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Abstract. In coastal regions, rivers and streams may be important sources of nutrients limiting to primary production in marine 

waters; however, sampling is still only rarely conducted across the land-to-ocean aquatic continuum, precluding conclusions 

from being drawn about connectivity between freshwater and marine systems. Here we use a more than four year dataset 

(2014-2018) of nutrients (nitrogen, phosphorus, silica, iron) and dissolved organic carbon spanning streams draining coastal 

watersheds and nearshore marine surface waters along the Central Coast of British Columbia Canada, at the heart of the North 20 

Pacific coastal temperate rainforest region. Mean freshwater and surface marine N:Si:P ratios were 4:18:1 (P:Fe = 1:58) and 

6:11:1, respectively, showing relative consistency across the land-ocean interface but deviation from the extended Redfield 

ratio. Inorganic nutrient concentrations (NO3
-+NO2

-, PO4
3-, Si(OH)4) in freshwaters were less than in the receiving marine 

environment, indicating that freshwater nutrient inputs in this region were of little importance to - or even diluted - the pool of 

readily available inorganic nutrients in nearshore waters. Conversely, freshwaters increased the pool of organic matter-25 

associated nutrients, namely dissolved organic nitrogen and iron. The organic matter-rich landscapes of the region yielded 

globally significant quantities of dissolved organic nitrogen (304-381 kg km-2 y-1) and iron (463-596 kg km-2 y-1); thus acting 

as important sources of potentially limiting nutrients to both nearshore and offshore waters. These exports may subsidise 

heterotrophic microbial communities capable of directly consuming and remineralising these nutrients, potentially 

compensating for the dilution of inorganic nutrients by freshwater inputs. We highlight the need to better understand nutrient 30 

limitation in coastal waters and for concerted research efforts to study the spatial and temporal dynamism at the land-ocean 

interface along the northeast Pacific coast.   
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1 Introduction 

All living organisms require a combination of more than 20 naturally occurring chemical elements (Sterner and Elser, 2002). 35 

Whereas early studies were solely focused on carbon (C), nitrogen (N) and phosphorus (P), the fundamental building blocks 

of life (Redfield, 1934), the crucial role of micronutrients like silicon (Si, hereafter as orthosilicic acid, Si(OH)4) and iron (Fe) 

has long been recognised (Ho et al., 2003). Primary producers like phytoplankton, whose carbon uptake capabilities are 

intrinsic to the coastal carbon cycle (Bauer et al., 2013), must obtain these essential nutrients directly from their environment, 

and are thus dependent on the sources and sinks that govern nutrient speciation and availability.  40 

 

Alfred Redfield established that marine phytoplankton are generally composed of C, N and P in a ratio of 106:16:1 (Redfield, 

1934), a global average that has been shown to vary over space (Martiny et al., 2013). Updated iterations of the ratio include 

Si and Fe (C:N:Si:P:Fe = 106:16:15:1:0.1-0.01) among other elements, in recognition of the important role that these elements 

play in fundamental cellular metabolism and growth (Sterner and Elser, 2002; Ho et al., 2003), with special reference to 45 

diatoms in the case of Si (Brzezinski, 1985). We now understand that nutrient limitation to primary production is determined 

by biological demand, available supply, and supply relative to that of other essential elements (Welti et al., 2017).  

 

One of the potential sources of limiting nutrients in marine waters, especially in coastal environments, is subsidies from 

terrestrial ecosystems on adjacent landmasses (Sakamaki and Richardson, 2008; Harding and Reynolds, 2014; Moore et al., 50 

2013). As rivers and streams flow from their headwaters to coastal ecosystems, they integrate processes happening across their 

watersheds, transporting the products of erosion, weathering, biological production and decomposition, all sources of nutrients 

potentially limiting to primary production in the marine environment (Bouwman et al., 2013). The land-to-ocean aquatic 

continuum (LOAC) concept acknowledges that what happens on land has important consequences for water quality and 

productivity in coastal regions (Xenopoulos et al., 2017). However, the LOAC has typically been applied either by freshwater 55 

scientists to describe changes in water quality across watersheds, leading up to but not including coastal waters (e.g., Bouwman 

et al., 2013; Weyhenmeyer and Conley, 2017), or by marine scientists to infer freshwater inputs from salinity gradients across 

nearshore environments (e.e.g, Wetz et al., 2006; Cuevas et al., 2019). Each of these approaches, while valuable, relies on 

inference about the neighbouring ecosystems, thus overlooking potential local deviations from average or assumed conditions.  

 60 

The North Pacific Coastal Temperate Rainforest (NPCTR) region of North America, which extends from northern California 

to the Gulf of Alaska (Fig. 1; Alaback, 1996), receives upwards of 2000 mm of rainfall per year (DellaSala, 2011). High 

rainfall, combined with snow and glacial melt from high elevations, translate to intense stream and river discharge (Royer 

1982; Neal et al. 2010; Morrison et al. 2012), making the connection between land and sea across this region particularly 
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strong (Fleming et al., 2016; O'Neel et al., 2015). Indeed, along the rainfall-dominated outer coast of British Columbia, the 65 

quality of marine dissolved organic carbon (DOC) in ocean surface waters very closely resembles that of freshwater DOC 

during the winter months when high rainfall-induced inputs of DOC may favour microbial heterotrophy (St. Pierre and Oliver 

et al., 2020). While the large organic carbon stocks in soils across the NPCTR (McNicol et al., 2019) have made DOC a major 

focus of study (Fellman et al., 2009a; Fellman et al., 2009b; Oliver et al., 2017; Hood et al., 2006; and others), we do not fully 

understand how these high freshwater exports impact nutrient availability and limitation in nearshore waters across the region 70 

(but see for example Wetz et al. 2006), a key oversight given the strong association between nutrients and organic matter for 

potentially limiting elements like nitrogen and iron (Meybeck, 1982).  

 

Since 2014, routine monthly water quality surveys have been conducted in both coastal marine and fresh waters across Calvert 

and Hecate Islands at the mid-latitudes of the NPCTR along the Central Coast of British Columbia, Canada (51.7°N, 128.0°W; 75 

Fig. 1) (Giesbrecht et al. 2016 and in review). To address the issues highlighted above, the objectives of this study were to: 1) 

understand seasonal variability in inorganic and organic nutrient concentrations and stoichiometry in nearshore waters, 2) 

quantify and characterise temporal variability in freshwater nutrient inputs to marine waters, and 3) assess whether freshwaters 

constitute an important source of potentially limiting nutrients to marine ecosystems in this region. This more than four-year 

dataset offers insights into the spatial and temporal variability in nutrient stoichiometry across the land-ocean aquatic 80 

continuum, highlighting the possible role of small rivers and streams in regulating biological productivity in nearshore waters 

of the NPCTR.   

 

2 Methods 

2.1 Site descriptions 85 

Kwakshua and Meay Channels separate Calvert and Hecate Islands within the Hakai Luxvbalis Conservancy along the Central 

Coast of British Columbia, Canada (Fig. 1). Within the channels, surface waters (0–5 m) are typically quite fresh (< 30 salinity 

units) relative to the rest of the water column (~30-33 salinity units). The channel system is sheltered from direct offshore 

influences by Calvert Island, but exchanges waters with Fitz Hugh Sound to the east through Kwakshua Channel (26.8 km2), 

and with Hakai Pass and Queen Charlotte Sound to the northwest through Meay Channel (8.6 km2). Pruth Bay (3.1 km2) 90 

connects Meay and Kwakshua Channels. We hereafter refer to the combined areas of Pruth Bay, and Meay and Kwakshua 

Channels as the Kwakshua Channel system. Thirteen marine stations were sampled and located throughout the Kwakshua 

Channel system: six were approximately mid-channel, and seven were closer to the shoreline and associated with freshwater 

outlets (Fig. 1, Table S1).  

 95 
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Calvert and Hecate Islands are characterised by bog forests and extensive wetlands, and are located within the hypermaritime 

zone of the perhumid NPCTR (Meidinger and Pojar, 1991; Thompson et al., 2016). Mean annual 1981-2010 air temperature 

and precipitation near sea level on the islands were 8.93±0.20 °C and 2800±49 mm, respectively (climatewna.com, Wang et 

al. 2016). Precipitation on Calvert and Hecate Islands is primarily in the form of rain; however, above 500 m elevation, seasonal 

snow packs over 2 m deep can develop, corresponding to 600 to 1000 mm of stored water. Snow in watersheds with significant 100 

areas of elevation greater than 500 m can contribute to a muted spring freshet, though all elevations have the potential to 

contribute to rain-on-snow events through late fall and early winter. The geology underlying the region is acidic plutonic, 

dominated by silicate and aluminium oxides, and iron oxides towards the eastern coasts of the islands (Roddick, 1996). This 

geology is overlain by organic-rich podzol and folic histosol soils, with thick hemists in depressional areas, and open wetlands 

and short wet-forests composed of western redcedar, yellow-cedar, shore pine and western hemlock (Oliver et al., 2017). Seven 105 

streams draining coastal watersheds of the Kwakshua Channel system have been routinely sampled for a suite of dissolved 

chemical species (see Table S2). These watersheds, previously described in detail in Oliver et al. (2017) and summarised in 

Table S3, cumulatively account for 67.4% of the terrestrial drainage area (69.6 km2) of the combined channels. Briefly, these 

watersheds range between 3.2 and 12.8 km2, with extensive but variable coverage by wetlands (23.8 to 50.2%) and lakes (0.3 

to 9.1%), and mean slopes between 21.7 and 40.3% (Gonzalez Arriola et al., 2015; Oliver et al., 2017).  110 

2.1.1 Seasonality and wider scale climate anomalies 

The NPCTR is characterised by high seasonality across both marine and freshwater systems. The spring transition occurs 

between March and May each year (Thomson et al., 2014), with a shift towards northwesterly winds favouring the propagation 

of nutrient-rich upwelled waters onto the shelf and into inner passage waters, including Kwakshua Channel (Hunt et al., 2018). 

Increased solar radiation favours a phytoplankton bloom coinciding with the spring transition and high productivity through 115 

to approximately August. Between September and November, downwelling-favourable southeasterly winds begin to dominate. 

