

1 **Factors controlling plankton community production, export flux, and particulate matter**
2 **stoichiometry in the coastal upwelling system off Peru**

3 Lennart Thomas Bach^{1*}, Allanah Joy Paul², Tim Boxhammer², Elisabeth von der Esch³,
4 Michelle Graco⁴, Kai Georg Schulz⁵, Eric Achterberg², Paulina Aguayo⁶, Javier Arístegui⁷,
5 Patrizia Ayón⁴, Isabel Baños⁷, Avy Bernales⁴, Anne Sophie Boegeholz⁸, Francisco Chavez⁹,
6 Gabriela Chavez⁹, Shao-Min Chen^{2,10}, Kristin Doering^{2,10}, Alba Filella², Martin Fischer⁸,
7 Patricia Grasse^{2,11}, Mathias Haunost², Jan Hennke², Nauzet Hernández-Hernández⁷, Mark
8 Hopwood², Maricarmen Igarza¹², Verena Kalter^{2,13}, Leila Kittu², Peter Kohnert², Jesus
9 Ledesma⁴, Christian Lieberum², Silke Lischka², Carolin Löscher¹⁴, Andrea Ludwig², Ursula
10 Mendoza⁴, Jana Meyer², Judith Meyer², Fabrizio Minutolo², Joaquin Ortiz Cortes², Jonna
11 Piiparinne¹⁵, Claudia Sforna², Kristian Spilling^{15,16}, Sonia Sanchez,⁴ Carsten Spisla², Michael
12 Sswat², Mabel Zavala Moreira¹⁷, Ulf Riebesell²

13 *corresponding author: Lennart.bach@utas.edu.au

14 ¹Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

15 ²GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

16 ³Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University
17 of Munich, Munich, Germany

18 ⁴Dirección General de Investigaciones Oceanográficas y cambio Climático, Instituto del Mar del Perú
19 (IMARPE), Callao, Perú

20 ⁵Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern
21 Cross University, Lismore, NSW, Australia

22 ⁶Millennium Institute of Oceanography (IMO), Universidad de Concepción, Concepción, Chile

23 ⁷Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria
24 ULPGC, Las Palmas, Spain

25 ⁸Department of Biology, Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel,
26 Kiel, Germany

27 ⁹Monterey Bay Aquarium Research Institute, Moss Landing, United States of America

28 ¹⁰Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Canada

29 ¹¹German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany

30 ¹²Programa de Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Perú

31 ¹³Memorial University of Newfoundland, Department of Ocean Sciences, Logy Bay,
32 Newfoundland, Canada

33 ¹⁴University of Southern Denmark, Odense, Denmark

34 ¹⁵Finnish Environment Institute, Marine Research Centre, Helsinki, Finland

35 ¹⁶Faculty of Engineering and Science, University of Agder, Kristiansand, Norway

36 ¹⁷Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador

37 **Abstract**

38 Eastern boundary upwelling systems (EBUS) are among the most productive marine
39 ecosystems on Earth. The production of organic material is fuelled by upwelling of nutrient-
40 rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors
41 can modify surface production and related biogeochemical processes. Determining these factors
42 is important because EBUS are considered hotspots of climate change, and reliable predictions
43 on their future functioning requires understanding of the mechanisms driving the
44 biogeochemical cycles therein. In this field experiment, we used *in situ* mesocosms as tools to
45 improve our mechanistic understanding of processes controlling organic matter cycling in the
46 coastal Peruvian upwelling system. Eight mesocosms, each with a volume of $\sim 55 \text{ m}^3$, were
47 deployed for 50 days $\sim 6 \text{ km}$ off Callao (12°S) during austral summer 2017, coinciding with a
48 coastal El Niño. After mesocosm deployment, we collected subsurface waters at two different
49 locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms,
50 respectively (mixing ratio $\approx 1.5:1$ mesocosm: OMZ water). The focus of this paper is on
51 temporal developments of organic matter production, export, and stoichiometry in the
52 individual mesocosms. The mesocosm phytoplankton communities were initially dominated by
53 diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate
54 (*Akashiwo sanguinea*) when inorganic nitrogen was exhausted in surface layers. The
55 community shift coincided with a short-term increase in production during the *A. sanguinea*
56 bloom, which left a pronounced imprint on organic matter C:N:P stoichiometry. However, C,

57 N, and P export fluxes did not increase because *A. sanguinea* persisted in the water column and
58 did not sink out during the experiment. Accordingly, export fluxes during the study were
59 decoupled from surface production and sustained by the remaining plankton community.
60 Overall, biogeochemical pools and fluxes were surprisingly constant for most of the
61 experiment. We explain this constancy by light limitation through self-shading by
62 phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth.
63 Thus, gain and loss processes remained balanced and there were few opportunities for blooms,
64 which represents an event where the system becomes unbalanced. Overall, our mesocosm study
65 revealed some key links between ecological and biogeochemical processes for one of the most
66 economically important regions in the oceans.

67 **1. Introduction**

68 Eastern boundary upwelling systems (EBUS) are hotspots of marine life (Chavez and Messié,
69 2009; Thiel et al., 2007). They support around 5 % of global ocean primary production and 20
70 % of marine fish catch whilst covering less than 1 % of the ocean surface area (Carr, 2002;
71 Chavez and Messié, 2009; Messié and Chavez, 2015). One of the most productive EBUS is
72 located along the Peruvian coastline between 4°S and 16°S (Chavez and Messié, 2009). Here,
73 southeasterly trade winds drive upward Ekman pumping and offshore Ekman transport,
74 resulting in upwelling of nutrient rich subsurface waters (Albert et al., 2010). In the surface
75 ocean, the nutrient rich water is exposed to sun-light leading to enhanced primary production
76 (Daneri et al., 2000).

77 This enhanced production has two important outcomes. First, it sustains one of the largest
78 fisheries in the world, making the Peruvian upwelling system an area of outstanding economic
79 value (Bakun and Weeks, 2008; Chavez et al., 2008). Second, the remineralization of large
80 amounts of sinking organic matter from primary production leads to pronounced dissolved
81 oxygen (dO_2) consumption in subsurface waters. This local source of oxygen consumption in
82 already O_2 -depleted subsurface Pacific water masses contributes to what is likely the most
83 pronounced oxygen minimum zone (OMZ) globally (Karstensen et al., 2008).

84 Upwelling of nutrient-rich water occurs primarily near the coast from where the water is
85 advected net-westward (i.e. further offshore but including a pronounced latitudinal advection,
86 Thiel et al., 2007). Primary production changes along this pathway with highest rates when
87 phytoplankton biomass has reached its maximum in a new patch of upwelled water (Chavez et
88 al., 2002). Primary production generally declines with increasing distance from shore, even

89 though eddies and other mesoscale features can modify this idealized pattern (Bakun and
90 Weeks, 2008; Stramma et al., 2013; Thiel et al., 2007). Plankton community composition
91 changes in accordance with the changes in primary production. Diatoms and herbivorous
92 mesozooplankton often prevail near the coast, but the community transitions towards Crypto-,
93 Hapto-, Prasino-, and Cyanophyceae and a more carnivorous mesozooplankton community
94 further offshore (Ayón et al., 2008; DiTullio et al., 2005; Franz et al., 2012a; Meyer et al.,
95 2017). Dinoflagellates also play an important role, especially when upwelling relaxes and
96 nutrient concentrations decrease (Smayda and Trainer, 2010). The composition of plankton
97 communities is closely linked to key biogeochemical processes such as organic matter
98 production and export (Boyd and Newton, 1999; González et al., 2009; Longhurst, 1995). Thus,
99 observed patterns of production and export in the Peruvian upwelling system (and elsewhere)
100 can only be understood when the associated links to the plankton community structures are
101 revealed. Establishing and quantifying these links is particularly important for the Peruvian
102 upwelling system considering that this region is disproportionately affected by climate change
103 (Gruber, 2011) and alterations in production could disrupt one of the largest fisheries in the
104 world (Bakun and Weeks, 2008).

105 In austral summer 2017 (coinciding with a strong coastal El Niño), we set up an *in situ*
106 mesocosm experiment in the coastal Peruvian upwelling system off Callao to gain mechanistic
107 understanding of how biological processes in the plankton community influence
108 biogeochemical processes. Our two primary questions were: 1) How do plankton community
109 structure and associated biogeochemical processes change following an upwelling event. This
110 first question was addressed by simply monitoring the developments within the mesocosms for
111 a 50 days period. 2) How does upwelling of water masses with different OMZ-signatures
112 influence plankton succession and pelagic biogeochemistry. This second question was
113 addressed by adding two types of subsurface water with different nutrient stoichiometries to 4
114 mesocosms, respectively. In the present paper we will focus on the first question and target
115 three ecologically and biogeochemically important measures: organic matter production,
116 export, and stoichiometry. Our paper is the first in a Biogeosciences special issue about the
117 2017 Peru mesocosm campaign. It includes a comprehensive description of the setup and aims
118 to synthesize some of the key results of the study.

119 **2. Methods**

120 **2.1 Mesocosm deployment and maintenance**

121 On February 22, 2017, eight “Kiel Off-Shore Mesocosms for Future Ocean Simulations”
122 (KOSMOS, M1 – M8 (Riebesell et al., 2013)) were deployed with *Buque Armada Peruana*
123 (*BAP Morales* in the SE Pacific, 6 km off the Peruvian coastline (12.0555°S; 77.2348°W; Fig.
124 1). The water depth at the deployment site was ~30 m and the area was protected from southern
125 and southwestern swells by Isla San Lorenzo (Fig. 1). The mesocosms consisted of cylindrical,
126 18.7 m long polyurethane bags (2 m diameter, $54.4 \pm 1.3 \text{ m}^3$ volume, Table 1) suspended in 8
127 m tall flotation frames (Fig. 1). The bags were initially folded so that the flotation frames and
128 bags could be lifted with the crane from *BAP Morales* into the water where the mesocosms
129 were moored with anchor weights. The bags were unfolded immediately after deployment with
130 the lower end extending to ~19.7 m and the upper end 1 m below surface. Nets (mesh size 3
131 mm) attached to both ends of the bags allowed water exchange but prevented larger plankton
132 or nekton from entering the mesocosms. On February 25, the mesocosms were sealed when
133 divers replaced lower meshes with sediment traps, while upper ends of the bags were pulled
134 ~1.5 m above sea surface immediately after sediment trap attachment. These two steps isolated
135 the water mass enclosed inside the mesocosms from the surrounding Pacific water and marked
136 the beginning of the experiment (Day 0, Fig. 2). After the closure, the enclosed water columns
137 were ~19 m deep of which the lowest 2 m were the conical sediment traps (Fig. 1).

138 The mesocosm bags were regularly cleaned from the inside and outside to minimize biofouling
139 (Fig. 2). Cleaning the outside of the bags was done with brushes, either from small boats (0 –
140 1.5 m) or by divers (1.5 – 8 m). The inner sides of the bags were cleaned with rubber blades
141 attached to a polyethylene ring which had the same diameter as the mesocosm bags and was
142 ballasted with a 30 kg weight (Riebesell et al., 2013). The rubber blades were pushed against
143 the walls by the ring and scraped off the organic material while sliding downwards. Cleaning
144 inside down to ~1 m above the sediment traps was conducted approximately every eighth day
145 to prevent biofouling at an early stage of its progression.

146 2.2 OMZ water addition to the mesocosms

147 On March 2 and 7, 2017 (Days 5 and 10), we collected two batches of OMZ water (100 m^3
148 each) with Research Vessel IMARPE IV at two different stations of the IMARPE time-series
149 transect (Graco et al., 2017). The first batch was collected on Day 5 at station 1 (12.028323°S;
150 77.223603°W) at a depth of 30 m. The second was collected on day 10 at station 3
151 (12.044333°S; 77.377583°W) at a depth of ~70 m (Fig. 1). In both cases we used deep water
152 collectors described by Taucher et al. (2017). The pear-shaped 100 m^3 bags of the collector

systems consisted of flexible, fiber-reinforced, food-grade, polyvinyl chloride material (opaque). The round openings of the bags (0.25 m diameter covered with a 10 mm mesh) were equipped with a custom-made propeller system that pumped water into the bag and a shutter system that closed the bag when full. Prior to their deployment, the bags were ballasted with a 300 kg weight so that the bag sank to the desired depth. A rope attached to the bag guaranteed that it did not sink deeper. The propeller and the shutter system were time-controlled and started to fill the bag after it had reached the desired depth and closed the bag after ~1.5 hours of pumping. To recover the collector, the weight was released with an acoustic trigger so that 24 small floats attached to the top made the system positively buoyant and brought it back to the surface. The collectors were towed back to the mesocosm area and moored therein with anchor weights.

On March 8 and 9, 2017 (Day 11 and 12), we exchanged ~20 m³ of water enclosed in each mesocosm with water collected from station 3 (M2, M3, M6, M7) or station 1 (M1, M4, M5, M8). The exchange was done in two steps using a submersible pump (Grundfos SP-17-5R, pump rate ~18 m³ h⁻¹). On Day 8, we installed the pump for about 30 – 40 minutes in each mesocosm and pumped 9 m³ out of each bag from a depth of 11 – 12 m. On Day 11, the pump was installed inside the collector bags and 10 m³ of water was injected to 14 – 17m depth (hose diameter 5 cm). Please note that the pump (for water withdrawal) and hose (for water injection) were carefully moved up and down the water column between 14 – 17 m so that the water was evenly withdrawn from, or injected into, this depth range. On day 12, we repeated this entire procedure but this time removed 10 m³ from 8 – 9 m, and added 12 m³ evenly to the depth range from 1 – 9 m.

2.3 Salt additions to control stratification and to determine mesocosm volumes

Oxygen minimum zones are a significant feature of EBUS and play an important role for ecological and biogeochemical processes in the Humboldt system (Breitburg et al., 2018; Thiel et al., 2007). They reach very close to the surface (<10 m) in the near-coast region of Peru (Graco et al., 2017), therefore the mesocosms naturally contained water with low O₂ concentrations below ~10 m (see Results). Conserving this oxygen-depleted bottom layer within the mesocosms required artificial water column stratification because heat exchange with the surrounding Pacific water would have destroyed this feature (see Bach et al., 2016 for a description of the convective mixing phenomenon in mesocosms). Therefore, we injected 69 L of a concentrated NaCl brine solution evenly into the bottom layers of the mesocosms on Day

185 13 by carefully moving a custom-made distribution device (Riebesell et al., 2013) up and down
186 between 10 – 17 m. The procedure was repeated on Day 33 with 46 L NaCl brine solution added
187 between 12.5 – 17 m after turbulent mixing between Days 13 and 33 continuously blurred the
188 artificial halocline. The brine additions increased bottom water salinity by about 1 during both
189 additions (Fig. 3B).

190 At the end of the experiment (Day 50; after the last sampling), we performed a third NaCl brine
191 addition to determine the volume of each mesocosm. For volume determination, we first
192 homogenized the enclosed water columns by pumping compressed air into the bottom layer for
193 5 minutes, thereby fully mixing the water masses. This was validated by salinity profiling with
194 subsequent CTD casts (see Section 2.4 for CTD specifications). Next, we added 52 kg of a
195 NaCl brine evenly to the entire water column as described above, followed by a second airlift
196 mixing and second set of CTD casts. Since we precisely knew the added amount of NaCl, we
197 were able to determine the volume of the mesocosms at Day 50 from the measured salinity
198 increase as described by Czerny et al. (2013). The mesocosm volumes before Day 50 were
199 calculated for each sampling day based on the amount volume that was withdrawn during
200 sampling (Section 2.5) and exchanged during the OMZ water addition (Section 2.2). Rainfall
201 did not occur during the study and evaporation was negligible ($\sim 1 \text{ L d}^{-1}$) as determined by
202 monitoring salinity over time (Section 2.5). These two factors were therefore not considered for
203 the volume calculations.

204 The NaCl solution used to establish haloclines was prepared in Germany by dissolving 300 kg
205 of food-grade NaCl in 1000 L deionized water (Milli-Q, Millipore) (Czerny et al., 2013). The
206 brine was purified thereafter with ion exchange resin (LewawitTM MonoPlus TP260[®], Lanxess,
207 Germany) to minimize potential contaminations with trace metals (Czerny et al., 2013). The
208 purified brine was collected in an acid-cleaned polyethylene canister (1000 L), sealed, and
209 transported from Germany to Peru where it was used ~ 5 months later. The brine solution for
210 the volume determination at the end of the experiment was produced on-site using table salt
211 purchased locally.

212 **2.4 Additions of organisms**

213 Some of the research questions of this campaign involved endemic organisms that were initially
214 not enclosed in the mesocosms, at least not in sufficient quantities for meaningful quantitative
215 analyses. These were scallop larvae (*Argopecten purpuratus*, “Peruvian scallop”) and eggs of
216 the fish *Paralichthys adspersus* (“Fine flounder”). Both scallop larvae and fish eggs were

217 introduced by lowering a container of the organisms to the water surface and carefully releasing
218 them into the mesocosms. Scallop larvae were added on Day 14 in concentrations of \sim 10.000
219 individuals m^{-3} . Fish eggs were added on Day 31 in concentrations of \sim 90 individuals m^{-3} .
220 However, few scallop larvae and no fish larvae were found in the mesocosms after the release
221 so that their influence on the plankton community should have been small and will only be
222 considered in specific zooplankton papers in this special issue.

