

1 **Technical note: Accelerate coccolith size separation via**
2 **repeated centrifugation**

3

4 Hongrui Zhang^{1,2}, Chuanlian Liu¹, Luz Maria Mejia², Heather Stoll²

5 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China

6 2. Geological Institute, Department of Earth Science, Sonneggstrasse 5, ETH, 8092, Zürich, Switzerland

7 Corresponding to: Hongrui Zhang (103443_rui@tongji.edu.cn; zhh@ethz.ch)

8 **Abstract:**

9 Coccolithophore play a key role in the marine carbon cycle and ecosystem. The
10 carbonate shells produced by coccolithophore, named as coccolith, could be well
11 preserved in the marine sediment for million years and become an excellent archive for
12 paleoclimate studies. The micro filtering and sinking-decanting method have been
13 successfully designed for coccolith separation and promoted the development of
14 geochemistry studies on coccolith, such as the stable isotopes and Sr/Ca ratio. However,
15 these two methods are still not efficient enough for the sample-consuming methods. In
16 this study, the trajectory of coccoliths movement during a centrifugation process was
17 calculated in theory and carefully tested by separations in practice. We offer a matlab
18 code to estimate the appropriate parameter, angular velocity at a fixed centrifugation
19 duration, for separating certain coccolith size fractions from bulk sediment. This work
20 could improve the efficiency of coccolith separation, especially for the finest size
21 fraction and make it possible to carry the clumped isotope and radio carbon analysis on
22 coccolith in sediment.

23

24 **1. Introduction**

25 Coccinolithophores are a group of marine calcifying eukaryotic phytoplankton.,
26 whose calcite exoskeletons (i.e. coccinolith) contribute significantly to the particulate
27 inorganic carbon (PIC) export from the euphotic zone into the deep ocean (Young and
28 Ziveri, 2000). Coccinoliths preserved in marine sediment are also excellent archive for
29 paleo-productivity reconstruction (Beaufort et al., 1997). The element ratio, Sr/Ca, in
30 coccinolith is correlated with the growth rate of calcite crystal (Stoll et al., 2002) thereby
31 becoming a competitive candidate for coccinolithophore growth rate which is an essential
32 parameter in the paleo-CO₂ reconstruction by alkenone carbon isotope. However, the
33 coccinolith geochemical analyses are limited by the difficulty of separating coccinolith
34 from bulk sediment. To solve this problem, different separating methods have been
35 proposed in the past a few decades (Paull and Thierstein, 1987; Stoll and Ziveri, 2002;
36 Minoletti et al., 2008).

37 Most of them, in general, could be categorized into two groups: the first one is
38 micro-filtering and the second is sinking-decanting technique. The micro-filtering
39 method relies heavily on the specifications of micro filter membrane (such as 3μm, 5μm
40 and 8μm pore size), which is highly effective in separation of the larger size coccinoliths,
41 but useless for coccinolith smaller than 2μm. The sinking-decanting method, on the other
42 hand, could offer more freedom in coccinolith size by adjusting the sinking durations,
43 thereby separating both small and large coccinoliths. However, because of the slow
44 sinking speed, a single separation of particles smaller than 2 μm may take more than 10
45 hours in settling. Moreover, about 6–8 times operations should be repeated, which
46 means a full separation may takes at most one week. Hence, it is necessary to improve
47 this method by reducing the time cost in coccinolith separation.

48 Based on the Stokes sinking equation, the sinking rate of a certain particle
49 increases with the increase of density difference between particle and liquid, decrease
50 of the liquid viscosity and the increase of gravity. Changing the physical property of
51 liquid often leads to the organic and toxic solvent which could lead to potential

52 contaminations for the further geochemistry analyses. A better way to accelerate
53 coccolith sinking speed is changing the gravity, or the acceleration speed of the
54 reference system, which can be easily achieved by centrifugation. One study has
55 mentioned the usage of centrifugation in coccolith separation, but only centrifugation
56 settings for a special case were provided (Hermoso et al., 2015). Here in this study, the
57 method of separation coccolith by centrifugation is introduced systematically. We first
58 calculate the trajectory of coccolith movement in a centrifugation processes and show
59 how to estimate the centrifugation parameters in different situations. After that, two
60 tests are performed to confirm the robustness of our calculations. Ultimately, a sample
61 containing coccoliths ranging from 2 μm to 12 μm is selected for a separation case in
62 practice.

63 **2. Trajectory of coccoliths during centrifugation**

64 The movement of coccolith in centrifugation is similar to that under the gravity.
65 Previously, we have calculated the separation ratio variation with time during the
66 settling (Zhang et al., 2018). All calculations in this study are with an assumption that
67 the coccolith is in the force balance all the time during both settling and centrifugations
68 for a convenience of calculation. Here we offer a brief proof for this assumption based
69 on sphere particles (the sink speeds of sphere particles are ~30% high than that of
70 coccolith in same size) and do a quick review of derivation we did before.