This change overlaps with a marked increase in rainfall and therefore terrestrial runoff to the marine system, which persists 

from around October through to March (St. Pierre and Oliver et al., 2020).  

 

The wider northeast Pacific region is also characterised by large scale climate cycles, including the Pacific Decadal Oscillation 120 

(PDO) and the El Niño Southern Oscillation (ENSO), both of which can have a large effect on temperature (air, surface water) 

and precipitation patterns across the region (Kiffney et al., 2002). Variability in the PDO occurs over 10+ year time scales and 

is thus outside the scope of the present study. The study period was characterised by large fluctuations in the ENSO: a 

prolonged and strong El Niño from Nov-2014 to May-2016, weak La Niñas from Aug-2016 to Dec-2016 and Oct-2017 to 

Mar-2017, and a weak El Niño from Oct-2018 through to the end of the record (31-Dec-2018).  125 
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2.2 Sampling scheme and sample collection 

Field surveys of both marine and fresh waters were conducted on an approximately monthly basis between 1-Aug-2014 and 

31-Dec-2018 (4 years, 5 months) by staff at the Hakai Institute’s Calvert Island Field Station. Interannual variability over this 

period is discussed in section 3.1. Briefly, 13 marine stations and seven freshwater streams were sampled to provide 

information on spatial and temporal variability in marine waters within the context of variable freshwater inputs. 130 

2.2.1 Marine stations in Kwakshua and Meay Channels 

Marine water samples were collected from a boat at discrete depths (0, 1 and 5 m) within the upper water column using a 

Niskin water sampler across the 13 marine stations. Samples for combined nitrate-nitrite (NO3
-+NO2

-; hereafter shortened to 

NO3
-), orthophosphate (PO4

3-), silicic acid (Si(OH)4), and dissolved organic carbon (DOC) were filtered through 0.45 µm 

Millipore® Millex-HP hydrophilic polyethyl sulfonate (PES) filters in the field and kept on ice until returning to the field 135 

station. Following sample collection on the boat, the basic properties (temperature, salinity, conductivity) of the collected 

water were measured using a calibrated, marine sample-specific YSI in a pre-rinsed container. 

2.2.2 Rainforest streams 

In this study, we integrated the results of two freshwater sampling programs conducted between 1-Aug-2014 and 31-Dec-

2018: 1) routine monthly samplings of the seven watersheds at their outlets to Kwakshua Channel, and 2) targeted rainfall 140 

event samplings of the streams over the rising and falling limbs of the hydrographs.  

 

Discharge, rainfall and air temperature were monitored continuously at each of the seven watersheds. Climate stations were 

established adjacent to the seven outlet streams at low elevation (range 10-90 m.a.s.l; Table S3), near the stream sampling 

location. Air temperature and precipitation were recorded at 5-minute intervals and aggregated to daily statistics for 145 

temperature (mean, minimum, maximum) or totals for precipitation. Discharge was continuously measured at 5-minute 

intervals, but the dataset was filtered to 15-minute intervals for flux model construction, as in Oliver et al. (2017) and St. Pierre 

and Oliver et al. (2020). Rating curve construction and discharge calculation have been previously described in detail in Oliver 

et al. (2017) and updated in Korver et al. (2019a). Weather data from Mt. Buxton (~1000 m.a.s.l.), the highest point on Calvert 

Island, were also extracted for the period of record from the ClimateNA spatially downscaled model (climatewna.com; Wang 150 

et al., 2016) for comparison to the sea level stations.   

 

Standardised monthly temperature and precipitation anomalies were calculated relative to the 1981-2010 climate normal for 

each station, extracted from the ClimateNA model (Wang et al., 2016). We assessed the validity of this approach by comparing 

monthly ClimateNA outputs with local observations for the study period (January 2015 – December 2018). Mean percent 155 

difference between measured and modelled monthly mean air temperatures and total precipitation over the period of record 
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were 8.82±0.87% and 11.58±0.50%, respectively. The model predicted mean monthly air temperatures well (linear regression: 

slope = 0.93, R2 = 0.98; Fig. S1), but tended to under predict rainfall (slope = 0.70, R2 = 0.76; Fig. S2). However, rainfall is a 

notoriously difficult climate parameter to measure accurately, let alone model and will improve over time with the 

incorporation of additional data sources. Given the fit statistics, we deemed the Climate NA model adequate for our purposes. 160 

Together, these data support the use of a model-derived climate normal for the region in the absence of 30 years of local 

climate measurements. Local temperature and precipitation anomalies were then compared to the Oceanic Niño Index (ONI, 

Climate Prediction Center, 2019) to assess the potential influence of Pacific Ocean-basin scale climate anomalies on local 

processes.  

 165 

Bulk water samples were collected as grab samples from each of the seven streams. Samples for NO3
-, PO4

3-, Si(OH)4, and 

DOC were sampled as for the marine stations. At all freshwater stations, waters were also filtered with 0.45 µm PES filters for 

ammonium (NH4
+), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved iron (dFe). Additional 

bulk water samples were collected in 50 mL centrifuge tubes for total nitrogen (TN) and total phosphorus (TP) and kept cool 

until analysis. These additional parameters are discussed separately from NO3
-, Si(OH)4, PO4

3- and DOC, in acknowledgement 170 

that analogous measurements were not taken in marine waters, except for during the rainfall events (see below). 

2.2.3 Targeted stream samplings during rainfall events 

The streams were sampled during rainfall events to better understand how water chemistry changes along the rising and falling 

limbs of the hydrograph during storms (Korver et al., 2019b). These high frequency measurements are especially useful to 

train constituent flux models during high flow events given that constituent concentrations often vary with discharge within a 175 

given watershed (Goñi et al., 2013).  

 

During rainfall events, the streams were sampled using a combination of techniques: 1) opportunistic grab samples on the 

falling limb (all watersheds, 18-Jul-2015 to 15-Nov-2018); 2) using an automated rack sampler (all watersheds, 21 to 25-July-

2015 and 15 to 16-Jul-2017); and, 3) using an automated pump sampler (watershed 708 only, 17 to 27-Sept-2015 and 14 to 180 

21-Oct-2017). The rack samplers were constructed by mounting 250-mL bottles at vertical increments above the low water 

level of the stream prior to each rain event. Vertical increments were adjusted depending on the weather forecast and predicted 

stage rise and as the water level rose, the bottles filled in sequence. Water exchange after filling was prevented by following 

the design of single-stage suspended-sediment samplers (InterAgency Committee on Water Resources, 1961): two inverted 

stainless-steel U-shaped inlet tubes were inserted in the bottle through a rubber plug. The first inlet tube allows water to enter 185 

and the second inlet tube, placed directly above the first, blocks water inflow by sealing the bottle’s air exchange. Bottles were 

always completely filled at rising water levels, preventing river water from entering as water levels drop again. Additional 

information on the setup is included in the Supplementary Information (see also Table S4).   
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2.2.4 Freshwater plume samplings in nearshore waters 

To better understand the influence of rainfall events on nearshore environments, the plumes emanating from watersheds 819 190 

and 703 were sampled during storms on 7-Aug-2015 and 19-Sept-2015, respectively (Fig. 1). Plume extent was first visually 

determined based on turbidity and water colour, and finally by measuring the conductivity of surface waters in comparison to 

the Pruth marine station (~45,000 µS cm-1). Six sampling stations were then established across the plume and waters were 

sampled at 0, 1 and 5 m depth for all the same parameters as the streams, described above. 

2.3 Sample preparation and chemical analyses 195 

TP and TDP samples were preserved with 80 µL of 95% H2SO4 and frozen until analysis. Samples for TN, TDN, NH4
+, NO3

-

, and Si(OH)4 were frozen until analysis. Samples for TN, TDN, NH4
+, NO3

- (from Aug. 2014 to June 2015), TP, TDP, and 

PO4
3- (from Aug. 2014 to June 2015) were analysed according to Canadian Association of Laboratory Accreditation (CALA)-

certified protocols at the University of Alberta’s Biogeochemical Analytical Service Laboratory (Table S2). From March 2015 

onwards, NO3
-, PO4

3- and Si(OH)4 were analysed at the University of British Columbia’s Marine Zooplankton and Micronekton 200 

Laboratory. Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) were calculated as the sum of NH4
+ 

and NO3
-, and the difference between TDN and DIN, respectively. Dissolved cations, including dFe, were preserved with 480 

µL 8M HNO3, and kept cool until analysis by the Analytical Chemistry Services Laboratory (Ministry of Environment and 

Climate Change Strategy, Victoria, BC, Canada). Filtered DOC samples from freshwater and marine sites were preserved with 

200 µL 7.5M H3PO4 or 6 M HCl, respectively, and kept cool until analysis. Freshwater samples were analysed at Analytical 205 

Chemistry Services Laboratory, while marine samples were analysed at the Ján Veizer Stable Isotope Laboratory (University 

of Ottawa, ON, Canada). Instruments and detection limits for each constituent are summarised in Table S2. 

2.4 Freshwater biogeochemical inputs to Kwakshua and Meay Channels 

Freshwater inputs to the Kwakshua Channel system were quantified by relating constituent concentrations from both the 

routine monthly and targeted rainfall event samplings to 15-minute discharge using log-linear models in the R package rloadest 210 

(Runkel et al., 2004; Runkel, 2013; Lorenz et al., 2015). For all watersheds except 708, models were constructed by relating 

discharge to concentration over the entire study period. At watershed 708, discharge monitoring began in Aug. 2013 - one year 

earlier than elsewhere, so models were constructed for the entire period of record (9-Aug-2013 to 31-Dec-2018). Daily flux 

estimates were, however, only made over the same period as for the other watersheds (1-Aug-2014 to 31-Dec-2018). Half of 

the detection limit (see Table S2) was used for cases where concentrations of NO3
-, NH4

+, and PO4
3- were flagged as below 215 

detection by the analytical labs.  