223 **2.5 Sampling and CTD casts**

224 Sampling and CTD casts were undertaken from small boats that departed from La Punta harbor
225 (Callao, Fig. 1) around 6.30 a.m. (local time) and reached the study site around 7 a.m. The
226 sampling scheme was consistent throughout the study. The sediment traps were sampled first
227 to avoid resuspension of the settled material during deployment of our water sampling gear.
228 Water column sampling and CTD casts, followed \sim 10 minutes after sediment trap sampling.
229 The sediment trap sampling lasted for one hour while the CTD casts lasted for 2 hours after
230 which the sediment and CTD teams went back to the harbor. Water column sampling teams
231 remained at the mesocosms for 2 – 6 hours and arrived back in the harbor mostly between 11
232 a.m. and 2 p.m. Care was taken to sample mesocosms and surrounding Pacific waters (which
233 was sampled next to the mesocosms during every sampling) in random order. Sampling
234 containers were stored in cool boxes until further processing on land. Details of the individual
235 sampling procedures are described in the following where necessary.

236 Sinking detritus was collected in the sediment traps at the bottom of each mesocosm and
237 recovered every second day (Fig. 2) using a vacuum pumping system described by Boxhammer
238 et al. (2016). Briefly, a silicon hose (10 mm inner diameter) attached to the collector at the very
239 bottom of the traps led to the surface where it was fixed above sea level at one of the pylons of
240 the flotation frame and closed with a clip (Fig. 1A). The sampling crew attached a 5 L glass
241 bottle (Schott Duran) to the upper end of the hose and generated a vacuum (\sim 300 mbar) within
242 the bottle using a manual air pump so that the sediment material was sucked through the hose
243 and collected in the 5 L bottle after the clip was loosened.

244 Suspended and dissolved substances investigated in this study comprised particulate organic
245 carbon (POC) and nitrogen (PON), total particulate carbon (TPC) and phosphorus (TPP),
246 biogenic silica (BSi), phytoplankton pigments, nitrate (NO_3^-), nitrite (NO_2^-), phosphate (PO_4^{3-}),
247 silicic acid ($Si(OH)_4$), ammonium (NH_4^+), dissolved organic nitrogen (DON) and phosphorus
248 (DOP). Suspended and dissolved substances were collected with 5 L “integrating water

249 samplers (IWS)" (Hydro-Bios Kiel) which are equipped with pressure sensors to collect water
250 evenly within a desired depth range. We sampled two separate depth ranges (surface and bottom
251 water). The reason for this separation was that we wanted to have specific samples for the low
252 O₂ bottom water. These depth ranges were 0 – 5 and 5 – 17 m from Day 1 to 2, 0 – 10 and 10
253 – 17 m from Day 3 to 28, and 0 – 12.5 and 12.5 – 17 m from Day 29 to 50 (Fig. 2). The reason
254 for the changing separation was that the oxycline was changing slightly during the experiment.
255 However, for the present paper we only show IWS-collected data averaged over the entire water
256 column (0 – 17 m) as this was more appropriate for the data evaluation within this particular
257 paper (for example; POC on day 30 = (12.5 * POC_{0-12.5m} + 4.5 * POC_{12.5-17m}) / 17). Surface and
258 bottom water for POC, PON, TPC, TPP, BSi, and phytoplankton pigments were carefully
259 transferred from the IWS into separate 10 L polyethylene carboys. Samples for inorganic and
260 organic nutrients were transferred into 250 mL polypropylene and acid-cleaned glass bottles,
261 respectively. All containers were rinsed with Milli-Q water in the laboratory and pre-rinsed
262 with sample water immediately before transferring the actual samples. Trace-metal clean
263 sampling was restricted to 3 occasions (Days 3, 17 and 48) due to logistical constraints.
264 Therefore, acid-cleaned plastic tubing was fitted to a Teflon pump, submerged directly into the
265 mesocosms and used to pump water from surface and bottom waters (depths as per
266 macronutrients) for the collection of water under trace-metal clean conditions.

267 Depth profiles of salinity, temperature, O₂ concentration, photosynthetically active radiation
268 (PAR), and chlorophyll a (chl-a) fluorescence were measured with vertical casts of a CTD60M
269 sensor system (Sea & Sun Technologies) on each sampling day (Fig. 2). Details of the salinity,
270 temperature, PAR, and fluorescence sensors were described by Schulz and Riebesell (2013).
271 The Fast Oxygen Optical Sensor measured dissolved O₂ concentrations at 620 nm excitation
272 and 760 nm detection wavelengths. The sensor is equipped with a separate temperature sensor
273 for internal calculation and linearization. It has a response time of 2 s and was calibrated with
274 O₂ saturated and O₂ deplete seawater. Absolute concentrations at discrete depths were
275 compared with Winkler O₂ titration measurements. These were taken in triplicate with a Niskin
276 sampler on Day 40 at 15 m water depth in M8 and on day 42 at 1 m in M3. Samples were filled
277 into glass bottles allowing significant overflow and closed air-tight without headspace. All
278 samples were measured on the same day with a Micro Winkler titration device as described by
279 Arístegui and Harrison (2002). We only used CTD data from the downward cast since the
280 instrument has no pump to supply the sensors mounted at the bottom with a constant water
281 flow. A 3 min latency period with the CTD hanging at ~2 m before the casts ensured sensor
282 acclimation to the enclosed water masses and the Pacific water.

283

2.6 Sample processing, measurements, and data analyses

284 All samples were further processed in laboratories in Club Náutico Del Centro Naval and the
285 Instituto del Mar del Perú (IMARPE). Sediment trap samples were processed directly after the
286 sampling boats returned to the harbor. First, the sample weight was determined gravimetrically.
287 Then the 5 L bottles were carefully rotated to re-suspend the material and homogenous
288 subsamples collected for additional analyses (e.g. particle sinking velocity) described in
289 companion papers of this special issue. The remaining sample (always > 88 %) was enriched
290 with 3 M FeCl₃ and 3 M NaOH (0.12 µl and 0.39 µl, respectively per gram of sample) to adjust
291 the pH to 8.1. The FeCl₃ addition initiated flocculation and coagulation with subsequent
292 sedimentation of particles within the 5 L bottle (Boxhammer et al., 2016). After 1 hour, most
293 of the supernatant above the settled sample was carefully removed and remaining sample was
294 centrifuged in two steps: 1) for 10 minutes at ~5200 g in a 800 mL beaker using a 6-16 KS
295 centrifuge (Sigma); 2) for 10 minutes at ~5000 g in a 110 mL beaker using a 3K12 centrifuge
296 (Sigma). The supernatants were removed after both steps and the remaining pellet was frozen
297 at -20°C. The remaining water was removed by freeze-drying the sample. The dry pellet was
298 ground in a ball mill to generate a homogenous powder (Boxhammer et al., 2016).

299 Sub-samples of the powder were used to determine TPC and PON content with an elemental
300 analyzer following Sharp (1974). POC sub-samples were treated identically but put into silver
301 instead of tin capsules, acidified for 1 hour with 1 M HCl to remove any particulate inorganic
302 carbon, and dried at 50°C overnight. TPP sub-samples were autoclaved for 30 minutes in 100
303 mL Schott Duran glass bottles using an oxidizing decomposition solution (Merck, catalogue
304 no. 112936) to convert organic P to orthophosphate. P concentrations were determined
305 spectrophotometrically following Hansen and Koroleff (1999). BSi sub-samples were leached
306 by alkaline pulping with 0.1 M NaOH at 85°C in 60 mL Nalgene polypropylene bottles. After
307 135 minutes the leaching process was terminated with 0.05 M H₂SO₄ and the dissolved Si
308 concentration was measured spectrophotometrically following Hansen and Koroleff (1999).
309 POC, PON, TPP, and BSi concentrations of the weighed sub-samples were scaled to represent
310 the total sample weight so that we ultimately determined the total element flux to the sediment
311 traps.

312 Suspended TPC, POC, PON, TPP, BSi, and pigment concentrations sampled with the IWS in
313 the water columns were immediately transported to the laboratory and filtered either onto pre-
314 combusted (450°C, 6 hours) glass-fibre filters (GF/F, 0.7 µm nominal pore size, Whatman;

315 POC, PON, TPP, pigments) or cellulose acetate filters (0.65 μm pore size, Whatman; BSi)
316 applying gentle vacuum of 200 mbar. The filtration volumes were generally between 100 - 500
317 mL depending on the variable amount of particulate material present in the water columns.
318 Samples were stored either in pre-combusted (450°C, 6 hours) glass petri dishes (TPC, POC,
319 PON), in separate 100 mL Schott Duran glass bottles (TPP), 60 mL Nalgene polypropylene
320 bottles (BSi), or in cryo-vials (pigments). After filtrations, POC and PON filters were acidified
321 with 1 mL of 1 M HCl, dried overnight at 60°C, put into tin capsules, and stored in a desiccator
322 until analysis in Germany at GEOMAR following Sharp (1974). TPC samples were treated
323 identically, except for the acidification step, and they were dried in a separate oven to avoid
324 contact with any acid fume. TPP and BSi filters in the glass and polypropylene bottles,
325 respectively, were stored at -20°C until enough samples had accumulated for one measurement
326 run. TPP and BSi measurements of suspended material were completed in the laboratory in
327 Peru so that no sample transport was necessary. P and Si were extracted within the bottles and
328 measured thereafter as described for the sediment powder.

329 Pigment samples were flash frozen in liquid nitrogen directly after filtration and stored at -
330 80°C. The frozen pigment samples were transported to Germany on dry ice within 3 days by
331 World Courier. In Germany, samples were stored at -80°C until extraction as described by Paul
332 et al. (2015). Concentrations of extracted pigments were measured by means of reverse phase
333 high-performance liquid chromatography (HPLC, Barlow et al., 1997) calibrated with
334 commercial standards. The contribution of distinct phytoplankton taxa to the total chl-a
335 concentration was calculated with CHEMTAX which classifies phytoplankton taxa based upon
336 taxon-specific pigment ratios (Mackey et al., 1996). The dataset was binned into two
337 CHEMTAX runs: One for surface layer and one for the deeper layer (Section 2.4) As input
338 pigment ratios we used the values for the Peruvian upwelling system determined by DiTullio
339 et al. (2005) as described by Meyer et al. (2017).

340 Samples for inorganic nutrients were filtered (0.45 μm filter, Sterivex, Merck) immediately
341 after they had arrived in the laboratories at IMARPE. The subsequent analysis was carried out
342 using an autosampler (XY2 autosampler, SEAL Analytical) and a continuous flow analyzer
343 (QuAAtro AutoAnalyzer, SEAL Analytical) connected to a fluorescence detector (FP-2020,
344 JASCO). PO_4^{3-} and Si(OH)_4 were analyzed colorimetrically following the procedures by
345 Murphy and Riley (1962) and Mullin and Riley (1955), respectively. NO_3^- and NO_2^- were
346 quantified through the formation of a pink azo dye as established by Morris and Riley (1963).
347 All colorimetric methods were corrected with the refractive index method developed by

348 Coverly et al. (2012). Ammonium concentrations were determined fluorometrically (Kérouel
349 and Aminot, 1997). The limit of detection (LOD) was calculated from blank measurements as
350 blank + 3 times the standard deviation of the blank (Thompson and Wood, 1995) over the course
351 of the experiment (LOD $\text{NH}_4^+ = 0.063 \mu\text{mol L}^{-1}$, $\text{NO}_2^- = 0.054 \mu\text{mol L}^{-1}$, $\text{NO}_3^- = 0.123 \mu\text{mol L}^{-1}$,
352 $\text{PO}_4^{3-} = 0.033 \mu\text{mol L}^{-1}$, $\text{Si(OH)}_4 = 0.336 \mu\text{mol L}^{-1}$). The precision of the measurements
353 was estimated from the average standard deviation between replicates over the course of the
354 experiment ($\text{NH}_4^+ = 0.027 \mu\text{mol L}^{-1}$, $\text{NO}_2^- = 0.014 \mu\text{mol L}^{-1}$, $\text{NO}_3^- = 0.033 \mu\text{mol L}^{-1}$, $\text{PO}_4^{3-} =$
355 $0.016 \mu\text{mol L}^{-1}$, $\text{Si(OH)}_4 = 0.016 \mu\text{mol L}^{-1}$). The accuracy was monitored by including certified
356 reference material (CRM; Lot-BW, Kanso) during measurements. The accuracy was mostly
357 within CRM $\pm 5\%$, and $\pm 10\%$ in the worst case.

358 After transportation to the laboratory, TDN and TDP samples were gently filtered through pre-
359 combusted (5 h, 450°C) glass-fibre filters (GF/F, 0.7 μm pore size Whatman) using a diaphragm
360 metering pump (KNF Stepdos, continuous flow of 100 mL min^{-1}). The filtrate was collected in
361 50 mL acid-cleaned HDPE bottles and immediately frozen at -20°C until further analysis. For
362 the determination of organic nutrient concentrations, filtered samples were thawed at room
363 temperature over a period of 24 hours and divided in half. One half was used to determine
364 inorganic nutrient concentrations as described above. The other half was used to determine
365 TDN and TDP concentrations. In order to liberate inorganic and oxidise nutrients, an oxidizing
366 reagent (Oxisolv, Merck) was added to samples, and these were subsequently autoclaved for 30
367 minutes and analyzed spectrophotometrically (QuAAstro, Seal Analytical). DON concentrations
368 were calculated by subtracting inorganic nitrogen (NO_3^- and NO_2^-) from total dissolved
369 nitrogen (TDN). DOP was calculated as the difference between TDP and PO_4^{3-} .

370 Water samples for trace metal analysis were filtered (0.20 μm , Millipore) into 125 mL low
371 density polyethylene (LDPE) bottles which were pre-cleaned sequentially with detergent (1
372 week), 1.2 M HCl (1 week) and 1.2 M HNO₃ (1 week) with deionized water rinses between
373 each stage, and then stored in LDPE bags until required. Syringes/filters were precleaned with
374 0.1 M HCl. Samples were acidified with 180 μL HCl (UPA, Romil) in a laminar flow hood
375 upon return to the laboratory and allowed to stand >12 months prior to analysis. Dissolved trace
376 metal concentrations were determined following offline preconcentration on a Seafast system
377 via inductively coupled plasma mass spectrometry, exactly as per Rapp et al. (2017).

378 **3 Results**

379 **3.1 Physical and chemical conditions in the water columns**

380 The water columns enclosed at the beginning of the study were thermally stratified with a
381 thermocline roughly at 5 m (Fig. 3). Surface temperatures were unusually high (up to 25°C)
382 during most of the first 40 days due to a rare coastal El Niño in austral summer 2017 (Garreaud,
383 2018). The coastal El Niño ceased towards the end of the experiment (i.e. beginning of April,
384 ~Day 38) and surface temperatures went back to more typical values for this time of the year
385 (<20°C). When averaged over the entire water column in all mesocosms, temperatures ranged
386 between 18.4 and 20.2°C from Days 1 to 38 and between 17.9 and 18.6°C thereafter.
387 Temperature profiles were very similar in- and outside the mesocosms due to rapid heat
388 exchange (Fig. 3).

389 The salinity in the mesocosms was initially between 35.16 – 35.19, with little variation over the
390 19 m water column (Fig. 3). NaCl brine additions to below 10 m on Day 13 and below 12.5 m
391 on Day 33 (Section 2.3) increased the salinity in the bottom layer by ~0.7 and ~0.5, respectively.
392 The salinity stratification stabilized the water column but sampling operations during the
393 experiment gradually mixed bottom water into the surface layer so that the salinity above 10 m
394 also increased. When averaged over the entire water column, salinities were between 35.16 –
395 35.24 until Day 13, 35.57 – 35.67 between Days 13 and 33, and 35.84 – 35.95 thereafter. The
396 salinity in the Pacific water outside the mesocosms was relatively stable around an average of
397 35.17 with 3 fresher periods in the surface layer due to river water inflow (Fig. 3). The salinity
398 addition for mesocosm volume determination at the end of the experiment revealed that the
399 mesocosms contained volumes between 52.5 – 55.8 m³ (Table 1).

400 The highest photon flux density measured at the surface inside the mesocosms (~0.1 m depth)
401 around noon time were ~500 – 600 µmol m⁻² s⁻¹. PAR was on average about 35 % lower inside
402 the mesocosms than outside due to shading by the flotation frame and the bag. Figure 3 shows
403 light profiles relative to surface values (instead of absolute values) because CTD casts were
404 conducted at slightly different times of day and would therefore not be comparable on an
405 absolute scale. Light attenuation with depth was pronounced due to the high particle
406 concentrations in the water. Inside the mesocosms, 10 and 1% incident light levels were
407 generally shallower than 5 and 10 m. Outside, they were at slightly greater depths (Fig. 3).

