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Abstract  20 
 Severe droughts are expected to become more frequent and persistent. However, their effect on 21 

autumn leaf senescence, a key process for deciduous trees and ecosystem functioning, is currently 22 
unclear. We hypothesized that (I) severe drought advances the onset of autumn leaf senescence 23 
in temperate deciduous trees and that (II) tree species show different dynamics of autumn leaf 24 
senescence under drought.  25 

 We tested these hypotheses using a manipulative experiment on beech saplings and three years 26 
of monitoring mature beech, birch and oak trees in Belgium. The autumn leaf senescence was 27 
derived from the seasonal pattern of the chlorophyll content index and the loss of canopy 28 
greenness using generalized additive models and piece-wise linear regressions. 29 

 Drought did not affect the onset of autumn leaf senescence in both saplings and mature trees, 30 
even if the saplings showed a high mortality and the mature trees a high leaf mortality (due to 31 
accelerated leaf senescence and early leaf abscission). We did not observe major differences 32 
among species. 33 

 Synthesis: The timing of autumn leaf senescence appears conservative across years and species, 34 
and even independent on drought stress. Therefore, to study autumn senescence, seasonal 35 
chlorophyll dynamics and loss of canopy greenness should be considered separately.  36 
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1. Introduction  65 
Autumn leaf senescence is a developmental stage of the leaf cells. The core function of this process is the 66 
remobilization of nutrients and death is its consequence (Medawar, 1957;Keskitalo et al., 2005). Its 67 
evolutionary purpose is likely stress resistance and, as such, the process dynamics are affected by different 68 
forms of environmental stress (e.g. high temperatures, water logging) (Benbella and Paulsen, 1998;Leul 69 
and Zhou, 1998;Munné-Bosch and Alegre, 2004). The process of autumn leaf senescence is highly 70 
coordinated and characterized by a tight control over its timing. Furthermore, its most manifest feature, 71 
the detoxification of chlorophyll, allows the degradation of leaf macromolecules and subsequent nutrient 72 
remobilization -the essence of autumn leaf senescence- (Hörtensteiner and Feller, 2002;Munné-Bosch 73 
and Alegre, 2004;Matile, 2000). In addition, chlorophyll degradation allows for the typical leaf coloration 74 
during autumn. However, autumn leaf senescence is also an important process at the ecosystem scale 75 
because it affects multiple ecological processes, such as trophic dynamics, tree growth or the exchange 76 
of matter and energy between the ecosystem and atmosphere (Richardson et al., 2013). 77 
 78 
Despite its relevance, literature on autumn senescence has maintained a wide variety of definitions and 79 
observational methods (Gill et al., 2015;Fracheboud et al., 2009;Gallinat et al., 2015). This has hampered 80 
our understanding of the effects of drought stress on the timing of the onset of autumn leaf senescence, 81 
as opposed to the timing of leaf abscission or accelerated leaf senescence. For example, Estiarte and 82 
Penuelas (2015) reported that leaf senescence advances due to drought stress, while Vander Mijnsbrugge 83 
et al. (2016) reported a delay in the leaf senescence of young trees subjected to drought. After the 84 
summer drought in central Europe of 2003, Leuzinger et al. (2005) even reported that the leaf longevity 85 
(measured as a delay in the leaf discoloration and fall) of five deciduous tree species was on average 86 
prolonged by 22 days.  87 
 88 
Droughts are expected to occur more frequently and become more intensive due to global warming and 89 
changes in precipitation patterns (IPCC, 2014;Crabbe et al., 2016). Extended periods with lower than 90 
average rainfall are often associated with higher air temperatures and higher vapor pressure deficits, 91 
which can negatively affect the functioning of trees in the temperate zone (Novick et al., 2016;De Boeck 92 
and Verbeeck, 2011). Belgian forests are thought to be especially vulnerable to droughts as they typically 93 
have sandy soils with low soil field capacities (Vander Mijnsbrugge et al., 2016;van der Werf et al., 2007). 94 
 95 
To examine the effects of drought stress on the onset of autumn leaf senescence, we hypothesized that: 96 

(I) the timing of the onset of autumn leaf senescence in temperate deciduous trees is advanced 97 
by severe drought stress. The leaves of a tree that experiences a drought will accumulate the 98 
consequences of stress exposure and lose functionality. Therefore, it is likely not beneficial 99 
for a tree to maintain active leaves late in the season after a severe drought. Instead, to 100 
maximize nutrient recovery, trees probably prefer an earlier leaf senescence. In addition, a 101 
drought would reduce the tree’s wood growth and increase its fine root mortality (Brunner 102 
et al., 2015;Campioli et al., 2013). Consequently, the tree’s carbon sink strength will decline, 103 
causing a reduced demand for carbon from the sources (e.g. the leaves) and advance the 104 
onset of autumn leaf senescence. 105 

(II) different tree species show different dynamics in their onset of autumn leaf senescence under 106 
drought. We hypothesized that, under drought stress, species with continuous flushing (e.g. 107 
birch) will have a more stable timing onset of autumn leaf senescence than species with only 108 
one or two leaf flushes during spring-summer (e.g. beech and oak) (Koike, 1990).  109 

 110 
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We tested these hypotheses by subjecting young trees to drought stress in an experimental set-up and by 111 
examining the effect of years with different drought intensities (2017, 2018 and 2019) on mature trees in 112 
natural forest stands. 113 