 

For each constituent and watershed, the best rloadest model was initially chosen to minimise Akaike’s Information Criterion 

(AIC), and then assessed for goodness-of-fit using the bias percentage, partial load ratio (PLR; Stenback et al., 2011), and the 
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Nash-Sutcliffe Efficiency Index (E; Nash and Sutcliffe, 1970). Only the models for NO3
- consistently had an E less than zero, 220 

indicating that the observed mean was a better predictor than the model estimates (Runkel et al., 2004; Lorenz et al., 2015; 

Runkel, 2013), and were therefore excluded from our analysis. Instead, the NO3
- flux was estimated by subtracting the NH4

+ 

flux from the DIN flux on a given day. Mean (± SE, n = 77) model R2, bias percentage, PLR and E were 94.7 ± 0.6, -0.76 ± 

0.85%, 0.99±0.01, and 0.78±0.03, respectively. Constituent and watershed-specific model fit statistics are presented in Table 

S5. Errors reported on aggregate monthly or annual flux measurements were quantified by propagating the daily standard error 225 

of prediction, which incorporates the uncertainty of both the model fit and the load estimate. 

2.5 Other statistical considerations and analyses 

All statistical analyses were completed in R (R Core Team, 2019), using packages vegan (Oksanen et al., 2018), dplyr 

(Wickham et al., 2019), lme (Bates et al., 2015) and lsmeans (Lenth, 2016). Stoichiometric ratios were log-transformed prior 

to the calculation of summary statistics presented in figures in acknowledgement of the inherent non-normality of ratio data 230 

(Isles, 2020). Mean concentrations presented in figures and tables were then re-transformed to non-log scale to facilitate 

comparisons with literature values. Standard errors (SE) are reported throughout, unless otherwise stated. The level of 

significance (α) was 0.05, but Bonferroni-corrected where multiple comparisons were made. Statistics quantifying interannual 

variability utilise full calendar years only (n = 4, i.e., 2015-2018). Temperature and precipitation anomalies were compared to 

the ONI using Pearson’s product moment correlation.  235 

 

Differences in air temperature, rainfall, flow-weighted freshwater nutrient concentrations and fluxes, and marine nutrient 

concentrations across the period of record were assessed using linear mixed effects models, coding for year and month as fixed 

effects and watershed or station (marine) as a random effect. We chose to compare monthly flow-weighted nutrient 

concentrations, rather than point measurements to assess “true” temporal differences in concentration, independently of 240 

hydrology. Briefly, monthly flow-weighted nutrient concentrations were calculated by dividing the modelled monthly flux by 

the total monthly volume of water discharged by each stream. Tukey multiple comparisons were then assessed across all 

pairwise combinations of year and month; however, only interannual comparisons for a given month (e.g., July 2015 vs. July 

2018) were deemed relevant for our purposes and are discussed.  

 245 

Principal component analysis (PCA) was used to characterise the bulk chemistry of the freshwater inputs to the Kwakshua 

channel system. Prior to performing the PCA, flow-weighted molar concentrations of all chemical constituents were 

standardised using Z-scores, so as to de-emphasise the very high DOC concentrations, which were typically two to three orders 

of magnitude higher than any other constituent. Each principal component (PC) was then interpreted as a bulk indicator of a 

particular aspect of the freshwater chemistry and used to examine changes in chemical composition over time. 250 
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3 Results 

3.1 Temperature and precipitation between 2014 and 2018 

Mean annual air temperature near sea-level on Calvert and Hecate Islands over the study period was 8.73±0.12 °C (full range: 

-13.60-34.99 °C), similar to the 1981-2010 normal for these watershed outlet sites (8.93±0.20 °C). Mean annual rainfall was 

2790±61 mm (range: 2240 to 3520 mm; 1981-2010 normal = 2800±49 mm) at these sites, increasing to 4312±106 mm at 1000 255 

m elevation (1981-2010 normal = 4620 mm). Precipitation translated to a cumulative mean annual freshwater discharge to 

Kwakshua Channel of 0.174±0.055 km3 (Table 1, S3, range: 0.161-0.186 km3), equivalent to a mean annual specific runoff of 

2500±790 mm (range: 2310-2670 mm).  

 

Rain (≥ 0.2 mm) was recorded at sea level between 63 and 69% of days in any given year (Table S6), and the region exhibited 260 

strong seasonality. Maximum and minimum monthly rainfall typically occurred in November and June, respectively (Fig. 2a). 

The longest (21-47 consecutive days with more than 0.2 mm of rain) and largest (> 200 mm of rain, maximum = 567 mm 

event-1) rainfall events always occurred between November and March (Table S6). Maximum and minimum air and sea-water 

temperatures occurred in June and December-February (Fig. 2b-c). The sampling period was characterised by dramatic 

fluctuations in the ONI, including strong El Niño (May-2015 to Apr-2016), and weak La Niña (Oct-2017 to Mar-2016) and El 265 

Niño (Oct-2018 to Dec-2018) events (Fig. 2d). Temperature and precipitation anomalies, though, were poorly correlated with 

the ONI (Fig. S3).   

3.2 Marine primary production and nutrient stoichiometry 

Mean monthly chlorophyll a concentrations ranged between 0.06±0.01 µg L-1 (Nov. 2014) and 4.38±1.71 µg L-1 (Jun. 2016; 

Fig. 3a). Each year, primary production peaked in March-April and again in June-July, based on chlorophyll a concentrations 270 

(Fig. 3a). Mean marine NO3
-, PO4

3- and Si(OH)4 concentrations across the 0, 1, and 5 m depths were 8.18, 0.78, and 18.67 

µmol L-1, respectively, but varied widely (Table S7). NO3
-, PO4

3- and Si(OH)4 concentrations displayed strong seasonality, but 

also interannual differences (Table 2; mixed effects models, p < 0.05 on all terms, Table S8). Seasonal fluctuations in inorganic 

nutrient concentrations in marine waters were the opposite of chlorophyll a concentrations: the depletion of NO3
-, PO4

3- and 

Si(OH)4  occurred annually in concert with the peak of primary production, followed by increases in concentration through the 275 

late summer and autumn as chlorophyll a concentrations decreased (Fig. 3b-d). There was a 37-fold increase in NO3
- 

concentrations between the monthly minimum (June mean: 0.57±0.16 µmol L-1) and maximum (December mean: 21.23±0.57 

µmol L-1). The same seasonal increase was 10-fold for PO4
3- (July: 0.16±0.04 µmol L-1; December: 1.57±0.01 µmol L-1) and 

12-fold for Si(OH)4 (June: 2.74±0.47 µmol L-1; December: 38.29±0.37 µmol L-1). Mean DOC concentrations remained low 

throughout the year (72.66±2.64 µmol L-1; Fig. 3e).  280 
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Mean NO3
-:Si(OH)4, NO3

-: PO4
3-, and Si(OH)4: PO4

3- ratios were 0.3:1, 6:1, and 11:1 respectively. All ratios shifted seasonally 

(Fig. 4). NO3
-:Si(OH)4 and NO3

-: PO4
3- reached a minimum in the summer (June-August) and increased again through the 

autumn and winter (September through February). NO3
-: Si(OH)4 was consistently below the Redfield-Brzezinski ratio for 

diatoms (16:15 = 0.94), oscillating between < 0.1 between May and July and ~0.6 in January (Fig. 4a), and indicating an excess 285 

of Si(OH)4. NO3
-: PO4

3- consistently declined to ~1:1 by July of each year, and approached the Redfield ratio (16:1) during the 

winter months (Fig. 4b). Si(OH)4: PO4
3- ratios were close to the Redfield ratio (15:1) or above it (Fig. 4c), with less of a 

discernible seasonal trend than for the other ratios. Greater variability between the stations was typically observed in the spring 

and summer months.  

3.3 Freshwater nutrient exports to nearshore waters of the NPCTR 290 

3.3.1 Freshwater nutrient and DOC concentrations 

Mean measured concentrations of NO3
-, PO4

3-, Si(OH)4 and DOC in the streams were 0.47, 0.09, 1.67, and 954 µmol L-1, 

respectively and showed strong seasonal and spatial variability (Table S7). On average, measured concentrations of NO3
-, PO4

3- 

and Si(OH)4 were 48±21 (1.4-720), 9.87±1.20 (0.62-28.15), and 12.42±1.43 (0.25-28.6) times lower in freshwater than across 

the marine stations (Fig. 3b-d). The mean monthly concentrations of PO4
3- and Si(OH)4 in freshwaters only exceeded those in 295 

marine waters on one occasion (July 2018). Seasonal variability in freshwater inorganic nutrient concentrations was muted, 

compared to marine waters (Fig. 3b-d). In contrast, freshwater concentrations of DOC were 14.55±0.99 (6.98-36.29) times 

higher than in marine waters and exhibited high seasonal variability, increasing by almost 2-fold between the low in February 

(641±69.8 µmol L-1) and the high in August (1150±51.3 µmol L-1; Fig. 3e).  

 300 

In general, flow-weighted inorganic nutrient concentrations were less than the measured concentrations whereas flow-weighted 

organic nutrient concentrations were higher than the measured concentrations, reflecting the dependence of concentration on 

flow within the watersheds (Table S7). Although flow-weighted concentrations of DOC fluctuated seasonally (Fig. S4), this 

seasonal cycle was consistent between years (mixed effect model: only month term p-value < 0.05). PO4
3- concentrations were 

approximately constant throughout the year (p-value on all terms > 0.05), while NO3
- and Si(OH)4 concentrations were variable 305 

across the period of record (year-month interaction p < 0.05) (Fig. S4).   

 

Summary statistics for measured and flow-weighted concentrations of TN, TDN, DON, DIN, NH4
+, TP, TDP, and dFe are 

reported in Table S7. Flow-weighted concentrations of TN, TDN, DON, and dFe varied seasonally (linear mixed effects 

models: month term p-value<0.05; Table S9). As for PO4
3-, TP and TDP concentrations were approximately constant 310 

throughout the year. DIN and NH4
+ concentrations were variable across the period of record (year-month interaction p<0.05). 