408 Dissolved O₂ concentrations (dO₂) in- and outside the mesocosms were decreasing from >200
409 µmol L⁻¹ at the surface to <50 µmol L⁻¹ at depth (Fig. 3). The oxycline inside the mesocosms
410 was between 5 and 15 m. Oxycline depths were more variable outside the mesocosms where
411 low dO₂ events occurred more frequently in the upper water column. OMZ waters collected

412 from nearby stations 1 and 3 (Fig. 1) were added to the mesocosms on Days 11 and 12. The
413 water column mixing as a consequence of the OMZ water addition led to the decrease of dO₂
414 in the surface layer and an increase of dO₂ in the lower depths of the mesocosms. After day 12,
415 the salinity stratification stabilized the vertical dO₂ gradient which remained relatively constant
416 until the end of the experiment. Optode measurements had an offset of +13 µmol L⁻¹ in the
417 bottom layer (15 m) and -16 µmol L⁻¹ in the surface (1 m) relative to the Winkler measurements.
418 Thus, there are inaccuracies of ±10-20 µmol L⁻¹. These inaccuracies were most likely due to
419 limitations associated with the response time of the sensor and therefore non-random but led to
420 carry-over along gradients. Nevertheless, the general trend observed in the vertical dO₂ gradient
421 as well as changes over time should be correctly represented in the present dataset.

422 3.2 Inorganic and organic nutrients

423 NO₃⁻ + NO₂⁻ concentrations (NO_x⁻) in the mesocosms were initially between 5.6 – 7.6 µmol L⁻¹
424 and decreased in all mesocosms to 1.1 – 5.5 µmol L⁻¹ on Days 11 and 12 (Fig. 4A, Table 1).
425 After the OMZ water addition, NO_x⁻ increased slightly in M2, M3, M6, and M7 (Fig. 4A, blue
426 symbols) as the OMZ source water from station 3 contained 4 µmol L⁻¹ of NO_x⁻. M1, M4, M5,
427 and M8 received OMZ water from station 1 with 0.3 µmol L⁻¹ and NO_x⁻ was therefore lower
428 after the OMZ water addition (Fig. 4A red symbols). The difference in NO_x⁻ between the two
429 OMZ treatments was relatively small (2.2 µmol L⁻¹) but significant (p<0.05, Table 1). After the
430 OMZ water addition, NO_x⁻ declined and reached the detection limit (i.e. 0.2 µmol L⁻¹ for NO₃⁻)
431 between Days 18 (M7) and 36 (M4). NO_x⁻ was between 2.7 – 19.2 µmol L⁻¹ in the Pacific
432 water at the deployment site and particularly high during the second half of the experiment (Fig.
433 4A).

434 PO₄³⁻ concentrations in the mesocosms were initially between 1.4 – 2 µmol L⁻¹ and converged
435 to ~1.6 µmol L⁻¹ in all mesocosms 5 days after the start of the experiment (Fig. 4B). The OMZ
436 water contained 2.5 µmol L⁻¹ of PO₄³⁻ at both stations so that its addition increased the PO₄³⁻
437 concentrations in the mesocosms to ~2 µmol L⁻¹ (Table 1). Afterwards, PO₄³⁻ decreased in all
438 mesocosms but generally more in M2, M3, M6, and M7 (blue symbols in the figures) where
439 slightly more NO_x⁻ was added through the OMZ water addition. PO₄³⁻ decreased during the
440 second half of the experiment and was between 1.3 – 1.8 µmol L⁻¹ at the end. PO₄³⁻ was between
441 1.5 – 3.1 µmol L⁻¹ in the Pacific water and generally higher than in the mesocosms (Fig. 4B).

442 Si(OH)₄ concentrations in the mesocosms were initially between 6.1 – 10.3 µmol L⁻¹ and
443 decreased in all mesocosms until Day 6 to values between 4.5 – 5.1 µmol L⁻¹ (Fig. 4C). The

444 OMZ water at station 1 and 3 contained 17.4 and 19.6 $\mu\text{mol L}^{-1}$ of Si(OH)_4 , respectively, so
445 their additions increased the concentrations to 7.5 – 9.5 $\mu\text{mol L}^{-1}$ inside the mesocosms (Table
446 1). Concentrations remained quite stable at this level until Day 26, after which they decreased
447 in all mesocosms to 2.5 – 4.5 $\mu\text{mol L}^{-1}$ at the end of the study. Si(OH)_4 was between 6.6 – 18.7
448 $\mu\text{mol L}^{-1}$ in the Pacific water and generally higher than inside the mesocosms, except for a few
449 days (Fig. 4C).

450 NH_4^+ concentrations were initially between 2.2 – 5.5 $\mu\text{mol L}^{-1}$ and decreased to values <2 μmol
451 L^{-1} on Days 2 – 3 (Fig 4D). NH_4^+ increased thereafter (except for M8) to reach 1.5 – 2.4 μmol
452 L^{-1} on Day 10. After the OMZ addition, NH_4^+ concentrations were slightly (0.6 $\mu\text{mol L}^{-1}$) but
453 significantly higher in M2, M3, M6, and M7, which received OMZ water from station 3 (blue
454 symbols, Table 1). NH_4^+ concentrations decreased to values close to or below the limit of
455 detection until Day 18. Concentrations remained at a low level but increased slightly by the end
456 of the experiment to values between 0.1 – 1.4 $\mu\text{mol L}^{-1}$. NH_4^+ concentrations ranged between
457 the limit of detection and 7.1 $\mu\text{mol L}^{-1}$ in the Pacific water and coincidentally showed a similar
458 temporal pattern as in the mesocosms except for the time between Days 10 and 20 where the
459 concentrations were considerably higher (Fig. 4D).

460 DON concentrations in the mesocosms were initially between 10.1 – 11.5 $\mu\text{mol L}^{-1}$ and
461 remained roughly within this range until the OMZ water addition. Afterwards, DON decreased
462 to 6 – 7.9 $\mu\text{mol L}^{-1}$ on Day 30 but increased almost exponentially until the end of the experiment
463 (Fig. 4E). DON in the Pacific water was within a similar range as in the mesocosms until the
464 OMZ water addition, but shifted to a higher concentrations (10 – 13.6 $\mu\text{mol L}^{-1}$) from Day 16
465 to 22, followed by an abrupt decrease to 2.8 – 11.5 from Day 24 until the end of the experiment.

466 DOP concentrations in the mesocosms were initially between 0.45 – 0.63 $\mu\text{mol L}^{-1}$ but declined
467 sharply to 0.16 – 0.25 $\mu\text{mol L}^{-1}$ on Day 8. DOP increased after the OMZ water addition to 0.22
468 – 0.38 $\mu\text{mol L}^{-1}$ (Table 1) and remained roughly at this level until Day 40 after which it began
469 to increase to 0.56 – 0.7 $\mu\text{mol L}^{-1}$ towards the end of the experiment. There were several day-
470 to-day fluctuations consistent among the mesocosms and we cannot exclude that these are due
471 to measurement inaccuracies (Fig. 4F). DOP in the Pacific water was initially similar to the
472 mesocosms but decreased in the first week of the study to reach undetectable levels on Day 8.
473 It increased, as in the mesocosms, on Day 13 and remained at 0.29 – 0.45 $\mu\text{mol L}^{-1}$ until Day
474 32. After a short peak of 0.77 $\mu\text{mol L}^{-1}$ on Day 34, DOP declined to 0.08 – 0.28 $\mu\text{mol L}^{-1}$ until
475 the end of the experiment.

476 DIN:DIP (i.e. $(NO_x^- + NH_4^+):PO_4^{3-}$) in the mesocosms was constantly below the Redfield ratio
477 (i.e. 16) and its development largely resembled that of NO_x^- as the predominant nitrogen source
478 (compare Figs. 4A and G). It was initially 5.4 – 7.7. After the OMZ water addition, DIN:DIP
479 was significantly different between the two treatments (Table 1) because there was more DIN
480 in the OMZ water added to M2, M3, M6, and M7 (blue symbols, Table 1). DIN:DIP decreased
481 to 0.04 – 0.37 until Day 26 and remained at these low levels until the end of the experiment.
482 DIN:DIP in the Pacific water was similar to the mesocosms until Day 13, but considerably
483 higher (2.2 – 11.2) thereafter (Fig. 4G).

484 DON:DOP in the mesocosms was initially close to the Redfield ratio (i.e. 16) but increased to
485 29.2 – 40.4 until the OMZ water addition. Afterwards, DON:DOP declined to values slightly
486 above the Redfield ratio and remained at this level until the end of the experiment. The
487 occasional fluctuations towards higher values reflect the fluctuations in DOP (compare Fig. 4F
488 and H). DON:DOP in the Pacific water was mostly above the Redfield ratio and generally
489 higher than in the mesocosms. It was initially 21.1, increased to 77.6 on Day 6, then rapidly
490 declined to initial values. Afterwards, DON:DOP increased from 21.1 to 61.8 on Day 42 (with
491 one exceptionally low value on Day 30) but then decreased to 19.5 at the end of the experiment
492 (Fig. 4H).

493 Dissolved iron (Fe) concentrations were non-limiting in all mesocosms with concentrations
494 ranging from 3.1 to 17.8 nM (Supplementary Table 1, (Bruland et al., 2005)). The resolution of
495 trace metal clean sampling was insufficient to discuss the temporal trends in detail, although
496 surface concentrations appeared to be lower on Day 48 (3.1-9.5 nM) than on Day 3 (range 5.7-
497 10.8 nM). Dissolved Fe concentrations in Pacific water on Day 48 (8.5 nM) were within the
498 range of the mesocosms and also comparable to the nanomolar concentrations of dissolved Fe
499 reported elsewhere in coastal surveys at shallow stations on the Peruvian Shelf (Bruland et al.,
500 2005; Chever et al., 2015).

501 3.3 Phytoplankton development

502 Chl-a concentrations in the mesocosms were initially between 2.3 – 4.9 $\mu g L^{-1}$ and declined to
503 1.4 to 2.4 $\mu g L^{-1}$ on Day 8 (Fig. 5A). Initially, high values of chl-a were found mostly above 5
504 and below 15 m (Fig. 5B). The OMZ water addition increased chl-a to 3.7 – 5.6 $\mu g L^{-1}$
505 (mesocosm-specific averages between Days 12 – 40) except for M3 where concentrations
506 increased with a 1-week delay (3.4 $\mu g L^{-1}$ between Days 22 – 36) and M4 where concentrations
507 remained at 1.6 $\mu g L^{-1}$ (average between Days 12 – 40) (Fig. 5A). The chl-a maximum remained

508 in the upper 5 m in the week after the OMZ water addition, but shifted to the intermediate depth
509 range between 5 – 15 m thereafter and remained there until approximately Day 40. (Please note
510 that the “quenching effect” can reduce in situ fluorometric chl-a values especially near the
511 surface so that absolute values may be biased (Holm-Hansen et al., 2000)). The exception was
512 M4 where no such pronounced maximum was observed at intermediate depths (Fig. 5B). Chl-
513 a increased in all mesocosms, except for M4, to values of up to 38 $\mu\text{g L}^{-1}$ after Day 40 (Fig.
514 5A). This bloom occurred in the upper ~5 m of the water column, due to surface eutrophication
515 by defecating sea birds (Inca Tern, *Larosterna inca*), who discovered the mesocosms as a
516 suitable resting place (see Section 4.1). Chl-a in the Pacific water was initially within the range
517 enclosed inside the mesocosms and concentrations increased to slightly higher values around
518 the same time as in the mesocosms (Fig. 5). Throughout the study, chl-a in the Pacific water
519 was between 1.2 – 10.6 $\mu\text{g L}^{-1}$ with the chl-a maxima always above 10 m (Fig. 5B).

520 The phytoplankton community composition was determined based on pigment concentration
521 ratios using CHEMTAX (Figs. 6, S1). We distinguished between seven phytoplankton classes:
522 Chloro-, Dino-, Crypto-, Cyano-, Prymnesio-, Pelago- and Bacillariophyceae (i.e. diatoms) and
523 use the word “dominant” in the following when a group contributes >50 % to chl-a. Diatoms
524 initially dominated the community and contributed 50 – 59 % to the total chl-a concentration
525 but declined after the start while Chlorophyceae (or Dinophyceae in M1 and M7) became more
526 important. The other groups contributed mostly <25 % to chl-a before the OMZ water addition.
527 Diatoms contributed marginally to the chl-a increase in the days after the addition. Instead,
528 Dinophyceae became dominant in most mesocosms and contributed between 64 – 76 % to the
529 total chl-a until the end of the experiment (range based on averages between Days 12 – 50
530 excluding M3 and M4). Imaging flow cytometry and microscopy revealed that the
531 dinoflagellate responsible for this dominance was the large (~60 μm) mixotrophic species
532 *Akashiwo sanguinea* (Bernales et al., this issue). The *A. sanguinea* bloom was delayed by ~10
533 days in M3 and they remained absent in M4 throughout the study. Cryptophyceae benefited
534 from the absence of *A. sanguinea* and were the dominant group in M3 and M4 in the ~10 days
535 after the OMZ water addition (Fig. 6). Chlorophyceae were detectable in all mesocosms after
536 the OMZ water addition with relatively low chl-a contribution except for M1, M3, and M4
537 where they contributed up to 21, 78, and 98 %, respectively. Cyano-, Prymnesio-, and
538 Pelagophyceae made hardly any contribution to chl-a after the OMZ water addition (average
539 <3 %) except for M4 where they were slightly more important (average = 7 %). Diatoms formed
540 blooms in some mesocosms after Day 30 where they became more important for relatively short
541 times (M2, M5, M7, M8). The phytoplankton community composition in the Pacific water

542 differed from that in the mesocosms. Here, diatoms were dominant throughout the study period
543 except for two very short periods where either Chloro- + Dinophyceae (Day 30) or Cyano- +
544 Cryptophyceae dominated (Day 36; Fig. 6).

545 **3.4 Particulate matter pools and export fluxes**

546 POC concentrations in the mesocosm water columns (POC_{WC}) were initially between 49 - 66
547 $\mu\text{mol L}^{-1}$ and declined following the OMZ water addition to 32 – 54 $\mu\text{mol L}^{-1}$ on Day 16.
548 POC_{WC} started to increase after Day 16 and POC_{WC} reached a new steady state of 75 – 116
549 $\mu\text{mol L}^{-1}$ between Days 24 and 44. Exceptions were M3 and M4 where the increase was either
550 delayed (M3) or did not take place at all (M4). POC_{WC} increased rapidly at the end of the
551 experiments (Fig. 7A). POC_{WC} in the Pacific water was between 34 – 72 $\mu\text{mol L}^{-1}$ between
552 Days 0 – 24 and decreased thereafter to values between 27 – 55 $\mu\text{mol L}^{-1}$ (Fig. 7A). The
553 accumulation of POC in the sediment traps ($\Sigma\text{POC}_{\text{ST}}$) was surprisingly constant over the course
554 of the study, with an average rate of 1.06 $\mu\text{mol POC L}^{-1} \text{ d}^{-1}$ (Fig. 7C).

555 PON_{WC} concentrations in the mesocosms were initially between 9.2 – 11.9 $\mu\text{mol L}^{-1}$ and
556 declined after the OMZ water addition to 6.2 – 10.3 $\mu\text{mol L}^{-1}$ on Day 16. The increase in PON_{WC}
557 to 8.4 – 18.1 $\mu\text{mol L}^{-1}$ during Days 17 – 24 was much less pronounced compared to POC_{WC}
558 (compare Figs. 8A and B). Furthermore, M3 and M4 were not markedly different from the other
559 mesocosms during this period. However, M4 was the only mesocosm where PON_{WC} declined
560 profoundly after Day 30 and remained at a lower level until the end. PON_{WC} in all other
561 mesocosms remained at 5 – 18.1 $\mu\text{mol L}^{-1}$ between Days 24 – 42 but increased markedly
562 towards the end of the experiment (Fig. 7B). PON_{WC} in the Pacific water varied between 7.9 –
563 16.2 $\mu\text{mol L}^{-1}$ between Days 0 – 30 and 4.8 – 9.6 $\mu\text{mol L}^{-1}$ from Day 32 until the end of the
564 experiment. $\Sigma\text{PON}_{\text{ST}}$ accumulation was, like $\Sigma\text{POC}_{\text{ST}}$, relatively constant over time, averaging
565 at a rate of 0.15 $\mu\text{mol PON L}^{-1} \text{ d}^{-1}$ (Fig. 7D).

566 BSi_{WC} concentrations in the mesocosms were initially 2.5 – 3.7 $\mu\text{mol L}^{-1}$ but decreased after
567 the OMZ water addition to 0.4 – 0.8 $\mu\text{mol L}^{-1}$ on Day 26. They remained at these low levels
568 until the end of the experiment with smaller peaks in some mesocosms due to minor diatom
569 blooms (compare Figs. 8D and 6). The BSi_{WC} development in the Pacific water was very
570 different from that in the mesocosms. Here, BSi_{WC} was initially lower but increased to 6.4
571 between Days 0 – 18. Afterwards it decreased for a short period but increased again towards
572 the end of the experiment (Fig. 7C). $\Sigma\text{BSi}_{\text{ST}}$ accumulation was high in the first 3 weeks when

573 diatoms were still relatively abundant ($0.22 \mu\text{mol BSi L}^{-1} \text{ d}^{-1}$), but very low thereafter ($0.04 \mu\text{mol BSi L}^{-1} \text{ d}^{-1}$) (Fig. 7G).