2. Materials and methods 114 

2.1. Study sites and experimental setting  115 

2.1.1. Manipulative drought experiment 116 
In 2018, we carried out a manipulative drought experiment at the Drie Eiken Campus in Wilrijk, Belgium 117 
(51°09′N, 4°24′E). In early March, 128 individuals of three-year-old beech (Fagus sylvatica) saplings, from 118 
a local nursery and with the same local provenance, were planted in pots with a volume of 35 liters and a 119 
surface area of 0.07 m². The pots were filled with 20% peat and 80% white sand. Eight beech saplings 120 
were placed in each of twelve climate-controlled glasshouses with a ground surface of 1.5 x 1.5 m and a 121 
height at the north and south side of 1.5 m and 1.2 m, respectively. The glasshouses had a roof of colorless 122 
polycarbonate (a 4 mm thick plate) reducing the incoming light by ± 20%, had three sides that could be 123 
opened or closed and were equipped with a combined humidity-temperature sensor (QFA66, Siemens, 124 
Erlangen, Germany) to monitor the relative humidity and air temperature (Fig. 1, panel A and B). One pot 125 
per glasshouse was also equipped with a soil moisture smart sensor (HOBO S-SMD-M005, Onset, MA, 126 
USA) to monitor the soil water content (Fig. 1, panel C). The latter sensors became available only at the 127 
time the drought stress was alleviated (see below). More details on the set-up of the glasshouses can be 128 
found in the literature (Van den Berge et al., 2011;De Boeck et al., 2012;Fu et al., 2014). Two treatments 129 
were organized (n = 48 per treatment; see below). In addition to the saplings in the glasshouses, eight 130 
beech saplings were placed in each of four reference plots outside of the glasshouses (n = 32, Ref.). The 131 
relative humidity and air temperature of the outside reference plots were monitored by a pocket weather 132 
meter (Kestrel 3000, Nielsen, PA, USA). Once in April and once in July, all saplings received 35 g of NPK 133 
slow-release fertilizer (DCM ECO-XTRA 1) and 1.8 g of micro elements (DCM MICRO-MIX). Using the 134 
relative humidity and air temperature data between 7 a.m. and 7 p.m., the vapor pressure deficit was 135 
calculated for both treatments (see below) and the reference plots using the formulas of Buck (1981) (Eq. 136 
1; Fig. 1, panel D). 137 
 138 
Equation 1 139 

e0 = 613.75 x exp((17.502 x T)/(240.97 + T))  140 
e = RH x e0 141 

VPD = e0 – e 142 
 143 

where e0 is the saturation vapor pressure (in kPa), T is the temperature (in °C), e is the actual vapor 144 
pressure deficit (in kPa), RH is the relative humidity (in %) and VPD is the vapor pressure deficit (in kPa). 145 
 146 
From planting until April, the saplings were all irrigated two to three times a week until the pots 147 
overflowed.  At the start of the treatment, in early May, we shielded all the glasshouses using polyethylene 148 
film (200 µm thick) and irrigated the saplings only once a week with circa 1.5 liter of water. In addition, 149 
we enhanced the drought in six glasshouses by raising the air temperature by three degrees compared to 150 
the ambient air temperature (+3 °C). The idea was to simulate ‘natural’ drought conditions, which are 151 
typically associated with warmer temperatures. The air temperature in the other six glasshouses followed 152 
the ambient air temperature (+0 °C). During the treatment, the daily soil water content and the daily 153 
relative humidity in the glasshouses with the +3 °C treatment were lower in comparison to the glasshouses 154 
with the +0 °C treatment. The difference was around 0.02 m³/m³ for the soil water content and 20% for 155 
the relative humidity (Fig. 1). The plan was to continue the treatment till the end of June but, due to the 156 
significant mortality rate, we were obliged to alleviate the drought stress already from the 20th of June. 157 
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From July, the glasshouses were opened again and the saplings were irrigated four to five times a week 158 
until the end of the season. During the whole growing season, the reference plots outside were 159 
abundantly irrigated until the pots overflowed.  160 
 161 
A draw-back of the experiment is that the saplings in the reference plots received more incoming light 162 
(i.e. ± 20%) than the saplings in the glasshouses (Van den Berge et al., 2011). However, as beech is a shade 163 
tolerant species, reduced light is unlikely to have limited the tree growth. 164 
 165 
2.1.2. Field observations in deciduous forests  166 
From 2017 to 2019, we monitored the chlorophyll content index (CCI; a proxy for the chlorophyll 167 
concentration) and loss of canopy greenness of dominant mature trees in two forests near Antwerp; the 168 
Klein Schietveld in Kapellen (KS; 51°21′N, 4°37′E) and the Park of Brasschaat (PB; 51°12′N″, 4°26′E). In the 169 
KS, we monitored the CCI of four beech trees and four birch (Betula pendula) trees. In the PB, we 170 
monitored the CCI of four beech trees and four oak (Quercus robur) trees. The loss of canopy greenness 171 
was observed for the same tree individuals and four additional tree individuals per species and site (thus 172 
for 32 trees in total). The two forests and their meteorological conditions are described in detail by Mariën 173 
et al. (2019), which also showed a lack of site effects on the autumn chlorophyll dynamics for the tree 174 
species studied here. To have a larger statistical sample, the data of the two beech stands (also of similar 175 
age and stem diameter) were aggregated.  176 
 177 
For summer and autumn, we report here the average values for the temperature, precipitation, number 178 
of rainy days, relative humidity, sunshine duration and global solar radiation for the meteorological station 179 
of the Royal Meteorological Institute (KMI) in Ukkel, Belgium (Table 1). For these data, long-term averaged 180 
data was available. The temperature, relative humidity, vapor pressure deficit (see Eq. 1) and precipitation 181 
from 2017 to 2019 are presented in more detail using daily values that were measured at Brasschaat and, 182 
whenever necessary, gap-filled with data from the meteorological station in Woensdrecht, Netherlands 183 
(Fig. 2, panel A – B; panel D ). The meteorological data from Brasschaat was provided by the Flemish 184 
Institute for Nature and Forest (INBO) and the Integrated Carbon Observation System (ICOS), while the 185 
data from Woensdrecht was provided by the Royal Dutch Meteorological Institute (KNMI). The distance 186 
from Ukkel and Woensdrecht to sites is 60 km and 20 km, respectively. However, both locations show no 187 
major climatological differences with the KS and PB and are representative for the inter-annual variability 188 
experienced by the forests.  189 
 190 
2.1.3. The rainfall deficit: an indicator of drought stress for 2017 - 2019 191 
To indicate the magnitude of the droughts, we computed the rainfall deficit from 2017 to 2019 using data 192 
on the relative humidity, solar radiation, wind speed, temperature and precipitation from the 193 
meteorological station in Ukkel. Here, the meteorological records go back the longest in Belgium. The 194 
rainfall deficit is computed on a daily basis by accumulating the daily potential evapotranspiration minus 195 
the daily amount of precipitation. This was done in two ways: (I) per hydrological year, starting from a 196 
zero deficit at the start of the hydrological year (1st of April) and (II) continuous computation, so no restart 197 
from 0 at the start of each hydrological year. The latter method has the benefit that the long-term effect 198 
of accumulated droughts from successive years is accounted for.  199 
 200 
The potential evapotranspiration was computed by means of the method of Bultot et al. (1983), which is 201 
similar to the method of Penman (1948), but has parameters that are calibrated specifically for the local 202 
Belgian conditions. Unlike for the rainfall deficit starting from a zero deficit, we accounted in the 203 
calculation of the continuously computed rainfall deficit for the hydrological fraction in wet periods that 204 
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does not contribute to building up ground water reserves. At the station of Ukkel, daily precipitation and 205 
potential evapotranspiration data are available since more than 100 years. The precipitation data are 206 
collected since 1898 on the same location, and is measured using the same instrument. For this study, the 207 
data for the 100-year period 1901-2000 was considered as the reference period for the computation of 208 
long-term statistics on the rainfall deficit.  209 
 210 

