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Abstract. We examined the evolution of intermittent hypoxia off the Pearl River Estuary during three cruise legs conducted 

in July 2018: one during severe hypoxic conditions before the passage of a typhoon and two post-typhoon legs showing 15 

destruction of the hypoxia and its reinstatement. The lowest ever recorded regional dissolved oxygen (DO) concentration of 

3.5 μmol kg-1 (~ 0.1 mg L-1) was observed in bottom waters during Leg 1, with a ~ 660 km2 area experiencing hypoxic 

conditions (DO < 63 μmol kg-1). Hypoxia was completely destroyed by the typhoon passage but was quickly restored ~ 6 days 

later, resulting primarily from high biochemical oxygen consumption in bottom waters that averaged 14.6±4.8 μmol O2 kg-1 d-

1. The shoreward intrusion of offshore subsurface waters contributed to an additional 8.6±1.7 % of oxygen loss during the 20 

reinstatement of hypoxia. Freshwater inputs suppressed wind- and tidal-induced turbulent mixing, stabilizing the water column 

and facilitating the hypoxia formation. The rapid reinstatement of summer hypoxia has a comparable timescale with water 

residence time and that of its initial disturbance from frequent tropical cyclones throughout the wet season. This has important 

implications towards better understanding the intermittent nature of hypoxia and predicting coastal hypoxia in a changing 

climate. 25 

1 Introduction 

Coastal hypoxia has been increasingly exacerbated near the mouths of large rivers as a consequence of anthropogenic nutrient 

inputs (Gilbert et al., 2010; Rabalais et al., 2014; Breitburg et al., 2018). The rise in the size, intensity and frequency of 

eutrophication-induced hypoxia exposes coastal oceans to a higher risk of elevated N2O and CH4 production, enhanced ocean 

acidification and associated reductions in biodiversity, shifts in community structures and negative impacts on food security 30 

and livelihoods (Diaz and Rosenberg 2008; Vaquer-Sunyer and Duarte 2008; Naqvi et al., 2010). 
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Coastal hypoxia can be intermittent due to the dynamic nature of estuarine and coastal environments, where winds, tides, river 

discharge and circulation patterns strongly affect the ventilation of oxygen-deficient waters (Wang and Justić 2009; Lu et al., 

2018; Zhang et al., 2019). Constraints on oxygen supply can be easily eroded by changes in physical forcings, leading to the 55 

temporal alleviation of hypoxia (Laurent and Fennel 2019). Despite the wide application of oxygen budget analysis and 

modelling to diagnose the dominant processes driving the formation and maintenance of hypoxia (Yu et al., 2015; Li et al., 

2016; Lu et al., 2018), the evolution of intermittent hypoxia, such as the destruction and reinstatement of hypoxia from 

disturbance by tropical cyclones, remains to be better characterized (Testa et al., 2017). Specifically, the identification of key 

processes and timescale constraints for these hypoxia destruction and recovery processes is of critical importance in order to 60 

predict site-specific hypoxia and its cascading effects, and to forecast the long-term impact of hypoxia under a changing climate 

with higher-intensity extreme events (Knutson et al., 2010; Mendelsohn et al., 2012). 

 

Large riverine nutrient loadings and the resulting eutrophication have recently tipped the lower Pearl River Estuary (PRE) and 

adjacent shelf areas into seasonally hypoxic systems (Yin et al., 2004; Rabouille et al., 2008; Su et al., 2017; Qian et al., 2018; 65 

Cui et al., 2019; Zhao et al., 2020). Modelling results have shown that summer hypoxia off the PRE is largely intermittent 

owing to high-frequency variations in wind forcing and tidal fluctuations (Wang et al., 2017; Huang et al., 2019). Hypoxia is 

often interrupted by the passage of typhoons, but redevelops quickly with a tendency toward rapid oxygen declines (Su et al., 

2017; Huang et al., 2019). The prevailing southwest monsoon usually favours the expansion of a quasi-steady-state freshwater 

bulge outside the entrance of the PRE (Gan et al., 2009; Lu et al., 2018) that promotes water column stability. However, it 70 

remains unclear how the interaction between wind stress, tidal forcing and freshwater buoyancy affects the bottom oxygen 

conditions when the winds shift in the downwelling-favourable easterly or southeasterly direction, especially in the wake of 

tropical cyclones. Aerobic respiration of organic matter is largely responsible for the oxygen depletion here (Su et al., 2017; 

Qian et al., 2018). Considering the oxygen consumption rate (OCR) has primarily been estimated based on incubations 

examining bacterial or community respiration (Su et al., 2017; Cui et al., 2019; Li et al., 2019), the actual magnitude of in situ 75 

OCR during the hypoxia formation process has rarely been reported at large-scales. The role of lateral advection (and/or 

upwelling) also remains to be better quantified (Zhang and Li 2010; Lu et al., 2018; Qian et al., 2018; Cui et al., 2019). 

 

We investigated the destruction and reinstatement of summer hypoxia off the PRE to examine the effects of freshwater inputs, 

winds and tides on water column stability and the maintenance, destruction and formation of hypoxia. With the aid of a three-80 

endmember mixing model, we partitioned physical- and biochemical-induced oxygen sinks and calculated the OCR and 

timescale for hypoxia regeneration after its destruction by a typhoon. The impacts of tropical cyclones on the evolution of 

seasonal hypoxia in river-dominated ocean margins is further discussed. 
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2 Materials and methods 90 

2.1 Study area and cruise background 

The shelf of northern South China Sea (NSCS) receives an average annual freshwater discharge of ~10,000 m3 s-1 originating 

from the Pearl River, the 17th largest river in the world (Cai et al., 2004; Dai et al., 2014). Nearly four fifths of freshwater 

discharge occurs during the wet season, typically from April to September (Dai et al., 2014). The riverine freshwater extends 

offshore to form a widespread plume over the shelf in summer (Gan et al., 2009; Cao et al., 2011; Chen et al., 2017), via eight 95 

outlets through three sub-estuaries (i.e., Lingdingyang, Modaomen and Huangmaohai; Fig. 1b). On the inner shelf, coastal 

upwelling interacts with the buoyant plume, propelled by the prevailing southwest monsoon and intensified along the eastward 

widened shelf (Gan et al., 2009; Chen et al., 2017). Climatologically, about 7 tropical cyclones per year impacted the NSCS 

from 1949-2019, half of which featured maximum wind speeds greater than 32.7 m s-1. 

 100 

Field observations and sampling were conducted onboard the R/V Haike 68 off the PRE on the inner-shelf of the NSCS in the 

summer of 2018. The cruise was interrupted by the passage of typhoon SONTINH across the NSCS, ~ 350 km south of the 

PRE (Fig. 1a). Leg 1 (July 8-14) was the cruise period before the typhoon, and Leg 2 (July 21-25) and Leg 3 (July 26-29) were 

conducted after its passage (Fig. 1b). During each leg we collected samples from west to east and along the cross-shelf transects 

within isobaths of 10-35 m. Almost all stations in Leg 1 (56 stations) were revisited during Leg 2 (56 stations, including 4 105 

stations differing from Leg 1), and nearly half again during Leg 3 (27 stations). Eight stations were additionally revisited on 

the way back to the port on July 31. Time-series observations with a sampling interval of 1 h were conducted at Station F303 

for 26 h before Leg 2, beginning at 16:00 pm on July 19 (Fig. 1b). In contrast to the typical southwesterly winds in the NSCS 

with average monthly wind speeds of < 6 m s-1 from June to September (Su 2004), easterly winds prevailed during the cruise 

period due to the typhoon, with the wind speeds increasing up to ~ 13 m s-1 (Fig. 1c) at the Waglan Island to the east of the 110 

study area (Fig. 1b). 