71 Based on the Newton second law, the force balance of a sphere object during
72 sinking can be described by the following equation:

$$73 \quad F = \frac{4}{3}\pi r^3 \rho_p g - \frac{4}{3}\pi r^3 \rho_l g - 6\pi\eta r v = \frac{4}{3}\pi r^3 \rho_p \frac{dv}{dt} \quad (\text{Eq. 1.})$$

74 where F is the join force of particle, which is equal to zero in force balance, r is
75 the radium of sphere, ρ_p and ρ_l are the density of particle and liquid, respectively, η is
76 the velocity of liquid and v is the particle sinking speed, dv/dt is the particle acceleration
77 speed, which can be also marked as a . On the right side of the first equal mark, the first

78 term is the gravity force, the second term is buoyancy and the third term is the dragging
 79 force from liquid. Transform Eq. 1, we can obtain the expression of accelerated speed
 80 ($a = F/m$) of sphere as Eq. 2:

$$81 \quad a = \frac{dv}{dt} = -\frac{9\eta}{2r^2}v + \frac{g}{\rho_{cal}}(\rho_p - \rho_l) \quad (\text{Eq. 2.})$$

82 Given the initial value of sinking speed is equal with zero at the initial time ($t = 0$),
 83 we can solve the differential equation Eq. 2 and obtain the variation of velocity with
 84 time as following equation:

$$85 \quad v = \frac{-e^{\left[-\frac{9\eta}{2r^2}t + \ln\left(-\frac{g}{\rho_{cal}}(\rho_p - \rho_l)\right)\right]} + \frac{g}{\rho_{cal}}(\rho_p - \rho_l)}{\frac{9\eta}{2r^2}} \quad (\text{Eq. 3.})$$

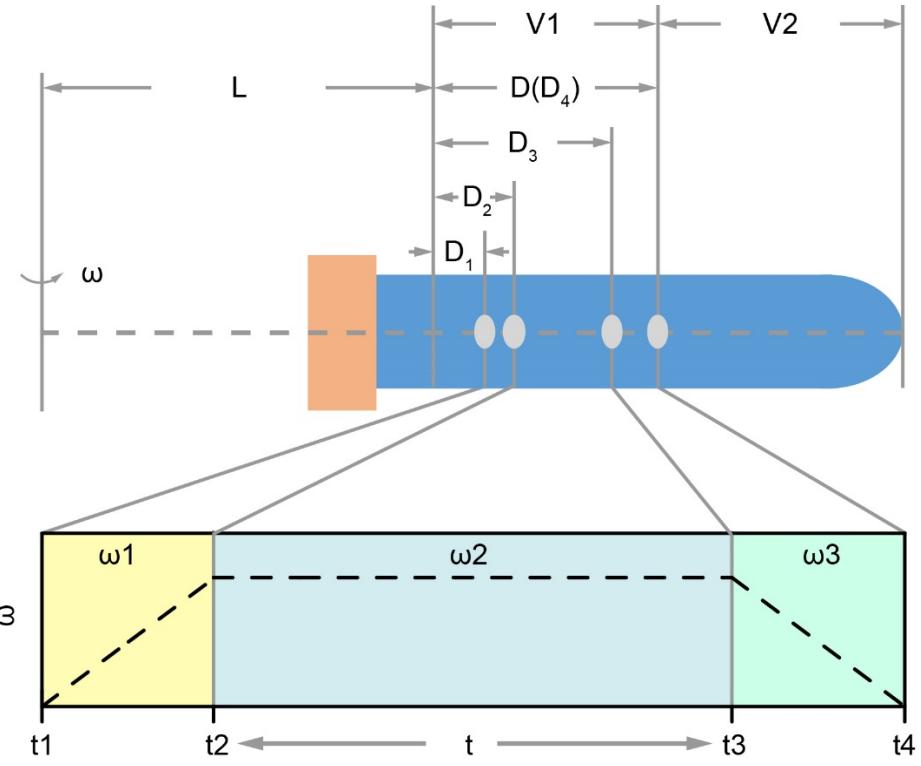
86 when the value of t is large enough, the first term of numerator in Eq. 3 is close to
 87 zero, which represents the sinking velocity is close to the termination sinking velocity
 88 described in Stocks equation (Eq. 4).

$$89 \quad \lim_{t \rightarrow \infty} v = \frac{2(\rho_p - \rho_l)gr^2}{9\eta} \quad (\text{Eq. 4.})$$

90 Given the particle as a 5 μm in radium calcite carbonate sphere with a density of
 91 2.7 g cm^{-3} and the density of water is equal to 1.0 g cm^{-3} , when the t is equal to 10^{-7} s ,
 92 the first term of numerator is $3.7 \times 10^{-44} \text{ m s}^{-2}$ and small enough to be neglected compared
 93 with the second term, which is 6.3 m s^{-2} . The time scale in coccolith separation is minute
 94 for centrifugation and hour for settling, therefore we suggest that it is reasonable to
 95 assume the coccolith sinks with the ‘terminal speed’ from the very beginning.