2.2. Measuring autumn leaf senescence: the chlorophyll content index and the loss of 211 

canopy greenness 212 
In the manipulative experiment from late-July until late-November, we measured the CCI of each tree 213 
sapling weekly by randomly selecting one leaf from the outer, middle and inner layer of the upper part of 214 
the crown. The CCI was measured using a chlorophyll content meter, which measures the optical 215 
absorbance in the 653 nm and 931 nm wavebands (CCM-200 plus, Opti-Sciences Inc., Hudson, NH, USA). 216 
Concurrently, we visually estimated the loss of canopy greenness (LOCG; scaled between 0 and 1) of each 217 
sapling following the method of Vitasse et al. (2011), which accounts for both the percentage of leaves 218 
that have changed color and the percentage of leaves that have fallen. 219 
 220 
For the 16 mature trees in the two forests and from the end of July to the end of November, tree-climbers 221 
collected leaves on eight occasions per year separated by two to three weeks. During each measurement 222 
day, they collected five sun-leaves and five shade-leaves from each tree. Afterwards, the CCI was 223 
immediately measured on the harvested leaves using the same chlorophyll content meter as described 224 
above. From early September to late November, the loss of canopy greenness was estimated in a similar 225 
fashion to the manipulative experiment for the 32 mature trees (Vitasse et al., 2011).  226 
 227 
Following the method of Mariën et al. (2019), we validated the CCI values by measuring also the 228 
chlorophyll concentrations (Fig. S1). In 2017 and 2018, on one occasion per month and using a 10-mm 229 
diameter cylinder, we collected samples of leaf tissue from the leaves of the mature trees for which we 230 
also measured the CCI. After storage at -80 °C, the samples were grounded using glass beads and a 231 
centrifuge. The result was dissolved in ethanol and the absorption of the solution was measured using a 232 
spectrophotometer (Smart Spec Plus Spectrophotometer, Bio-Rad) at different wavelengths for 233 
Chlorophyll a (662 nm) and chlorophyll b (644 nm). The chlorophyll concentrations could then be derived 234 
from the absorption values using the formulas described in Holm (1954) and Vonwettstein (1957). 235 
 236 

2.3. Tree mortality in the manipulative experiment 237 
In this study, we only considered those trees that defoliated due to autumn leaf senescence. Other tree 238 
saplings have died or defoliated completely due to accelerated leaf senescence during or just after the 239 
drought period. Since chlorophyll degradation is a common feature of both senescence processes and 240 
nutrient remobilization was only measured indirectly by CCI, we did not consider (I) tree saplings that 241 
showed an early or abrupt defoliation (without gradual coloration) before the 18th of August (n = 20) and 242 
(II) tree saplings with constant CCI values lower than three, the limit at which the values of the CCI meter 243 
can be interpreted, for the whole period from August to November (n = 18). Like in other studies, some 244 
defoliated tree saplings produced a few new leaves as last attempt to prevent death (Vander Mijnsbrugge 245 
et al., 2016;Turcsan et al., 2016). However, there were not enough of such leaves for meaningful analyses.  246 
 247 
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2.4. Statistical analyses 248 
All statistical analyses were performed using R v.3.6.1. (R Core Team, 2020). The model assumptions were 249 
tested following  Zuur et al. (2010) and using R/ggpubr (Kassambara, 2019). All graphical output is built 250 
using the packages R/GGPLOT2, R/VIRIDIS and R/COWPLOT (Wickham, 2009;Wilke, 2019;Garnier, 2018). 251 
 252 
2.4.1. Assessing the patterns of CCI and loss of canopy greenness using generalized additive 253 
mixed models 254 
The patterns of the CCI and loss of canopy greenness data from both our tree saplings and mature trees 255 
were assessed using generalized additive mixed models (GAMMs) built using the packages R/MGCV, 256 
R/GRATIA and R/DPLYR (Wood, 2011;Wickham et al., 2018;Simpson, 2020;Hastie and Tibshirani, 257 
1986;Pedersen et al., 2019). We used GAMMs because they allow more flexibility than other models (e.g. 258 
generalized linear models) to model the distribution parameter µ (i.e. the mean of the observed random 259 
variable) and the continuous explanatory variables (Rigby and Stasinopoulos, 2005).  260 
 261 
To model the CCI of both our tree saplings and mature trees as a function of their covariates, Gaussian 262 
GAMMs with the identity link function were used (Table 2; Model Eq. 1, 3, 5, 7). To model the loss of 263 
canopy greenness of both our tree saplings and mature trees as a function of their covariates and because 264 
the loss of canopy greenness is scaled between 0 and 1, Binomial GAMMs with the logistic link function 265 
were used (Table 2; Model Eq. 2, 4, 6, 8). The GAMMs were chosen with the lowest AIC value (Akaike 266 
information criterion) and all factor-smooth interaction terms were smoothed using P-splines to address 267 
the large gap in data (i.e. from November to June) between the yearly sampling periods. 268 
 269 
For the CCI of the beech saplings, the fixed covariates were the treatment (categorical with three levels), 270 
leaf place (categorical with three levels) and day of the year (continuous; model 1). The interaction term 271 
was modelled as a factor-smooth interaction between the covariates day of the year and treatment. The 272 
dependency among observations of the same individual tree was incorporated by using individual tree as 273 
random intercept.  274 