2.2 Sampling and analysis 

Temperature and salinity were determined using a SBE 917 plus conductivity-temperature-depth recorder (SeaBird 

Electronics, Inc.). Discrete samples were collected using 5 L free-flow water samplers mounted onto a Rosette sampling 

assembly. Dissolved oxygen (DO), dissolved inorganic carbon (DIC), total alkalinity (TA) and Chlorophyll a (Chl a) 115 

concentrations were measured at all stations with depth profiles from 1 m below the surface down to ~ 4-6 m above the bottom, 

generally at three depth layers. Additional high-resolution vertical samplings were conducted at 7-8 depth layers (Fig. 1b). 

 

Salinity was calibrated against discrete water samples measured by a Multi 340i salimeter (WTW). The DO concentrations 

were measured onboard within ~ 12 h using the spectrophotometric Winkler method (Labasque et al., 2004), with a precision 120 

better than ±2 μmol L-1. DIC was measured on ~ 0.5 mL acidified water samples using an infrared CO2 detector (Apollo ASC-
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3) with a precision of ±2 μmol L-1 (Cai et al., 2004). TA was determined on 25 mL samples in an open-cell setting based on 130 

the Gran titration technique (see details in Cai et al.(2010)) with a Kloehn digital syringe pump. The analytical precision was 

±2 μmol L-1. Both DIC and TA concentrations were calibrated against certified reference materials provided by Dr. A. G. 

Dickson at the Scripps Institution of Oceanography, University of California, San Diego. Chl a concentrations were determined 

using a Trilogy laboratory fluorometer (Turner Designs, Inc.) after being extracted with 90% acetone for 14 h at -20 °C 

(Welschmeyer 1994) and calibrated using a Sigma Chl a standard. 135 

2.3 Water column stability 

Water column stability regulates the ventilation of subsurface waters and replenishment of DO by suppressing turbulent mixing 

with stratification (Obenour et al., 2012; Lu et al., 2018; Cui et al., 2019), which can be indicated by the buoyancy frequency 

(also known as the Brunt-Väisälä frequency), 

N2 = -(g/ρ)(∂ρ/∂z)            (1) 140 

where g is the gravitational acceleration, r is potential density, and z is the height above the seabed. Generally, a positive N2 

(i.e., N2 > 0) indicates a stable regime where stratification may suppress turbulence (Tedford et al., 2009), and a larger N2 value 

indicates a more stable water column. 

2.4 Oxygen consumption rate 

From the perspective of Euler observations and based on mass balance, the DO changes (DDO) in subsurface waters over a 145 

specified time interval at a specific site can be decomposed into two components, one driven by physical mixing (DDOmix) and 

the other induced by biochemical processes (DDObc). Here, we define the biochemical-induced DO consumption with time as 

the oxygen consumption rate (OCR). A higher OCR value indicates stronger oxygen consumption and a negative value 

indicates oxygen production via biochemical processes (e.g., photosynthesis). For revisited stations, DDO is the difference in 

DO values measured between the two sampling periods. The physical-mixing-induced DO variations were derived using a 150 

three-endmember mixing model, which construct the conservative mixing scheme among different water masses: brackish 

plume water (PW), offshore surface water (SW) and upwelled subsurface water (SUB) (Su et al., 2017; Cui et al., 2019; Zhao 

et al., 2020). The model is constrained by salinity (S) and potential temperature (q) according to the following equations:  

fPW + fSW + fSUB = 1           (2) 

SPW×fPW + SSW×fSW + SSUB×fSUB = Smeas         (3) 155 

qPW×fPW + qSW×fSW + qSUB×fSUB = qmeas          (4) 

where the superscript ‘meas’ denotes measured values, and f represents the fraction that each endmember contributes to the in 

situ samples. Assuming that DO concentrations in surface waters before sinking to the depth were equilibrated with the 

atmosphere and the subsurface waters were isolated from the atmosphere due to restriction by stratification, these fractions 

were applied to predict conservative concentrations of DO (DOmix) resulting solely from conservative mixing. 160 
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Figure 1: (a) Map of the study area on the shelf of the northern South China Sea (NSCS), showing the track of Typhoon SONTIHN (circles) 185 
across the NSCS during July 16-24, 2018. The color of the circles represents the magnitude of wind speed. Additionally, the smaller circles 
denote tropical depression (wind speeds ≤ 17.1 m s-1) and the larger circles denote tropical storm (wind speeds within 17.2-32.6 m s-1). The 
arrows denote the locations of the typhoon as marked with time and wind speed. The grey lines are the depth contours at 50 and 200 m. (b) 
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Sampling stations on the NSCS shelf off the Pearl River Estuary in summer 2018. The pink, green, purple and orange circles denote the 205 
stations surveyed in all three legs, only both Leg 1 and Leg 2, only Leg 1 and only Leg 2, respectively. Time-series observations were 
conducted at Station F303 as marked by the star, and vertically high-resolution samplings were conducted at stations marked with bold 
circles. (c) The wind speed and (d) wind direction at Waglan Island (triangle in (b)) from May to August, 2018. Bars at the bottom of (d) 
mark times when tropical cyclones impacted the NSCS. (e) The tidal height at the Dawanshan gauge station near Station F303 from May to 
August, 2018. The shaded area indicates the cruise periods for Leg 1 (grey), Leg 2 (pink) and Leg 3 (blue), respectively. 210 
 

DOmix = DOPW×fPW + DOSW×fSW + DOSUB×fSUB        (5) 

 

Similarly, DDOmix is the difference in “conservative” DO values between visits, assuming that the bottom water masses where 

biochemical oxygen consumption prevailed were constrained by strong convergence and their outflow from the sampling area 215 

is insignificant on the time scale of the water residence time (Lu et al., 2018; Li et al., 2020). As a result, 

OCR = - DDObc/Dt = - (DDO - DDOmix)/Dt         (6) 

where Dt is the duration between the two observations at times t1 and t2 (t2 > t1), respectively, and DX = Xt2 – Xt1 (X = DO, 

DOmix, DObc, etc.). The uncertainty in the calculation of OCR mainly derives from the estimation of conservative values 

predicted from the three-endmember mixing model. Sources of the composite uncertainty (e) in derivation of DOmix are 220 

associated with potential temperature (θ), salinity (S) and the dissolved oxygen (DO) values of endmembers. 

εDOmix=!∑ #$fi∙σDOi%
2
+ &DOi∙σfi'

2

(
n
i           (7) 

where sDO and sf are uncertainties in the DO concentration and the fraction of each endmember i (i.e., PW, SW and SUB), the 

latter of which can be calculated as 

σfi=!∑ #&∂fi ∂θj⁄ ∙σθj'
2

+ &∂fi ∂Sj⁄ ∙σSj'
2

(
n
j          (8) 225 

where j also denotes each endmember. 

2.5 Endmember selection and validations of the three-endmember mixing model 

The potential temperature – salinity diagram is shown in Fig. 2a. The three-endmember mixing scheme for the bottom layer 

has been elucidated in Zhao et al. (2020) that had a spatial coverage similar to this study. We adopted the endmember values 

of the offshore surface water and upwelled subsurface water from Zhao et al. (2020) given that our sampling was almost 230 

exclusively within the 30-m isobaths (Fig. 1b) and these values were consistent with those found in previous studies (Cao et 

al., 2011; Guo and Wong 2015; Su et al., 2017). The brackish plume water was assumed to partly subduct to the bottom layer 

under downwelling favourable wind conditions (Huang et al., 2019; Li et al., 2021). The endmember values of the brackish 

plume water were thus determined from the surface water samples near the mouth of the PRE with a salinity of ~ 16.9, mainly 

consisting of a mixture of riverine freshwater and offshore surface water. The DIC endmember of brackish plume water here 235 

was consistent with the predicted value using the endmember values of riverine/plume water reported by Su et al. (2017), 

whereas it was higher than that calculated using the endmember values of riverine freshwater from Zhao et al. (2020) since the 
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riverine DIC concentrations might be diluted by abnormally high river discharge in 2017 (Guo et al., 2008). For simplification, 