96 The only difference between the terminal speed in centrifugation and under gravity
 97 is the acceleration speed. If the g in Eq. 1 – 4 is adapted by a , which is the acceleration
 98 speed of coccolith during centrifugation, these four equations above can also describe
 99 the sphere movement in the centrifugation if we adapt the gravity to centripetal
 100 acceleration (ca). Here we define a new parameter named as Sinking Parameter (sp):

101
$$sp = \frac{v}{g} \quad (\text{Eq. 5.})$$


102 The physical meaning of sp is the influence of coccolith shape and liquid property
 103 (density and viscosity) on sinking velocity without considering the effect of gravity (or
 104 the acceleration rate of reference system). The sinking speed of coccolith in water
 105 during a centrifugation (v') can be described as following:

106
$$v' = sp \times ca = sp \times \omega^2 \times (L + D) \quad (\text{Eq. 6.})$$

107 where the ca is centripetal acceleration during centrifugation, ω is angular velocity
 108 of centrifuge, the $(L+D)$ is the rotation radium as illustrated in **Figure 1**. The L is a
 109 fixed value for a certain type of centrifuge and the D depended on the position of
 110 coccolith in the tube. Here we should notice two issues: the first one is that the rotation
 111 radius is varying when coccolith is moving in the centrifuge tube, in other words, D is
 112 always changing. This effect could be ignored when the L is much larger than D , but,
 113 unfortunately, most of centrifuge employed in geochemistry laboratory is not large
 114 enough. The second one is the angular velocity is dynamic during when the centrifuge
 115 is accelerating and decreasing. To solve these two dynamic parameters, Eq.6 was
 116 transformed into a form of differential equation as Eq. 7 for the convenience of
 117 integration in the next step.

118
$$dt = \frac{dD}{v} = \frac{dD}{sp \times \omega^2 \times (L + D)} \quad (\text{Eq. 7.})$$

119 For all centrifugations there are three stages: the acceleration stage (t_1 to t_2 in
 120 Figure 1), the constant angular velocity stage (t_2 to t_3 in Figure 1) and the deceleration
 121 stage (t_3 to t_4 in Figure 1). The duration of acceleration stage and deceleration stage can
 122 usually be controlled and the angular velocity is changing with a constant speed. For
 123 those machines which the angular velocity dynamic ($\omega=f(t)$) is unknown we should
 124 measure it manually.

125

126 **Figure 1.** The position of coccolith and the variation of ω in the three centrifuging stages: L
 127 represents the minimum rotation radius, the V_1 and V_2 represent the volume of two parts; in the
 128 first stage, the angular velocity increases from zero to ω_1 (it could be linear or cubic, which
 129 depends on the machine). Meanwhile the coccolith moves a distance of D_2-D_1 ; similarly, the
 130 coccolith moves a distance of D_3-D_2 in the second stage and it march a distance of D_4-D_3 in the
 131 last stage.

132

133 After knowing the angular velocity curve, integrate the D over t in the Eq. 7 by
 three steps from t_1 to t_4 :

134

$$sp \times \int_{t_1}^{t_2} \omega_1^2 dt = \ln^{(L+D_2)} - \ln^{(L+D_1)} \quad (\text{Eq. 8.})$$

135

$$sp \times \int_{t_2}^{t_3} \omega_2^2 dt = \ln^{(L+D_3)} - \ln^{(L+D_2)} \quad (\text{Eq. 9.})$$

136

$$sp \times \int_{t_3}^{t_4} \omega_3^2 dt = \ln^{(L+D_4)} - \ln^{(L+D_3)} \quad (\text{Eq. 10.})$$

137 Add the Eq. 8 – 10 together gives:

138
$$sp \times \left(\int_{t_1}^{t_2} \omega_1^2 dt + \int_{t_2}^{t_3} \omega_2^2 dt + \int_{t_3}^{t_4} \omega_3^2 dt \right) = \ln^{(L+D_4)} - \ln^{(L+D_1)} \quad (\text{Eq. 11.})$$

139 Set D_4 equal to D , which represents the maximum distance that a coccolith can
140 move in the upper suspension V_1 . Now we can use the coccolith sinking property, sp ,
141 and centrifugation settings to describe the coccolith position after centrifugation D_1 :

142
$$D_1 = \frac{L + D}{e^{[sp \times (\int_{t_1}^{t_2} \omega_1^2 dt + \int_{t_2}^{t_3} \omega_2^2 dt + \int_{t_3}^{t_4} \omega_3^2 dt)]}} - L \quad (\text{Eq. 12.})$$

143 The meaning of D_1 is all coccolith with an initial position on the right side of D_1
144 in **Figure 1** will move to the right side of D_4 and then be kept in the suspension after
145 pumping, while the coccolith on the left side of D_1 will be removed by pumping.

146 In our previous publication (Zhang et al., 2018), we defined a parameter named as
147 separation ratio (R), which represents the percentage of coccolith removed in one
148 separation if we pump the upper V_1 volume suspension out of $(V_1 + V_2)$ suspension in
149 total.

150
$$R = \frac{V_1 \times \frac{D_1}{D}}{V_1 + V_2} \quad (\text{Eq. 13})$$

151 Replacing the D_1 in Eq. 15 with Eq. 12 gives the separation ratio (R) as a function
152 of centrifugation settings:

153
$$R = \frac{V_1}{V_1 + V_2} \times \frac{1}{D} \times \left(\frac{L + D}{e^{[sp \times (\int_{t_1}^{t_2} \omega_1^2 dt + \int_{t_2}^{t_3} \omega_2^2 dt + \int_{t_3}^{t_4} \omega_3^2 dt)]}} - L \right) \quad (\text{Eq. 14})$$

154 The R can be employed in estimating the centrifugation parameters for separating
155 one type of coccoliths from another. For example, if we want to separate a group of
156 coccolith (marked as Coccolith_A, with sinking parameter sp_A) from another group of
157 coccolith (marked as Coccolith_B, with sinking parameter of sp_B and $sp_A < sp_B$), the R of
158 Coccolith_B should be set as zero, which means all Coccolith_B in the section V_1 have
159 sunk into V_2 after centrifugation and therefore all coccolith pumped out should be

160 Coccolith_A. To solve the angular velocity (ω_2) and centrifugation duration ($t = t_3-t_2$) in
161 Eq.14, we need to fix at least one of them. Usually the duration could be safely set as 1
162 min or 2 min, then solve the suitable angular velocity with known parameters V_1 , V_2 ,
163 D and L . The matlab code for the parameter estimation is in attachment. After repeating
164 these ‘centrifugation-pumping’ routines several times, the Coccolith_A could be fully
165 separated from Coccolith_B.