DIN concentrations were driven largely by a dramatic increase in concentration in August 2018 associated with NO3
-. Trends 

in NH4
+ concentrations were also highly variable, with consistent interannual differences from August through December in 
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2015 (monthly means: 0.778–0.827 µmol L-1) and 2018 (0.277–0.387 µmol L-1). We note, however, that concentrations of the 

inorganic N species and all P species were often near or below detection. 315 

3.3.2 Freshwater nutrient fluxes, speciation and stoichiometry 

DOC was by far the largest terrestrial input from the seven watersheds to Kwakshua Channel (mean = 143±20.4 Mmol yr-1; 

128 to 156 Mmol yr-1; Table 1), exceeding all other inputs by two to three orders of magnitude. TN fluxes (2.10±0.30 Mmol 

yr-1) were overwhelmingly DON (81.8±15.5%), with the remainder as DIN (8.8±4.3%) or PN. Around half (~53.8%) of DIN 

was exported as NH4
+, and the other half as NO3

-. TP exports were extremely low (0.07±0.02 Mmol yr-1), only 18.9±11.0% of 320 

which was as the readily available form PO4
3-, with the balance presumably split between particulate phosphorus (~11%, PP 

= TP–TDP) and dissolved organic phosphorus (~63%, DOP = TP–PP–PO4
3-).   

 

Mean NO3
-:Si(OH)4, NO3

-: PO4
3-, and Si(OH)4: PO4

3- ratios for freshwater fluxes were 0.20, 3.69, and 18.03, respectively. 

NO3
-:Si(OH)4 and NO3

-: PO4
3- ratios were consistently at or below the Redfield ratio (Fig. 4). Notably, NO3

-:PO4
3- increased 325 

in the late summer. Stoichiometric ratios were, however, highly variable between the different watersheds (Fig. S5). Clear 

seasonal signals were difficult to discern across most watersheds, except for watersheds 703 and 708. Watershed 703 in 

particular displayed late summer peaks across all ratios. Fe:PO4
3- far exceeded the extended Redfield ratio (0.1-0.01:1) across 

all watersheds (57.51; Fig. S5d), and fluctuated synchronously across most watersheds, driven by the late summer increases 

in Fe concentrations (Fig. S4). 330 

3.3.3 Freshwater yields of nutrients and DOC in a global context 

TN yields (378-463 kg km-2 y-1) were at the low end of the global range (1–20,630 kg km-2 y-1), but within the range for 

coniferous forests (Alvarez-Cobelas et al., 2008) (Table S10). Meanwhile, DON yields (304-381 kg km-2 y-1) were at the high 

end of the estimated global range (10–479 kg km-2 y-1; Alvarez-Cobelas et al., 2008), and exceeded by up to 6-times other 

estimated and modelled mean global and North American yields (Table S10). In contrast, DIN yields (33.6-40.9 kg km-2 y-1) 335 

were at the low end of the global ranges for NO3
- (Alvarez-Cobelas et al. 2008), but nearly identical to the mean value reported 

by Meybeck (1982). Si(OH)4 yields from the watersheds (84.5-95.7 kg km-2 y-1) were up to 26-times lower than the reported 

North American average (Dürr et al., 2011). Dissolved Fe yields (463-596 kg km-2 y-1) exceeded the estimated global riverine 

yield by between 55- and 710-times, depending on the estimate (De Baar and De Jong, 2001; Krachler et al., 2005). As 

previously described for a slightly different study period (Oliver et al., 2017), DOC yields (22,200–26,900 kg km-2 y-1) from 340 

the Kwakshua Channel drainage basin exceeded by almost two times the upper bound of the global range (2000–14,000 kg 

km-2 y-1) reported by Meybeck (1982), and exceeded by up to 18 and 26-times the modelled global and North American yields, 

respectively (Seitzinger et al., 2005) (Table S10), although our combined estimate was lower than that reported for the 2015 

water year in Oliver et al. (2017) (33,300 kg km-2 yr-1).  
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3.3.4 Organic matter-associated versus inorganic nutrients 345 

Measured TN, TDN, DON, and dFe concentrations pooled across all watersheds were positively correlated with DOC (Pearson 

product moment correlation, r = 0.612-0.738, depending on the species; Table S11). Conversely, concentrations of DIN, NH4
+, 

NO3
-, TP, TDP, PO4

3-, and Si(OH)4 were only weakly positively (r < 0.300 for TP, TDP, PO4
3-, NH4

+, Si(OH)4) or negatively 

(-0.300 < r < 0.000 for DIN, NO3
-) associated with DOC. Based on these relationships, we distinguish hereafter between 

strongly organic matter-associated (DON – which makes up most of the TDN and TN pools – and dFe) and inorganic (DIN, 350 

PO4
3-, Si(OH)4) nutrients in the freshwater pool. The strength and direction of these relationships were, however, highly 

watershed-specific (Table S11). This was especially true for Si(OH)4, for which watershed-specific correlation coefficients 

ranged between -0.15 and 0.60. In particular, there was a strong positive correlation between concentrations of Si(OH)4 and 

DOC from watersheds 708 and 693 (Table S11), indicating the likely association with organic matter in those watersheds. 

3.3.5 Patterns in bulk freshwater chemistry 355 

We used PCA to describe the bulk freshwater chemistry independent of discharge over time using monthly flow-weighted 

DOC and nutrient concentrations. Two PCs alone accounted for 63.8% of total observed variability. PC1, which accounted for 

50.0% of total variability, was defined by TDN, TN, Fe, DON, DOC, Si(OH)4, and TP, suggesting that it represented primarily 

dissolved organic matter (DOM)-associated compounds (Fig. 5a, Table S12). PC1 showed strong spatial separation between 

watersheds and seasonal variability over the period of record (Fig. 5b). Watersheds with the highest yields of DOC (626, 819, 360 

844; Oliver et al., 2017) also exported high concentrations of the DOM-associated suite of nutrients (TDN, TN, Fe, DON). 

Across most watersheds, loadings on PC1 were highest in June-July, indicating higher concentrations of DOM-associated 

compounds, reaching a minimum in February-March. There was low interannual variability in PC1, suggesting a consistent 

seasonal export of DOM-associated nutrients from freshwater ecosystems.   

 365 

PC2 (13.8%) was negatively associated with TDP, NH4
+, TP and DIN, but positively with PO4

3- and Si(OH)4, and thus 

represented the inorganic nutrients (Fig. 5a). Like PC1, PC2 oscillated seasonally, but was much more consistent between 

watersheds with the exception of watershed 708 (Fig. 5c; see Table S3 for watershed information). This pattern is reflective 

of the observed increases in concentrations of DIN, NH4
+ and TDP in the late winter/early spring, whereas concentrations of 

PO4
3- and Si(OH)4 increased in late summer/early autumn. Unlike PC1, there was some interannual variability in PC2.  370 

3.4 Mixing in nearshore waters 

Plume concentrations of NO3
-, PO4

3-, and Si(OH)4 were consistently higher than the freshwater reference concentrations during 

both rainfall events (Fig. 6, S6). Conversely, freshwater concentrations of DOC, DON and dFe were much higher than in 

marine waters. During the August rainfall event (Fig. 6), all of the surveyed nutrients (except for DOC) mixed non-

conservatively, with NO3
-, PO4

3-, and dFe mixing below conservative behaviour, and Si(OH)4 and DON mixing above it. 375 

https://doi.org/10.5194/bg-2020-350
Preprint. Discussion started: 27 October 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

During the September 2015 event (Fig. S6), NO3
-, PO4

3 and DOC mixed approximately conservatively across most of the 

plume, whereas Si(OH)4 concentrations were well above conservative mixing, suggesting an additional source of Si(OH)4 to 

surface waters during the rain events. DON and dFe were below conservative mixing.   

 

During both events, NO3
-: Si(OH)4 was below the Redfield ratio across the whole plume (Fig. 7, S7). NO3

-: PO4
3- was above 380 

the Redfield ratio at lower salinities (5–10 salinity units) but approached the ratio across the rest of the plume during the 

September event (Fig. S7), and was well below the Redfield ratio across the whole plume except for one station in August 

(Fig. 7). Fe: PO4
3- and Fe: NO3

- were close to the Redfield ratio across the plumes during both events. 

3.5 Role of inorganic freshwater nutrient inputs in subsidising nearshore productivity  

By scaling estimates of primary productivity measured at nearby Rivers Inlet (51.7°N, 127.3°W; Shiller, 2012) to the surface 385 

area of Kwakshua Channel, we previously estimated that total primary production within the Kwakshua Channel system is on 

the order of 21 to 42 Gg C yr-1 (St. Pierre and Oliver et al., 2020). Assuming that phytoplankton nutrient requirements are at 

the extended Redfield ratio, freshwater DIN and Si(OH)4 inputs could, at most, directly support primary production on the 

order of 0.02 Gg C yr-1, or less than 1% of the estimated total. Freshwater PO4
3- fluxes likewise could only support up to 0.02 

Gg C yr-1 (based on the largest annual fluxes from 2016; Table 1). Assuming no loss, the freshwater dFe inputs could support 390 

between 7.3 Gg C yr-1 (based on P:Fe = 0.1) and 94.5 Gg C yr-1 (based on P:Fe = 0.01), or between 17.4% and 450% of the 

estimated primary production. 

 

4 Discussion 

We conducted routine monthly and targeted rainfall event surveys, linking marine-terminating streams and nearshore surface 395 

waters from Aug-2014 through to Dec-2018 to quantify the flux of terrestrial materials to nearshore ecosystems from small 

bog-forest watersheds with a hypermaritime climate. Below we discuss spatial and temporal variability of these fluxes and 

nutrient availability in receiving nearshore ecosystems, the consequences of terrestrial exports for nearshore ecosystem 

function, and highlight priority research areas (Fig. 8). 

4.1 Decoupling of small hypermaritime watershed exports from wider scale climate anomalies 400 

The relationship between short term weather patterns along the northeast Pacific coast and the ONI has been well described, 

with El Niño events associated with warmer air temperatures and lower rainfall/stream flow, and La Niña events corresponding 

to colder and wetter periods (Ward et al., 2010). We did not, however, find this to be true at the scale of the Kwakshua Channel 

system, where air temperature and precipitation anomalies were unrelated to the ONI (Fig. S3). Whereas most work relating 

climate anomalies to stream flow has focused on large river basins (Wang et al., 2006) or continental scales (Ward et al., 2010), 405 
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our results suggest that localised freshwater inputs from smaller hypermaritime watersheds of the NPCTR may be a more 

consistent input to nearshore surface waters. The small size of the watersheds limits retention of precipitation, such that rain 

events directly translate into enhanced stream flows. That being said, ENSO events may have resulted in more intense storms 

or longer periods of low flow, a temporal scale which was not specifically examined here. In the marine environment, El Niño 

and La Niña events have been associated with changes in nutrient availability in the northeast Pacific (Whitney and Welch, 410 

2002). Intensification of stratification during El Niño events can lead to nutrient depletion in the surface ocean during the 

summer productive season (Whitney and Welch, 2002). Conversely, during La Niña events deeper mixing can favour higher 

nutrient concentrations in surface waters (Whitney and Welch, 2002). 