Model 1 275 

Yij ~ Gaussian(µij, cst.) 276 
g(𝔼(Yij)) = g(µij) 277 

g(µij) = Treatmentij + Leaf_placeij + f(Doyij, Treatmentij) + Individual_treei 278 
 279 

where g is the identity link function, µij is the conditional mean,  Yij is the jth observation of the response 280 
variable (i.e. the CCI) in Individual tree i, and i = 1,…, 128, and Individual treei is the random intercept (Zuur 281 
et al., 2007;Zuur et al., 2016). 282 

For the loss of canopy greenness of the beech saplings, the fixed covariates were the treatment 283 
(categorical with three levels) and day of the year (continuous; model 2). The interaction term and the 284 
dependency among observations of the same individual tree were treated as in model 1.  285 

Model 2 286 

Yij ~ B(nij, πij) 287 
g(𝔼(Yij)) = g(µij) 288 

g(µij) = Treatmentij + f(Doyij, Treatmentij) + Individual_treei 289 
 290 
where nij is the number of observations, πi is the probability of ‘success’, g is the logit link function, µij is 291 
the conditional mean, Yij is the jth observation of the response variable (i.e. the loss of canopy greenness) 292 
in Individual tree i, and i = 1,…, 128, and Individual treei is the random intercept. 293 
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For the CCI of the mature beech, birch and oak trees, the fixed covariates were the year (categorical with 294 
three levels), leaf type (categorical with two levels) and day of the year (continuous; model 3). The 295 
interaction term was modelled as a factor-smooth interaction between the covariates day of the 296 
year and year. The dependency among observations of the same individual tree was incorporated 297 
using individual tree as random intercept.  298 

Model 3 299 

Yij ~ Gaussian(µij, cst.) 300 
g(𝔼(Yij)) = g(µij) 301 

g(µij) = Yearij + Leaf_typeij + f(Doyij, Yearij) + Individual_treei 302 
 303 

where g is the identity link function, µij is the conditional mean,  Yij is the jth observation of the response 304 
variable (i.e. the CCI) in Individual tree i, and i = 1,…, 8 for beech, i = 1,…, 4 for birch and i = 1,…,  4 for oak, 305 
and Individual treei is the random intercept. 306 

For the loss of canopy greenness of the mature beech, birch and oak trees, the fixed covariates were the 307 
year (categorical with three levels) and day of the year (continuous; model 4). The interaction term and 308 
the dependency among observations of the same individual tree were treated as in model 3.  309 

Model 4 310 

Yij ~ B(nij, πij) 311 
g(𝔼(Yij)) = g(µij) 312 

g(µij) = Yearij + f(Doyij, Yearij) + Individual_treei 313 
 314 

where nij is the number of observations, πij is the probability of ‘success’,  g is the logit link function, µij is 315 
the conditional mean, Yij is the jth observation of the response variable (i.e. the loss of canopy greenness) 316 
in Individual tree i, and i = 1,…, 16 for beech, i = 1,…, 8 for birch and i = 1,…,  8 for oak, and Individual 317 
treei is the random intercept. 318 

2.4.2. Using breakpoints to indicate the onset of autumn leaf senescence and the loss of canopy 319 
greenness 320 
In principle, the onset of autumn leaf senescence could be derived from the CCI or loss of canopy 321 
greenness. However, Mariën et al. (2019) recently showed that the latter method cannot be used under 322 
severe drought stress. Therefore, two phenological variables were considered to describe the autumn 323 
canopy dynamics: the onset of autumn leaf senescence derived from the CCI (the onset of autumn leaf 324 
senescenceCCI) and the onset of the loss of canopy greenness. For each tree, we defined the onset of 325 
autumn leaf senescence and the onset of loss of canopy greenness as the date by which the variable of 326 
interest started to decline substantially in early autumn. These dates were calculated using piecewise 327 
linear regressions and are represented by the breakpoints resulting from these analyses (Menzel et al., 328 
2015;Mariën et al., 2019;Xie and Wilson, 2020). The piecewise linear regressions were performed using 329 
R/DPLYR and R/SEGMENTED (Vito and Muggeo, 2008). The uncertainty reported represents the inter-tree 330 
variability. Trees that did not show a clear breakpoint (13 in the manipulative experiment) were not 331 
considered in the analysis. These trees did not show a different pattern of CCI or loss of canopy greenness 332 
than the other trees (Fig. S2). 333 
 334 
2.4.3. Comparing the onset of autumn leaf senescence among tree saplings exposed to different 335 
drought treatments 336 
We tested whether the beech saplings exposed to the three treatments in 2018 differed in their onset of 337 
autumn leaf senescenceCCI using a linear model with the onset of autumn leaf senescenceCCI as response 338 
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variable and treatment (categorical with three levels) as fixed covariate. The residuals of the model were 339 
approximately normally distributed and a Breusch-Pagan test, the R/ncvTest and R/bptest in the R/CAR and 340 
R/LMTEST packages, showed no evidence of heteroscedasticity (P > 0.05) (Fox and Weisberg, 2019;Zeileis 341 
and Hothorn, 2002). A one-way ANOVA was used to detect significant differences in the onset of autumn 342 
leaf senescenceCCI among the treatments.  343 
 344 
2.4.4. Comparing the onset of autumn leaf senescence and the onset of loss of canopy greenness 345 
in mature trees among species and years  346 
To model the onset of autumn leaf senescenceCCI and the onset of the loss of canopy greenness as a 347 
function of their covariates, Gaussian linear mixed models were used. These models were built with the 348 
package R/LME4 (Bates et al., 2015).  349 
 350 
The effect of the year on the onset of autumn leaf senescenceCCI and the onset of the loss of canopy 351 
greenness was assessed using two linear mixed effect models with the onset of autumn leaf senescenceCCI 352 
and the onset of the loss of canopy greenness from the mature beech, birch and oak trees as response 353 
variable. The fixed covariate in these two models was the Year (categorical with three levels; model 5). To 354 
incorporate the dependency among observations of the same species, we used species as random 355 
intercept. 356 

Model 5 357 

Yij ~ Gaussian(µij, cst.) 358 
g(𝔼(Yij)) = g(µij) 359 

µij = Yearij + Speciesi 360 
 361 

where g is the identity link function, µij is the conditional mean, Yij is the jth observation of the response 362 
variable in Species i, and i = 1,…, 3 and Speciesi is the random intercept. 363 