DO concentrations in offshore surface water were assumed to be saturated, in equilibrium with the atmosphere, while the 320 

upwelled subsurface water was assumed to be oxygen-deficient by ~ 16% relative to the saturation level. The DO endmember 

value of brackish plume water was also assumed to be equilibrated with the atmosphere, which should be in order because the 

biological productivity was largely limited by high turbidity in shallow estuarine waters. A summary of the end-member values 

is listed in Table 1. In estimating the OCR, we excluded the above-pycnocline samples collected at depths < 10 m affected by 

the upper plume waters that are subject to strong air-sea exchanges and/or photosynthetic production of oxygen. 325 

 

The predicted quasi-conservative TA (TApre = TAPW×fRW + TASW×fSW + TASUB×fSUB; same for DICpre) is mostly consistent 

with our measured values (Fig. 2b), with a subtle difference of 8±8 μmol kg-1 likely associated with measurement errors, 

computational errors in the mixing scheme and/or biological processes. The slope of DDIC (DDIC = DICmeas - DICpre) vs. DDO 

in bottom waters was -0.93±0.07 (Fig. 2c), similar to that reported by Zhao et al. (2020). 330 

 

 

Figure 2: (a) Potential temperature (°C) vs. salinity, (b) predicted TA (TApre, μmol kg-1) vs. measured TA (TAmeas, μmol kg-1), and (c) DDIC 
(μmol kg-1) vs. DDO (μmol kg-1) on the NSCS shelf off the PRE. The black-edged circles represent bottom water samples with depths > 10 
m. The yellow, green and purple triangles in (a) represent the endmember values of brackish plume water (PW), offshore surface water (SW) 335 
and upwelled subsurface water (SUB), respectively. The black line in (c) denotes the slope of DDIC plotted against DDO derived from the 
Model II regression. 
 
Table 1: Summary of the end-member values adopted in the three-endmember mixing model 

Water mass θ (°C) Salinity DIC (μmol kg-1) DO (μmol kg-1) 

Brackish plume water 28.9±0.4b 16.9 1776±29b 217.3±1.4c 

Offshore surface watera 29.3±0.1 33.7±0.1 1922±5 194.4±0.3c 

Upwelled subsurface watera 22.5±0.1 34.5±0.0 2022±3 180.9 
aAdopted from Zhao et al. (2020) 340 
bUncertainties were derived from multiple samples collected at the entrance of the PRE 
cUncertainties were calculated by propagating errors associated with the estimation of oxygen solubility using Benson and Krause (1984) 
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3 Evolution of intermittent hypoxia off the PRE 

3.1 Extensive hypoxia before the typhoon 

The water columns showed a prominent two-layer structure on the inner NSCS shelf off the PRE (Fig. 3 and Fig. 4). In the 365 

surface layer, the freshwater plume mainly attached the coast when veering to the west as constrained by estuarine topography, 

the Coriolis force (Wong et al., 2003), and easterly winds during Leg 1 (Fig. 1d), despite a freshwater bulge that remained near 

the mouth of the Lingdingyang sub-estuary due to persistent southwesterly winds before the cruise (Fig. 1d) and the weak shelf 

current there (Gan et al., 2009; Lu et al., 2018). A strong bloom occurred in the surface plume waters near the Huangmaohai 

sub-estuary, characterized by high Chl a concentrations of > 20 μg L-1 and oversaturated DO of > 300 μmol kg-1 (equivalent 370 

to a DO saturation level > 150 %) (Fig. 3g, j). The freshwater bulge also featured a relatively weak bloom, with Chl a 

concentrations of ~ 10 μg L-1 and DO of ~ 250 μmol kg-1 (equivalent to a DO saturation level of ~ 125 %), likely owing to the 

high nutrient concentrations, a favourable water residence time and an abundance of photosynthetically active radiation (Lu 

and Gan 2015). The surface water temperature was mostly > 29 °C. Exceptions occurred to the southwest of Hong Kong (Fig. 

3a) where the air temperature was 2-3 °C lower during our visits (Fig. S1 in the Supplement). 375 

 

At the bottom layer, low-temperature (< 26 °C), high-salinity (> 33) shelf benthic waters intruded onshore to the 10-20 m 

isobaths below the surface plume (Fig. 4a, d). An extensive hypoxic zone (DO < 63 μmol kg-1) developed beneath the 

freshwater bulge and extended westwards along the 20-30 m isobaths to the region off the Modaomen sub-estuary (Fig. 4g). 

To the east, a relatively weak hypoxic centre occurred adjoining the Hong Kong waters. Additionally, a smaller-scale hypoxic 380 

zone appeared under the surface bloom near the Huangmaohai sub-estuary, a region which was also ever reported but not fully 

covered by survey measurements (Su et al., 2017; Cui et al., 2019). The general pattern of hypoxic zones was similar to that 

found in summers of 2014 and 2017 (Su et al., 2017; Zhao et al., 2020), yet with a slight offshore shift. The minimum oxygen 

level was 3.5 μmol kg-1 (~ 0.1 mg L-1) in bottom waters at Station F303, lower than the previously reported minimum (~ 7 

μmol kg-1 at Station F304, Su et al., (2017)). Within the surveyed region, the total area of the hypoxic zone reached ~ 660 km2 385 

and the oxygen-deficit zone (DO < 94 μmol kg-1) occupied ~ 1470 km2, larger than those in summer 2014 (> 280 km2 for the 

hypoxic zone and > 800 km2 for the oxygen-deficit zone) when we surveyed in a smaller area (Su et al., 2017). These findings 

might nevertheless indicate that summer hypoxia off the PRE has been increasingly exacerbated in recent years (Su et al., 

2017; Qian et al., 2018; Zhao et al., 2020). 

3.2 Destruction of hypoxia by the typhoon 390 

The spatial patterns of temperature, salinity, DO and Chl a concentrations all changed drastically from disturbance by 

intensified easterly winds during the typhoon period. Strong winds drove the warm, low-salinity and oxygen-saturated surface 

waters to mix downward, increasing temperature and DO concentrations and decreasing salinity in bottom waters (Fig. 4). 

Time-series observations at Station F303 before Leg 2 showed a vertically well-mixed water column in the first half, as 

Formatted: Heading 1
Deleted: Results¶395 
3.1 

Deleted: the 

Deleted: A

Deleted:  was observed

Deleted: i400 
Deleted: 2a-h

Deleted: was 

Deleted: to 

Deleted: 2

Deleted: c405 
Deleted: d

Deleted: al

Deleted:  except 

Deleted: decreased by 

Deleted: In410 

Deleted: 2e, f

Formatted: Superscript

Deleted: was (?) 

Deleted: 2

Deleted: er

Deleted:  415 

Deleted: ,

Deleted: 3.5 μmol kg-1 (~ 0.1 mg L-1), 

Deleted: observed 

Deleted: the bottom layer

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript
Deleted: due to 420 
Deleted: limited spatial coverage

Moved (insertion) [3]
Deleted: the 

Deleted:  (Fig. 2i-p and Fig. 3)

Deleted: T



9 
 

reflected by homogeneous distributions of intermediate temperature (~ 28 °C), salinity (~ 32), and DO levels (~ 180 μmol kg-425 
1) (Fig. 5a-c). The less well-mixed water column in the second half of the time-series observations likely resulted from the 

weakened winds, showing an upward intrusion of bottom waters which were slightly warmer than surface waters which lost 

heat to the low-temperature atmosphere (Fig. S1). With subdued winds that shifted to southwesterly in the following two days 

(Fig. 1c, d), the offshore spreading of the river plume supressed the upward intrusion of slightly warm bottom waters and 

facilitated the restoration of a two-layer water column, as observed in the second half of the time-series observations (Fig. 5) 430 

and during Leg 2 (Fig. 3 and Fig. 4). Stronger blooms than that during Leg 1 were identified in the surface plume, widely 

spreading from the mouth of the Lingdingyang sub-estuary to near the Huangmaohai sub-estuary (Fig. 3k), potentially fuelled 

by nutrients mixed upward from the depth in addition to riverine inputs (Wang et al., 2017; Qiu et al., 2019). The maximum 

Chl a concentration was > 40 μg L-1 off the Modaomen sub-estuary, accompanied by an extraordinarily high DO concentration 

of > 350 μmol kg-1 (Fig. 3h, k). The surface water temperature was ~ 29.0±0.5 °C, higher than that in bottom waters by 0.8 °C 435 

during Leg 2 (Fig. 3b and Fig. 4b).  
 