4.2 Importance of freshwater exports for nearshore primary production  

4.2.1 Origin of nutrients in freshwater systems of the NPCTR 415 

Nutrients in freshwater ecosystems of the NPCTR originate from a diverse array of potential sources, including soils and 

terrestrial ecosystems, interactions with the atmosphere, and the return of migratory fish species (Sugai and Burrell, 1984; 

Hood et al., 2007; Fellman et al., 2009c). Inorganic nitrogen species in freshwaters may originate from the fixation of 

atmospheric N2 or the ammonification of organic matter to NH4
+, with subsequent nitrification to NO3

- (Wetzel, 2001). On the 

other hand, P has a geologic source and is mobilised by mineral weathering, which releases PO4
3-, among other ions (Walker 420 

and Syers, 1976). However, the quartz diorite bedrock in the area is poor in P, with less than 0.2% of the mineral content 

accounted for by P-containing compounds (Roddick, 1996). The mineral P pool from which non-occluded P (PO4
3- sorbed to 

Fe and aluminium oxides; Walker and Syers, 1976) can be mobilised is thus very small, such that remineralisation of organic 

material is likely to be the primary source of P in these watersheds. The small size of the watersheds and the large and frequent 

rainfall events characteristic of the NPCTR may limit in-watershed reprocessing of the large quantities of DOM, except in 425 

those few watersheds with larger lake and wetland areas (Oliver et al., 2017). Based on lithology (Hartmann and Moosdorf, 

2012) and the hypermaritime boundary (Salkfield et al., 2016), we determined that the bedrock of Calvert and Hecate Islands 

(acidic plutonic) is widespread on the BC outer coast, accounting for roughly 37% (11,210 km2) of the total area of the 

hypermaritime region (30,080 km2). This suggests that low P fluxes are likely representative of many small coastal watersheds 

located within the NPCTR.  430 

 

Concentrations of DOM-associated nutrients like DON and dFe increased seasonally following the end of the drier summer 

period (Fig. S4). This pattern is a well-known feature of transitional periods in highly seasonal catchments, including snow-

covered catchments during the spring melt (Boyer et al., 1997) and in coastal catchments with distinct dry and wet seasons, 

like those sampled here (Sanderman et al., 2009; Oliver et al., 2017; Fellman et al., 2009a). When hydrological connectivity 435 

is low between soils and streams during drier periods, DOM accumulates in soils, a by-product of microbial degradation of 

organic matter. With the onset of the autumn rains, the accumulated DOM is then flushed into streams. This transition is also 
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associated with a change in the source and therefore lability of the DOM, discussed in detail for these watersheds in Oliver et 

al. (2017). dFe in particular may be subject to dissolution by organic acids at the end of the summer (Ling Ong et al., 1970; 

Keller, 2019), and the resultant Fe-OM complexes can then be exported to streams and rivers (Jones, 1998; Boyer et al., 1997). 440 

In a similar vein, ratios involving NO3
- also consistently showed increased relative NO3

- concentrations in July and/or August 

in each year (Fig. 4). We surmise that this may be due to increased remineralisation of DOM coupled with the oxygenation of 

previously waterlogged soils during the dry summer months.  

 

The seasonal increase in concentration of the DOM-associated nutrients was also observed for Si(OH)4, albeit to a lesser extent 445 

and with high spatial variability (Fig. S4). Dissolved Si(OH)4 presence in freshwater systems is largely a function of local 

geology. Its availability is then determined by a number of factors, including DOM concentration and quality, internal 

processing in lakes and streams (e.g., redox cycling, phytoplankton uptake), water temperature, and pH (Wetzel, 2001). 

Si(OH)4 concentrations in the streams were highly variable and the origin of Si(OH)4 is not obvious. When pooled across all 

samples, Si(OH)4 was unrelated to DOC (Table S11). For certain watersheds, though, Si(OH)4 was strongly positively 450 

correlated with DOC (r > 0.50 for watersheds 708 and 693), suggesting that Si(OH)4 there was associated with DOM. However, 

there was no relationship or even a weak negative one for others (Table S11). The highest concentrations of Si(OH)4 were 

consistently observed in watersheds 703 and 626, and were unrelated to DOC, suggesting that deposits of fine sediments found 

within both watersheds may support greater mineral weathering (Eamer and Shugar, 2015). Si(OH)4 concentrations in the 

streams of Calvert and Hecate islands (0.24 to 37.89 mol L-1) were well below the global riverine average of 150 mol L-1 455 

(Conley, 1997), and in fact more similar to the concentrations observed in marine waters (Table S7), suggesting little, if any, 

influence of freshwater Si(OH)4 exports over the Kwakshua Channel marine ecosystem as a whole.   

4.2.2 Role of freshwater nutrient inputs to nearshore ecosystems  

Our results suggest that freshwater inputs of most inorganic nutrients (DIN, PO4
3-) can directly support less than 1% of the 

estimated primary production in nearshore surface waters in this particular area of the NPCTR. In many cases, terrestrial DOM-460 

associated nutrients are not directly available to phytoplankton in nearshore waters, and their incorporation into food webs first 

requires a mineralisation step (Eppley and Peterson, 1979; Hedges et al., 1997), or cleavage by exo-enzymes (Benitez-Nelson, 

2000). Our earlier work in Kwakshua Channel suggested that large inputs of DOM during rainfall events may favour microbial 

growth in surface waters (St. Pierre and Oliver et al., 2020), which could enhance remineralisation. Indeed, in the Baltic Sea, 

increasing terrestrial inputs have been associated with a shift from largely autotrophic communities to increasing heterotrophy 465 

in surface waters (Wikner and Andersson, 2012). Studies in estuaries around the world have also highlighted the potential role 

of terrestrial DOM in subsidising marine zooplankton production (Hoffman et al., 2008; Hitchcock et al., 2016), though the 

extent to which that is the case here is unknown (Fig. 8).  
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The fact that concentrations of key inorganic nutrients (DIN, PO4
3-, Si(OH)4) in freshwaters feeding Kwakshua Channel were 470 

consistently lower than in adjacent marine waters is unusual (Wetz et al., 2006), albeit not unheard of along the eastern Pacific 

coast (Cuevas et al., 2019). Freshwater inputs may therefore act to dilute inorganic nutrient pools in marine surface waters, 

potentially limiting primary production there if remineralisation of OM is insufficient. To date, many of the measurements 

spanning the land-to-ocean aquatic continuum have been made in waters flowing through heavily human-impacted watersheds 

(e.g., Baltic Sea, Mississippi River/Gulf of Mexico). Intensive agricultural, industrial and urban development in these 475 

watersheds tend to increase freshwater inorganic nutrient delivery to coastal waters (e.g., Perez et al., 2011). Our results 

highlight the need to study less anthropogenically disturbed regions to gain a better global understanding of nutrient and carbon 

dynamics at the land-ocean interface, and the degree to which the functioning of these systems has been perturbed.    

 

Ratios of potentially limiting nutrients in marine waters consistently indicated N limitation relative to Si and P in nearshore 480 

waters (Fig. 4, 7, S7). This suggests that a) there is an additional source of nutrients – especially N – potentially unaccounted 

for; b) phytoplankton nutrient requirements in these waters deviate from Redfield quantities; or, c) phytoplankton experience 

replete growth until the limiting nutrient had been consumed. In support of the first, DON fluxes from Calvert and Hecate 

Islands were high, with concentrations exceeding those in marine waters during the rainfall events (Fig. 6e, S6e). DON may 

be an additional source of DIN to surface waters through remineralisation and/or photochemical decomposition processes 485 

(Eppley and Peterson, 1979; Goldman et al., 1987; Tank et al., 2012). In Arctic coastal waters, for example, it is estimated that 

microbes incorporate at least 74.6% of the nitrogen that they consume, with DIN regeneration accounting for up to the 

remaining 25.4% (Tank et al., 2012). This, combined with photoammonification, may result in total DIN regeneration rates 

from terrestrial DON inputs of between 55 and 83% (Tank et al., 2012). By applying these rates to the freshwater DON fluxes 

from Calvert and Hecate Islands, we estimate that between 0.83 and 1.57 Mmol yr-1 DIN could originate from the terrestrial 490 

DON flux, effectively increasing the terrestrially-derived inorganic nitrogen pool by five to eight times. In the Baltic Sea, 

nitrogen regeneration can support between 78 and 97% of primary production in coastal waters (Klawonn et al., 2019); while 

in other coastal areas, nitrogen regeneration can more than (>100%) satisfy N demand by phytoplankton (Diaz and Raimbault, 

2000), highlighting the importance of regeneration in coastal waters. Local estimates of nitrogen uptake and regeneration 

would, however, be valuable to corroborate this estimate (Fig. 8). Higher summertime phytoplankton growth in the nearshore 495 

waters of Prince William Sound (Gulf of Alaska) is believed to be principally sustained by regenerated nitrogen (Strom et al., 

2006), suggesting that some phytoplankton communities along the NPCTR coast may be particularly well-adapted to or closely 

associated with microbes capable of the rapid remineralisation of organic matter-associated nutrients.   

 

Alternatively, phytoplankton nutrient requirements may deviate from Redfield quantities, such that the use of Redfield ratios 500 

is imperfect in this region. Local or regional deviations from Redfield stoichiometry in surface waters have been widely 

reported (Körtzinger et al.; Martiny et al., 2013). Though not accounting for Si or Fe, the C:N:P ratio of phytoplankton declines 

with increasing latitude, with a mean C:N:P of 78:13:1 in nutrient-rich high latitude (45N to 65N) waters (Martiny et al., 
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2013). The mean water column N:P (NO3
-:PO4

3-) ratio in the marine surface waters along the Central Coast was 6:1, but 

fluctuated annually between ~1:1 in mid-summer and the Redfield ratio - 16:1 - in the winter (Fig. 4c). In the Gulf of Alaska, 505 

Strom et al. (2006) observed similar but less dramatic seasonal changes in NO3
-:PO4

3- through the productive spring and early 

summer months in the inner shelf waters. As in the Kwakshua Channel system, waters along the outer shelf of the Gulf of 

Alaska were also characterised by an excess of Si(OH)4 relative to NO3
-, conditions which were associated with the 

proliferation of small (< 5 µm), non-diatomaceous cells. Although we did not characterise phytoplankton communities as part 

of this study, excess Si(OH)4 in surface waters could indicate that diatom production may be limited by NO3
-, dFe, or another 510 

nutrient altogether.   