The effect of the species on the onset of autumn leaf senescenceCCI and the onset of the loss of canopy 364 
greenness was assessed using two linear mixed effect models with the onset of autumn leaf senescenceCCI 365 
and the onset of the loss of canopy greenness from the mature beech, birch and oak trees as response 366 
variable. The fixed covariate in these two models was the Species (categorical with three levels; model 6). 367 
To incorporate the dependency among observations of the same year, we used Year as random intercept. 368 

Model 6 369 

Yij ~ Gaussian(µij, cst.) 370 
g(𝔼(Yij)) = g(µij) 371 

µij = Speciesij + Yeari 372 
 373 

where g is the identity link function, µij is the conditional mean, Yij is the jth observation of the response 374 
variable in Year i, and i = 1,…, 3 and Yeari is the random intercept. 375 

The residuals of the models were approximately normally distributed and showed no heteroscedasticity 376 
(tested using diagnostic plots). Therefore, we used Pearson’s chi-square test, R/drop1 in the R/LME4 377 
package, to detect significant differences in the onset of autumn leaf senescence and the onset of the loss 378 
of canopy greenness among the predictor variables. A multiple comparison test, the R/glht test with 379 
method Tukey in the R/MULTCOMP package, was used to test for significant differences among the means 380 
of the levels in the predictor variables (Hothorn et al., 2008). 381 
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3. Results 382 

3.1. Magnitude of the drought stress in 2017, 2018 and 2019 383 
The weather in 2018 and 2019 was exceptional, as can be seen in the overview of the meteorological 384 
conditions from 2017 to 2019 against the long-term reference values in Table 1 and Figure 2. In 2017, the 385 
weather during spring was dry and warm but the weather during summer and autumn was relatively 386 
normal (KMI, 2017c, b, a). In contrast, the warm and dry summer of 2018 was marked by abnormal (with 387 
an average return time of 6 years) to exceptional (with an average return time of 30 years or more) values 388 
(KMI, 2018a). Furthermore, the autumn of 2018 was abnormally dry and all precipitation fell on relatively 389 
few days (32) (KMI, 2018b). In the summer of 2019, the average air temperature and the total amount of 390 
sunshine were both among the three highest values recorded since 1981. In fact, the absolute maximum 391 
air temperature record for Belgium was broken in 2019 (KMI, 2019b). On the other hand, the autumn of 392 
2019 was considered normal (KMI, 2019a).  393 
 394 
The rainfall deficit for each day in the hydrological year (from the 1st of April  until the 31st of March) and 395 
different return times are shown in Figure 3 (panel A & B). This demonstrates that in the late spring of 396 
2017, the summer of 2018 and the summer of 2019 the rainfall deficit reached a return time between 20 397 
and 50 years, 50 years, and 20 years, respectively. The hydrological summers of 2017, 2018 and 2019 had 398 
therefore moderate to extremely dry conditions, which led to accumulated rainfall deficit conditions over 399 
time (see Figure 3; panel A). Especially the hydrological year starting in 2018 ended with a strong rainfall 400 
deficit of about 150 mm, which was not reduced during 2019. 401 
 402 

3.2. The effect of drought on the onset of autumn leaf senescence in tree saplings in a 403 
manipulative experiment 404 
For all treatments, the CCI values of the beech saplings showed an overall moderate decrease until the 405 
beginning of October. Afterwards, this decrease accelerated (Fig. 4; panel A & C; Table 2). In the +0 and 406 
especially the +3 °C treatment, an abnormal CCI decline was observed in early August with only a partial 407 
recovery later on. As a result, from the beginning of August until mid-September, the CCI values of the 408 
beech saplings in the reference plots were significantly higher than the CCI values of the beech saplings in 409 
the glasshouses. However, no significant difference was detected in the timing of the onset of autumn 410 
leaf senescenceCCI among the beech saplings exposed to the three different treatments, as the mean onset 411 
of autumn leaf senescenceCCI was between the 21st (DOY = 260 ± 5) and 25th (DOY = 264 ± 4) of September 412 
(P = 0.7; Fig. S3). 413 
 414 
The loss of canopy greenness for the beech saplings showed a stable decline from early August until the 415 
end of autumn (Fig. 4; panel B & D; Table 2). Nevertheless, during September, the loss of canopy greenness 416 
of the beech saplings in the reference plots was significantly higher than the loss of canopy greenness of 417 
the beech saplings in the glasshouses with the +3 °C treatment.  418 
 419 
The tree saplings in the glasshouses of both treatments were exposed to a high mortality with 14% and 420 
26% of the tree saplings in the glasshouses with the +0 °C and +3 °C treatment, respectively, considered 421 
‘dead’ along our criteria (see §2.3.). In the reference plots, no beech saplings died. 422 
 423 
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3.3. Inter-annual and inter-species variability in the timing of the onset of autumn leaf senescence 424 
and the onset of the loss of canopy greenness in mature trees  425 
The pattern in the CCI values for the mature beech, birch and oak trees seems consistent throughout the 426 
years with stable values in summer and a rapid decline around late October (Fig. 5 - 7; panel A & C; Table 427 
2). We also observed no significant difference in the onset of autumn leaf senescenceCCI among the years 428 
(P = 0.09) and species (P = 1). The mean onset of autumn leaf senescenceCCI among the years was from 429 
the 8th (DOY = 281 ± 6) to the 19th (DOY = 292 ± 6) of October (Fig. S4; panel A), while the mean onset of 430 
autumn leaf senescenceCCI among the species was around the 13th of October (DOY = 286 ± 6; Fig. S4; 431 
panel B). The CCI correlated linearly with the chlorophyll concentrations but the data showed more 432 
variation in 2018 than 2017 (see Fig. S1). 433 
 434 
The pattern in the loss of canopy greenness for the mature beech, birch and oak trees seemed less 435 
consistent throughout the years (Fig. 5 - 7; panel B & D; Table 2). The loss of canopy greenness showed a 436 
very similar pattern between 2017 and 2019 for birch and beech, with the start of the decline in canopy 437 
greenness values around late September for birch and late October for beech. Like beech and birch, oak 438 
showed a standard pattern in 2019 with the start of the seasonal decline in late October. However, in 439 
2017, oak showed an earlier loss of canopy greenness with the start of the seasonal decline in mid-440 
September. In all cases, a rapid decline in the canopy greenness was observed in late autumn. In 2018, all 441 
species showed an earlier and steeper decline in their canopy greenness values. This effect was also 442 
reflected by a significant difference in the onset of the loss of canopy greenness among the years (P = 5 x 443 
10-11). Across species, the onset of the loss of canopy greenness did not differ significantly (P = 0.9) 444 
between 2017 (DOY = 292 ± 9) and 2019 (DOY = 290 ± 4), while it occurred 26 and 25 days earlier in 2018 445 
(DOY = 266 ± 4) compared to 2017 (P = 1 x 10-5) and 2019 (P = 1 x 10-5), respectively (Fig. S5; panel A). 446 
However, all tree species differed significantly in their onset of the loss of canopy greenness across years 447 
(P = 6 x 10-9). Compared to birch (DOY = 268 ± 9; Fig. S5; panel B), the onset of the loss of canopy greenness 448 
for beech was on average 16 days later (P = 1 x 10-4; DOY = 284 ± 4), while for oak this was 30 days later 449 
(P = 1 x 10-4; DOY = 298 ± 4). The onset of the loss of canopy greenness for beech was also 14 days earlier 450 
than that for oak (P = 7 x 10-4). 451 