In bottom waters, however, hypoxia had been completely destroyed due to strong reaeration in the wake of the typhoon 

travelling across the NSCS, replaced by a homogenous spatial distribution of relatively high DO concentrations (~ 171±16 

μmol kg-1) during Leg 2 (Fig. 4h). The cross-shore gradients in temperature and salinity were also largely relaxed, with 440 

isotropically elevated temperatures up to ~ 28 °C and decreased salinity (Fig. 4b, e). The mid-depth distributions of 

temperature, salinity and DO concentrations showed similar patterns as at the bottom layer (Fig. S2). Although the water 

column remained relatively well-mixed under the surface layer, freshwater buoyancy and weakened winds facilitated the 

revitalization of density stratification and subsequent oxygen decline below the pycnocline. Indeed, the bottom water DO 

concentration at Station F303 decreased by ~ 18 μmol kg-1 compared to that in the time-series observations and was lower than 445 

that at adjacent stations by ~ 9-22 μmol kg-1 when revisited during Leg 2 on July 22 (Fig. S3). 

3.3 Reinstatement of hypoxia after the typhoon 

With the dying-out of the typhoon after its landfall to the west of the study area on July 23 (Fig. 1a), the wind speed decreased 

to < 5 m s-1 on July 25 while the wind direction remained from the southeast before it shifted to southwesterly on July 29 (Fig. 

1c, d). The DO concentrations in bottom waters were noticeably lower (139-164 μmol kg-1 shallower than 20-m isobaths) 450 

starting around July 23 in the second half of Leg 2 (Fig. 1b and 4h). During Leg 3 from July 26-29, hypoxia was present again 

in bottom waters, due to favourable conditions for its formation (Fig. 3 and Fig. 4). The surface layer warmed to over 30 °C, 

increasing vertical thermal gradients and strengthening the stratification (Allahdadi and Li 2017). The freshwater bulge of 

lower salinity (< 15) advected offshore around the Modaomen sub-estuary, with the offshore migration of the bloom (Fig. 4f, 

l) likely driven by the interaction between the seaward buoyant current and northeastward shelf current (Pan et al., 2014; Li et 455 

al., 2020). The Chl a concentrations near the entrances of the three sub-estuaries remained relatively high (> 10 μg L-1), and 

the DO concentrations remained at high levels of > 250 μmol kg-1, ~ 20 % over the saturation levels (Fig. 3i, l). 
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Figure 3: Distributions of temperature (°C), salinity, DO (μmol kg-1) and Chl a concentrations (μg L-1) at the surface water layer off the 
PRE during Leg 1 pre-typhoon, and during Legs 2 and 3 post-typhoon. The white and magenta contours in (g) and (w) show the hypoxic 480 
(DO < 63 μmol kg-1) and oxygen-deficit (DO < 94 μmol kg-1) zones. Figures were produced using Ocean Data View v. 5.3.0 
(http://odv.awi.de, last access: 08 June 2020) 
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Figure 4: Distributions of temperature (°C), salinity, DO (μmol kg-1) and Chl a concentrations (μg L-1) at the bottom water layer off the 
PRE during Leg 1 pre-typhoon, and during Legs 2 and 3 post-typhoon. The white and magenta contours in (g) and (w) show the hypoxic 
(DO < 63 μmol kg-1) and oxygen-deficit (DO < 94 μmol kg-1) zones. 
 490 
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Similar to Leg 1 and Leg 2, the surface waters penetrated into the subsurface layer along the coast, likely forced by the 

downwelling-favourable winds (Huang et al. 2019, Li et al. 2021), augmenting temperature and DO concentrations but 

bringing down salinity, particularly in the mid-depth layer (Fig. S2). The downward penetration of surface waters, nonetheless, 

seemed to be restricted to the ~ 10-m isobath and thus offset only a limited amount of the oxygen reduction caused by 

biochemical consumption (Koweek et al. 2020). DO concentrations in bottom waters were reduced to ~ 46 μmol kg-1 off the 540 

Maodaomen sub-estuary along the 20-m isobaths and to < 94 μmol kg-1 to the southwest of Hong Kong (Fig. 4i), indicating 

the reinstatement of hypoxia. When sites were revisited on July 31, the re-emerging hypoxia was found to have been 

strengthened, with oxygen levels down to ~ 37 μmol kg-1, and expanded along the 20-m isobaths. We found that hypoxia 

formed in bottom waters with a temperature of ~ 28 °C off the Modaomen sub-estuary during Leg 3, while the oxygen-deficit 

zone to the southwest of Hong Kong showed a relatively low temperature of < 27 °C (Fig. 4c), likely due to the cross-isobath 545 

transport of shelf benthic waters, arising from local topographic effects (Dai et al. 2014, Wang et al. 2014) as during Leg 1. In 

this sense, the shoreward intrusion of shelf benthic waters is not a prerequisite for the initiation of hypoxia formation off the 

PRE, but it still contributes to the reinstatement of hypoxia southwest off Hong Kong. 

 
Figure 5: Time-series observations of (a) temperature (°C), (b) salinity, (c) DO (μmol kg-1) and (d) Chl a concentrations (μg L-1) at Station 550 
F303 (see Fig. 1b) from July 19-20, 2018 after the typhoon passage, showing the complete destruction and the subsequent rapid development 
of stratification. 
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4 Maintenance, destruction and reinstatement of coastal hypoxia 

4.1 Water column stability 

A stable water column is a key prerequisite for the formation and maintenance of hypoxia in coastal oceans (Wang and Justić 

2009; Obenour et al., 2012; Testa and Kemp 2014; Lu et al., 2018; Zhang et al., 2019), which restricts the oxygen supply by 

suppressing advective and diffusive mixing with oxygen-rich waters (Murphy et al., 2011; Cui et al., 2019). Many studies have 685 

demonstrated that density stratification becomes enhanced and stabilizes subsurface waters when freshwater flows over 

seawater (Gan et al., 2009; MacCready et al., 2009; Bianchi et al., 2010), allowing oxygen depletion over a longer timescale 

(Fennel and Testa 2019). In the second half of the time-series observations, the two-layer structure re-emerged with the 

spreading of the river plume, which suppressed the vertical mixing in the subsurface layer, as reflected by the receded upward 

intrusion of slightly warm, saline bottom waters (Fig. 5a, b). The Chl a concentrations in the surface layer increased, followed 690 

by an elevated DO level in surface waters and a lowered DO level in subsurface waters (Fig. 5c, d). The surface-to-bottom 

salinity difference showed large values within the surface plume area, which almost covered the bottom hypoxic zones (Fig. 

4g, i). Exceptions only occurred to the hypoxic zone off the Modaomen sub-estuary, where the surface-to-bottom salinity 

differences were relatively small but the temperature differences were large (i.e., DTb-s < - 4 °C in Fig. 6a-c) due to the 

shoreward intrusion of cold offshore subsurface waters (Fig. 4a-c). The regions occupied by the surface plume and the 695 

shoreward-intruded shelf bottom waters therefore overlapped, resulting in a more stable water column where a patchy hypoxic 

zone could persist for more than 5 days (Cui et al., 2019).  

 
Figure 6: The surface-to-bottom temperature (a-c) and salinity (d-e) distributions off the PRE during Leg 1 pre-typhoon, and during Legs 2 
and 3 post-typhoon. DTb-s and DSb-s represent the difference in temperature and salinity between the bottom and surface layer, respectively. 700 
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Off the PRE, when not influenced by freshwater inputs the surface layer showed a relatively small N2 close to 0 and vertically 730 

well-mixed temperature, salinity and DO concentrations (e.g., in the top ~ 10 m at Station A14, Fig. 7c). However, in the 

presence of the freshwater plume, the surface layer became more stable, with a larger N2 of > 1×10-3, or even > 5×10-3 (e.g., 

stations A8 and A11, Fig. 7a, b). The DO concentrations decreased sharply at the base of the surface plume (salinity ~ 30). 