 

Like DON, concentrations of dFe in freshwaters greatly exceeded those in marine surface waters, corresponding to high fluxes 

of potentially limiting dFe to the coastal environment. dFe mixed well below conservative behaviour across both freshwater 

plumes (Fig. 6f, S6f), suggesting either the rapid sedimentation of dFe out of surface waters, a fraction that may occur with 515 

the flocculation of DOC (St. Pierre and Oliver et al., 2020; Herzog et al., 2020a), or the rapid uptake of dFe into food webs. 

While Fe limitation has previously been documented for diatoms in nearshore coastal waters of the North Pacific (Takeda, 

1998; Bruland et al., 2001), primary productivity was not explicitly measured in this study, thus limiting the direct conclusions 

that can be drawn without additional data.  

 520 

Fe availability to both microbes and higher trophic level organisms in coastal waters, and more broadly across the global 

oceans, depends on the presence and identity of organic ligands to which Fe binds (Lauderdale et al., 2020). Terrestrial 

dissolved organic matter-bound Fe, which likely predominates in these watersheds, has been shown to be highly stable during 

estuarine mixing, and can be transported well beyond the estuary to open waters where it can serve as a source of potentially 

limiting-Fe (Herzog et al., 2020b). However, despite this stability, these complexes remain permeable to microbial 525 

siderophores (Batchelli et al., 2010), molecules with a strong affinity for Fe produced by microbes across a wide diversity of 

nutrient regimes in the coastal oceans (Boiteau et al., 2019). The quantification of dFe complexation and more broadly of fate 

(sedimentation, uptake) are important next steps within this region (Fig. 8). 

4.2.3 Spatial and temporal variability in nearshore mixing 

There are several possible reasons why the mixing of NO3
-, PO4

3-, and DON varied between the two rainfall events (Fig. 6, 530 

S6). Firstly, the plumes sampled emanated from two different watersheds (819 on 07-August and 703 on 19-September), which 

have amongst the highest and lowest organic carbon yields of the study watersheds, respectively (Oliver et al., 2017). Because 

the quality and quantity of the freshwater exports differ so dramatically, some of the differences observed in mixing may 

reflect differences in the freshwater end-member. The outlet stream of watershed 819 drains extensive wetlands (50.2% 

watershed area; Table S3), ecosystems known to be hotspots of DOM production and processing. On the other hand, watershed 535 

703 has the thickest mineral soils (mean depth = 35.8 cm; Oliver et al. 2017), exposed bedrock at high elevation, a steep 
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watershed gradient, and comparatively low coverage by lakes and wetlands, indicating little time for retention and processing 

of nutrients within the watershed before export to coastal waters. We note, however, that the freshwater end-members, while 

watershed and month-specific, were not sampled at the same time as the plume and may therefore not accurately reflect nutrient 

concentrations during these specific rainfall events (see also Fig. 3 for variation in the freshwater endmember). Secondly, the 540 

sampling time within each of the respective events was quite different. The sampling in August occurred on the fifth day of a 

six-day storm during a drier period, with rainfall of ~62 mm up to and including sampling on 07-August (total rainfall of ~85 

mm over six days, previous 30-day total = ~100 mm). In contrast, the September sampling occurred on the second day of an 

eight-day event, with rainfall of ~49 mm up to and including sampling on 19-September (total rainfall of ~135 mm over eight 

days, previous 30-day total = ~190 mm). Rainfall events of these durations and sizes are among the most common in any given 545 

year (Table S6), and as such, these events were representative of medium sized events during the warmer seasons. Finally, 

these two events occurred at different times of year within the context of the seasonal marine cycle: one in early August when 

temperatures are still warm and marine waters are still relatively productive, and the second in mid-September when the 

transition to lower productivity and cooler/rainier weather has typically begun. For example, NO3
- exhibited non-conservative 

behaviour during the August event when we would expect uptake by primary producers to be higher (Fig. 6), but conservative 550 

behaviour during the September event (Fig. S6), when primary production is somewhat lower. Regardless of the reason(s), 

these two events highlight the variable relationship between nearshore waters and freshwater inputs over time and space. 

4.2.4 Nutrients across the land-ocean interface in the NPCTR 

While DOC has been a major focus across the NPCTR (see Fellman et al. 2009a; Hood et al. 2006; Oliver et al. 2017; and 

references therein), we know relatively little about nutrient stoichiometry across the land-to-ocean aquatic continuum in this 555 

region. A handful of studies documenting nutrients in either coastal waters or streams exist, without full consideration of the 

composition of the adjacent waters. A notable exception to this, but outside the NPCTR of North America, includes efforts in 

three coastal temperate rainforest watersheds along the eastern coast of Japan. In contrast to our findings, freshwater 

concentrations of NO3
- (18-46 µmol L-1) and Si(OH)4 (44-172 µmol L-1) there were higher than in nearshore waters (NO3

- = 

0.7-22 µmol L-1; Si(OH)4 = 10-109 µmol L-1), such that freshwaters may have acted as sources of these nutrients to adjacent 560 

marine systems (Matsunaga et al., 1998). Marine surveys of freshwater plumes along the Oregon Coast likewise inferred that 

coastal watersheds were important sources of NO3
- (43-52 µmol L-1), PO4

3- (4.9-5.5 µmol L-1), Si(OH)4 (171-197 µmol L-1), 

and dFe (0.12 µmol L-1) to nearshore waters (Wetz et al., 2006). However, in both Oregon and Japan, the studied watersheds 

include agricultural activities, large human settlements, and more productive forests with N-fixing alder, all of which tend to 

increase nutrient loadings to aquatic ecosystems. In both cases, these surveys were also conducted over short time periods (1-565 

2 months), and therefore likely do not represent the full range of possible conditions.  

 

The nutrient and DOC concentrations that we observed in the Calvert and Hecate streams were very similar to those from 

earlier work in the Wilson and Blossom Rivers of southeast Alaska (Sugai and Burrell, 1984). There, synchronous late 
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summer/early autumn spikes in DOC and Fe concentrations were attributed to the flushing of forest soils following the drier 570 

summer period. A late summer peak in NH4
+ and PO4

3- concentrations was associated with the large salmon runs supported by 

the rivers (Sugai and Burrell, 1984). Although the streams of Calvert and Hecate do not support large salmonid stocks, we did 

observe a small increase in flow-weighted NH4
+ concentrations in August in watersheds 819, 708 and 844 (Fig. S4), two of 

which (708 and 844) are known to have coho salmon (Oncorhynchus kisutch; McAdams, 2018). However, the increase in 

NH4
+ was not reflected in other constituents that would be associated with salmon (e.g., NO3

-, PO4
3-, DOC as in Hood et al., 575 

2007), rather suggesting enhanced remineralisation of organic matter in soils during the summer. In nearshore waters, Wilson 

and Blossom River PO4
3- mixed conservatively and there was little loss of Fe in surficial coastal waters, but the number of 

marine measurements taken were limited relative to the river surveys (Sugai and Burrell, 1984). Fe yields from the Calvert 

and Hecate watersheds were comparable to these more northerly sites (Sugai and Burrell, 1984), which also exceeded the 

global riverine average by two to three orders of magnitude (Table S10). 580 

 

Surface waters of Hecate Strait, just north of Queen Charlotte Sound along the British Columbia coast, were similar to the 

Redfield ratio in both summer and winter with respect to N:P and Si:N, and exceeded the Redfield-Brzezinski Si:P ratio 

(Whitney et al., 2005). The Si:P ratios (21-26:1) were similar to those in the Kwakshua Channel system, but the Hecate Strait 

summer N:P (13:1) was much higher than the ~1:1 in Kwakshua waters (Whitney et al., 2005), again highlighting significant 585 

spatial variability within a small area of the NPCTR. Although nutrient limitation assays in coastal waters of British Columbia 

are sparse, the Gulf of Alaska, which borders the northern reaches of the NPCTR, is known to be Fe-limited (Martin et al., 

1989), while N co-limitation has been observed across the continental shelf (Strom et al., 2006). This spatial variability in 

nutrient limitation status is largely a result of the freshwater input dynamics, vertical mixing events, and horizontal transport 

processes, e.g., onshore transport of offshore waters during downwelling (Strom et al., 2006). Eddies generated on the 590 

continental shelf in the northeast Pacific can readily transport iron and other nutrients (e.g., DON) into offshore waters (Johnson 

et al., 2005; Ladd et al., 2009; Cullen et al., 2009). The existence of both dFe supply and an efficient transport mechanism 

suggests that that the NPCTR may be a hotspot of terrestrial Fe export to offshore waters of the northeast Pacific Ocean.  

  

The sheer diversity of both coastal ecosystems and watershed types across the NPCTR make it difficult to apply findings 595 

uniformly from one part of the coast to the wider region.  Extensive marine surveys have been conducted along the Chilean 

coast in the South PCTR and demonstrated highly variable nearshore nutrient profiles with differing freshwater inputs (Cuevas 

et al., 2019). Areas receiving greater freshwater inputs were associated with lower total chlorophyll a concentrations, and 

phytoplankton communities dominated by small cells less than 20 µm (Cuevas et al., 2019). Given that seasonality plays such 

an important role across the region, it is imperative that more surveys be conducted year-round in recognition that freshwater 600 

and marine influences may alter the quality of nearshore waters differently throughout the year. 
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4.3 Influence of high land-ocean connectivity in autumn-winter on the spring bloom 

Given that freshwater exports to nearshore ecosystems are highest in autumn and winter, we might expect exports at this time 

of year to play an important role in priming nearshore waters for the spring bloom. Although this wetter season coincides with 

lower primary production in receiving marine ecosystems, wintertime downwelling winds can be favourable for the retention 605 

of freshwater plumes in nearshore environments (Thomson, 1981). In some eastern boundary current upwelling regions, 

upwelling of terrestrial Fe deposited in coastal sediments may be an important source of Fe for nearshore waters during the 

summer months (Johnson et al., 1999; Chase et al., 2005). Along the Oregon coast, for example, wintertime riverine inputs 

stay close to shore, and freshwater inputs of limiting Fe are sufficient to support significant primary production in winter, and 

the entirety of the spring-summer phytoplankton bloom (Wetz et al., 2006). With the switch to upwelling favourable winds in 610 

the spring, some of this pool can then disperse and potentially support primary production over a much wider area and into 

offshore waters (Herzog et al., 2020b). The large freshwater dFe exports may therefore represent an important subsidy to both 

nearshore surface waters and waters offshore.   

