the mentioned difference refers to.
124 The Referee also asks whether the soil moisture data was available for the reference plot. The
125 Referee suggests to make a connection to L. 172 – 174. We have specified in the text that this
126 difference refers to the +0 °C and +3 °C treatments (L. 177 - 179). Indeed, soil moisture data was
127 not available for the reference plots.

128

129 5) The Referee asks to clarify further what the abnormality means in the caption of Table 1 ("The
130 degree of abnormality of the values is represented by (a; abnormal values that happen on average
131 once every 6 years) and (e; exceptional values that happen on average once every thirty years").
132 The Referee also asks how this is calculated and what the Table actually shows. *Table 1 represents*
133 *the meteorological conditions in summer and autumn in Ukkel, Belgium. It indicates which average*
134 *values are considered to be normal (given the reference period 1981 – 2010) and how the average*
135 *values measured in 2017, 2018 and 2019 compare to these normal values. Whenever a value*
136 *measured in 2017, 2018 or 2019 is extremely high/low in comparison to the reference period, this*
137 *would be indicated using a label of abnormality (e.g. abnormal, exceptional or within the highest*
138 *three values recorded). The description of the label of abnormality is now more clearly reported in*
139 *caption of Table 1 at L. 215 -220 ("The degree of abnormality of the values is represented by two*
140 *labels: a for abnormal values (with a recurrence time of six years) or e for exceptional values (with*
141 *a recurrence time of thirty years). In case only one month had abnormal values, this label is*
142 *followed by the name of that particular month. Since 2019, the KMI uses a new system to show*
143 *the degree of abnormality: values that are with the five highest values since 1981 are marked by*
144 *(+), while values within the three highest values are marked by (++)"). Consider for example the*
145 *total precipitation in summer, here an 'abnormal' value (e.g. 134.7 mm in 2018) has a recurrence*
146 *time of six years during the reference period 1981 – 2010. Note that the reported system to show*
147 *abnormality of values is the standard of the Belgian Royal Meteorological service (KMI) for these*
148 *years. The main purpose of this table is to give an indication of the normal meteorological*
149 *conditions at our sites, and how the heat and drought stress measured during 2017, 2018 and*
150 *2019 compare to these normal values.*

151
152 6) The Referee asks to specify in L. 244 whether the inter-annual variability refers to meteorological
153 variables or drivers. *We have specified in the text that the inter-annual variability and long-term*
154 *trends refers to the meteorological variables (L. 242).*

155
156 7) The Referee asks why the package R/ggpubr is used for data analysis, and suggests to mention it
157 for data visualization instead. *We agree. The package is now reported among the others*
158 *visualization packages (L. 322 – 324).*

159
160 8) The Referee suggests to mention only the package R/mgcv in L.336 since the package R/dplyr is
161 used for data manipulation. *We agree that R/DPLYR cannot be used to build the GAMMs. We have*
162 *clarified that R/DPLYR was used for data manipulation instead, together with the other more*
163 *general packages (L. 322 – 324).*

164
165 9) Concerning Table 2, the Referee suggests to add the AIC of the models and to remove the
166 equations. *We have added the AIC of the models. However, we choose not to remove the equations*
167 *to have a completed summary table, independent from the text (note that equations do not take*
168 *much space; L. 399).*

169

170 10) The Referee asks whether the removal of 13 saplings from the dataset because they didn't show a
171 clear breakpoint isn't too critical (see L. 419 "Trees that did not show a clear breakpoint (13 in the
172 manipulative experiment) were not considered in the analysis"). He suggests to use bootstrapping.
173 Finding a significant shift (be it by means of a breakpoint, changepoints, inflection point, et cet.)
174 is sometimes difficult and prone to limitations. Certainly, breakpoints only make sense in the case
175 the trend can be divided in minimum two distinguishable linear trends. This is not always the case
176 (e.g. when the overall trend tends towards a linear trend). Alternative methods to assess shifts in
177 a trend with uncertainty are under consideration in relation to our dataset. However, the
178 complexity of the regressions (e.g. GAMLSS + bootstrapping of additive models) required for this
179 kind of methodology does not suit the purpose of this manuscript and it will be covered in future
180 planned work. The 13 saplings that did not show a clear breakpoints mainly lacked elasticity in
181 their trend, making it impossible to calculate breakpoints. However, the data of these 13 saplings
182 is considered in the GAMMs and line plots represented in the article (Fig. 4). Figure 4 therefore
183 gives an accurate representation of the effect of data from these 13 saplings as well.

184

185 11) The Referee asks to describe the big differences in the CCI of the +3 °C treatment better in
186 paragraph 3.2. The Referee likes to see a clearer description of this behavior in the result section.
187 The Referee points out that the GAMM's seem to make up some differences between the
188 treatments towards the end of the seasonal development (see Fig 4A the +3 °C treatment in
189 particular). While the Referee admits that we do not over interpret this issue, the Referee would
190 nevertheless like us to check the parameter settings of the smoothing functions and to mention
191 this behavior in the results sections.

192 The behavior of the CCI trend of the +3 °C treatment is described in section 3.2. However, we have
193 highlighted this behavior further in the Discussion (L. 602 – 604; "The decline in the CCI of the
194 saplings exposed to the +3°C treatment, around mid-August, might indicate that physiological
195 damage due to stress can accumulate and become apparent even though stress is alleviated.").
196 Concerning, the modelling issue for the + 3°C treatment at the end of the season, we added a line
197 in the Results (L. 504 – 505; "From the end of September, the CCI decreased in all treatments,
198 showing similar CCI measurements across treatments. However, the modeled CCI of the +3 °C
199 treatment declined slower than the modeled CCI of the other two treatments."). However, we also
200 commented on this in the Discussion (L. 698 – 702; "Overall, the GAMMs reproduced reliable fits
201 of the CCI and canopy greenness. One of the few observed issues was a small mismatch between
202 the mean CCI shown by the smoother of the fitted GAMM and the mean CCI shown by the line plot
203 for the + 3°C treatment at the end of the growing season (early October – mid November). The
204 overestimation of the CCI in this case might reflect the limitations of using Gaussian GAMMs
205 here."). Note that, due to the factor-smooth interaction smoother, the smoothing functions had
206 the same parameter settings across the treatments. The Referee correctly points out that this
207 behavior should not be over interpreted.

208

209 12) The Referee thinks some of the statements in the discussion might need reconsideration after
210 implementing some of the new suggestions.

211 *The Discussion was amended, particularly by addressing point 11. Moreover, a few minor text*
212 *mistakes were also corrected.*

213

214 *Kind regards,*

215