Using the eddy diffusivity for density (Kz) of < 5×10-6 m2 s-1 for N2 larger than 1×10-3 (Cui et al., 2019), we estimated the 

vertical diffusion for DO concentrations (VDIF = Kz×(∂DO/∂z)) of ~ 0.25 g m-2 d-1 with a maximum of 0.54 g m-2 d-1 in the 735 

top 10 m at stations A8 and A11, which was comparable to the results from Cui et al. (2019). It therefore acted as a barrier 

layer, with weak dissipation of oxygen into the subsurface waters. The inherent pycnocline between the offshore surface water 

and shelf benthic waters mainly driven by steep temperature gradients (Qu et al., 2007), such as at Station A14, acted as a 

second pycnocline in the plume region (e.g., stations A8, Fig. 7a), yet with weaker stratification likely from increased shear 

stresses in shallower waters (Pan and Gu 2016; Li et al., 2020). At the edge of the freshwater plume (Fig. 1b and Fig. 3a), such 740 

as Station F304, the second pycnocline was more stable than that induced by freshwater inputs (Fig. 7d). This three-layer 

structure, separated by two pycnoclines, therefore effectively decreased oxygen influx from the surface and facilitated oxygen 

depletion in bottom waters. 

 

Water column stability also largely depends on wind stress and/or direction in coastal waters (Wilson et al., 2008; Wang and 745 

Justić 2009). Higher wind stress usually de-stratifies the water column, leading to stronger turbulent mixing, air-sea gas 

exchange and reaeration (Chen et al., 2015; Lu et al., 2018; Huang et al., 2019), relieving hypoxic conditions (Ni et al., 2016; 

Wei et al., 2016). During the typhoon period, the wind speed rose to as high as 13 m s-1 (Fig. 1c), which was large enough to 

break the stratification (Geng et al., 2019) driven by freshwater inputs and the inherent thermocline. The strong winds 

facilitated mixing high-temperature, low-salinity surface waters and cold, saline bottom waters, resulting in a vertically-750 

homogeneous temperature and salinity, as observed in the first half of the time-series observations before Leg 2 (Fig. 5). The 

sudden decrease in Chl a concentrations in the surface layer might owe to dilution from the vertical mixing of surface plume 

waters with subsurface seawaters (Qiu et al., 2019). The surface waters became undersaturated (~ 90 % of the oxygen saturation 

level), also likely due to the upward mixing of low-oxygen waters, which in turn favoured the ventilation of bottom waters 

and the breakdown of hypoxic conditions (Hu et al., 2017). Despite wind speeds still as high as 10 m s-1 during Leg 2 (Fig. 755 

1c), stratification was regenerated in the top ~ 10 m of the plume region, which had relatively large surface-to-bottom salinity 

differences (Fig. 6e) and high N2 (Fig. 7e-h) under easterly winds (Fig. 1d). This suggests that freshwater input-induced 

stratification suppressed turbulent mixing driven by wind stress, favouring the initiation of hypoxia development even under 

downwelling-favourable conditions. Most modelling works simulated the formation of hypoxia off the PRE under the typical 

summer southwest monsoon (Wei et al., 2016; Lu et al., 2018; Li et al., 2020; Yu et al., 2020); when southwest winds blow in 760 

a more southward direction, a larger hypoxic zone develops (Wei et al., 2016). In contrast to southwesterly winds that facilitate 

the wide eastward spreading of the surface plume (Gan et al., 2009), the downwelling-favourable easterly winds tend to 

constrain the surface plume to flow westward near the coast (Li et al., 2021) as shown during Leg 2, and even drive the surface 
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oxygen-saturated waters to penetrate into the deep along the coast (Fig. S2 and Fig. 4), resulting in an offshore or westward 815 

shift of hypoxic zones with a limited spatial extent beneath the surface plume.  If the easterly winds last for a longer time than 

the hypoxia formation timescale, stronger blooms in the surface plume (Fig. 3k) would enhance the bottom hypoxia with 

abundant supply of fresh, labile organic matters; but the downwelling-favourable winds also would destroy the bottom hypoxia 

if the wind stresses become strong enough (Li et al., 2021). 

 820 
Figure 7: Profiles of temperature (°C) (green dashed lines), salinity (pink solid lines), dissolved oxygen (DO, μmol kg-1) (purple dots) and 
buoyancy frequency N2 (s-2) (bold black solid lines) at stations A8, A11, A14 and F304 (see Fig. 1b), with visits both pre-typhoon (Leg 1) 
and post-typhoon (Legs 2 and 3). The vertical distributions of N2 have been smoothed by the Gaussian method. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

N2

Temperature
Salinity

Salinity
Temperature

N2

N2

Temperature

Salinity

Leg 1

Leg 2

Leg 3

A8 A11 A14 F304
DO

DO

DO

Deleted: (Huang et al. 2019)

Deleted: (Wei et al. 2016, Lu et al. 2018, Li et al. 2020, Yu et al. 825 
2020)(Wei et al. 2016)(Gan et al. 2009)(Wei et al. 2016)

Deleted: ¶

Formatted: English (US)

Deleted: 4

Formatted: Superscript



16 
 

Tidal forcing has been suggested as another factor influencing the stability of the water column and the presence of hypoxia 

(Luo et al., 2009; Chen et al., 2015). Rabouille et al. (2008) demonstrated that tidal mixing could disrupt stratification and 830 

break hypoxia. Neap tides facilitate hypoxia formation relative to spring tides (Huang et al., 2019), and thus the intensity and 

area of hypoxia decreases during spring tides and increases during neap tides (Luo et al., 2009; Chen et al., 2015). As our 

observations were all conducted during the transformation from the neap tide to the spring tide (Fig. 1e), the intensity and 

spatial extent of the hypoxic zones off the PRE probably were underestimated. In the PRE, the dominant irregular semidiurnal 

mixed tide has a mean tidal range of 0.86-1.63 m, and a spring tidal range of 3.66 m (Mao et al., 2004). On the inner shelf, the 835 

spring tidal range can reach ~ 2.5 m (Fig. 1e). The flood-ebb and spring-neap tidal oscillations lead to variations in the DO 

concentration outside of the Lingdingyang sub-estuary with a maximum neighbouring oxygen range of 0.2 and 0.5 mg L-1, 

respectively (Cui et al., 2019). Assuming the observed DO concentrations in Leg 1 were overestimated by 0.5 mg L-1 (i.e., ~ 

15 μmol kg-1), the total area of the hypoxic zone and the oxygen-deficient zone would be at most ~ 990 km2 and ~ 1930 km2, 

respectively, 34-50% larger than our observed areas. The maintenance of hypoxia during Leg 1 and the reinstatement of 840 

hypoxic or oxygen-deficient conditions from Leg 2 to Leg 3 also suggested that the hypoxia off the PRE could survive from 

the spring tides under the conditions of a widespread plume and weak winds. Compared to freshwater inputs and winds, tidal 

forcing more likely acts as a secondary factor influencing the water column stability and the spatial extent of bottom hypoxia 

off the PRE (Luo et al., 2009; Chen et al., 2015; Zhang et al., 2019). 

4.2 Oxygen sinks and hypoxia formation timescale  845 

Oxygen sinks fundamentally drive the hypoxia formation under favourable physical conditions. Common methods to quantify 

oxygen sinks under hypoxic conditions include the analysis of oxygen budgets based on the mass balance of oxygen and 

estimates of community/bacterial respiration or nitrification rates using field incubations (Zhang and Li 2010; Li et al., 2015; 

Cui et al., 2019). However, the budget analysis of oxygen usually assumes a steady state system (Zhang and Li 2010; Cui et 

al., 2019), since the change of oxygen over time is much smaller than the oxygen depletion and advection/diffusion fluxes (Cui 850 

et al., 2019). The respiration or nitrification rates estimated from (enriched) incubation experiments also merely indicate the 

oxygen consumption rate (OCR) under a specific low-oxygen condition at the time of sampling (He et al., 2014; Su et al., 

2017). It remains unclear about the magnitude of net oxygen sinks over time that actually leads to the oxygen decline for 

hypoxia formation. 