 

Also of potential importance are the freshwater exports of DON (304-381 kg km-2 y-1), which were at the high end of the 615 

estimated range for rivers globally (10-479 kg km-2 y-1; Alvarez-Cobelas et al., 2008). Although DON has traditionally been 

considered resistant to microbial degradation in surface waters (Voss and Hietanen, 2013), the advective flux from coastal 

waters can be a potentially important source of N to the open ocean. Globally, waters of the eastern Pacific have high DON 

concentrations (Letscher et al., 2013), which may, at least in part, be influenced by high freshwater inputs that drive a clear 

nearshore (high) to offshore (low) gradient in DON concentrations in the region (Wong et al., 2002). However, the fate of the 620 

terrestrial DON in these waters requires further investigation (Fig. 8).     

 

The freshwater plumes that we sampled during the two rainfall events were likely quickly dissipated by tide and wind activity, 

but because of the sheer volume of freshwater exported during the autumn and winter months, combined with downwelling-

favourable winds, we might expect freshwater plumes to persist for longer during these seasons. The Kwakshua Channel is 625 

approximately 800 km north of the Oregon study area, where Wetz et al. (2006) found high winter primary production. 

Kwakshua Channel thus has colder waters and, critically, receives less incident light during the winter than the Oregon shelf. 

Wintertime primary production is therefore likely reduced compared to the Oregon shelf, but the observation of such high 

winter primary production in nearby regions highlights the potential biogeochemical importance of what is traditionally an 

under-sampled season across both freshwater and marine environments. Although we cannot definitively say to what extent 630 

autumn and winter freshwater inputs may contribute to the spring bloom, such high fluxes of potentially limiting nutrients (N, 

dFe) could play an important role during this under-studied season.    
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5 Conclusions and next steps 

Using a more than four year dataset, we show that freshwater exports from small hypermaritime rainforest watersheds along 

the British Columbia outer coast to nearshore surface waters may directly dilute coastal pools of inorganic nutrients, but 635 

enhance pools of organic matter-associated nutrients that require remineralisation or chelation (dFe) before being readily 

available to primary producers in surface waters. These freshwater exports have potentially important consequences for the 

function of nearshore waters, altering food web structure and energy transfer (Fig. 8). In particular, freshwater yields of DON 

and dFe across the watersheds were at the high end of (DON) or greatly exceeded (dFe) currently documented global ranges 

of riverine nutrient yields to coastal waters.  640 

 

Based on these results, a number of future priority research directions have emerged. Of primary importance will be to 

understand which nutrients are limiting in coastal waters of the NPCTR throughout the year (Fig. 8). Of secondary importance 

will be to resolve a) the nature of the freshwater dFe exports (organic vs. inorganic complexes, identity of ligands), which 

ultimately determines the lability and downstream fate of this potentially critical nutrient (Herzog et al., 2020b), and b) the 645 

fate of the freshwater DON exports within the nearshore waters (i.e., extent of microbial remineralisation, 

photoammonification, uptake) (Fig. 8).  

 

Coastal waters of the northeast Pacific Ocean receive nutrients from multiple terrestrial freshwater sources, including rainfall, 

snow, and glacial melt (Hood and Berner, 2009; Edwards et al., 2013), as well as from multiple marine sources, including 650 

upwelling and exchange with offshore waters (Thomson, 1981). To date, much of the work examining the impacts of this 

watershed diversity on nearshore ecosystems has focused on differences in the lability of dissolved organic matter from these 

various hydrological sources to marine ecosystems (e.g., Arimitsu et al., 2018; Hood and Berner, 2009; Hood et al., 2009; 

Fellman et al., 2010). Variability in nutrient (N, P, Si, Fe) sources across the wider NPCTR region, however, remains largely 

unexplored. A concerted effort across the region is thus needed to better understand how this diversity of nutrient sources 655 

impact nutrient availability and subsequent autotrophic and heterotrophic production in coastal waters (Bidlack et al., 2017). 
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 965 

Figure 1: Map of study area within the North Pacific coastal temperate rainforest region. All sampled freshwater (n = 7) and marine 

stations (n = 13) are shown. Inset indicates the sampling stations for the riverine plume surveys. The coastal temperate rainforest 

delineation is based on the detailed mapping by Ecotrust et al. (2015).  
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Figure 2: Climatology of Calvert and Hecate islands over the study period (01-Aug-2014 to 31-Dec-2018): (a) monthly mean, 970 
minimum and maximum air temperature across the seven watershed outlets; (b) mean monthly rainfall across the seven watershed 

outlets and total monthly discharge to Kwakshua Channel; (c) mean ± SE surface water temperature at the marine stations during 

sampling events, measured using an YSI; (d) Oceanic Niño Index, with El Niño and La Niña events highlighted based on thresholds 

of greater than ± 0.5 (weak event) or greater than ± 1.0 (strong event).  
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 975 

 

Figure 3: Time series of mean (± SE) measured monthly chlorophyll a (a), nutrient (b-d) and dissolved organic carbon (e) 

concentrations across both marine (across 0, 1, and 5 m depths) and freshwater stations. Freshwater fluxes to nearshore waters are 

also shown, upscaled from the measured fluxes to the entire drainage area of the Kwakshua Channel system. NO3
-, combined nitrate-

nitrite; Si(OH)4, silicic acid; PO4
3-, orthophosphate.  980 
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Figure 4: Time series of monthly mean (± SE) stoichiometric ratios for NO3
-: Si(OH)4 (a), Si(OH)4: PO4

3- (b), and NO3
-: PO4

3- (c) 

across the marine (integrated 0-5 m) and freshwater stations. Freshwater stoichiometric ratios calculated from the nutrient fluxes 

(see Fig. 3). The extended Redfield ratio is shown as a point of reference (red dashed line).  985 
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Figure 5. Principal component analysis of flow-weighted bulk freshwater chemistry exports to the nearshore environment. (a) 

Nutrients in PC space (scaling 2 shown to preserve correlation between variables). Changes in PC1 (b) and PC2 (c) over time (scaling 

1 – shown to preserve distance between objects). Note that PC1 loadings were multiplied by -1 to facilitate interpretation. 
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 990 

Figure 6: Nutrient concentration mixing plots across the freshwater plume (0, 1 and 5 m at six stations) at the outlet of watershed 

819 for the 86.8 mm rainfall event on 7-Aug-2015 (day 5 of 6-day event). Combined nitrate-nitrite (NO3
-+NO2

-; panel a), 

orthophosphate (PO4
3-; panel b), silicic acid (Si(OH)4; panel c), dissolved organic carbon (DOC; panel d), dissolved organic nitrogen 

(DON; panel e), and dissolved iron (dFe; panel f) are shown. Freshwater and marine end-members are the mean concentration at 

watershed 819 for August 2015 and the plume sample with the highest salinity, respectively. 995 
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Figure 7: Stoichiometric ratios across the freshwater plume (0, 1 and 5 m at six stations) at the outlet of watershed 819 during the 

rainfall event on 7-Aug-2015. Freshwater and marine end-members are the mean concentration at watershed 819 for the month of 

August and the plume sample with the highest salinity, respectively.  
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 1000 

Figure 8. Conceptual framework highlighting nutrient dynamics in coastal waters downstream of watersheds dominated by bog 

forests of the NPCTR. The size of arrows shows the relative magnitude of these processes (if known). Grey arrows indicate fluxes 

that are poorly quantified in this region. 

  

https://doi.org/10.5194/bg-2020-350
Preprint. Discussion started: 27 October 2020
c© Author(s) 2020. CC BY 4.0 License.



42 

 

 1005 

  

T
a

b
le

 1
. 

A
n

n
u

a
l 

co
m

b
in

e
d

 f
lu

x
e
s 

o
f 

n
u

tr
ie

n
ts

 f
ro

m
 t

h
e
 s

e
v

e
n

 g
a

u
g

e
d

 w
a

te
rs

h
ed

s 
(4

6
.9

 k
m

2
),

 u
p

sc
a

le
d

 t
o

 t
h

e 
d

ra
in

a
g

e 
a

re
a

 o
f 

th
e 

K
w

a
k

sh
u

a
 C

h
a
n

n
el

 s
y
st

em
 (

6
9
.6

 k
m

2
),

 a
n

d
 m

ea
n

 ±
 S

E
 a

n
n

u
a

l 
fl

o
w

-w
ei

g
h

te
d

 c
o

n
ce

n
tr

a
ti

o
n

s 
(C

F
.W

.)
. 

 

  
F

lu
x

 

(M
m

o
l 

y
r-1

) 

C
F

.W
. 

