Supplementary Material to Nordic Seas Acidification

Filippa Fransner¹, Friederike Fröb², Jerry Tjiputra³, Melissa Chierici⁴, Agneta Fransson⁵, Emil Jeansson³, Truls Johannessen¹, Elizabeth Jones⁴, Siv K. Lauvset³, Solveig R. Olafsdottir⁶, Abdirahman Omar³, Ingunn Skjelvan³, and Are Olsen¹

¹Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
²Max Planck Institute for Meteorology, Hamburg, Germany
³NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
⁴Institute of Marine Research, Fram Centre, Tromsø, Norway
⁵ Norwegian Polar Institute, Tromsø, Norway

⁶Marine and Freshwater Research Institute, Reykjavík, Iceland

Correspondence: Filippa Fransner (filippa.fransner@uib.no)

Figure S1. Temperature (in $^{\circ}$ C) evolution in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero.

Figure S2. Salinity evolution in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero.

Figure S3. Dissolved Inorganic Carbon (DIC, in μ mol kg⁻¹) evolution in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero.

Figure S4. Alkalinity (ALK, in μ mol kg⁻¹) evolution in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero.

Figure S5. Evolution of calcite saturation state (Ω_{Ca}) in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero.

Figure S6. Evolution of pCO_2 (in μ atm) in the six different basins across different depth intervals in the Nordic Seas from 1981 to 2019. Red dots with error bars show observations. The solid and dashed black lines show the calculated trend with error estimates from the observations. The trend is indicated in the lower left of each panel. Bold indicates that the trend is significantly different from zero. The dashed blue line shows the atmospheric pCO₂ from the Mauna Loa records.

Figure S7. Distribution of surface a) temperature b) salinity, c) DIC, d) ALK and e) DIC/ALK from the GLODAPv2 climatology.

Figure S8. Contribution of observed changes in temperature, salinity, DIC, ALK to the observed trend in pH (OBS) over the 1981-2019 period. The contribution of DIC and ALK has been divided into a freshwater (fw) component and a biogeochemical (bg) component. Bars showing trends that are significantly different from zero are outlined with a black line. TOT indicates the total trend in pH calculated as the sum of the trends associated with these four driving factors. The dashed line indicates the trend in pH expected from the change in atmospheric CO_2 during the same period for the whole area.

Figure S9. Contribution of modelled changes in temperature, salinity, DIC, ALK to the modelled trend in pH (OBS) over the 1850-2005 period. Bars showing trends that are significantly different from zero are outlined with a black line. TOT indicates the total trend in pH calculated as the sum of the trends associated with these four driving factors. The dashed line and black stars indicate the trend in pH expected from the change in atmospheric CO_2 during the same period for the whole area and for the separate basins, respectively.

Figure S10. Contribution of modelled changes in temperature, salinity, DIC, ALK to the modelled trend in pH (OBS) over the 2006-2100 period for the RCP2.6 scenario. Bars showing trends that are significantly different from zero are outlined with a black line. TOT indicates the total trend in pH calculated as the sum of the trends associated with these four driving factors. The black dashed line and black stars indicate the pH trend expected from the change in atmospheric CO_2 during the same period for the whole area and for the separate basins, respectively. The dotted line/gray stars show the expected trend in pH if assuming that the atmospheric CO_2 from 2006 to 2100 linearly increases to a value corresponding to the maximum CO_2 value under the RCP2.6 scenario.

Figure S11. Contribution of modelled changes in temperature, salinity, DIC, ALK to the modelled trend in pH (OBS) over the 2006-2100 period for the RCP8.5 scenario. Bars showing trends that are significantly different from zero are outlined with a black line. TOT indicates the total trend in pH calculated as the sum of the trends associated with these four driving factors. The dashed line and black stars indicate the trend in pH expected from the change in atmospheric CO_2 during the same period for the whole area and for the separate basins, respectively.