166 **3. Test of the correctness of calculations**

167 **3.1 Experimental design**

168 To test the robustness of our estimation in the last section, we performed two
169 groups of experiments comparing the observed with predicted separation ratio. Here we
170 select two different coccoliths, *F. profunda* and small *Gephyrocapsa*, with small size
171 and thereby slow sinking speed sampled from ODP 807 and IODP U1304, respectively.
172 Most of small *Gephyrocapsa* employed in this study are smaller than 3 μm with a
173 mixture of *G. muellerae* less than 10%. Two centrifuges from Anting Company, TDL–
174 40B and DL–5B, were selected to perform the tests. The angular velocity of DL–5B can
175 be set as linear increased or decreased with time in the acceleration or deceleration
176 stages, while the angular velocity of TDL–40B was measured manually by reading the
177 number on the instrument panel. The centrifugation duration can only be adapted by a
178 step of one minute on both of these two machines. The slowest angular velocities of
179 these two machines are 500 revolutions per minute (rpm). If we selected the water as
180 dispersion agent, most of the coccolith we used will sink to the tube bottom after two
181 minutes even with the slowest angular velocity. Hence, to slow down the coccolith
182 sinking speed in these tests, glycerol solution was employed in this equation test, which
183 can be dissolved with water in any proportion and washed away from carbonate calcite
184 particles conveniently. The density and viscosity data can be found in **Table 1**.

185 All calculations above are for the situation that particles sinking in the water or the
186 diluted solution, the physical property of which is close to water. However, in this case,

187 the property of glycerol is significant different with water. Here we define a new
 188 parameter, τ , to transform the sinking speed in water to that in different liquid. The
 189 physical meaning of τ is a ratio turning the sinking velocity in water (v) to the velocity
 190 in any liquid with different density and viscosity (v'):

191
$$v' = v \times \tau \quad (\text{Eq. 15})$$

192 Based on the definition of Stokes equation, the term τ can be calculated as
 193 following:

194
$$\tau = \frac{(\rho_p - \rho_l)}{(\rho_p - \rho_w)} \times \frac{\eta_w}{\eta_l} \quad (\text{Eq. 16})$$

195 where the ρ_p , ρ_l and ρ_w are density of particle, liquid (in this study is glycerol
 196 solution) and water; the η_l and η_w are the viscosity of liquid and water.

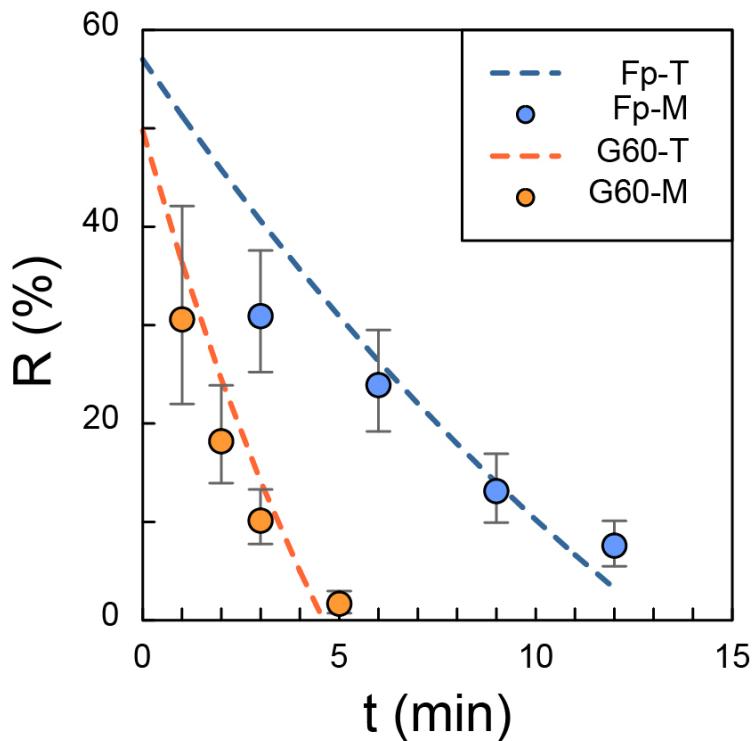
197 Combine the Eq. 14–16 forming the separation ratio as a function of centrifugation
 198 settings in different liquid:

199
$$R = \frac{V_1}{V_1 + V_2} \times \frac{1}{D} \times \left(\frac{L + D}{e^{\left[\frac{v \times (\rho_p - \rho_l)}{g \times (\rho_p - \rho_w)} \times \frac{\eta_w}{\eta_l} \times \left(\int_{t_1}^{t_2} \omega_1^2 dt + \int_{t_2}^{t_3} \omega_2^2 dt + \int_{t_3}^{t_4} \omega_3^2 dt \right) \right]} - L \right) \quad (\text{Eq. 17})$$