4. Discussion 452 
Our results showed that the timing of the onset of autumn leaf senescence in both tree saplings and 453 
mature trees was not significantly altered by severe drought stress induced by a decline in the soil 454 
moisture, relative humidity, and an increase in the air temperature and vapor pressure deficit. These 455 
results are in contrast to other studies reporting, for example, that drought stress delays the onset of 456 
autumn leaf senescence (determined using remote sensing indices or visual assessment) (Wang et al., 457 
2016;Vander Mijnsbrugge et al., 2016;Zeng et al., 2011;Gárate-Escamilla et al., 2020;Seyednasrollah et al., 458 
2020). However, in our study, drought stress did affect the loss of CCI and canopy greenness of our beech 459 
saplings, their mortality, and the onset of the loss of canopy greenness in our mature trees. The effect of 460 
the drought stress on the loss of canopy greenness might be due to an early leaf abscission in response to 461 
hydraulic failure of the branches (Wolfe et al., 2016;Munné-Bosch and Alegre, 2004). For the mature trees, 462 
the different drought response of the autumn pattern of chlorophyll (no effect) and the loss of canopy 463 
greenness (advanced and enhanced) is probably an important reason of confusion still present today in 464 
the literature on the relationship between drought and autumn senescence. 465 
 466 
The continuously computed rainfall deficit was similar between 2018 and 2019. Nevertheless, the loss of 467 
canopy greenness suggests that the drought of 2019, which coincided with several heat waves, might have 468 
been less damaging for the late-summer leaf dynamics than the drought of 2018. The rainfall deficit 469 

https://doi.org/10.5194/bg-2020-337
Preprint. Discussion started: 14 October 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

starting from a zero deficit supports the observation that, despite the accumulated drought effect, the 470 
drought of 2019 was less severe in the growing season than the drought of 2018. Perhaps, the conditions 471 
of 2018 (i.e. sunny and warm with high vapor pressure deficits) triggered the damaging process of 472 
cavitation in the trees, while this might have occurred less intensively in 2019 if the stomatal conductance 473 
was lower (Barigah et al., 2013;Bolte et al., 2016;Banks et al., 2019). Alternatively, the difference in the 474 
timing of the drought peaks (i.e. the drought of 2018 peaked slightly earlier than the drought of 2019) 475 
could have led to divergent responses due to differences in drought sensitivity along the growing season 476 
(Banks et al., 2019).  477 
 478 
The drought stress did not affect the onset of autumn leaf senescence of both the beech saplings and the 479 
mature trees. Deciduous trees therefore seem to have a conservative strategy concerning the timing of 480 
their autumn leaf senescence that might be under the control of a constant variable (e.g. the day-length 481 
or photo spectrum) (Michelson et al., 2018;Chiang et al., 2019). Such a strategy prioritizes carbon uptake 482 
over nutrient remobilization, as a fixed onset of autumn leaf senescence would not allow an advanced 483 
nutrient remobilization when required (Keskitalo et al., 2005;Brelsford et al., 2019). Moreover, such a 484 
strategy makes the trees vulnerable against the effects of early frost. In case of early frost, the trees might 485 
not complete their nutrient resorption. Possible consequences of an incomplete nutrient resorption over 486 
a longer time period might include a decline in the overall fitness of the trees and negative feedbacks on 487 
the growth dynamics of the next season, such as less buds (Fu et al., 2014;Vander Mijnsbrugge et al., 488 
2016;Crabbe et al., 2016).  489 
 490 
Surprisingly, the onset of autumn leaf senescence did not differ significantly among the different tree 491 
species, which supports the idea that the onset of autumn leaf senescence in different deciduous trees 492 
might be controlled by the same (light related) signal. Other explanations for this result could be the small 493 
sample size (i.e. 8 beech, 4 birch and 4 oak trees for the CCI) or the inaccuracies related to the method of 494 
piece-wise linear regressions. Given our results, the drought in 2018 and 2019 had little impact on the CCI 495 
trend and onset of autumn leaf senescence in mature beech, birch and oak trees.  496 
 497 
Although the onset of autumn leaf senescence in both the tree saplings and the mature trees was not 498 
advanced by drought stress, the onset of autumn leaf senescence in beech saplings was around 22 days 499 
earlier than mature beech trees. Such difference could be due to the different growing conditions (pots 500 
versus normal soil), environmental conditions at the different sites, the difference in the average leaf age 501 
(tree saplings have an earlier bud-burst than mature trees) or the different ecophysiological response of 502 
tree saplings and mature trees (e.g. tree saplings are more vulnerable than mature trees and therefore 503 
are likely to use different functional strategies) (Niinemets, 2010;Vander Mijnsbrugge et al., 2016;Pšidová 504 
et al., 2015). As there is very little difference in the light conditions among the different sites, the 505 
difference in the day length is unlikely to have affected the difference in the timing of the onset of autumn 506 
leaf senescence between the beech saplings and mature trees. However, it is possible that the beech 507 
saplings have a different sensitivity to the light cues, as they usually grow in the understory and therefore 508 
under a different light regime than mature trees (Brelsford et al., 2019;Michelson et al., 2018;Chiang et 509 
al., 2019). 510 
 511 
Concerning the onset of the loss of canopy greenness for all species and opposed to 2017 (i.e. a year with 512 
normal environmental conditions in late-summer and autumn) and 2019 (i.e. a year with high 513 
temperatures in summer, relatively normal precipitation in summer and autumn, but suffering from the 514 
accumulated effects of the rainfall deficit), the onset of the loss of canopy greenness in 2018 was around 515 
three-and-a-half weeks earlier. The canopy greenness metric had been declining earlier in 2018 because 516 
the leaves have likely shed earlier due to an advanced leaf abscission process to protect the tree from 517 
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hydraulic failure (Munné-Bosch and Alegre, 2004;Wolfe et al., 2016). There was also a difference in the 518 
onset of the loss of canopy greenness among the species. This might be due to two reasons. First, birch 519 
(the species with the earliest onset of the loss of canopy greenness) has an indeterministic growth pattern, 520 
which also means continuous leaf mortality. Second, the fact that oak (the species with the latest onset 521 
of the loss of canopy greenness) has typically a second leaf flush, which might connect the difference 522 
between beech and oak to differences in leaf longevity.  523 