 855 

On the condition of a precedent restoration of density stratification from Leg 2 to Leg 3, DO concentrations in bottom waters 

were generally reduced by > 25 μmol kg-1, with two hotspots showing reductions up to 75 μmol kg-1: one located offshore of 

the Lingdingyang sub-estuary, to the southwest of Hong Kong, and the other between the Modaomen and Huangmaohai sub-

estuaries (Fig. 8a). The oxygen decline post-typhoon from Leg 2 to Leg 3 therefore provided a good case to partition physical- 

and biochemical-induced oxygen sinks and calculate the OCR and timescale for the reinstatement of bottom water hypoxia 860 

based on the three-endmember mixing model. 
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Figure 8: Distributions of (a) total DO changes (DDO, μmol kg-1), (b) mixing-induced DO changes (DDOmix, μmol kg-1) and (c) the 
biochemical-induced oxygen consumption rate (OCR, μmol O2 kg-1 d-1) between Leg 3 and Leg 2 on the inner NSCS shelf off the PRE. (d) 
The biochemical-induced changes in DIC (DDICbc, μmol kg-1) vs. DO (DDObc, μmol kg-1) in bottom waters with depths > 10 m from Leg 2 975 
to Leg 3. The black line denotes the slope of DDICbc plotted against DDObc derived from the Model II regression. 

4.2.1 Mixing-induced oxygen sinks 

The mixing-induced DO changes were positive along the coast within 10-20 m isobaths, as the oxygen-saturated surface waters 

penetrated downward to re-aerate the bottom waters driven by the downwelling-favourable easterly winds (Huang et al., 2019). 

The mixing-induced oxygen sinks mainly occurred in bottom waters southwest off Hong Kong, with an average of -5.7±0.8 980 

μmol kg-1, higher than in other regions west of the PRE (e.g. beyond the 20-m isobath; -1.4±0.8 μmol kg-1) (Fig. 8b). The 

mixing-induced oxygen sinks can be attributed to the shoreward intrusion of oceanic cold, oxygen-undersaturated subsurface 

waters — as reflected by lowered temperature (< 27 °C; Fig. 4c), which usually act as a non-local driver on coastal hypoxia 

by lowering the initial DO concentration (Wang 2009; Qian et al., 2017). The cold, saline oceanic subsurface waters also 

completely occupied the bottom layer beyond the 20-m isobath during Leg 1, where extensive hypoxia developed (Fig. 4a, g). 985 

This upwelling-induced reduction in the initial DO level amounted to 8.6±1.7 % of the oxygen decline to the southwest of 

Hong Kong, suggesting coastal upwelling played a minor role in the hypoxia formation.  

 

The contribution of oxygen-deficient coastal upwelling to the hypoxia formation varies in different ocean marginal systems, 

which is largely dependent on the source of the subsurface water masses and biogeochemical reactions along the pathway of 990 
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the intrusion. Qian et al., (2017) showed the apparent oxygen utilization (AOU) values of ~ 50 μmol kg-1 in the source waters 

of nearshore Kuroshio branch at the shelf-break northeast of Taiwan and an AOU increment of ~ 40 μmol kg-1 throughout its 1015 

travel time of ~ 60 days to the vicinity off the Changjiang River (Yang et al., 2013). In eastern boundary upwelling systems 

along the northeast Pacific Ocean, the source waters typically have the low DO concentration of ~ 80-160 μmol kg-1, even near 

or below hypoxic levels from a depth of ~ 100-200 m (Grantham et al., 2004). The DO deficits were further exacerbated by 

respiration when the source waters transited shoreward over the shelf. Comparing to these systems, a higher DO level in the 

source waters (AOU ~ 35 μmol kg-1) originating from the low-latitude, high-temperature oligotrophic NSCS (Wong et al., 1020 

2007) and a shorter shoreward travel time diverting their direction from the continental slope (Gan et al., 2009; Wang et al., 

2014) might explain the relatively low contribution of coastal upwelling to the oxygen depletion on the inner NSCS shelf off 

the PRE. 

4.2.2 Biochemical-induced oxygen sinks 

The biochemical-induced DO and DIC changes from Leg 2 to Leg 3 also showed a good relationship  with a slope of -0.92±0.17 1025 

(Fig. 8d), consistent with the slope of biochemical-induced variations in DO against DIC concentrations throughout the 

sampling legs (Fig. 2c), implying that aerobic respiration of organic matters indeed dominated the oxygen consumption. The 

distribution of OCR estimates in bottom waters almost mirrored variations in the total DO pattern from Leg 2 to Leg 3 (Fig. 

8a, c). This biochemically-mediated OCR ranged from 0.9 μmol O2 kg-1 d-1 at offshore non-hypoxic stations to 19.5±0.4 μmol 

O2 kg-1 d-1 in hypoxic waters, with an average of 14.6±4.8 μmol O2 kg-1 d-1 in the oxygen-deficit zone. The uncertainty 1030 

introduced by the mixing scheme was 0.63-0.98 μmol O2 kg-1 d-1, accounting for a deviation of 4-27 %. The spatial variability 

of the bottom OCR was not fully coupled with the location of surface blooms (Fig. 3l and Fig. 8c), even though eutrophication-

produced organic matters were primarily responsible for fuelling oxygen depletion in the hypoxic zone (Su et al., 2017; Yu et 

al., 2020; Zhao et al., 2020). Cui et al., (2019) suggested that the patchy distribution of bottom hypoxia was closely associated 

with the river plume front which traps organic particles (Hetland and DiMarco 2008), accelerating their settlement and 1035 

deposition in the overlapping zones between the river plume and shelf salt wedge (Zhang and Li 2010) to fuel the high OCR 

there. In fact, only the west hypoxic centre located beneath the surface bloom from Leg 2 to Leg 3 (Fig. 3j-l and Fig. 4g-i). Lu 

et al. (2018) proposed another explanation that small detritus of external sources could be accumulated and remineralized in 

the bottom flow convergence zone as regulated by highly variable coastline and bottom topography. Our observed hypoxic 

zones generally coincided with the modelled strong convergence zones (Lu et al., 2018; Li et al., 2020), implying sufficient 1040 

organic matter supply fuelled the high OCR to restore hypoxia in bottom waters.  

 

Our estimated OCR is comparable in magnitude to the community/bacterial respiration rate from previous studies in this study 

area (9.6 μmol O2 kg-1 d-1, Su et al., (2017); 7.9 to 19.0 μmol O2 kg-1 d-1, Cui et al., (2019); 16.8±8.9 μmol O2 kg-1 d-1, Li et al., 

(2019)) and within the range in other estuaries and coastal systems (Dortch et al., 1994; Robinson 2008), despite a lower limit 1045 

due to a potential overestimation of the actual time if significant oxygen consumption started later than our observations during 
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the first half of Leg 2 and an assumed negligible oxygen flux supplied from the surface by diffusion. From Leg 2 to Leg 3, the 

vertical oxygen diffusion flux was ~ 0.18 g m-2 d-1, amounting to a supply of ~ 0.6-1.1 μmol O2 kg-1 d-1 to the bottom waters 1065 

with a thickness of 5-10 m. The exclusion of this vertical oxygen diffusion flux in our estimates therefore might underestimate 

the OCR by ~ 6 % on average. We also assumed that the OCR was uniform in the subsurface waters several meters above the 

seabed because we collected samples at three depth layers during Leg 2 and Leg 3, with usually only one layer below the 

pycnocline for most stations. For stations with the middle layer also below the pycnocline, such as Station F304 during Leg 3, 

the profile of DO concentrations showed almost constant values below the pycnocline (Fig. 7k). Sediment oxygen demand 1070 

might be significant near the seabed or in its overlying water column in shallow waters (Kemp et al., 1992; Zhang and Li 2010), 

but in our sampling area, oxygen losses by sediment oxygen demand (i.e., benthic respiration) were found much smaller than 

the bacterial respiration in the water column based on both incubation experiments and oxygen budget analysis (Cui et al., 