200 In this test, the calculated R by Eq. 17 will be compared with measured one. To
 201 perform these tests, about 100 mg bulk sediments were scattered into 30 ml 0.5%
 202 ammonia and, after that, particles larger than 20 μm particles were removed by mesh.
 203 In this test, we should obtain suspensions with nearly monospecific coccolith. To
 204 achieve it, in the test with *F. profunda*, coccoliths larger than 3 μm were removed by
 205 the sinking method described in Zhang et al. (2018) and coccoliths larger than 5 μm
 206 were removed by the same method in the test with small *Gephyrocapsa*. Briefly, the
 207 suspension was (1) set in a 100 ml Reagent bottle sinking freely for a few hours, and
 208 then (2) pumped out the upper 2cm. Repeat these two steps for 5–8 times until
 209 coccoliths were purified. The sinking duration was 2 hours for *F. profunda* sample and
 210 1.25 hours for small *Gephyrocapsa* sample, respectively.

211 Then 50 ml tubes with 45 ml coccolith suspensions were mounted in the centrifuge
 212 and run with the settings shown in Table 1. After centrifugation, the upper 30 ml
 213 supernatant was pumped out by pipette and then filtered onto 0.4 μ m polycarbonate
 214 member with a vacuum pump. The coccoliths on polycarbonate membrane were
 215 resuspended into 20 ml diluted ammonia again and coccoliths number in the suspension
 216 was measured with the same method described in our previous work (Zhang et al.,
 217 2018). Finally, the separation ratio, R, was calculated by the coccolith number in the
 218 upper 30 ml suspension divided by the total coccolith number. All the centrifuging
 219 experiments were carried out in laboratory with temperature controlled around 20 (± 1) $^{\circ}$ C
 220 to avoid the variation of physical properties, especially the viscosity, with temperature.

221 **Table 1.** The settings of two tests: the density and viscosity of glycerol in 20 $^{\circ}$ C, data from
 222 Dorsey (1940); the parameters of centrifuge employed in this study: Fp and G60 represent the
 223 experiment carried out with *F. profunda* in 70% glycerol and small *Gephyrocapsa* ($<3 \mu$ m) in
 224 60% glycerol, respectively; L represents the minima rotation radius of centrifugation, which
 225 represents the distance between the shaft and top of suspension as illustrated in Figure 1; A, B and
 226 C are the terms on the left side of equal mark in Eq. 8–10.


	glycerol (%)	η (mPa s)	ρ (g cm $^{-3}$)	τ	Centrifuge	L (cm)	A (s $^{-1}$)	B (s $^{-1}$)	C (s $^{-1}$)
Fp	70%	22.5	1.16	0.040	TDL40B	6.2	1.060×10^6	$9.867 \times 10^4 \times t$	1.937×10^6
G60	60%	10.8	1.14	0.084	DL-5B	8.37	7.457×10^5	$9.867 \times 10^4 \times t$	2.193×10^6

227 **3.2 Result of experiments**

228 In the test, 30 ml suspension was pumped out from 45 ml suspension leading to
 229 the initial R should be 60%. However, the intercept of calculated R is smaller than 60%
 230 as the gravity settling in Zhang et al. (2018), because the time in the x-axis of Figure 2
 231 is the period in which angular velocity remains constant. In other words, even the time
 232 is set as zero, the centrifuge will still do the acceleration and deceleration processes and
 233 coccolith will move toward the bottom. The results of observed R (dots in **Figure 2**)
 234 are close to the theoretical values (dash lines in **Figure 2**), though a few measured

235 results are lower than prediction. We suggested that this difference may be caused by
236 cocolith loss during harvesting of the cocolith from glycerol solutions into ammonia
237 solution.

238 So far, we have obtained the cocolith movement equation in the centrifugation
239 and prove its correctness. In the next section, a case of cocolith separation by
240 centrifuging method will be carried out giving an example of separation.

241

242 **Figure 2.** The comparison of theoretical and measured separation ratio (R): the dots
243 represent the measured values and dash lines are theoretical calculations. The error bars represent
244 95% error based on the assumption that the error of counting cocolith follows the Poisson
245 distribution. The orange dots represent the measured R in small *Gephyrocapsa* with 60% glycerol
246 test (G60-M) and the blue ones represent the measured R in *F. profunda* with 70% glycerol test
247 (Fp-M). The orange dashed line is the theoretical values for small *Gephyrocapsa* with 60%
248 glycerol test (G60-T) and the blue one is the theoretical values for *F. profunda* with 70% glycerol
249 test (Fp-T). The raw pictures for cocolith counting were shown in **Figure S1** and **S2**.