575 TPP_{WC} concentration decreased from $0.49 - 0.67$ on Day 0 to $0.27 - 0.36 \mu\text{mol L}^{-1}$ on Day 12
576 and remained around this level until Day 20. Afterwards, TPP_{WC} increased rapidly in all
577 mesocosms except M4 to a new level between $0.37 - 0.65 \mu\text{mol L}^{-1}$ until Day 24. TPP_{WC}
578 increased almost exponentially in all mesocosms from Day 38 until the end of the experiment.
579 TPP_{WC} was variable in the Pacific water but generally higher between Days 0 – 30 ($0.37 - 0.77 \mu\text{mol L}^{-1}$)
580 than from Day 32 until the end ($0.28 - 0.43 \mu\text{mol L}^{-1}$) (Fig. 7D). $\Sigma\text{TPP}_{\text{ST}}$
581 accumulation was constant at a rate of about $0.015 \mu\text{mol TPP L}^{-1} \text{ d}^{-1}$ until Day 40 but increased
582 sharply to $0.1 \mu\text{mol TPP L}^{-1} \text{ d}^{-1}$ thereafter (Fig. 7H).

583 3.5 Particulate organic matter stoichiometry

584 POC_{WC}:PON_{WC} in the mesocosms was initially between $5.1 - 5.8$ and thus below the Redfield
585 ratio (6.6). POC_{WC}:PON_{WC} remained at approximately these values until some days after the
586 OMZ water addition when it increased to $7.9 - 11.8$ in all mesocosms except for M3 and M4.
587 In M3, the increase was delayed by about a week whereas in M4 it remained at a lower level of
588 $3.5 - 8.3$ throughout the experiment. POC_{WC}:PON_{WC} decreased during the last ten days of the
589 study in all mesocosms except for M4 (Fig. 8A). POC_{WC}:PON_{WC} in the Pacific water remained
590 around the initial value of 6 throughout the study (Fig. 8A). POC_{ST}:PON_{ST} ratios were
591 considerably less variable than POC_{WC}:PON_{WC}. They were initially $7.9 - 9$ and therefore higher
592 than in the water column but decreased steadily over the course of the experiment so that they
593 became lower than in the water columns in all mesocosm except M4 from around Day 30
594 onwards (Fig. 8E).

595 POC_{WC}:TPP_{WC} in the mesocosms was initially close to the Redfield ratio (i.e. 106) but increased
596 quite steadily up to $182 - 304$ until Day 38 except for a short decline after the OMZ water
597 addition. The increase was also apparent in M3 and M4, although it was less pronounced and
598 there was little change in the two weeks after the OMZ water addition. POC_{WC}:TPP_{WC}
599 decreased from Days 40 to 44 when it reached values between $125 - 177$ and remained
600 approximately there (Fig. 8B). POC_{WC}:TPP_{WC} was much more stable in the Pacific water and
601 relatively close to the Redfield ratio throughout the experiment (Fig. 8B). POC_{ST}:TPP_{ST} was
602 always considerably lower than POC_{WC}:TPP_{WC} (compare Figs. 8B and F). POC_{ST}:TPP_{ST}
603 increased in all mesocosms from initially $46 - 59$ to $88 - 117$ on Day 18 after which it varied

604 widely between mesocosms. $\text{POC}_{\text{ST}}:\text{TPP}_{\text{ST}}$ converged to a much narrower and very low value
605 between 7 – 42 from Day 40 until the end (Fig. 8F).

606 $\text{POC}_{\text{WC}}:\text{BSi}_{\text{WC}}$ in the mesocosms were between 8 – 34 from the start until Day 16 but increased
607 substantially to 88 – 418 until Day 28 and remained at a high level until the end of the
608 experiment. The increase in $\text{POC}_{\text{WC}}:\text{BSi}_{\text{WC}}$ was slightly delayed in M3 and generally less
609 pronounced in M4 (Fig. 8C). $\text{POC}_{\text{WC}}:\text{BSi}_{\text{WC}}$ in the Pacific water remained at a low level of 7 –
610 38 throughout the experiment (Fig. 8C). $\text{POC}_{\text{ST}}:\text{BSi}_{\text{ST}}$ also increased from 4 – 7 (until Day 16)
611 to 4 – 86 (Day 18 until end) but was generally much lower than in the water column throughout
612 the study (compare Figs. 8C and G).

613 $\text{PON}_{\text{WC}}:\text{TPP}_{\text{WC}}$ in the mesocosms was initially close to the Redfield ratio (i.e. 16) but increased
614 to 19 – 36 until the OMZ water addition. Afterwards, $\text{PON}_{\text{WC}}:\text{TPP}_{\text{WC}}$ fluctuated around this
615 elevated value with a slight tendency to decrease until the end of the experiment (Fig. 8D).
616 $\text{PON}_{\text{WC}}:\text{TPP}_{\text{WC}}$ in the Pacific water was 15 – 20 and thus mostly above the Redfield ratio until
617 Day 24 but the positive offset increased to 15 – 32 thereafter (Fig. 8D). $\text{PON}_{\text{ST}}:\text{TPP}_{\text{ST}}$ was
618 considerably lower than $\text{PON}_{\text{WC}}:\text{TPP}_{\text{WC}}$ and below the Redfield ratio almost throughout the
619 experiment. Its temporal development resembled the development of $\text{POC}_{\text{ST}}:\text{TPP}_{\text{ST}}$ (compare
620 Figs. 8F and H). It increased steadily from 6 – 7 at the beginning to 12 – 15 on Day 18, followed
621 by a phase of large variability between mesocosms until Day 40. $\text{PON}_{\text{ST}}:\text{TPP}_{\text{ST}}$ declined to 1 –
622 5 afterwards and remained at this low range level until the end of the experiment (Fig. 8H).

623 **4 Discussion**

624 **4.1 Small scale variability, OMZ water signature similarities, and defecating seabirds:
625 Lessons learned from a challenging *in situ* mesocosm study during coastal El Niño 2017**

626 A key prerequisite to compare different mesocosm treatments is the enclosure of identical water
627 masses in all mesocosms at the beginning of the study (Spilling et al., 2019). Unfortunately,
628 this was not particularly successful in our experiment as can be seen for example in the
629 differences of initial inorganic nutrient concentrations (Fig. 4). Although our procedure of
630 lowering the mesocosms bags and allowing for several days of water exchange does not exclude
631 heterogeneity entirely (Bach et al., 2016a; Paul et al., 2015; Schulz et al., 2017), it was not as
632 pronounced during our previous studies as experienced in Peru. The reasons for this were likely
633 the inherent small-scale patchiness of physicochemical conditions in the near coastal parts of
634 EBUS (Chavez and Messié, 2009). We encountered small foamy patches with H_2S smell

635 indicative of sub-mesoscale upwelling of anoxic waters, ultra-dense meter-sized swarms of
636 zooplankton coloring the water red, and brownish filaments of discharging river water from
637 nearby Rio Rimac which carried large amounts of water due to flooding during the coastal El
638 Niño (Garreaud, 2018). In such extraordinarily variable conditions, the mesocosms should be
639 deployed and sealed in a very short time when conditions in the study site are relatively
640 homogeneous. Alternatively, larger variability can be taken into account by increasing the
641 number of replicates but this was not feasible in our case due to the costs of a mesocosm unit
642 of this size.

643 A major motivation for our experiment was to investigate how plankton communities in the
644 coastal upwelling system off Peru would respond to upwelling of OMZ waters with different
645 N:P signatures (question 2 mentioned in the introduction). The rationale for this was that
646 projected spatial extensions of OMZs and intensification of their oxygen depletion in a future
647 ocean could enhance the N-deficit in the study region with strong implications for ecological
648 and biogeochemical processes (García-Reyes et al., 2015; Stramma et al., 2010). However,
649 there was unusually little bioavailable inorganic N in both OMZ water masses so the differences
650 in inorganic N:P signatures between the two treatments were significant but small (Table 1, Fig.
651 4G). Because the differences were small, we decided to focus the present paper on the analyses
652 of temporal developments. However, other publications in this special issue on the Peru
653 mesocosm project will also have a closer look into treatment differences.

654 Another complicating factor during the experiment was the presence of Inca Terns (*Larosterna*
655 *inca*) – an abundant sea bird species in the study region that began to roost in the limited space
656 between the anti-bird spikes we installed on the mesocosm roofs (see video by Boxhammer et
657 al., 2019). Until Day 36, their presence was occasional but it increased profoundly thereafter.
658 Additional bird scarers installed on Day 37 were unfortunately ineffective and during the last
659 two weeks of the study, we often counted more than 10 individuals on each mesocosm. It was
660 evident that they defecated into the mesocosms as there was excrement on the inner side of the
661 bags above the surface.

662 To get a rough estimate of the nutrient inputs through this “orni-eutrophication” in the
663 mesocosms, we first assumed that the increase of TPP export after Day 40 is sinking excrement-
664 P (Fig. 7H). This assumption is reasonable because PO_4^{3-} was far from limiting and did not
665 show any noticeable change in concentration during this time (Fig. 4B). Correcting the TPP-
666 export after Day 40 ($0.1 \mu\text{mol L}^{-1} \text{d}^{-1}$) with the background value in the time before ($0.015 \mu\text{mol}$

667 $\text{L}^{-1} \text{d}^{-1}$) yields $0.085 \mu\text{mol L}^{-1} \text{d}^{-1}$ of P inputs from Inca Terns. This converts to $1.15 \mu\text{mol L}^{-1} \text{d}^{-1}$ of N inputs, assuming a 13.5:1 N:P stoichiometry as reported for South American seabird excrements (Otero et al., 2018). This estimation is in reasonable agreement with the observed PON_{WC} + DON + NH₄⁺ increase of $5.2 - 17 \mu\text{mol L}^{-1}$ observed from Days 40 to 50 (Figs. 4D, E, and 8B; note that PON_{ST} as well as NO_x⁻ are considered to remain constant in this approximation; Fig. 4A and 8F). These N-inputs into the mesocosms are at least 5 orders of magnitude higher than what seabirds typically add to the water column of the Pacific in this region (Otero et al., 2018). Accordingly, the phytoplankton bloom that occurred in the upper 5 m after Day 40 was fuelled by ornith-eutrophication. While this certainly is an undesired experimental artefact, it had some advantages to interpret the data as is highlighted in Section 676 4.2.1.

678 The coastal El Niño that climaxed during our experiment (Garreaud, 2018) is the last peculiarity
679 we want to highlight in this section. Coastal El Niños are rare events with similar phenology as
680 usual El Niños that are regionally restricted to the far-eastern Pacific. The last such event of
681 similar strength occurred in 1925 (Takahashi and Martínez, 2017). Surface water temperatures
682 (upper 5 m) are mostly below 20°C in this region during non El Niño years (Graco et al., 2017),
683 but were 20 – 25°C for most of the time during our study (Fig. 3A). This may have influenced
684 metabolic processes of plankton and also enhanced stratification. Thus, it is possible that the
685 observed conditions discussed in the following sections may not be entirely representative for
686 the more common “non El Niño” conditions.

687 4.2 Factors controlling production and export

688 Messié and Chavez (2015) identified light, macronutrient and iron supply, and transport
689 processes (e.g. subduction) to be the key factors regulating primary and export production in
690 EBUS. We can immediately exclude transport processes and iron concentration to have played
691 a major role in our study. Transport processes above the micro-scale are excluded in
692 mesocosms. Iron concentrations are elevated to nanomolar concentrations in shallow waters
693 along the Peruvian shelf (Bruland et al., 2005) generally leading to a sharp contrast between
694 Fe-limited (or co-limited) offshore ecosystems and Fe-replete conditions in highly productive
695 inshore regions (Browning et al., 2018; Hutchins et al., 2002). Dissolved Fe concentrations
696 were verified to be high in the mesocosms both in surface and subsurface waters throughout the
697 experiment (Days 3, 17, 48, Supplementary Table 1) confirming that Fe was replete compared
698 to N. Thus, our subsequent discussion will only consider light and macronutrients (mostly N

699 because P was also replete) as well as phytoplankton community composition as controlling
700 factors of production and export.

701 **4.2.1. Production**

702 A remarkable observation is the decline in chl-a during the first 5 days despite high and
703 decreasing nutrient concentrations (Figs. 4 and 5). We explain this with the unusually high light
704 attenuation in the water column that was caused by a high standing stock of biomass in the
705 surface layer (Fig. 3C). Integrated surface layer nutrient samples (0 – 5 m or 0 – 10 m (Section
706 2.4), data not shown) indicated that inorganic N was exhausted early in the experiment in the
707 upper ~5 m of the water column where light availability was relatively high (Fig. 3C).
708 Accordingly, growth in the upper ~5 m was dependent on the limited N supply that had to come
709 from below via mixing. Conversely, phytoplankton growth was likely light-limited due to self-
710 shading below ~5 m where inorganic N was sufficiently available during the first 20 days of
711 the experiment. Thus, we conclude that phytoplankton production was N-limited in the upper
712 ~5 m and light-limited below so that loss processes (e.g. grazing and sedimentation), when
713 integrated over the entire water column, may have outweighed production. Indeed, there is a
714 conspicuous chl-a peak in the funnels of the terminal sediment traps from Days 3 to 10 which
715 points towards sinking of phytoplankton cells below the euphotic zone (Fig. 5B) – a loss process
716 that may have been amplified by the enclosure of the water column inside the mesocosms where
717 turbulence is reduced.

718 Dinophyceae, represented by the dinoflagellate *A. sanguinea*, formed blooms in most
719 mesocosms after the OMZ water addition when most inorganic N sources were already
720 exhausted. This implies that *A. sanguinea*, a facultative osmotroph (Kudela et al., 2010),
721 extracted limiting N from the DON pool, consistent with the decline in DON during Days 15 -
722 25 (Fig 4E). The blooms of *A. sanguinea* were associated with profound increase of POC (Fig.
723 7A) and DOC of about 50 $\mu\text{mol L}^{-1}$, respectively and a concomitant decrease of dissolved
724 inorganic carbon (DIC) of ~100 $\mu\text{mol L}^{-1}$ (DOC data shown by Igarza et al., in prep.; DIC data
725 shown by Chen et al. in prep.). This is consistent with a considerable dO₂ increase above 100
726 % saturation in those mesocosms harbouring *A. sanguinea* (all except M4). Altogether, these
727 data suggest that *A. sanguinea* made a large contribution to the POC increase observed in the
728 mesocosms.

729 Another interesting observation with respect to *A. sanguinea* was its long persistence in the
730 water columns. It consistently contributed the majority of chl-a after it had become dominant

731 in the mesocosms (Figs. 6, S1) and even persisted during the orni-eutrophication event where
732 other phytoplankton exploited the surface eutrophication and generated additional POC (Fig.
733 7A). Importantly, *A. sanguinea* contributed to a high level of chl-a even after the build-up of
734 POC and DOC and the concomitant draw-down of DIC, roughly between Days 15 – 25, had
735 stopped (Fig. 7A; DOC data shown by Igarza et al., in prep.; DIC data shown by Chen et al. in
736 prep.). This observation highlights the difficulties when assessing production from chl-a (e.g.
737 through remote sensing) because mixotrophic species like *A. sanguinea* may conserve high
738 pigment concentrations even when photosynthetic rates are low.

739 Orni-eutrophication during the last 10 days enabled rapid phytoplankton growth through the
740 relief from N-limitation in the upper ~5 meters where light availability was relatively high (Fig.
741 3C). Grazers could apparently not control such rapid growth so that phytoplankton growth led
742 to a substantial chl-a build-up. The fact that the bloom occurred near the surface highlights the
743 role of light limitation in the coastal Peruvian upwelling system. It appears that self-shading
744 due to high biomass is a key mechanism that constrains phytoplankton growth when integrated
745 over the water column. This constraint may enable an equilibrium between production and loss
746 processes as reflected in the relative constancy of chl-a, POC_{WC} and POC_{ST} (Figs. 5A and 8A,
747 E; see next section for further details on export). Indeed, the orni-eutrophication demonstrates
748 that when limiting nutrients are added to a layer with high light intensity, phytoplankton near
749 the surface can break this equilibrium and grow rapidly (Figs. 5A, S2).

750 4.2.2 Export flux

751 POC_{ST} and PON_{ST} export flux were remarkably constant over the course of the study (Fig. 7E,
752 F; the same applies for TPP_{ST} export until Day 40 when orni-eutrophication became significant,
753 Fig. 7H). As for production, we assume the constancy to be rooted in the N and light co-
754 limitation which limits pulses of rapid production and enables an equilibrium between
755 production and export. Mechanistically, this may be explained by a relatively constant physical
756 coagulation rate and/or a relatively constant grazer turnover establishing relatively constant
757 biologically mediated aggregation and sinking (Jackson, 1990; Wassmann, 1998). Interestingly,
758 M4 was not different to the other mesocosms even though the enormous POC_{WC} build-up
759 through *A. sanguinea* was absent (Fig. 7A, E). This observation implies a limited influence of
760 *A. sanguinea* on export production over the duration of the experiment. However, it is likely
761 that the biomass generated by *A. sanguinea* would have enhanced export flux when their
762 populations started to decline and sink out. Unfortunately, we could not observe the *A.*

763 *sanguinea* sinking event as we had to terminate the study (Day 50) before the population
764 declined. Nevertheless, these findings allow us to conclude that the time lag between the *A.*
765 *sanguinea* biomass build-up (Day ~15) and decline is at least 35 days. This is an important
766 observation as it implies that the production and export by these types of dinoflagellates can be
767 uncoupled by more than a month – a factor that is often neglected in studies of organic matter
768 export where production and export are generally assumed to be simultaneous (Laws and Maiti,
769 2019; Stange et al., 2017).