5. Conclusion 524 
The different environmental conditions of three years (comprising a severe dry year and a severe warm 525 
year) did not affect the timing of the onset of autumn leaf senescence in mature beech, birch and oak 526 
forest trees in Belgium. This suggests that deciduous trees have a conservative strategy concerning the 527 
timing of their senescence. Like our mature beech trees, beech saplings exposed to a drought also did not 528 
show any advancement in their onset of autumn leaf senescence compared to beech saplings in normal 529 
conditions. Although the drought stress did not affect the timing of the onset of autumn leaf senescence, 530 
it is clear from our results that the drought stress did affect the mortality rate in tree saplings and the leaf 531 
mortality in mature trees.  532 
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Figures 722 

 723 

Fig. 1: The relative humidity (panel A), temperature (panel B), soil water content (panel C) and vapor 724 
pressure deficit (panel D) in the glasshouses and outside plots at the Drie Eiken Campus in Wilrijk. Solid 725 
lines represent regressions of half-hourly measurements of the relative humidity (%), temperature (°C), 726 
and soil water content (m³/m³). The vapor pressure deficit (kPa) was calculated using the formulas of Buck 727 
(1981) using data of the relative humidity and air temperature between 7 a.m. and 7 p.m. Green, blue and 728 
red lines represent the conditions in the reference plots (Ref.), glasshouses that follow the outside 729 
ambient air temperature (+0 °C) and glasshouses that are three degrees warmer than the outside ambient 730 
air temperature (+3 °C), respectively. The light blue band represents the treatment-period. 731 
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 732 
Fig. 2: The meteorological conditions near the Klein Schietveld and Park of Brasschaat. The line plots 733 
represent the daily average relative humidity (%; red), temperature (°C; blue) and vapor pressure deficit 734 
(kPa; green), while the bar plots represent the daily precipitation (mm; light blue). The data was measured 735 
every half hour and provided by the Flemish Institute for Nature and Forest (INBO), the Integrated Carbon 736 
Observation System (ICOS) and the Royal Dutch Meteorological Institute (KNMI). The vapor pressure 737 
deficit (kPa) was calculated using the formulas of Buck (1981) using data of the relative humidity and air 738 
temperature between 7 a.m. and 7 p.m. 739 
 740 
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 742 

Fig. 3: The rainfall deficit for the meteorological station of the Royal Meteorological Institute (KMI) in 743 
Ukkel, Belgium. The colored solid lines represent the rainfall deficit for the hydrological years in the period 744 
2017-2020, while the grey solid lines represent the long-term reference statistics (computed for the 100-745 
year period 1901 - 2000) with T as the return period, which represents the mean time between two 746 
successive exceedances of a given deficit value and is computed in an empirical way (Willems, 2000, 2013). 747 
Panel A uses a continuous computation, while panel B starts from a zero deficit on the first of April (the 748 
start of the hydrological year). The colors represent the rainfall deficit in 2017 (light blue), 2018 (red) and 749 
2019 (yellow). 750 
 751 

 752 
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 753 

 754 

 755 
Fig. 4: The generalized additive mixed model fits for the chlorophyll content index (CCI; panel A) and loss 756 
of canopy greenness (panel B) of the Fagus sylvatica saplings at the Drie Eiken Campus in Wilrijk. The 757 
colored solid lines represent smooth terms, while the colored shaded bands around the smooth terms 758 
represent approximate 95% simultaneous confidence intervals (panel A) and 95% pointwise confidence 759 
intervals (panel B). The dots and error bars represent the mean CCI (panel C) and mean canopy greenness 760 
(panel D) with standard errors. The colors represent the CCI or the loss of canopy greenness of the beech 761 
saplings in the reference plots (green; Ref.), the glasshouses that followed the outside ambient air 762 
temperature (yellow; +0 °C) and the glasshouses that were three degrees warmer than the outside 763 
ambient air temperature (purple; +3 °C), respectively.  764 
  765 
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 766 
Fig. 5: The generalized additive mixed model fits for the chlorophyll content index (CCI; n = 8; panel A) and 767 
loss of canopy greenness (n = 16; panel B) of the mature Fagus sylvatica trees at the Klein Schietveld and 768 
Park of Brasschaat. The colored solid lines represent smooth terms, while the colored shaded bands 769 
around the smooth terms represent approximate 95% simultaneous confidence intervals (panel A) and 770 
95% pointwise confidence intervals (panel B). The dots and error bars represent the mean CCI (panel C) 771 
and mean canopy greenness (panel D) with standard errors. The colors represent the CCI or the loss of 772 
canopy greenness of the mature beech trees in 2017 (green), 2018 (purple) and 2019 (yellow). 773 
  774 
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 775 
Fig. 6: The generalized additive mixed model fits for the chlorophyll content index (CCI; n = 4; panel A) and 776 
loss of canopy greenness (n = 8; panel B) of the mature Betula pendula trees at the Klein Schietveld. The 777 
colored solid lines represent smooth terms, while the colored shaded bands around the smooth terms 778 
represent approximate 95% simultaneous confidence intervals (panel A) and 95 % pointwise confidence 779 
intervals (panel B). The dots and error bars represent the mean CCI (panel C) and mean canopy greenness 780 
(panel D) with standard errors. The colors represent the CCI or the loss of canopy greenness of the mature 781 
birch trees in 2017 (green), 2018 (purple) and 2019 (yellow). 782 
  783 
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 784 
Fig. 7: The generalized additive mixed model fits for the chlorophyll content index (CCI; n = 4; panel A) and 785 
loss of canopy greenness (n = 8; panel B) of the mature Quercus robur trees at the Klein Schietveld. The 786 
colored solid lines represent smooth terms, while the colored shaded bands around the smooth terms 787 
represent approximate 95% simultaneous confidence intervals (panel A) and 95% pointwise confidence 788 
intervals (panel B). The dots and error bars represent the mean CCI (panel C) and mean canopy greenness 789 
(panel D) with standard errors. The colors represent the CCI or the loss of canopy greenness of the mature 790 
oak trees in 2017 (green), 2018 (purple) and 2019 (yellow). 791 
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Tables 793 
Table 1: Overview of the meteorological conditions perceived by the mature trees in the Klein Schietveld 794 
and Park of Brasschaat. All data is measured by the meteorological station of the Royal Meteorological 795 
Institute (KMI) in Ukkel, Belgium (KMI, 2018b, a, 2017c, b, 2019a, b). The degree of abnormality of the 796 
values is represented by (a; abnormal values that happen on average once every 6 years) and (e; 797 
exceptional values that happen on average once every thirty years). Since 2019, the KMI uses a new 798 
system to show the degree of abnormality. Values that are with the five highest values since 1981 are 799 
marked by (+), while values within the three highest values are marked by (++). 800 
 801 