250 **4. Separation of cocololiths in practice**

251 **4.1 Separation steps**

252 The aim of this section is using the centrifugation method to separate a sample in
253 practice. A sample from ODP 982B (56X Section 5 5-9cm) dated around mid-Miocene
254 (nannofossil zoon NN4) was selected in this test. The coccolithophore *Reticulofenestra*
255 spp. dominated in the assemblage, with long axis length ranging from 2 μm to more
256 than 12 μm , offering an ideal sample to test the coccolith separation method.
257 *Calcidiscus* spp. (4–10 μm), *Helicosphaera* spp. (5–10 μm) and *Coccolithus* spp. (6–8
258 μm) were also found in this sample, which contributed less than 10% of all coccoliths
259 together. The preservation of fossil was moderate with many coccolith fragments but
260 no evidence of dissolution in the raw sample. The detailed operations are as following:

261 **Step 1:** weigh about 40 mg bulk sediment, scatter with 45ml 0.5% ammonia
262 solution and transfer the suspension into a 50 ml centrifuging tube;

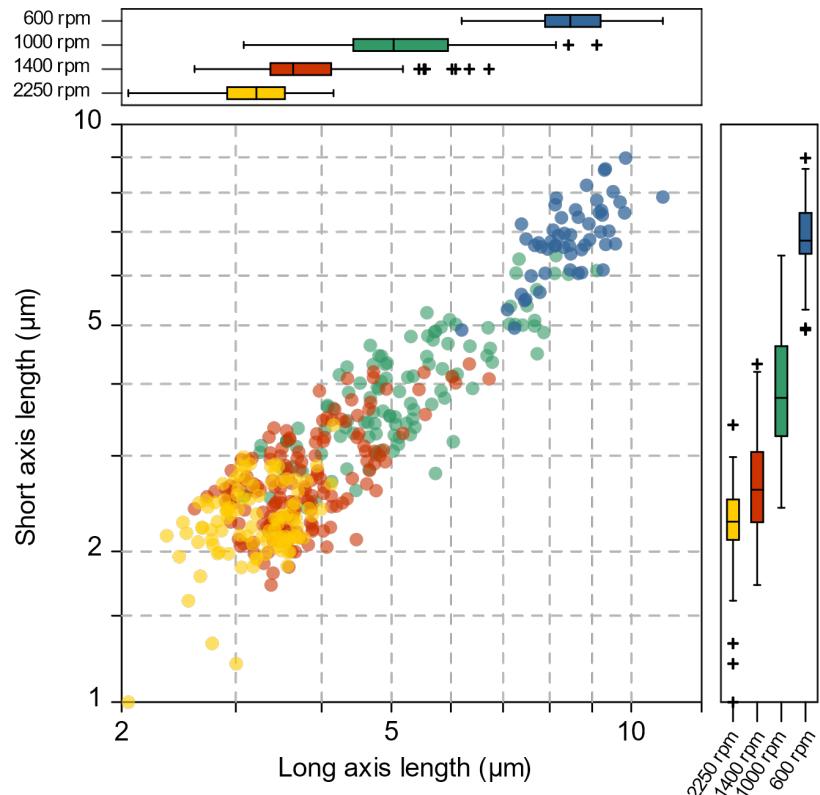
263 **Step 2:** Calculate the centrifugation parameters (angular velocity and duration).
264 Here we did not measure coccolith sinking velocities, but employ the length-velocity
265 relationship in the previous study directly: sinking rate at 25°C = $0.0982 \times \text{length}^2$ (Zhang
266 et al., 2018). Based on this length-velocity equation and the centrifuge properties listed
267 in **Table 1**, we estimated that the angular velocity and duration for separating coccolith
268 with a length of 2 μm , 3 μm , 5 μm , 8 μm and 10 μm should be 1850 rpm 2 min, 2250
269 rpm 1 min, 1400 rpm 1 min, 1000 rpm 1 min and 600 rpm 1 min, respectively. The
270 Matlab code for calculating the angular velocity at fixed centrifugation duration (1 or 2
271 minutes) are in the supplementary.

272 **Step 3:** Mount the tube into the centrifuge and balance weight, set the angular
273 velocity as 1850 rpm and the duration as 2 minutes and start the machine;

274 **Step 4:** Pump out the upper 30 ml suspensions and remove them into a beaker (500
275 ml or larger beaker, depends how many times repeating this step) and drop about 100
276 μl onto a glass cover. Dry the suspension on glass cover and mount the cover on slider.
277 The details in this step follow Bordiga et al. (2015);

278 **Step 5:** Repeat Step 2–5 with different centrifugation parameters listed in Table 2;

279 **Step 6:** Take pictures of coccoliths in each slider on microscope and measure the
280 coccolith size on computer with the method described by Fuertes et al. (2014).


281

282 **Table 2.** Centrifugation parameters in the Miocene coccolith separations

	<2 μ m	2–3 μ m	3–5 μ m	5–8 μ m	8–10 μ m
Angular velocity (ω_2 , rpm)	1850	2250	1400	1000	600
Duration ($t = t_3 - t_2$, s)	120	60	60	60	60