(µ
m

o
l 

L
-1

) 

Y
ea

r 
2

0
1

5
 

2
0

1
6

 
2

0
1

7
 

2
0

1
8

 
 

2
0

1
5

 
2

0
1

6
 

2
0

1
7

 
2

0
1

8
 

W
at

er
 (

k
m

3
) 

0
.1

7
2

 
0

.1
8

6
 

0
.1

7
9

 
0

.1
6

1
 

 
- 

- 
- 

- 

D
O

C
 

1
4

5
±

4
1

 
1

5
6

±
4

4
 

1
4

4
±

4
2

 
1

2
9

±
3

7
 

 
8

4
3

±
2

3
8

 
8

3
7

±
2

3
5

 
8

0
9

±
2

3
5
 

8
0

0
±

2
2

8
 

T
N

 
2

.0
6

±
0

.5
9

 
2

.3
0

±
0

.6
5

 
2

.1
8

±
0

.6
3

 
1

.8
8
±

0
.5

4
 

 
1

1
.9

8
±

3
.4

3
 

1
2

.3
7

±
3

.5
1

 
1

2
.1

8
±

3
.5

2
 

1
1

.6
9

±
3

.3
3

 

T
D

N
 

1
.8

3
±

0
.4

4
 

2
.0

9
±

0
.5

0
 

1
.9

6
±

0
.4

8
 

1
.6

4
±

0
.3

9
 

 
1

0
.6

4
±

2
.5

6
 

1
1

.2
3

±
2

.6
7

 
1

0
.9

6
±

2
.6

6
 

1
0

.1
8

±
2

.4
5

 

D
O

N
 

1
.7

0
±

0
.4

2
 

1
.8

9
±

0
.4

7
 

1
.7

9
±

0
.4

5
 

1
.5

1
±

0
.3

7
 

 
9

.8
6

±
2

.4
3

 
1

0
.1

7
±

2
.5

1
 

1
0

.0
3

±
2

.5
3

 
9

.4
0

±
2

.3
0

 

D
IN

 
0

.1
8

±
0

.1
6

 
0

.2
0

±
0

.1
9

 
0

.1
9

±
0

.1
8

 
0

.1
7
±

0
.1

5
 

 
1

.0
6

±
0

.9
5

 
1

.0
9

±
1

.0
3

 
1

.0
5

±
1

.0
0

 
1

.0
4

±
0

.9
5

 

N
H

4
+
 

0
.1

0
±

0
.1

0
 

0
.1

4
±

0
.1

6
 

0
.1

1
±

0
.1

2
 

0
.0

6
±

0
.0

7
 

 
0

.5
6

±
0

.6
2

 
0

.7
3

±
0

.8
3

 
0

.6
2

±
0

.6
9

 
0

.3
9

±
0

.4
5

 

 1
N

O
3

- +
N

O
2

-  
0

.0
9

±
0

.2
0

 
0

.0
7

±
0

.2
5

 
0

.0
8

±
0

.2
2

 
0

.1
0
±

0
.1

7
 

 
0

.5
0

±
1

.5
4

 
0

.3
6

±
1

.8
6

 
0

.4
3

±
1

.6
9

 
0

.6
5

±
1

.4
0

 

S
i(

O
H

) 4
 

0
.2

4
±

0
.1

1
 

0
.2

4
±

0
.1

1
 

0
.2

2
±

0
.1

0
 

0
.2

1
±

0
.1

0
 

 
1

.3
7

±
0

.6
5

 
1

.2
8

±
0

.5
9

 
1

.2
3

±
0

.5
8

 
1

.3
0

±
0

.6
1

 

T
P

 
0

.0
7

±
0

.0
4

 
0

.0
8

±
0

.0
5

 
0

.0
7

±
0

.0
4

 
0

.0
6
±

0
.0

4
 

 
0

.3
9

±
0

.2
4

 
0

.4
2

±
0

.2
5

 
0

.4
0

±
0

.2
4

 
0

.3
8

±
0

.2
3

 

T
D

P
 

0
.0

5
±

0
.0

3
 

0
.0

7
±

0
.0

4
 

0
.0

6
±

0
.0

3
 

0
.0

4
±

0
.0

2
 

 
0

.3
0

±
0

.1
6

 
0

.3
7

±
0

.2
0

 
0

.3
4

±
0

.1
8

 
0

.2
6

±
0

.1
4

 

P
O

4
3

-  
0

.0
2

±
0

.0
1

 
0

.0
1

±
0

.0
1

 
0

.0
1

±
0

.0
1

 
0

.0
1
±

0
.0

1
 

 
0

.0
9

±
0

.0
8

 
0

.0
7

±
0

.0
7

 
0

.0
7

±
0

.0
6

 
0

.0
8

±
0

.0
8

 

F
e 

0
.6

9
±

0
.2

1
 

0
.7

4
±

0
.2

3
 

0
.6

6
±

0
.2

1
 

0
.5

8
±

0
.1

8
 

 
4
.0

0
±

1
.2

3
 

3
.9

9
±

1
.2

2
 

3
.7

2
±

1
.1

7
 

3
.5

8
±

1
.1

2
 

 
 

 
 

 
 

 
 

 
 

K
ey

 r
a
ti

o
s 

 
 

 
 

 
 

 
 

 

N
O

3
- :

 S
i(

O
H

) 4
 

0
.2

9
±

0
.0

5
 

0
.2

2
±

0
.0

5
 

0
.1

8
±

0
.0

5
 

0
.1

6
±

0
.0

9
 

 
- 

- 
- 

- 

N
O

3
- :

 P
O

4
3

-  
4

.2
4

±
0

.0
5

 
4

.5
7

±
0

.0
5

 
3

.8
6

±
0

.0
6

 
2

.9
7
±

0
.1

2
 

 
- 

- 
- 

- 

S
i(

O
H

) 4
: 

P
O

4
3

-  
1

4
.4

7
±

0
.0

4
 

2
0

.2
0

±
0

.0
3

 
2

1
.6

4
±

0
.0

3
 

1
8

.5
0
±

0
.0

4
 

 
- 

- 
- 

- 

F
e:

P
O

4
3
-  

4
7
.8

3
±

0
.0

4
 

6
7
.5

0
±

0
.0

4
 

7
0
.7

4
±

0
.0

3
 

5
5

.4
2
±

0
.0

4
 

 
- 

- 
- 

- 
1
 N

O
3

- +
N

O
2

-  
fl

u
x

es
 a

n
d

 C
.F

.W
. c

al
cu

la
te

d
 a

s 
th

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 D
IN

 a
n

d
 N

H
4

+
. 

  

https://doi.org/10.5194/bg-2020-350
Preprint. Discussion started: 27 October 2020
c© Author(s) 2020. CC BY 4.0 License.



43 

 

 

 

 

 1010 

 

 

 

 

 1015 

 

 

 

 

 1020 

 

 

 

 

 1025 

 

 

 

 

 1030 

 

 

 

 

 1035 

 

 

T
a

b
le

 2
. 

M
e
a

n
 (

r
a

n
g

e
) 

a
n

n
u

a
l 

n
u

tr
ie

n
t 

c
o

n
c
e
n

tr
a

ti
o
n

s 
(i

n
 

m
o

l 
L

-1
) 

a
n

d
 s

to
ic

h
io

m
e
tr

ic
 r

a
ti

o
s 

(m
o

l 
m

o
l-1

) 
a

c
r
o
ss

 t
h

e
 1

3
 m

a
r
in

e
 s

ta
ti

o
n

s 

in
 M

e
a

y
 a

n
d

 K
w

a
k

sh
u

a
 C

h
a

n
n

e
ls

. 
 

 

 
2

0
1

5
 

2
0

1
6

 
2

0
1

7
 

2
0

1
8

 

C
o

n
ce

n
tr

a
ti

o
n

s 
 

n
 

 
n

 
 

n
 

 
n

 

D
O

C
 

7
1

.6
4

 (
7

.8
7

-9
6

5
) 

3
6

4
 

8
6

.8
5

 (
3

4
.4

7
-6

0
6

) 
7

0
 

9
6

.4
1

 (
6

3
.9

5
-1

3
1

.2
8

) 
2

8
 

1
0

5
.8

2
 (

5
9

.0
2

-1
9

8
.8

9
) 

1
6

 

N
O

3
- +

N
O

2
-  

8
.1

0
 (

0
.0

1
-2

2
.3

9
) 

5
2

6
 

1
1

.4
5

 (
0

.0
1

-2
0

.3
5

) 
1

3
6

 
7

.8
6

 (
0

.0
2

-2
2

.0
7

) 
1

0
8

 
1

0
.1

2
 (

0
.0

2
-1

9
.6

4
) 

3
4

 

S
i(

O
H

) 4
 

1
9
.1

7
 (

0
.1

2
-4

0
.7

0
) 

5
3
5
 

2
3
.1

2
 (

1
.3

0
-3

4
.3

4
) 

1
3
5

 
1
6
.8

4
 (

0
.0

4
-3

9
.6

4
) 

1
0
8

 
2
0
.1

5
 (

0
.1

1
-3

3
.9

0
) 

3
3
 

P
O

4
3

-  
0

.7
7

 (
<

D
.L

.-
2

.5
0

) 
5

2
3

 
1

.0
1

 (
0

.0
4

-1
.6

1
) 

1
3

6
 

0
.6

8
 (

<
D

.L
.-

1
.7

6
) 

1
0

6
 

0
.9

0
 (

0
.0

1
-1

.5
0

) 
3

3
 

 
 

 
 

 
 

 
 

 

R
a

ti
o
s 

 
 

 
 

 
 

 
 

N
O

3
- :

 S
i(

O
H

) 4
 

0
.2

4
 (

<
0

.0
1

-2
.3

0
) 

5
2

6
 

0
.3

2
 (

<
0

.0
1

-0
.6

1
) 

1
3

5
 

0
.2

9
 (

<
0

.0
1

-1
.0

9
) 

1
0

8
 

0
.4

0
 (

0
.0

8
-4

.0
1

) 
3

3
 

N
O

3
- :
 P

O
4

3
-  

5
.9

5
 (

0
.0

5
-3

1
7
) 

5
1
5
 

7
.0

0
 (

0
.0

6
-1

4
.0

1
) 

1
3
6

 
7
.8

7
 (

0
.4

6
-8

3
.1

5
) 

1
0
3

 
7
.6

3
 (

0
.5

5
-3

9
.1

0
) 

3
3
 

S
i(

O
H

) 4
: 

P
O

4
3
-  

1
1

.1
9

 (
0

.7
6

-1
1

1
0

) 
5

2
5

 
6

.9
2

 (
1

.6
5
-4

3
3

) 
1

3
5

 
1

8
.0

5
 (

1
.6

7
-5

6
8

) 
1

0
3

 
8

.0
4

 (
0

.2
5

-3
4

.3
0

 
3

3
 

   

https://doi.org/10.5194/bg-2020-350
Preprint. Discussion started: 27 October 2020
c© Author(s) 2020. CC BY 4.0 License.