2019). We thus assumed the sediment oxygen demand was negligible and the microbial respiration in the water column 

dominated the estimated OCR. 1075 

 

However, the estimated OCR here differs from that derived from the steady-state budget analysis in which the oxygen 

consumption was completely offset by the physical transport of oxygen (Zhang and Li 2010; Cui et al., 2019). During the 

hypoxia formation, the DO concentrations are in a non-steady state as oxygen sinks exceed sources. To shift towards a balance 

between oxygen consumption and replenishment for the maintenance of hypoxia, the OCR might decrease or the physical-1080 

induced oxygen supply increases. Kalvelage et al., (2015) found a significant correlation between OCR and in situ DO 

concentrations off Peru — aerobic respiration rates decreased at the upper boundary of oxygen minimum zone (OMZ) towards 

the OMZ core. The oxygen enriched incubation of unfiltered water samples also revealed that the OCR could be significantly 

enhanced when the initial in situ DO concentration was low (e.g., ~ 30 µmol kg-1), but changed little when the in situ DO 

concentration was higher than ~ 90 µmol kg-1 (He et al., 2014). Despite the bottom DO concentrations of ~ 180 µmol kg-1 at 1085 

Station F303 during the time-series observations, DO declined at a rate of ~ 9 μmol O2 kg-1 d-1 from July 20-22, when the 

winds remained strong, and the OCR decreased to ~ 5.5 μmol O2 kg-1 d-1 from Leg 2 to Leg 3 (from July 22-29) (Fig. S3). The 

OCR declined likely as inhibited by the reduced supply of labile organic matter (Yuan et al., 2010) — the strong blooms shifted 

offshore with the river plume and the Chl a concentrations over the hypoxic zone also decreased from Leg 2 to Leg 3 (Fig. 3k, 

l). If we considered the shoreward intrusion of shelf benthic waters following up the hypoxia development instead of 1090 

contributing to lowering the initial DO level, their intrusion onto the inner shelf supplied oxygen to the oxygen-depleted waters, 

such as the cold, saline subsurface waters occupied the bottom layer covering the hypoxic zone on the inner shelf during Leg 

1 (Fig. 4a, g). As density stratification limited the vertical diffusivity of oxygen from the upper layer, bottom hypoxia was 

therefore progressively formed and maintained until the decreasing OCR almost achieved equilibrium with the oxygen supply 

from the lateral advection. 1095 
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4.2.3 Hypoxia formation timescale 

The above estimated OCR and the contribution of shoreward-intruded shelf benthic waters made it possible to roughly estimate 

the hypoxia formation timescale: i.e., the time that the DO level in a known volume of water takes to decrease below the 1125 

hypoxia threshold from an assumed initial DO concentration (Fennel and Testa 2019). In this study, for the reinstatement of 

hypoxia after the typhoon, the initial DO level in subsurface waters could be taken as ~ 180 μmol kg-1, which varied within ±5 

μmol kg-1  throughout the time-series observations (Fig. 5c). Considering the OCR for the hypoxic zone was at most ~ 20 μmol 

O2 kg-1 d-1, and the negligible contribution of lateral advection to oxygen loss off the Modaomen sub-estuary (Fig. 4), it took 

nearly 6 days for the drawdown of DO to reach concentrations of ~ 63 μmol kg-1 within a limited area. Scaling to a larger area, 1130 

it would instead take 8-12 days if we choose the average OCR of the oxygen-deficient zone, ~ 15±5 μmol O2 kg-1 d-1 (Fig. 8c). 

The closeness of these estimates with the water residence time (~ 15 days, Li et al., (2020)) could partly explain the occurrence 

of periodic hypoxia to the west off the PRE (Su et al., 2017; Zhao et al., 2020). 

 

For a more common scenario of hypoxia formation starting from late spring, we assumed that the shoreward-intruded oxygen-1135 

deficient offshore subsurface waters almost occupied the bottom layer on the inner shelf instead of the well-oxygenated 

offshore surface waters, as during Leg 1 (Fig. 4a, d). Based on above estimates that the shoreward-intruded subsurface waters 

totally reduced the initial DO level by 8.6±1.7 % of the oxygen decline for hypoxia formation, the initial DO level was lowered 

by ~ 11 μmol kg-1 to be ~ 183 μmol kg-1 before biochemical oxygen consumption. The hypoxia hotspot will then first occur ~ 

6 days after its initiation on the inner NSCS shelf off the PRE and extend to a larger hypoxic zone within the water residence 1140 

time of ~ 15 days (Lu et al., 2018; Li et al., 2020). This result is larger than that estimated by Fennel and Testa (2019) —  4 

days — using the modelled OCR of ~ 34 μmol O2 kg-1 d-1 in the water column with a sediment oxygen demand of ~ 2.1 g m-2 

d-1, which were only applicable to the hypoxia formation in the Lingdingyang sub-estuary with shallower waters (~ 5 m) 

(Zhang and Li 2010). This result is still at the lower end of the hypoxia formation timescale in large river-dominated shelves 

globally (e.g., East China Sea off the Changjiang estuary, Northern Gulf of Mexico and Northwestern Black Sea), which varies 1145 

from 8 to 89 days for hypoxia to develop once initiated (Fennel and Testa 2019). This short hypoxia formation timescale likely 

owes to a high OCR in relatively warm subsurface waters fuelled by abundant labile organic matters (Su et al., 2017; Zhao et 

al., 2020). 

4.3 Imprint of tropical cyclones on the evolution of coastal hypoxia 

Tropical cyclones dramatically alter the physical stability of the water column and attenuate or even disrupt hypoxic conditions 1150 

at low and mid-latitudes, such as off the Changjiang Estuary (Ni et al., 2016; Zhang et al., 2020) and the PRE (Su et al., 2017; 

Huang et al., 2019), in the Chesapeake Bay (Testa and Kemp 2014; Testa et al., 2017) and the northern Gulf of Mexico (Wang 

and Justić 2009; Feng et al., 2012). These intense, episodic storms thus strongly impact the duration and intensity of oxygen 

depletion in coastal bottom waters (Rabalais et al., 2009; Wang et al., 2017; Zhang et al., 2020), driving the seasonal hypoxia 
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to be intermittent. As shown in Fig. 1, at least four named tropical cyclones impacted the study area from May to August in 

2018, most of which shifted the wind direction from prevailing southwesterly to easterly or southeasterly and increased the 1195 

wind speed up to over 9 m s-1, being able to destroy water column stratification and interrupt hypoxia formation (Geng et al., 

2019). This was not an exception, as annually there were ~ 6 tropical cyclones travelling across the NSCS from May to 

September, when seasonal hypoxia develops (Qian et al., 2018; Wang et al., 2018), during the period from 1975-2019 (Fig. 

9a). About five of the six annual tropical cyclones, on average, had the potential to overwhelmingly destroy the stability of the 

water column and replenish the bottom waters with oxygen. Indeed, when tropical cyclones impacted the NSCS over the last 1200 

four decades, the local maximum wind speeds typically reached over 9 m s-1, and often were larger than 15 m s-1 (Fig. 9b); the 

local wind direction was inclined to be from the east, accounting for 56.2% in frequency, followed by the north (19.8%) and 

the west (16.0%) (Fig. 9d). The long-lasting easterly winds (Fig. 9e) were more likely to confine the river plume to the coast 

(Xu et al., 2019) and even force the riverine freshwater to subduct down to the depth (Fig. S2), strengthening the reaeration of 

the oxygen-poor bottom waters (Wang et al., 2017; Wang et al., 2018; Huang et al., 2019). We also found that the time interval 1205 

between two successive tropical cyclones was mostly less than 15 days, especially from July to September (Fig. 9c), close to 

the timescale for hypoxia formation. This might partly explain less hypoxia was formed and even observed before the year of 

2000 (Yin et al., 2004; Rabouille et al., 2008). Therefore, frequent disturbance by tropical cyclones is one of the vital controls 

on the intermittent hypoxia in low-latitude river-dominated ocean margins. 