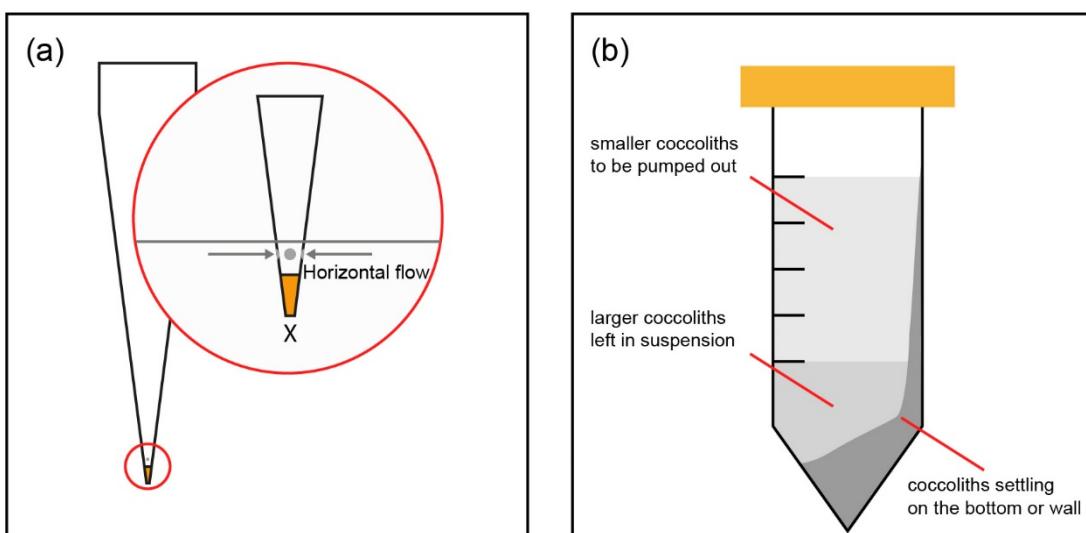
283 **4.2 Coccolith length in each fraction**

284 The coccolith size distribution harvested from different centrifugation settings are
285 shown in **Figure 3** (the coccolith size was measured in circular polarizing microscope
286 and coccoliths under cross polarizing microscope were shown in **Figure S3–S9** for
287 species identification). The results show that the separated coccolith size increased with
288 the decrease of angular velocity and the differences of mean coccolith lengths are
289 significant between each size fractions. However, we should also notice that there is
290 still overlap of coccolith sizes between two neighbouring fractions. With the
291 centrifugation parameters set as 2250 rpm and 2 min, the coccoliths harvested have
292 long axis lengths around 2–4 μ m and when the centrifugation parameters was varied to
293 1400 rpm and 1 min, the coccolith long axis size ranges from 3 μ m to 7 μ m, which
294 means coccoliths with a length between 3–4 μ m appear in two fractions. Such situations
295 may also happen in both settling and micro filtering methods, but the range of overlap
296 seems to be larger for the centrifugation method compared with the size fractions
297 harvested by other methods.

298

299 **Figure 3.** The coccolith size in different fraction after centrifuging separation: the yellow,
300 red, green and blue dots represent 2250 rpm-2min, 1400 rpm-1min, 1000 rpm-1min and 600 rpm-
301 1min, respectively.

302


303 4.3 Troubleshooting

304 The first potential reason leading to overlap may be the repeating times are not
305 enough. This could be the main problem for settling under gravity, since the time costs
306 for separation under gravity is much larger than the centrifugation method. Bolton et al.
307 (2012) suggested that 4–6 times separations are enough for fossil extraction and in our
308 separations, we repeated more than 8 times for a certain centrifugation setting.
309 Considering these facts, we suggest that this overlapping was not caused by the
310 separation times.

311 Another reason could be that larger coccoliths, which are supposed to sink into the
312 lower suspension, are pumped out after centrifugation. When the upper suspension was

313 pumped out, the pumping speed could be too fast drawing up larger coccolith from the
314 lower suspension. This problem could be solved by reducing the pumping speed.
315 However, in practice, the pumping speed of pipette is difficult to control. Here we
316 recommend to modify the tips of pipette as following steps: (1) suck a drop of glue into
317 the top of pipette tips (the Norland optical adhesive 74 was employed in this study); (2)
318 solidify the glue with ultraviolet ray to seal the top of tips; (3) drill holes above the glue
319 horizontally. After this modification, the suspension will go into tips horizontally
320 instead of vertically (**Figure 4a**) to avoid mixing larger coccoliths with smaller ones.

321 The size overlapping could also be caused by the centrifugation tube not remaining
322 perfectly horizontal during centrifugation. In our calculations, the tubes are assumed to
323 be perfectly horizontal during all centrifugation processes and, thereby it was assumed
324 that there should be no collisions between coccoliths and tube wall nor among
325 coccoliths. However, in practice, the tubes in centrifuge are not always horizontal and
326 even a few degrees slope of the tubes can lead some coccoliths to knock and stick on
327 the tube wall forming a significant coccolith layer on one side of tube wall as illustrated
328 in **Figure 4b**. These coccoliths on tube wall will be pumped out after centrifugation
329 causing the coccolith length overlapping among two fractions. To avoid this problem,
330 before the step of pumping out suspension, we should observe the tube carefully. If a
331 coccolith layer can be found on the tube wall, the pipette tip should be placed on the
332 opposite of the coccolith layer to reduce the size overlapping.

334 **Figure 4.** Two methods to reduce the coccolith size overlapping. (a) Adaption of pipette tip:
335 the orange part on tip represents sealed by solidified glue and the gray parts mean that small holes
336 should be drilled allowing the suspension flowing in horizontally; (b) Choose a property pumping
337 position to avoid extracting the coccolith on tube wall: the lightest gray part in the tube represents
338 the suspension in which the smaller coccolith floats, most of the larger coccoliths are in the lower
339 part of the suspension and the tube bottom.

340 **5. Summary**

341 In this study, we described the method of separating coccolith from bulk sediment
342 by centrifuge. The rotation speed for separating coccoliths within a certain range of
343 length could be solved after measuring the rotations radium (property of centrifuge)
344 and fixing the centrifugation duration.