770 Another interesting aspect with respect to the constancy of the POC_{ST} and PON_{ST} export flux
771 is the sharp decline of the BSI_{ST} export flux around Day 20 (Fig. 7G). This indicates that
772 sustaining a constant POC_{ST} and PON_{ST} export flux did not depend on diatoms. Furthermore,
773 cumulative $\Sigma\text{BSI}_{\text{ST}}$ and $\Sigma\text{POC}_{\text{ST}}$ on Day 50 do not correlate across mesocosms, showing that
774 increased $\Sigma\text{BSI}_{\text{ST}}$ export does not necessarily enhance total $\Sigma\text{POC}_{\text{ST}}$ export (insignificant linear
775 regression; data not shown). Thus, silicifiers had a (perhaps surprisingly) small influence on
776 controlling POC_{ST} export fluxes in this experiment.

777 4.3 Particulate C:N:P:Si stoichiometry in the mesocosms

778 4.3.1 C:N

779 $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ was mostly below the Redfield ratio (i.e. 6.6:1 mol:mol) until the OMZ water
780 addition (Fig. 8A). The low values coincide with the initial dominance of diatoms and these are
781 known to have an inherently lower particulate C:N stoichiometry than dinoflagellates (Quigg
782 et al., 2003). Yet, the absolute $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ ratios are still at the lower end even for diatoms,
783 indicating that the predominant species had particularly low C:N and/or that growth conditions
784 (e.g. light limitation) led to a high N demand (Brzezinski, 1985; Terry et al., 1983).
785 $\text{POC}_{\text{ST}}:\text{PON}_{\text{ST}}$ was higher than $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ during the initial period indicating preferential
786 remineralization of N over C.

787 After the OMZ water addition, $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ increased substantially due to the *A. sanguinea*
788 bloom. The predominant control of *A. sanguinea* on the $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ during this time is
789 clear as we saw no increase in M4 where this species was absent and a delayed increase in M3
790 where the *A. sanguinea* bloom was delayed. Importantly, the increase of $\text{POC}_{\text{WC}}:\text{PON}_{\text{WC}}$ is not
791 reflected in an increase of $\text{POC}_{\text{ST}}:\text{PON}_{\text{ST}}$ (Fig. 8 A, E). This strongly supports our
792 interpretations in Section 4.2.2 that *A. sanguinea* did not notably contribute to export production

793 before the experiment was terminated because otherwise we would have expected the high
794 POC_{WC}:PON_{WC} signal to occur in the sediment traps as well.

795 During the last ten days, both POC_{WC}:PON_{WC} and POC_{ST}:PON_{ST} declined despite the ongoing
796 prevalence of *A. sanguinea*. The decline was potentially triggered by the orni-eutrophication
797 event which fertilized a bloom with new nutrients in the upper ~5 m of the water column and
798 lead to the production and export of more N-rich organic material.

799 **4.3.2 C:P**

800 POC_{WC}:TPP_{WC} was initially close to the Redfield ratio (i.e. 106:1 mol:mol), but started to
801 increase early on in all mesocosms until around Day 40 (with a minor decrease after the OMZ
802 water addition, Fig. 8B). The increase was less pronounced but also present in M4 where *A.*
803 *sanguinea* did not bloom. This suggests that *A. sanguinea* was the main driver of this trend but
804 other players in the plankton communities responded similarly with respect to the direction of
805 change. Interestingly, there was a tendency of decreasing POC_{WC}:TPP_{WC} during periods of chl-
806 a increase which may be due to the cells acquiring P for cell divisions (Klausmeier et al., 2004).

807 POC_{ST}:TPP_{ST} was considerably lower than POC_{WC}:TPP_{WC} throughout the experiment,
808 indicative of the unusual observation of preferential remineralization of C over P in the water
809 column. The extremely low POC_{ST}:TPP_{ST} values recorded during the last 10 days of the
810 experiment are very likely due to the orni-eutrophication where defecated P sank unutilized into
811 the sediment traps.

812 **4.3.3 C:Si**

813 POC_{WC}:BSi_{WC} was initially low (Fig. 8C), indicative of a diatom-dominated community
814 (Brzezinski, 1985). The increase of POC_{WC}:BSi_{WC} about a week after the OMZ water addition
815 coincides roughly with the depletion of NO_x⁻ even though Si(OH)₄ was still available in higher
816 concentrations (compare Figs. 4A, C and 9C). This suggests that the change from diatom to
817 dinoflagellate predominance was triggered by N and not Si limitation. The POC_{WC}:BSi_{WC}
818 increase is lower in M4 where *A. sanguinea* was absent, underlining that this species was a key
819 player driving the trend in the other mesocosms.

820 POC_{ST}:BSi_{ST} was also increasing after the OMZ water addition but considerably less
821 pronounced than POC_{WC}:BSi_{WC}. Once again, the explanation for this is the persistence of *A.*

822 *sanguinea* which maintains the high signal in the water column but does not transfer it to the
823 exported material because it did not sink out during the experiment.

824 **4.3.4 N:P**

825 PON_{WC}:TPP_{WC} was higher than the Redfield ratio (i.e. 16:1) almost throughout the entire
826 experiment (Fig. 8D), although still within the range of what can be found in coastal regions
827 (Sterner et al., 2008) and among phytoplankton taxa (Quigg et al., 2003). The large positive
828 offset relative to the dissolved inorganic N:P ratio, which was initially 8:1 - 5:1 but then
829 decreased to values around 0.1:1, likely reflects that the plankton community has a certain N
830 requirement that is independent of the unusually high P availability. Hence, inorganic N:P may
831 not be a suitable predictor of particulate N:P under these highly N-limited conditions.

832 Another interesting observation was that PON_{WC}:TPP_{WC} was increasing initially even though
833 the inorganic nutrient N:P supply ratio was decreasing (compare Fig. 4G and 9D). This
834 observation is inconsistent with a previous shipboard incubation study in the Peruvian
835 upwelling system (Franz et al., 2012b). We can only speculate about the opposing trend
836 between inorganic N:P and PON_{WC}:TPP_{WC} but consider changes in the phytoplankton species
837 composition to be the most plausible explanation. Presumably, the transition from diatoms with
838 intrinsically low N:P towards Chlorophyceae and Dinophyceae with higher N:P during the first
839 ten days may largely explain this observation (Quigg et al., 2003).

840 Not surprisingly, PON_{ST}:TPP_{ST} was lower than PON_{WC}:TPP_{WC} indicating preferential
841 remineralization of the limiting N over the replete P in the water column. Additionally, the P
842 inputs from defecating birds during the last ten days mostly sank out unutilized and further
843 reduced the already low PON_{ST}:TPP_{ST}.

844 **5 Synthesis**

845 This section synthesizes the most important patterns with respect to organic matter production,
846 export, and stoichiometry. Based on the processes described in the discussion we subdivide the
847 mesocosm experiment in 3 main phases (see Figure 9 for a synthesis graphic).

848 Phase 1 lasts from Day 1 until the OMZ water addition (Days 11 and 12) and describes what
849 we consider the expected early succession diatom dominated community. Here, diatoms grow
850 near the surface where they quickly exhaust inorganic N. Inorganic N is still available deeper
851 in the water column but low light availability limits growth rates so that loss processes are

852 higher than gains. Loss is potentially due to grazing but also due to phytoplankton
853 sedimentation as indicated by a sharp chl-a peak in the sediment trap funnels below 17 m. The
854 BSi export is relatively high while the POC export is not, indicating that diatoms did not
855 enhance organic matter export compared to other communities prevailing later in the
856 experiment. The C:N of suspended matter is low whereas C:N of sinking material is higher,
857 indicating high N demand of the community (preferential remineralization of N). This is
858 supported by the low (i.e. much below the Redfield ratio) N:P.

859 Phase 2 lasts from the OMZ water addition until Day 40 and is characterized by the dominant
860 influence of the mixotrophic dinoflagellate *Akashiwo sanguinea*. The transition from diatom to
861 dinoflagellate domination was likely triggered by N-limitation (Fig. 4A, D) and not Si-
862 limitation, which was available with $>6 \mu\text{mol L}^{-1}$ during the transition (Fig. 4C). *A. sanguinea*
863 became dominant about a week after the OMZ water addition. The *A. sanguinea* bloom was
864 fuelled by inorganic and organic nutrients and roughly doubled the amount of POC in the water
865 column. However, the biomass formed by this species did not sink out in significant quantities
866 and remained in the water column until the experiment was terminated. Thus, the export flux
867 during the experiment was not different in mesocosms where *A. sanguinea* bloomed compared
868 to the one mesocosm (M4) where this bloom did not occur, despite very large differences in
869 production. These findings suggest that production and export by mixotrophic dinoflagellates
870 can be temporarily highly uncoupled which is an important factor to consider when determining
871 export ratios (i.e. export production/primary production). The *A. sanguinea* bloom also left a
872 major imprint on particulate organic matter stoichiometry by increasing C:N, C:P, and C:Si.

873 Phase 3 lasts from Day 40 until the end of the experiment and is characterized by defecations
874 of the seabird *Larosterna inca* (Inca Tern) into the mesocosms. This orni-eutrophication relaxed
875 the prevailing N-limitation and triggered intense phytoplankton blooms in most mesocosms in
876 the upper ~ 5 m of the water column where the light availability was relatively high. N inputs
877 through bird excrements were directly utilized and converted into organic biomass whereas the
878 defecated P remained unutilized and sank through the water column directly into the sediment
879 traps. *A. sanguinea* persisted during this bloom at intermediate depth (~ 10 m) so the surface
880 bloom added organic biomass to the already available standing stock. Organic matter export
881 (except for TPP) was not increasing during the bloom, likely because the new biomass was still
882 accumulating in the water column and the experiment was terminated before it started to sink
883 out. The relaxed N-limitation due to orni-eutrophication also decreased the C:N ratio of
884 suspended organic matter (increased N:P) relative to phase 2.

885 Altogether, our study revealed that the combined influence of N limitation, light limitation via
886 self-shading, and plankton community composition have a pronounced control of organic
887 matter production, export, and stoichiometry in the coastal upwelling system off Peru. These
888 findings improve our mechanistic understanding of key processes in this region and are valuable
889 for modelling. The analysis provided in this paper covers many of the most noticeable outcomes
890 of this experiment with respect to ecology and biogeochemistry. However, more specialized
891 papers will be published within this Biogeosciences special issue that provide additional detail
892 on important aspects including: oceanographic conditions during the coastal El Niño; phyto-
893 and zooplankton succession patterns; microbial diversity; enzyme activities; phytoplankton
894 fatty acid profiles; archaeal lipidomes; carbonate chemistry; community production and
895 respiration; N₂ fixation; N loss processes; DOC dynamics; Si isotope fractionation; and sinking
896 velocity and export.

897 **Data availability**

898 All data will be made available on the permanent repository www.pangaea.de after publication.

899 **Author contribution**

900 LTB, AJP, TB, KGS, MH, AL, SL, CS, MS, UR designed the experiment. LTB, AJP, TB,
901 EvdE, KGS, PAg, IB, A-SB, GC, S-HC, JC, KD, AF, MF, MH, JH, NH-H, VK, LK, PK, CL,
902 SL, JaM, JuM, FM, JP, CSf, KS, CSp, MS, MZM, UR contributed to the sampling. LTB, AJP,
903 TB, EvdE, KGS, EPA, JA, PAy, IB, AB, MH, VK, JL, SL, AL, JaM, JuM, FM, CS, SS analysed
904 the data. LTB wrote the manuscript with comments from all co-authors.

905 **Competing interests**

906 The authors declare that they have no conflict of interests.

907 **Acknowledgements**

908 This project was supported by the Collaborative Research Centre SFB 754 Climate-
909 Biogeochemistry Interactions in the Tropical Ocean financed by the German Research
910 Foundation (DFG). Additional funding was provided by the EU project AQUACOSM and the
911 Leibniz Award 2012 granted to U.R. We thank all participants of the KOSMOS-Peru 2017
912 study for assisting in mesocosm sampling and maintenance. We are particularly thankful to the
913 staff of IMARPE for their support during the planning, preparation and execution of this study

914 and to the captains and crews of BAP MORALES, IMARPE VI and BIC HUMBOLDT for
915 support during deployment and recovery of the mesocosms and various operations during the
916 course of this investigation. Special thanks go to the Marina de Guerra del Perú, in particular
917 the submarine section of the Navy of Callao, and to the Dirección General de Capitanías y
918 Guardacostas. We also acknowledge strong support for sampling and mesocosm maintenance
919 by Jean-Pierre Bednar, Susanne Feiersinger, Peter Fritsche, Paul Stange, Anna Schukat,
920 Michael Krudewig. We want to thank Club Náutico Del Centro Naval for excellent hosting of
921 our temporary filtration laboratory, office space and their great support and improvisation skills
922 after two of our boats were lost. This work is a contribution in the framework of the Cooperation
923 agreement between the IMARPE and GEOMAR through the German Ministry for Education
924 and Research (BMBF) project ASLAEEL 12-016 and the national project Integrated Study of
925 the Upwelling System off Peru developed by the Direction of Oceanography and Climate
926 Change of IMARPE, PPR 137 CONCYTEC.

927 **References**

928 Albert, A., Echevin, V., Lévy, M. and Aumont, O.: Impact of nearshore wind stress curl on
929 coastal circulation and primary productivity in the Peru upwelling system, *J. Geophys. Res.*
930 *Ocean.*, 115(12), 1–13, doi:10.1029/2010JC006569, 2010.

931 Ayón, P., Criales-Hernandez, M. I., Schwamborn, R. and Hirche, H. J.: Zooplankton research
932 off Peru: A review, *Prog. Oceanogr.*, 79(2–4), 238–255, doi:10.1016/j.pocean.2008.10.020,
933 2008.

934 Bach, L. T., Taucher, J., Boxhammer, T., Ludwig, A., Achterberg, E. P., Algueró-Muñiz, M.,
935 Anderson, L. G., Bellworthy, J., Büdenbender, J., Czerny, J., Ericson, Y., Esposito, M.,
936 Fischer, M., Haunost, M., Hellemann, D., Horn, H. G., Hornick, T., Meyer, J., Sswat, M.,
937 Zark, M. and Riebesell, U.: Influence of Ocean Acidification on a Natural Winter-to-Summer
938 Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to
939 Periods of Low Nutrient Concentrations, *PLoS One*, 11, e0159068,
940 doi:10.1371/journal.pone.0159068, 2016a.

941 Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G. and Riebesell, U.:
942 Influence of plankton community structure on the sinking velocity of marine aggregates,
943 *Global Biogeochem. Cycles*, 30, 1199–1214, doi:10.1002/2016GB005372, 2016b.

944 Bakun, A. and Weeks, S. J.: The marine ecosystem off Peru: What are the secrets of its
945 fishery productivity and what might its future hold?, *Prog. Oceanogr.*, 79(2–4), 290–299,
946 doi:10.1016/j.pocean.2008.10.027, 2008.

947 Barlow, R. G., Cummings, D. G. and Gibb, S. W.: Improved resolution of mono- and divinyl
948 chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase
949 C-8 HPLC, *Mar. Ecol. Prog. Ser.*, 161, 303–307, doi:10.3354/meps161303, 1997.

950 Boxhammer, T., Bach, L. T., Czerny, J. and Riebesell, U.: Technical Note: Sampling and
951 processing of mesocosm sediment trap material for quantitative biogeochemical analysis,
952 *Biogeosciences*, 13, 2849–2858, doi:10.5194/bgd-12-18693-2015, 2016.

953 Boxhammer, T., Bach, L. T., Sswat, M. and Riebesell, U.: Orni-eutrophication by Inca terns
954 (*Larosterna inca*) during the KOSMOS study 2017 in the coastal upwelling system off Peru,
955 Germany., 2019.

956 Boyd, P. W. and Newton, P. P.: Does planktonic community structure determine downward
957 particulate organic carbon flux in different oceanic provinces?, *Deep Sea Res. Part I
958 Oceanogr. Res. Pap.*, 46, 63–91, 1999.

959 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon,
960 V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S.
961 W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski,
962 M., Yasuhara, M. and Zhang, J.: Declining oxygen in the global ocean and coastal waters,
963 *Science* (80-.), 359(6371), doi:10.1126/science.aam7240, 2018.

964 Browning, T. J., Rapp, I., Schlosser, C., Gledhill, M., Achterberg, E. P., Bracher, A. and Le
965 Moigne, F. A. C.: Influence of Iron, Cobalt, and Vitamin B12 Supply on Phytoplankton
966 Growth in the Tropical East Pacific During the 2015 El Niño, *Geophys. Res. Lett.*, 45(12),
967 6150–6159, doi:10.1029/2018GL077972, 2018.