 1210 

Although strong winds subdue hypoxia, tropical cyclones potentially promote intensive oxygen depletion after the transient 

dissipation of hypoxia (Rabalais et al., 2009). Heavy precipitation delivered by storms usually increases riverine freshwater 

loading to the coastal ocean (Zhou et al., 2012), resulting in intensified stratification when winds weaken (Wilson et al., 2008; 

Su et al., 2017). Indeed, heavy precipitation happened in the Pearl River Delta region after the landing of typhoon SONTIHN 

(Guangdong Meteorological Service, http://gd.cma.gov.cn/qxfw/qhgk/201812/t20181217_92844.html), leading to a wide 1215 

spreading of the river plume with lower salinity (< 15) than that during Leg 1 and the intensification of stratification (Fig. 6), 

even though the river discharge of the PRE increased insignificantly (Li et al., 2021). Enhanced vertical mixing and/or 

freshwater discharge supplied large amounts of nutrients to the surface layer to fuel phytoplankton blooms following large 

storms (Zhao et al., 2009; Ni et al., 2016; Wang et al., 2017), as shown in Fig. 3 that strong blooms occurred in the surface 

plume along the coast with much higher Chl a concentrations during Leg 2 than that during Leg 1. The fresh autochthonous 1220 

organic matter, together with the resuspended sedimentary organic carbon, provides sufficient substrates for microbial 

respiration in a re-stratified water column, leading to renewed or even exacerbated bottom water oxygen depletion (Zhou et 

al., 2012; Song et al., 2020). Along the east coast of North America, lowered DO concentrations were observed after storms 

(Paerl et al., 2000; Tomasko et al., 2006). Hypoxia was re-established across a larger area when Hurricane Katrina crossed the 

southeast Louisiana coast (Rabalais et al., 2009). Off the PRE, we also found that hypoxia re-occurred in the wake of a more 1225 

extensive freshwater plume and enhanced eutrophication after the passage of typhoon SONTIHN (Fig. 4). Whether it can 
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develop into more severe hypoxia compared to that found initially during Leg 1 depends on the net OCR and water column 

stability, up until the passage of the next storm, Typhoon BEBINCA (Fig. 1d). 

 

 
Figure 9: Statistics of tropical cyclones passing the northern South China Sea (NSCS) from May to September over 1975-2019. (a) Numbers 1270 
of tropical cyclones. TD, TS, STS, TY and STY represent tropical depressions (the maximum wind speed near the centre is between 10.8-

(a)

(b)

(c)

(d) (e)
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Duration (d)
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17.1 m s-1 over its lifetime), tropical storms (17.2-24.4 m s-1), strong tropical storms (24.5-32.6 m s-1), typhoons (32.7-41.4 m s-1) and strong 
typhoons (41.5-50.9 m s-1), respectively. (b) The maximum wind speed of each tropical cyclone. The black line and grey shadow denote the 
annual average and range of the maximum wind speeds. (c) The time interval between two successive tropical cyclones. The black line and 
grey shadow denote the annual average and range of the time intervals. (d) The wind rose of the intensity of tropical cyclones. (e) The wind 1285 
rose of the duration of tropical cyclones. The wind speed in (b) and wind direction in (d, e) were recorded at the Waglan Island station 
(Figure 1b). 
 
In a changing climate, tropical cyclone activity is expected to shift towards stronger storms but with a decreasing trend in 

frequency (Knutson et al., 2010). In the NSCS, the annual mean number of tropical cyclones in each decade decreased from 1290 

1950-2019, but the number of strong typhoons — the maximum wind speed near the center is between 41.5-50.9 m s-1 over 

its lifetime — increased in the last decade (Table 2). The time interval between two successive tropical cyclones therefore 

increased by 2-3 days in the last two decades than before the year of 2000 (Fig. 9c). The less-frequent disturbance in the 

stability of the water column by tropical cyclones and the elongated time interval between two successive tropical cyclones 

likely favour more persistent hypoxia. However, intensified tropical cyclones would destroy the hypoxia more completely. 1295 

Despite stronger blooms after tropical cyclones as during Leg 2 (Fig. 3k), the winds shifting back to prevailing southwest 

monsoon might drive the blooms offshore (Fig. 3l), reducing the downward transport of fresh, labile organic matters to fuel 

enduring intensive oxygen consumption in subsurface waters. In this sense, tropical cyclones may have the potential to relieve 

the exacerbation of coastal hypoxia in a warmer ocean. 

 1300 
Table 2: Summary of average frequency of tropical cyclones in each decade from 1950-2019. TD, TS, STS, TY and STY represent tropical 
depressions (the maximum wind speed near the centre is between 10.8-17.1 m s-1 over its lifetime), tropical storms (17.2-24.4 m s-1), strong 
tropical storms (24.5-32.6 m s-1), typhoons (32.7-41.4 m s-1) and strong typhoons (41.5-50.9 m s-1), respectively. 

Years TD TS STS TY STY SUM 

1950-1959 3.5 1.1 1.2 1.1 1.5 8.4 

1960-1969 1.7 0.6 1.5 2.1 2.7 8.6 

1970-1979 1.8 0.7 2.1 2.1 1.2 7.9 

1980-1989 1.5 0.7 2.5 1.3 1.3 7.3 

1990-1999 0.7 1.2 1.8 2 1.1 6.8 

2000-2009 0.9 1.4 1.5 1.5 0.8 6.1 

2010-2019 0.6 1.8 1.4 0.4 1.5 5.7 

5 Conclusions 

We have demonstrated the evolution of intermittent hypoxia in summertime as disturbed by the typhoon passage on the inner 1305 

NSCS shelf off the PRE and examined the controls on maintenance, destruction and reinstatement of hypoxia in this dynamic 

river-dominated marginal system. Eutrophication-induced hypoxia off the PRE was exacerbated with an enlarged area of ~ 

660 km2 and the lowest ever recorded regional DO concentration of 3.5 μmol kg-1 (~ 0.1 mg L-1). Freshwater inputs suppressed 
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turbulent mixing induced by wind stress and/or tidal forcing and stabilized the water column, restricting the ventilation of the 

subsurface water and facilitating the formation and maintenance of hypoxia. We estimated for the first time the upwelling-

induced oxygen decline and in situ OCR over the destruction and reinstatement of hypoxia, which took place on a time scale 

of 6-12 d. This hypoxia timescale is comparable with water residence time and the disturbance of hypoxia from frequent 

tropical cyclones or high-wind events throughout the summer season, which could largely explain the intermittent nature of 1360 

hypoxia off the PRE. Despite the less-frequent disturbance from tropical cyclones and the elongated time interval between 

successive tropical cyclones, the elevated intensity of tropical cyclones and possible offshore-advected blooms after tropical 

cyclones may have the potential to relieve the exacerbation of coastal hypoxia in a warmer ocean.  

 

Data Availability. Data for temperature, salinity, DO and Chl a are currently for review and will be available at National 1365 

Earth System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China 

(http://www.geodata.cn) with DOI. The wind speeds and directions at the Waglan Island from May to August, 2018 were 

obtained from the Hong Kong Observatory (http://www.hko.gov.hk/tc/cis/climat.htm). The tidal heights at the Dawanshan 

gauge station near the Station F303 from May to August, 2018 were downloaded from the website 

(http://www.chinaports.com/tidal/). Information from the tropical cyclone database (1949-2019) was obtained from the China 1370 

Meteorological Administration (http://tcdata.typhoon.org.cn/). 

 

Supplement. Additional figures referenced in text: Figure S1. Air temperature at the Hong Kong Observatory in July 2018. 

Figure S2. Distributions of temperature, salinity, DO and Chl a concentrations at the middle layer off the PRE during Leg 1 

prior to Typhoon, and during Legs 2 and 3 post-typhoon. Figure S3. Profiles of temperature, salinity and DO at station F303 1375 

at the end of time-series observations and during Leg 2 and Leg 3. 
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