 
Normal 

(1981-2010) 
2017 2018 2019 

summer autumn summer autumn summer autumn summer autumn 
Average 

temperature (°C) 
17.6 10.9 18.6 

(a) 
11.3 19.8 

(e) 
11.8 19.1 

(++) 
11.3 

Total precipitation 
(mm) 

224.6 219.9 179.9 226.5 134.7 
(a) 

168.5 198.6 209.3 

Average number of 
rainy days 

43.9 51 44 63 (a) 20 
(e) 

32 (e) 33 53 

Relative humidity 
(%) 

73 82 67.7 
(e, June) 

62 62.3 
(e, July) 

75 
(e, July) 

70 83 

Sunshine duration 
(h:m) 

578:20 322:00 573:21 322:00 693:06 
(a) 

471:12 
(e) 

714:38 
(++) 

322:23 

Global solar 
radiation (kWh/m²) 

429.6 168.2 447.1 
(a, June) 

233.8 498.6 
(e, July) 

213.4 
(e, October) 

487.9 
(+) 

178.4 

 802 
803 
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Table 2: Adjusted R², effective degrees of freedom (edf) and F-test values of the GAMM smooth terms. All 804 
smooth terms were significant, with p-values < 0.001. 𝔼(yi) are the expected values of the response 805 
variable yi, f(xi) is the smooth function of the covariate xi, βi  is the intercept of the covariate xi, ζ is the 806 
random effect and εi are the errors. All smooth functions were fitted using P-splines. The chlorophyll 807 
content index, loss of canopy greenness, day of the year and tree individual are abbreviated by CCI, LOCG, 808 
Doy and ID, respectively.  809 

 810 
Site Species Yi Model  

equation 
Family 

distribution 
Link 

function 
Adjusted 

R² 
Smooth 

term 
Treatment Edf F or 

Chi.sq 
Wilrijk Fagus 

sylvatica 
CCI (1) g(𝔼(yi)) = 

f1Treatmenti(Doyi) 

+ β1Treatmenti + 
β2Leaf_placei + ζID 

+ εi 

Gaussian Identity 0.61 Day of 
the year 

Reference 4.8 337.5 

  
 

+0 °C 5.8 175 

  
 

+3 °C 6.1 34.4 

    
  

     

Wilrijk Fagus 
sylvatica 

Loss of 
canopy 

greenness 

(2) g(𝔼(yi)) = 
f1Treatmenti(Doyi) 

+ β1Treatmenti + 
ζID + εi 

Binomial Logit 0.76 Day of 
the year 

Reference 3.6 112.6 

  
 

+0 °C 1.1 105.9 

  
 

+3 °C 1 53.7 
    

  
  

Year 
  

KS & 
PB 

Fagus 
sylvatica 

CCI (3) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + 
β2Leaf_typei + ζID 

+ εi 

Gaussian Identity 0.7 Day of 
the year 

2017 4.6 197.8 

  2018 5.3 221.6 

  2019 5.2 193.2 

    
  

     

KS & 
PB 

Fagus 
sylvatica 

Loss of 
canopy 

greenness 

(4) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + ζID + εi 

Binomial Logit 0.87 Day of 
the year 

2017 2.4 44.8 

  
 

2018 2.5 70.6 

  
 

2019 2.7 66 
    

  
     

KS Betula 
pendula 

CCI (5) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + 
β2Leaf_typei + ζID 

+ εi 

Gaussian Identity 0.44 Day of 
the year 

2017 3.2 25.9 

  
 

2018 5 56.9 

  
 

2019 3.1 14.7 

    
  

     

KS Betula 
pendula 

Loss of 
canopy 

greenness 

(6) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + ζID + εi 

Binomial Logit 0.89 Day of 
the year 

2017 1 20.6 

  
 

2018 1 36 

  
 

2019 1.6 48.2 
    

  
     

PB Quercus 
robur 

CCI (7) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + 
β2Leaf_typei + ζID 

+ εi 

Gaussian Identity 0.52 Day of 
the year 

2017 3.3 62.5 

  2018 5.1 84.4 

  2019 4.3 30.7 

    
  

     

PB Quercus 
robur 

Loss of 
canopy 

greenness 

(8) g(𝔼(yi)) = 
f1Yeari(Doyi) + 

β1Yeari + ζID + εi 

Binomial Logit 0.85 Day of 
the year 

2017 1.2 12.5 

  
 

2018 1.9 33.6 
  

  
 

2019 2.4 32 
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