968 Bruland, K. W., Rue, E. L., Smith, G. J. and DiTullio, G. R.: Iron, macronutrients and diatom
969 blooms in the Peru upwelling regime: Brown and blue waters of Peru, *Mar. Chem.*, 93(2–4),
970 81–103, doi:10.1016/j.marchem.2004.06.011, 2005.

971 Brzezinski, M. A.: The Si:C:N ratio of marine Diatoms - interspecific variability and the
972 effect of some environmental variables, *J. Phycol.*, 21, 347–357, 1985.

973 Carr, M. E.: Estimation of potential productivity in Eastern Boundary Currents using remote
974 sensing, Deep. Res. Part II Top. Stud. Oceanogr., 49(1–3), 59–80, doi:10.1016/S0967-
975 0645(01)00094-7, 2002.

976 Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary Upwelling Ecosystems,
977 Prog. Oceanogr., 83(1–4), 80–96, doi:10.1016/j.pocean.2009.07.032, 2009.

978 Chavez, F. P., Pennington, J. T., Castro, C. G., Ryan, J. P., Michisaki, R. P., Schlüning, B.,
979 Walz, P., Buck, K. R., McFadyen, A. and Collins, C. A.: Biological and chemical
980 consequences of the 1997–1998 El Niño in central California waters, Prog. Oceanogr., 54(1–
981 4), 205–232, doi:10.1016/S0079-6611(02)00050-2, 2002.

982 Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P. and Csirke, J.: The northern
983 Humboldt Current System: Brief history, present status and a view towards the future, Prog.
984 Oceanogr., 79(2–4), 95–105, doi:10.1016/j.pocean.2008.10.012, 2008.

985 Chen, S.-M., Riebesell, U., Schulz, K. G., von der Esch, E. and Bach, L. T.: Temporal
986 dynamics of sea surface carbonate chemistry in response to natural and simulated upwelling
987 events in the Peruvian oxygen minimum zone, Biogeosciences, in. prep., n.d.

988 Chever, F., Rouxel, O. J., Croot, P. L., Ponzevera, E., Wuttig, K. and Auro, M.: Total
989 dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime,
990 Geochim. Cosmochim. Acta, 162, 66–82, doi:10.1016/j.gca.2015.04.031, 2015.

991 Coverly, S., Kérouel, R. and Aminot, A.: A re-examination of matrix effects in the
992 segmented-flow analysis of nutrients in sea and estuarine water, Anal. Chim. Acta, 712, 94–
993 100, doi:10.1016/j.aca.2011.11.008, 2012.

994 Czerny, J., Schulz, K. G., Krug, S. A., Ludwig, A. and Riebesell, U.: Technical note: The
995 determination of enclosed water volume in large flexible-wall mesocosms “KOSMOS,”
996 Biogeosciences, 10, 1937–1941, doi:10.5194/bg-10-1937-2013, 2013.

997 Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P. and Ulloa, O.: Primary
998 production and community respiration in the Humboldt Current System off Chile and
999 associated oceanic areas, Mar. Ecol. Prog. Ser., 197, 41–49, doi:10.3354/meps197041, 2000.

1000 DiTullio, G. R., Geesey, M. E., Mancher, J. M., Alm, M. B., Riseman, S. F. and Bruland, K.

1001 W.: Influence of iron on algal community composition and physiological status in the Peru
1002 upwelling system, *Limnol. Oceanogr.*, 50(6), 1887–1907, doi:10.4319/lo.2005.50.6.1887,
1003 2005.

1004 Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T. and Riebesell, U.: Dynamics and
1005 stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum
1006 zone in the eastern tropical Pacific, *Deep. Res. Part I Oceanogr. Res. Pap.*, 62, 20–31,
1007 doi:10.1016/j.dsr.2011.12.004, 2012a.

1008 Franz, J. M. S., Hauss, H., Sommer, U., Dittmar, T. and Riebesell, U.: Production,
1009 partitioning and stoichiometry of organic matter under variable nutrient supply during
1010 mesocosm experiments in the tropical Pacific and Atlantic Ocean, *Biogeosciences*, 9(11),
1011 4629–4643, doi:10.5194/bg-9-4629-2012, 2012b.

1012 García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit,
1013 A. J. and Bograd, S. J.: Under Pressure: Climate Change, Upwelling, and Eastern Boundary
1014 Upwelling Ecosystems, *Front. Mar. Sci.*, 2(December), 1–10, doi:10.3389/fmars.2015.00109,
1015 2015.

1016 Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El Niño, *Int. J.*
1017 *Climatol.*, 38(February), e1296–e1302, doi:10.1002/joc.5426, 2018.

1018 González, H. E., Daneri, G., Iriarte, J. L., Yannicelli, B., Menschel, E., Barría, C., Pantoja, S.
1019 and Lizárraga, L.: Carbon fluxes within the epipelagic zone of the Humboldt Current System
1020 off Chile: The significance of euphausiids and diatoms as key functional groups for the
1021 biological pump, *Prog. Oceanogr.*, 83(1–4), 217–227, doi:10.1016/j.pocean.2009.07.036,
1022 2009.

1023 Graco, M. I., Purca, S., Dewitte, B., Castro, C. G., Morón, O., Ledesma, J., Flores, G. and
1024 Gutiérrez, D.: The OMZ and nutrient features as a signature of interannual and low-frequency
1025 variability in the Peruvian upwelling system, *Biogeosciences*, 14, 4601–4617, 2017.

1026 Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global
1027 change, *Philos. Trans. R. Soc. A-Mathematical Phys. Eng. Sci. Phys. Eng. Sci.*, 369, 1980–
1028 1996, doi:10.1098/rsta.2011.0003, 2011.

1029 Hansen, H. P. and Koroleff, F.: Determination of nutrients, in *Methods of Seawater Analysis*,

1030 edited by K. Grasshoff, K. Kremling, and M. Ehrhardt, pp. 159–226, Wiley-VCH, Weinheim.,
1031 1999.

1032 Holm-Hansen, O., Amos, A. F. and Hewes, C. D.: Reliability of estimating chlorophyll a
1033 concentrations in Antarctic waters by measurement of in situ chlorophyll a fluorescence, Mar.
1034 Ecol. Prog. Ser., 196, 103–110, doi:10.3354/meps196103, 2000.

1035 Hutchins, D. A., Hare, C. E., Weaver, R. S., Zhang, Y., Firme, G. F., DiTullio, G. R., Alm,
1036 M. B., Riseman, S. F., Maucher, J. M., Geesey, M. E., Trick, C. G., Smith, G. J., Rue, E. L.,
1037 Conn, J. and Bruland, K. W.: Phytoplankton iron limitation in the Humboldt Current and Peru
1038 Upwelling, Limnol. Oceanogr., 47(4), 997–1011, doi:10.4319/lo.2002.47.4.0997, 2002.

1039 Igarza, M., Sanchez, S., Bernales, A., Gutierrez, D., Meyer, J., Riebesell, U., Graco, M. I.,
1040 Bach, L. T., Dittmar, T. and Niggemann, J.: Dissolved organic matter production during an
1041 artificially-induced red tide off central Peru, Biogeosciences, in. prep., n.d.

1042 Karstensen, J., Stramma, L. and Visbeck, M.: Oxygen minimum zones in the eastern tropical
1043 Atlantic and Pacific oceans, Prog. Oceanogr., 77(4), 331–350,
1044 doi:10.1016/j.pocean.2007.05.009, 2008.

1045 Kérouel, R. and Aminot, A.: Fluorometric determination of ammonia in sea and estuarine
1046 waters by direct segmented flow analysis, Mar. Chem., 57(3–4), 265–275,
1047 doi:10.1016/S0304-4203(97)00040-6, 1997.

1048 Klausmeier, C. A., Litchman, E., Daufrene, T. and Levin, S. A.: Optimal nitrogen-to-
1049 phosphorus stoichiometry of phytoplankton, Nature, 429(13), 171–174,
1050 doi:1.1029/2001GL014649, 2004.

1051 Kudela, R. M., Seeyave, S. and Cochlan, W. P.: The role of nutrients in regulation and
1052 promotion of harmful algal blooms in upwelling systems, Prog. Oceanogr., 85(1–2), 122–135,
1053 doi:10.1016/j.pocean.2010.02.008, 2010.

1054 Laws, E. A. and Maiti, K.: The relationship between primary production and export
1055 production in the ocean: Effects of time lags and temporal variability, Deep Sea Res. Part I
1056 Oceanogr. Res. Pap., doi:10.1016/j.dsr.2019.05.006, 2019.

1057 Longhurst, A.: Seasonal cycles of pelagic production and consumption, Prog. Oceanogr., 36,

1058 77–167, doi:10.1016/0079-6611(95)00015-1, 1995.

1059 Mackey, M. D., Mackey, D. J., Higgins, H. W. and Wright, S. W.: CHEMTAX- a program
1060 for estimating class abundances from chemical markers: application to HPLC measurements
1061 of phytoplankton, *Mar. Ecol. Prog. Ser.*, 144, 265–283, 1996.

1062 Messié, M. and Chavez, F. P.: Seasonal regulation of primary production in eastern boundary
1063 upwelling systems, *Prog. Oceanogr.*, 134, 1–18, doi:10.1016/j.pocean.2014.10.011, 2015.

1064 Meyer, J., Löscher, C. R., Lavik, G. and Riebesell, U.: Mechanisms of P* Reduction in the
1065 Eastern Tropical South Pacific, *Front. Mar. Sci.*, 4(January), 1–12,
1066 doi:10.3389/fmars.2017.00001, 2017.

1067 Morris, A. W. and Riley, J. P.: The determination of nitrate in sea water, *Anal. Chim. Acta*,
1068 29, 272–279, 1963.

1069 Mullin, J. B. and Riley, J. P.: The colorimetric determination of silicate with special reference
1070 to sea and natural waters, *Anal. Chim. Acta*, 12(C), 162–176, doi:10.1016/S0003-
1071 2670(00)87825-3, 1955.

1072 Murphy, J. and Riley, J. P.: A modified single solution method for the determination of
1073 phosphate in natural waters, *Anal. Chim. Acta*, 27, 31–36, doi:10.1016/S0003-
1074 2670(00)88444-5, 1962.

1075 Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. and Huerta-Díaz, M. A.:
1076 Seabird colonies as important global drivers in the nitrogen and phosphorus cycles, *Nat.*
1077 *Commun.*, 9(1), doi:10.1038/s41467-017-02446-8, 2018.

1078 Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P.,
1079 Hellemann, D., Trense, Y., Nausch, M., Sswat, M. and Riebesell, U.: Effect of elevated CO₂
1080 on organic matter pools and fluxes in a summer Baltic Sea plankton community,
1081 *Biogeosciences*, 12, 6181–6203, doi:10.5194/bg-12-6181/2015/, 2015.

1082 Quigg, A., Finkel, Z. Z. V, Irwin, A. J. A., Rosenthal, Y., Ho, T.-Y., Reinfelder, J. R.,
1083 Schofield, O., Morel, F. M. M. and Falkowski, P. G.: The evolutionary inheritance of
1084 elemental stoichiometry in marine phytoplankton., *Nature*, 425(6955), 291–294,
1085 doi:10.1038/nature01953, 2003.

1086 Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. and Achterberg, E. P.: Automated
1087 preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-
1088 resolution sector field inductively-coupled plasma mass spectrometry, *Anal. Chim. Acta*, 976,
1089 1–13, doi:10.1016/j.aca.2017.05.008, 2017.

1090 Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M.,
1091 Fischer, M., Hoffmann, D., Krug, S. a., Lentz, U., Ludwig, a., Muche, R. and Schulz, K. G.:
1092 Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change
1093 research, *Biogeosciences*, 10(3), 1835–1847, doi:10.5194/bg-10-1835-2013, 2013.

1094 Schulz, K. G., Bach, L. T., Bellerby, R., Bermudez, R., Boxhammer, T., Czerny, J., Engel, A.,
1095 Ludwig, A., Larsen, A., Paul, A., Sswat, M. and Riebesell, U.: Phytoplankton blooms at
1096 increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects
1097 on prymnesiophytes and positive on small picoeukaryotes, *Front. Mar. Sci.*, 4(64), 1–18,
1098 doi:10.3389/fmars.2017.00064, 2017.

1099 Sharp, J. H.: Improved analysis for “particulate” organic carbon and nitrogen from seawater,
1100 *Limnol. Oceanogr.*, 19(6), 984–989, 1974.

1101 Smayda, T. J. and Trainer, V. L.: Dinoflagellate blooms in upwelling systems: Seeding,
1102 variability, and contrasts with diatom bloom behaviour, *Prog. Oceanogr.*, 85(1–2), 92–107,
1103 doi:10.1016/j.pocean.2010.02.006, 2010.

1104 Spilling, K., Camarena-Gómez, M. T., Lipsewers, T., Martinez-Varela, A., Díaz-Rosas, F.,
1105 Eronen-Rasimus, E., Silva, N., von Dassow, P. and Montecino, V.: Impacts of reduced
1106 inorganic N:P ratio on three distinct plankton communities in the Humboldt upwelling
1107 system, *Mar. Biol.*, 166(9), 1–17, doi:10.1007/s00227-019-3561-x, 2019.

1108 Stange, P., Bach, L. T., Le Moigne, F. A. C., Taucher, J., Boxhammer, T. and Riebesell, U.:
1109 Quantifying the time lag between organic matter production and export in the surface ocean:
1110 Implications for estimates of export efficiency, *Geophys. Res. Lett.*, 44(1), 268–276,
1111 doi:10.1002/2016GL070875, 2017.

1112 Sterner, R. W., Andersen, T., Elser, J. J., Hessen, D. O., Hood, J. M., McCauley, E. and
1113 Urabe, J.: Scale-dependent carbon: Nitrogen: phosphorus seston stoichiometry in marine and
1114 freshwaters, *Limnol. Oceanogr.*, 53(3), 1169–1180, doi:10.4319/lo.2008.53.3.1169, 2008.

1115 Stramma, L., Schmidtko, S., Levin, L. a. and Johnson, G. C.: Ocean oxygen minima
1116 expansions and their biological impacts, *Deep. Res. Part I Oceanogr. Res. Pap.*, 57(4), 587–
1117 595, doi:10.1016/j.dsr.2010.01.005, 2010.

1118 Stramma, L., Bange, H. W., Czeschel, R., Lorenzo, A. and Frank, M.: On the role of
1119 mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical
1120 Pacific Ocean off Peru, *Biogeosciences*, 10(11), 7293–7306, doi:10.5194/bg-10-7293-2013,
1121 2013.

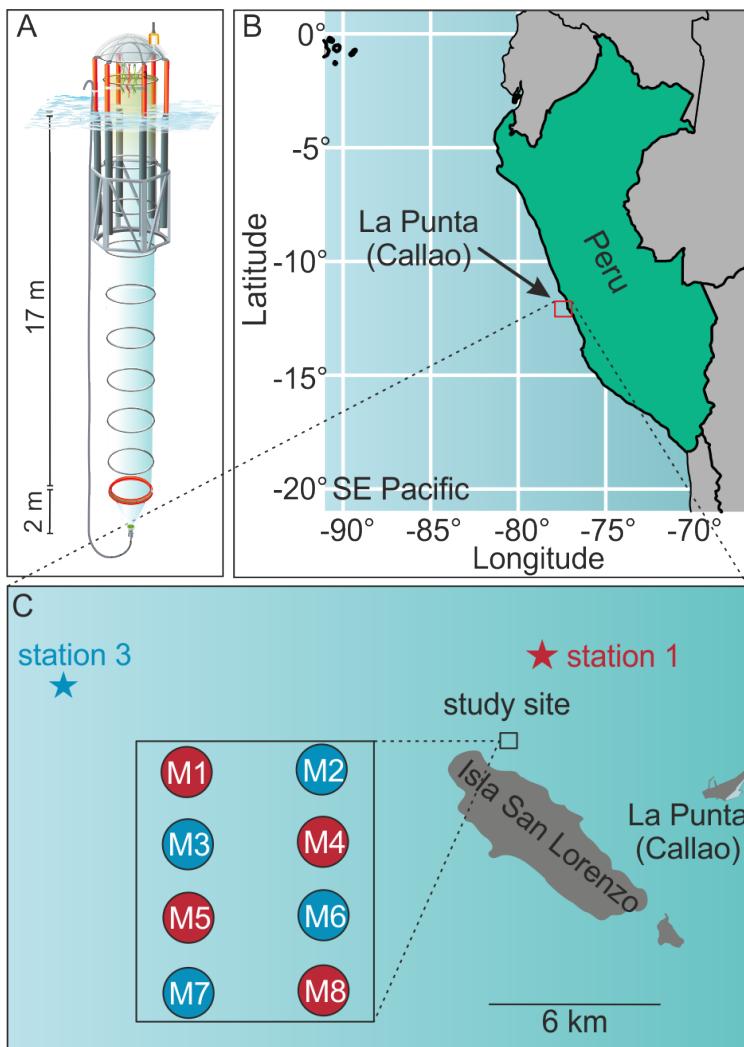
1122 Taucher, J., Bach, L. T., Boxhammer, T., Nauendorf, A., Achterberg, E. P., Algueró-Muñiz,
1123 M., Arístegui, J., Czerny, J., Esposito, M., Guan, W., Haunost, M., Horn, H. G., Ludwig, A.,
1124 Meyer, J., Spisla, C., Sswat, M., Stange, P. and Riebesell, U.: Influence of Ocean
1125 Acidification and Deep Water Upwelling on Oligotrophic Plankton Communities in the
1126 Subtropical North Atlantic: Insights from an In situ Mesocosm Study, *Front. Mar. Sci.*, 4(85),
1127 1–18, doi:10.3389/fmars.2017.00085, 2017.