345 The centrifugation method is not perfect accurate and could still mix different
346 species of coccolith as other traditional separating methods. The size overlapping of
347 this method could be reduced by adapting the pipette tips and avoiding pumping the
348 coccolith on tube well out. However, this method is more efficient in separating the
349 finest particle (smaller than 3 μm) out of bulk sediment, which is always the time-
350 consuming step in micro-filtering and sinking method. Thereby, this method can be
351 widely used in the sample preparation for analyses needing a large amount of material,
352 such as coccolith clumped isotope and radioactive carbon isotope measurement.
353 Moreover, the centrifugation method can be combined with other separation steps, for
354 example using the centrifugation method to remove the finest particles followed by
355 micro filtering with different size of membrane. This method could largely reduce the
356 time cost in sample preparation for coccolith geochemistry analyses and have the
357 potential for wide use in the future.

358 **References**

359 Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F. and
360 Labeyrie, L.: Insolation cycles as a major control of equatorial Indian Ocean
361 primary production, Science 278, 1451-1454.
362 <https://doi.org/10.1126/science.278.5342.1451>, 1997.

363 Bolton, C.T., Stoll, H.M. and Mendez-Vicente, A.: Vital effects in coccolith calcite:
364 Cenozoic climate-pCO₂ drove the diversity of carbon acquisition strategies in
365 coccolithophores? Paleoceanography 27. <https://doi.org/10.1029/2012pa002339>,
366 2012.

367 Bordiga, M., Bartol, M. and Henderiks, J.: Absolute nannofossil abundance estimates:
368 Quantifying the pros and cons of different techniques. Revue de
369 micropaléontologie 58, 155-165, <https://doi.org/10.1016/j.revmic.2015.05.002>,
370 2015.

371 Dorsey, N.E. (1940) Properties of ordinary water-substance. Reinhold Publishing
372 Corporation.; New York.
373

374 Fuertes, M.-Á., Flores, J.-A. and Sierro, F.J.: The use of circularly polarized light for
375 biometry, identification and estimation of mass of coccoliths. Marine
376 Micropaleontology 113, 44-55, <https://doi.org/10.1016/j.marmicro.2014.08.007>,
377 2014.

378 Hermoso, M., Candelier, Y., Browning, T.J. and Minoletti, F.: Environmental control
379 of the isotopic composition of subfossil coccolith calcite: Are laboratory culture
380 data transferable to the natural environment? GeoResJ 7, 35-42,
381 <https://doi.org/10.1016/j.grj.2015.05.002>, 2015.

382 Minoletti, F., Hermoso, M. and Gressier, V. Separation of sedimentary micron-sized
383 particles for palaeoceanography and calcareous nannoplankton biogeochemistry.
384 Nature protocols 4, 14-24. <https://doi.org/10.1038/nprot.2008.200>, 2009

385 Paull, C.K. and Thierstein, H.R.: Stable isotopic fractionation among particles in
386 Quaternary coccolith-sized deep-sea sediments. Paleoceanography 2, 423-429,
387 <https://doi.org/10.1029/PA002i004p00423>, 1987.

388 Stoll, H.M., Rosenthal, Y. and Falkowski, P.: Climate proxies from Sr/Ca of coccolith
389 calcite: calibrations from continuous culture of *Emiliania huxleyi*. *Geochimica et*
390 *Cosmochimica Acta* 66, 927-936, [https://doi.org/10.1016/S0016-7037\(01\)00836-5](https://doi.org/10.1016/S0016-7037(01)00836-5), 2002.

392 Stoll, H.M. and Ziveri, P.: Separation of monospecific and restricted coccolith
393 assemblages from sediments using differential settling velocity. *Marine*
394 *Micropaleontology* 46, 209-221, [https://doi.org/10.1016/S0377-8398\(02\)00040-3](https://doi.org/10.1016/S0377-8398(02)00040-3),
395 2002.

396 Young, J.R. and Ziveri, P.: Calculation of coccolith volume and its use in calibration of
397 carbonate flux estimates. *Deep sea research Part II: Topical studies in*
398 *oceanography* 47, 1679-1700, [https://doi.org/10.1016/S0967-0645\(00\)00003-5](https://doi.org/10.1016/S0967-0645(00)00003-5),
399 2000.

400 Zhang, H., Stoll, H., Bolton, C., Jin, X. and Liu, C. (2018) Technical note: A refinement
401 of coccolith separation methods: measuring the sinking characteristics of
402 coccoliths. *Biogeosciences* 15, 4759-4775, <https://doi.org/10.5194/bg-15-4759-2018>, 2018.

404 **Author contributions.**

405 This study was conceived by H.Z. and C.L. Measurements and calculations were
406 conducted by H.Z. H.Z., H.S. and L.M. wrote the paper.

407 **Acknowledgement**

408 This study was founded by National Science Foundation of China (41930536, to
409 C.L.) ETH core funding (to H.S), European Union's Horizon 2020 research and
410 innovation program under the Marie Skłodowska-Curie grant agreement (795053 to
411 L.M.M.) and Chinese Scholarship Council (CSC) scholarship to H.Z. We thank the
412 Integrated Ocean Drilling Program (IODP) for providing the samples. We thank Dr.
413 Guodong Jia for providing two centrifuges to test our work and Xinquan Zhou for
414 identification the Miocene nannofossils.