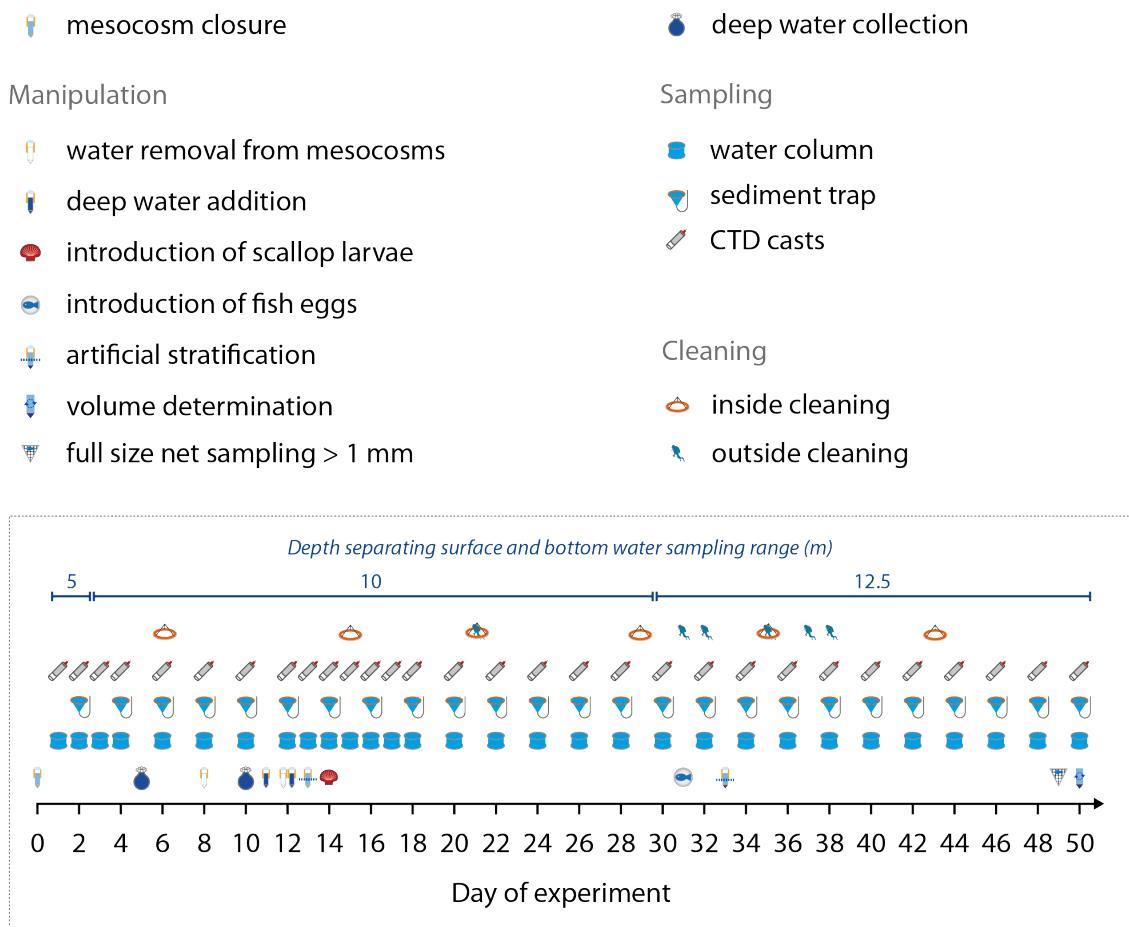
1128 Terry, K. L., Hirata, J. and Laws, E. A.: Light-limited growth of two strains of the marine
1129 diatom *Phaeodactylum tricornutum* Bohlin: Chemical composition, carbon partitioning and
1130 the diel periodicity of physiological processes, *J. Exp. Mar. Bio. Ecol.*, 68(3), 209–227,
1131 doi:10.1016/0022-0981(83)90054-0, 1983.

1132 Thiel, M., Macaya, E. C., Acuña, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A.,
1133 Castilla, J. C., Castro, L. R., Cortés, M., Dumont, C. P., Escribano, R., Fernández, M.,
1134 Gajardo, J. A., Gaymer, C. F., Gomez, I., González, A. E., González, H. E., Haye, P. A.,
1135 Illanes, J.-E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G., Luxoro, C., Manríquez, P.
1136 H., Marín, V., Muñoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H.
1137 H., Stotz, W., Tala, F., Thomas, A., Vargas, C. A., Vasquez, J. A. and Alonso Vega, J. : the
1138 Humboldt Current System of Northern and Central Chile Oceanographic Processes Ecological
1139 Interactions and Socioeconomic Feedback, *Oceanogr. Mar. Biol. An Annu. Rev.*, 45, 195–
1140 344, 2007.

1141 Thompson, M. and Wood, R.: Harmonized guidelines for internal quality control in analytical
1142 chemistry laboratories, in *Pure and Applied Chemistry*, edited by H. Burrows and J. Stohner,
1143 pp. 649–666, IUPAC., 1995.

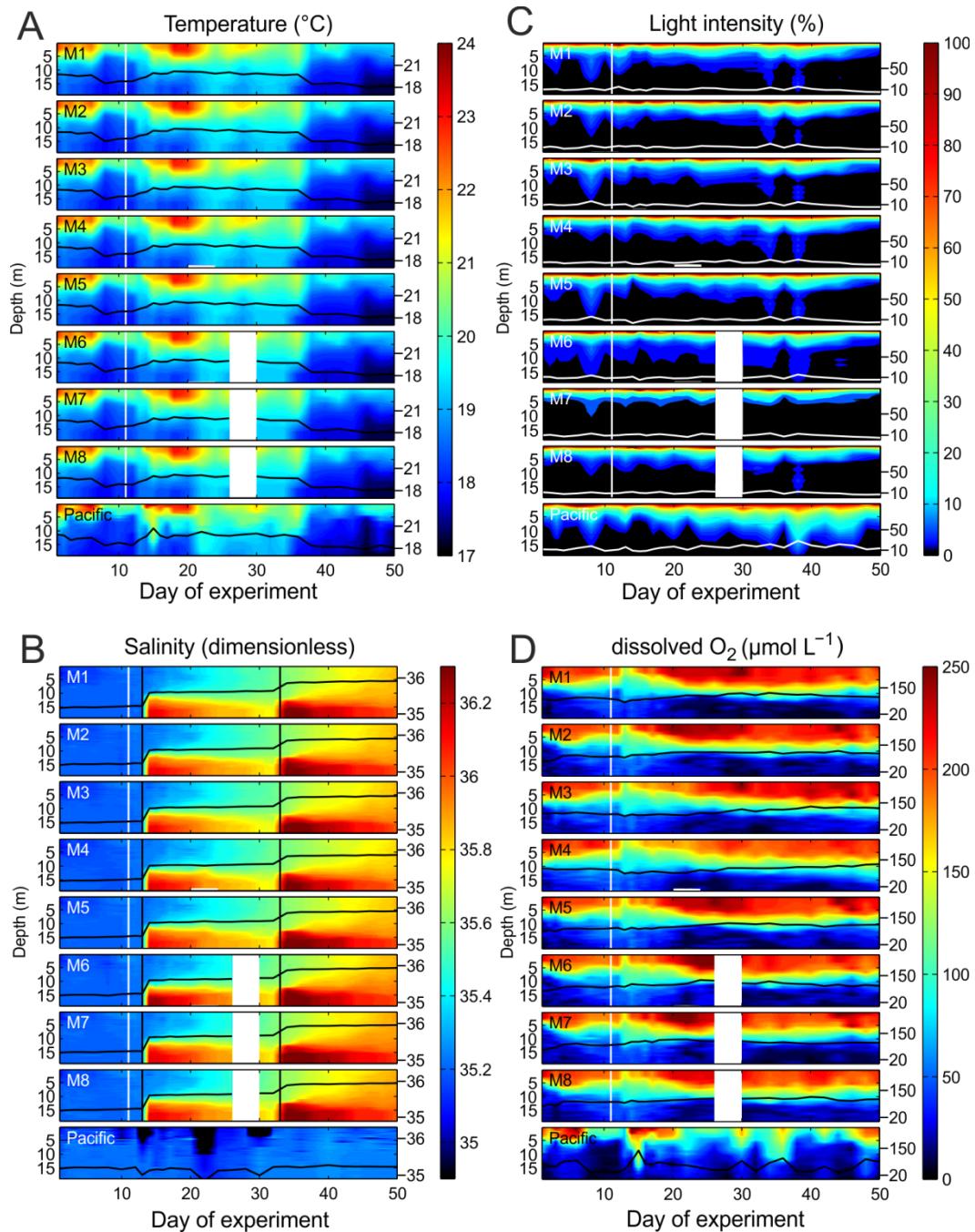
1145

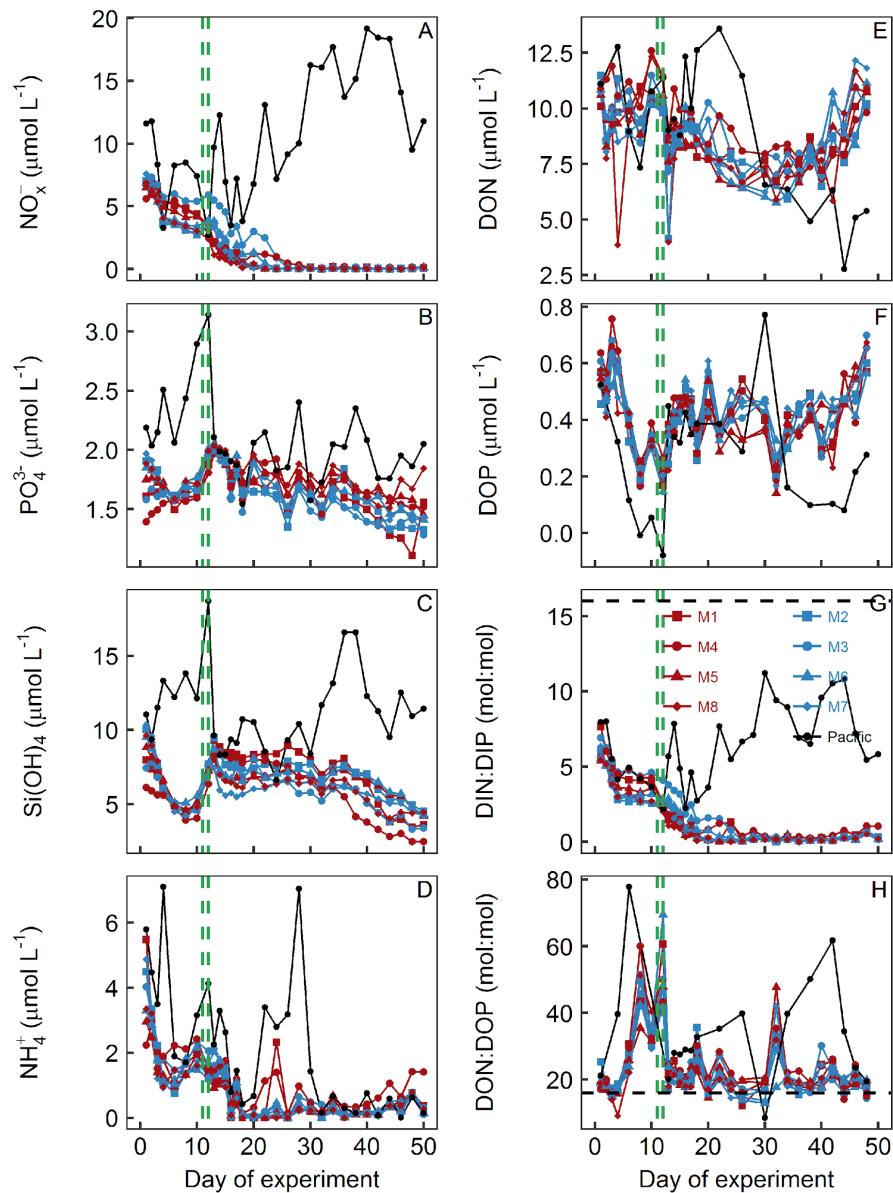

1146


1147 **Figures and tables**

1148 **Table 1.** Nutrient concentrations at the beginning of the experiment and after the OMZ water
 1149 addition as well as the mesocosm volumes at the end of the experiment. The color code
 1150 identifies the “low N/P” treatment (blue) and the “very low N/P” treatment (red). (N:P_{inorg} =
 1151 (NO_x⁻+NH₄⁺)/PO₄³⁻). The asterisks indicate significantly different (p<0.05) conditions between
 1152 the treatments as was calculated with a two-tailed t-test after equal variance was confirmed with
 1153 a F-test.

1154


	M1	M2	M3	M4	M5	M6	M7	M8	Pacific water
Day 1 (first sampling)	■	■	●	●	▲	▲	▼	▼	●
	NO _x ⁻ (μmol/L)	6.85	7.03	6.89	5.61	6.51	6.96	7.59	6.89
	PO ₄ ³⁻ (μmol/L)	1.61	1.91	1.58	1.39	1.75	1.85	1.97	1.88
	Si(OH) ₄ (μmol/L)	7.96	10.01	7.43	6.12	8.82	9.52	10.35	9.63
	NH ₄ ⁺ (μmol/L)	5.47	4.49	4.03	2.24	2.95	3.30	4.87	3.35
	N:P _{inorg} (mol:mol)	7.65	6.04	6.92	5.63	5.40	5.54	6.33	5.43
	DON (μmol/L)	10.10	11.49	11.10	10.84	10.61	10.82	10.74	10.88
Day 13 (first sampling after OMZ water addition)	DOP (μmol/L)	0.57	0.45	0.61	0.64	0.55	0.57	0.52	0.58
	NO _x ⁻ (μmol/L)*	2.17	3.60	5.51	2.05	1.96	3.81	3.29	1.14
	PO ₄ ³⁻ (μmol/L)	1.97	2.01	2.02	1.97	2.02	2.05	1.99	2.04
	Si(OH) ₄ (μmol/L)	9.31	9.49	9.54	8.56	8.36	8.68	7.47	8.04
	NH ₄ ⁺ (μmol/L)*	1.13	1.33	2.11	1.46	0.91	2.03	1.63	1.04
	N:P _{inorg} (mol:mol)*	1.67	2.45	3.77	1.79	1.42	2.85	2.48	1.07
	DON (μmol/L)	8.58	4.15	7.26	8.71	7.60	8.13	7.14	3.98
Day 50	DOP (μmol/L)	0.38	0.24	0.29	0.36	0.36	0.34	0.37	0.22
	Volume (m ³)	54.6	55.8	54.6	56.0	54.6	52.5	52.8	54.4

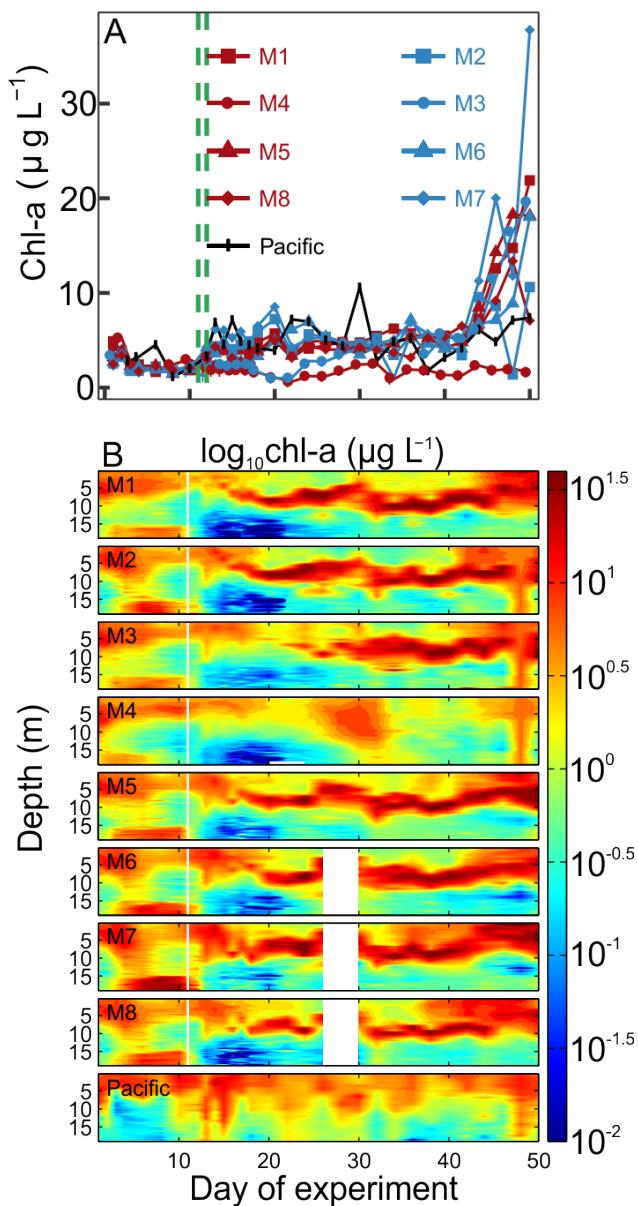

1165

1166 **Figure 2.** Manipulation, sampling, and maintenance schedule. Day 0 was February 25, 2017
 1167 and Day 50 was April 16, 2017. Also given is the depth separating the surface and bottom
 1168 waters sampling range of the course of the study.

1169

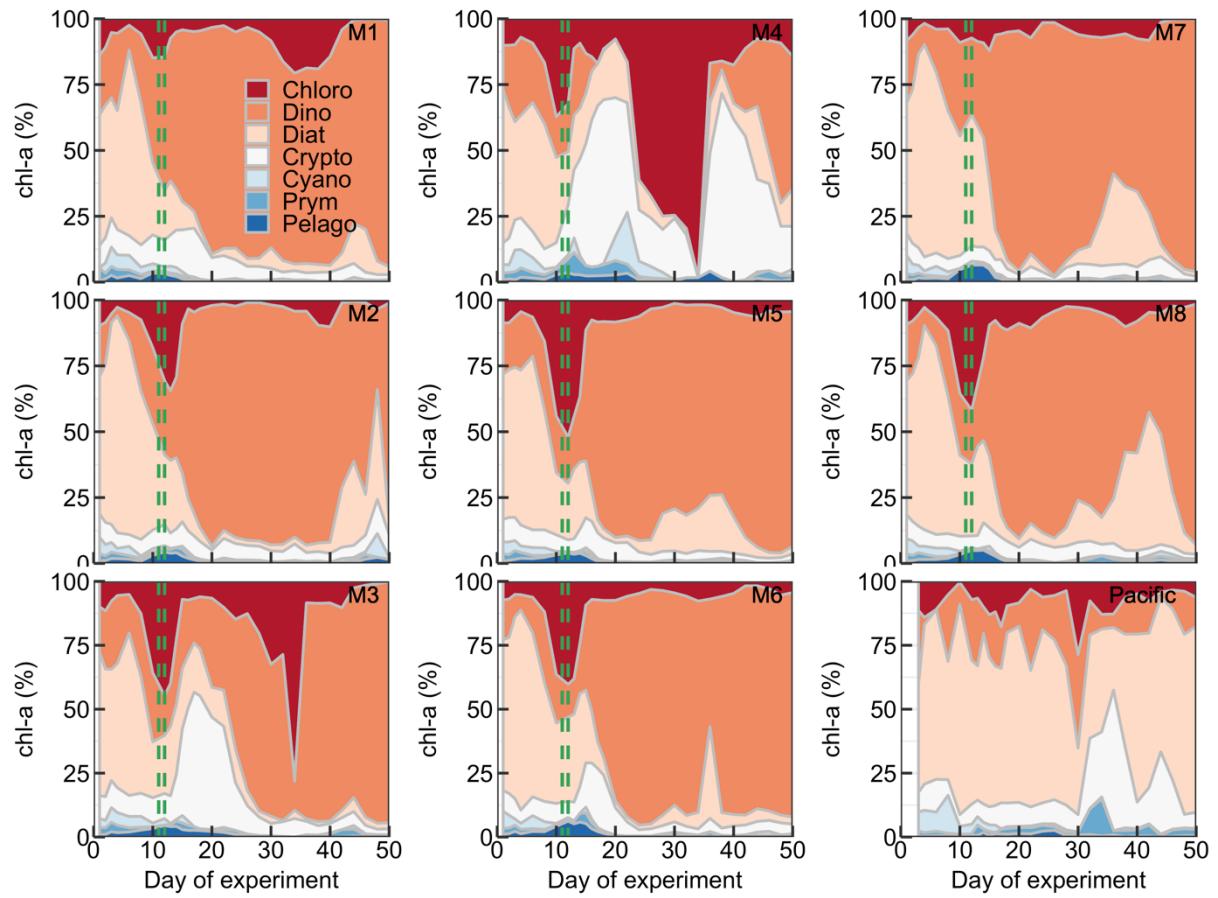
1170 **Figure 3.** Physical and chemical conditions in the enclosed water columns of mesocosms M1
 1171 – M8 and the Pacific water at the mesocosm mooring site determined with CTD casts. The
 1172 black (A, B, D) or white lines (C) on top of the contours show the depth integrated water column
 1173 average with the corresponding additional y-axes on the right side. The vertical white lines
 1174 indicate the time of OMZ water additions to the mesocosms. The lack of data on Day 28 in M6,
 1175 M7, and M8 was due to problems with power supply. (A) Temperature in °C. (B) Salinity
 1176 (dimensionless). The vertical black lines mark the NaCl brine additions. (C) Light intensity
 1177 (photosynthetic active radiation) normalized to surface irradiance in the upper 0.3 m. (D)
 1178 Dissolved O₂ concentrations.

1179

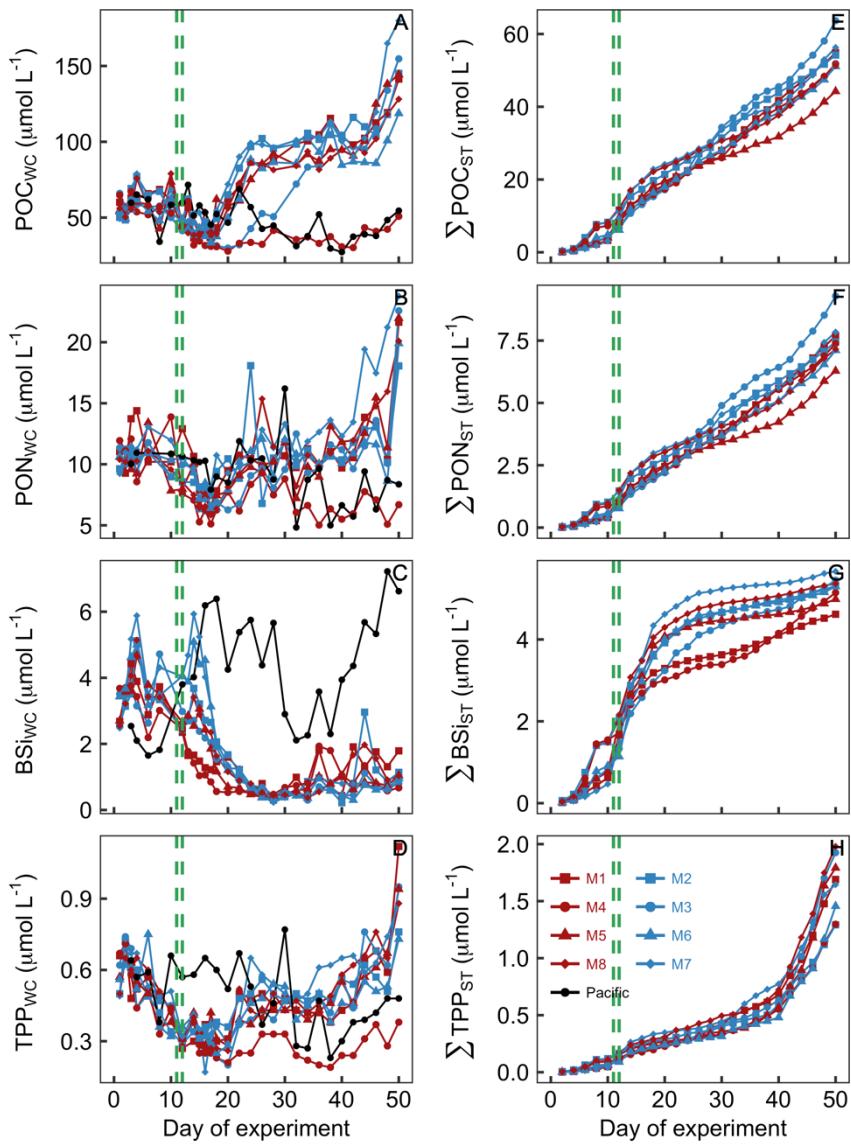

1180 **Figure 4.** Dissolved inorganic and organic nutrient concentrations and stoichiometries
 1181 integrated over the 0 – 17 m depth range. The horizontal dashed black line in panel (G) displays
 1182 the Redfield ratio of DIN:DIP = 16. The green lines mark the days of OMZ water additions.
 1183 (A) NO_x^- + NO_2^- . (B) PO_4^{3-} . (C) $\text{Si}(\text{OH})_4$. (D) NH_4^+ . (E) DON. (F) DOP. (G) DIN:DIP, i.e.
 1184 $(\text{NO}_x^- + \text{NH}_4^+)/\text{PO}_4^{3-}$. (H) DON/DOP.

1185

1186

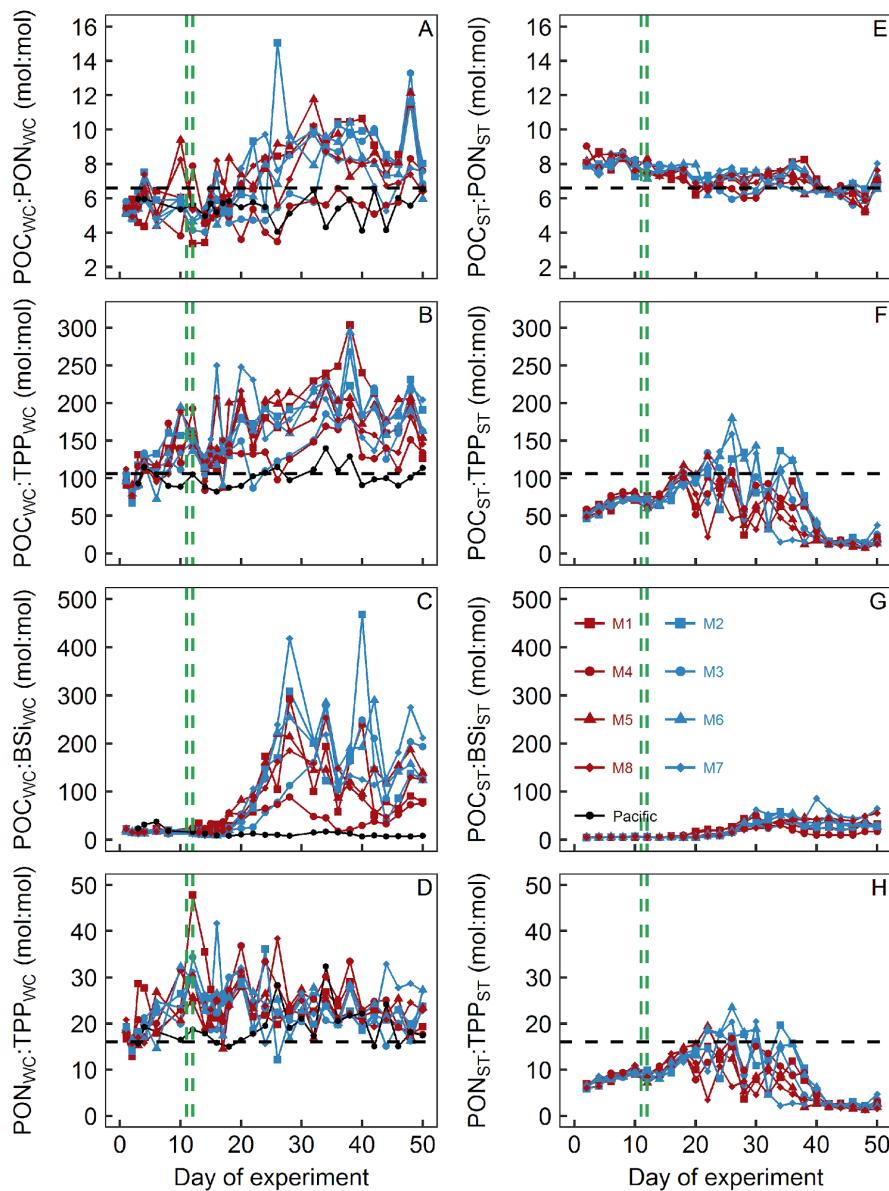

1187

1188

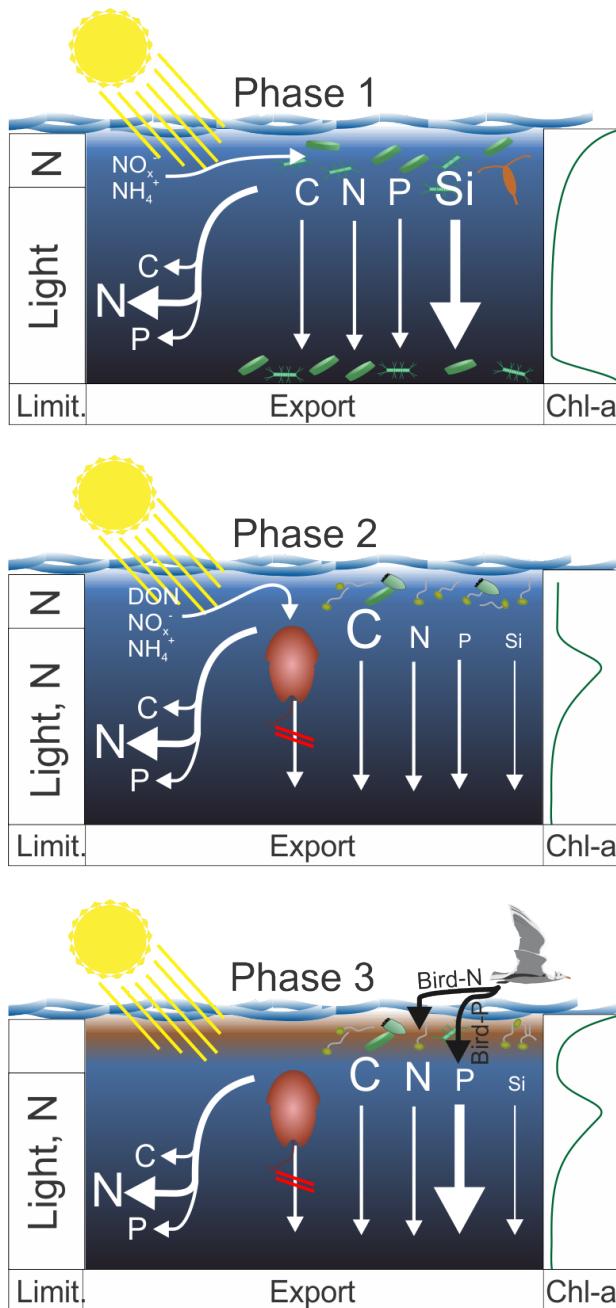

1189

1190 **Figure 5.** Chlorophyll a concentrations. (A) Average chl-a concentrations over the entire water
 1191 column (0 – 17 m) measured by HPLC. (B) Vertical distribution of chl-a determined with the
 1192 CTD fluorescence sensor on a logarithmic scale. The offset of the CTD sensor was corrected
 1193 with the HPLC chl-a data. Please note, however, that the quenching effect may have influenced
 1194 *in situ* fluorometric chl-a near the surface.

1195


1196 **Figure 6.** Relative contribution of the different phytoplankton classes to the total chl-a
 1197 concentration. The mesocosm number is given on the top right of each subplot. The green
 1198 dashed lines mark the days of OMZ water additions.

1199


1200 **Figure 7.** Particulate organic matter concentrations and cumulative export. Shown in the left
 1201 column (A – D) are concentrations averaged over the entire water column (0 – 17 m). Shown
 1202 in the right column (E – H) are cumulative export fluxes of particulate matter over the course
 1203 of the study. The green lines mark the days of OMZ water additions.

1204

1205

1206 **Figure 8.** Particulate matter stoichiometry. Shown in the left column (A – D) are elemental
 1207 ratios of particulate matter in the water column. The right column (E – H) shows the same ratios
 1208 but for particulate matter collected in the sediment traps. The horizontal dashed black lines
 1209 display Redfield ratios (i.e. POC:PON = 6.6, POC:TPP = 106, PON:TPP = 16). The vertical
 1210 dashed green lines mark the days of OMZ water additions.

1212 **Figure 9.** Synthesis graphic. The text in Section 5 functions as an extended figure caption and
 1213 should be read to fully understand processes illustrated in this graphic. The left column indicates
 1214 the factors limiting organic matter production in the upper ~5 m and below. The arrows on the
 1215 left identify which elements were remineralized preferentially during sinking. The arrows on
 1216 the right indicate the export flux of these elements. In both cases strength is indicated by the
 1217 arrow and letter sizes. The column on the right shows the approximate chl-a profile during the
 1218 three phases. The brown phytoplankton drawn in pictures of Phase 2 and 3 illustrates *A.*
 1219 *sanguinea*.