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Abstract: Unraveling the environmental controls influencing Arctic tundra productivity is
paramount for advancing our predictive understanding of the causes and consequences of
warming in tundra ecosystems and associated land-atmosphere feedbacks. This study focuses on
aquatic emergent tundra plants, which dominate productivity and methane fluxes in the Arctic
coastal plain of Alaska. In particular, we assessed how environmental nutrient availability
influences production of biomass and greenness in the dominant aquatic tundra species: Sarex
aguatitis-and-Arctophila fulva_and Carex aquatilis. We sampled a total of 17 sites distributed
across the Barrow Peninsula and Atqasuk, Alaska following a nutrient gradient that ranged from
sites with thermokarst slumping or urban runoff to sites with relatively low nutrient inputs.
Employing a multivariate analysis, we explained the relationship of soil and water nutrients to
plant leaf macro- and micro-nutrients. Specifically, we identified soil phosphorus as the main
limiting nutrient factor given that it was the principal driver of aboveground biomass (R?=0.34,
p=0.002) and Normalize Difference Vegetation Index (NDVI) (R?=0.47, p=0.002) in both species.
Plot-level spectral NDVI was a good predictor of leaf P content for both species. We found long-
term increases in N, P and Ca in C. aquatilis based on historical leaf nutrient data from 1970s of
our study area. This study highlights the importance of nutrient pools and mobilization between
terrestrial-aquatic systems and their potential influence on productivity; and land-atmosphere
carbon and-energy-balance. In addition, aquatic plant NDVI spectral responses to nutrients can
serve as landscape hot-spot and hot-moment indicator of landscape biogeochemical
heterogeneity associated with permafrost degradation, nutrient leaching and availability.
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1. INTRODUCTION

In the Arctic, plant growth is limited by several factors including low temperatures, short
growing-seasons (e.g. irradiance) and nutrients (Chapin et al., 1975; Shaver et al., 1998).
Although Arctic temperatures have increased dramatically over recent decades with parallel
increases in plant biomass, nutrients have been shown to be the main driver enhancing Arctic
tundra productivity compared to temperature in long-term experimental treatments (Boelman et
al., 2003; Johnson et al., 2000; Jonsdottir et al., 2005; Shaver et al., 1998). Inereased-tundra
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and in long-term field observations (Lopez-Blanco et al 2020). Increased tundra productivity has
generally been explained by warming-mediated processes including increases in nutrient
availability through soil warming, heterotrophic decomposition, and nutrient release from
mineralization of organic matter and permafrost thaw (Reyes and Lougheed 2015, Natali et al
2012, Keuper et al 2012, Pastick et al 2019). In addition, abrupt thaw and recent lake drainage
events enhanced during warm Summers has also contributed to increased productivity through
the availability of fertile soils (Turetsky et al 2020, Loiko et al 2020, Nitze et al 2020, Jones et al
2012). These factors highlight the complexity of tundra plant growth and production under a
warming and changing Arctic with implications for carbon budgets (Oberbauer et al 2007,
McGuire et al 2018). Unraveling the covarying climate and environmental controls influencing
Arctic tundra productivity is paramount for advancing our predictive understanding of the causes

and consequences of warming in tundra ecosystems and associated land-atmosphere feedbacks.

Nutrients play a key role influencing tundra plant production with complex effects on
ecosystem carbon balance. Early work by Chapin et al., (1975) and Shaver et al., (1998)
demonstrated that nutrients, particularly N and P, enhanced plant biomass and plant accumulated
nutrients in wet tundra communities. In contrast, temperature alone has shown no effect on
biomass production in long-term experimental treatments (Boelman et al., 2003; Johnson et al.,
2000; Jonsdattir et al., 2005; Shaver et al., 1998). While nutrients drive productivity and
accumulation of new organic matter in the soil, nutrient enrichment can result in net carbon
losses by enhancing decomposition of old carbon stocks (Mack et al., 2004). These results
emphasize the importance of nutrient—carbon interactions in controlling ecosystem processes and
ecosystem C balance in arctic tundra.

Our study builds on previous experimental studies that examined nutrient impacts on wet
tundra (Beermann et al., 2015; Boelman et al., 2003; Lara et al., 2019; McLaren and Buckeridge,
2019; Shaver et al., 1998) by focusing on aquatic tundra, which are a relatively understudied
plant community in the Arctic. Aquatic emergent tundra plants are known to have the highest
productivity compared to terrestrial communities and contribute to a significant portion of
regional carbon sink and methane fluxes (Andresen et al., 2017; Joabsson and Christensen, 2001;
Lara et al., 2014). In recent decades, Arctic aquatic communities have increased in biomass and
cover (Andresen and Lougheed, 2015; Villarreal et al., 2012), likely attributed to an increase in
nutrient input leached from terrestrial systems through permafrost degradation and abrupt thaw
events into aquatic habitats (Reyes and Lougheed, 2015; Turetsky et al., 2020), but the impacts
of nutrients on Arctic aquatic plant communities have not been well documented in literature
(Andresen, 2014).
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Nutrients have increased over the past 40 years in aquatic habitats (Lougheed et al 2011)

with parallel biomass increases of aquatic graminoids (Andresen et al 2017). This phenomenon
will likely become more pronounced as increasing temperatures in Arctic soils continue
enhancing nitrogen mineralization (Uhlifova et al 2007, Weintraub and Schimel 2003) as well as
permafrost degradation and nutrient leaching (Keuper et al 2012, Reyes and Lougheed 2015,
Frey and McClelland 2009, Fouché et al 2020). With increased thaw and subsurface flow
(Frampton et al 2013, Shiklomanov et al 2013), these processes may provide substantial nutrient
inputs to freshwater ecosystems, however, there is increased need to assess the effects of these

increased nutrient inputs on aquatic tundra productivity.

Remote sensing has been used to detect and quantify plant productivity in Arctic systems
based on multispectral indices (Pastick et al 2019, Epstein et al 2012, Walker et al 2012b).
Boelman et al., (2003) showed the applicability of the normalized vegetation index (NDVI) as a
tool to track spectral responses of wet sedge tundra to nutrients in fertilization and warming

experiments. Other studies employing digital repeat photography have successfully assessed
plant phenology, biomass and productivity by evaluating vegetation color with indices in the
visual spectral range (i.e. blue, green and red) (Saitoh et al 2012, Sonnentag et al 2012, Andresen
et al 2018). Plant spectral responses to nutrient enrichment in aquatic communities are poorly
understood and its monitoring using remotely sense data would help monitor and quantify
potential carbon and energy feedbacks to the atmosphere at regional scales.

With current and projected warming and autrientsnutrient loading into Arctic aquatic
systems, it is important to understand nutrient impacts on aquatic emergent vegetation, and how
these changes can be detected and modeled using remote sensing methods. In this study, we
sampled tundra pond sites that followed a nutrient gradient that range from sites with
thermokarst slumping or urban runoff to sites with relatively low nutrient inputs. We aim to
characterize nutrient limitation of aquatic emergent tundra vegetation and spectral responses of
this vegetation to nutrient inputs. We focus on the influence of soil and water nutrients on plant
biomass and greenness of Carex aquatilis and Arctophila. fulva, the dominant aquatic emergent
vascular plants in the Arctic coastal plain (Andresen-et-al; 2048:Villarreal-etal;
2042)(Villarreal et al 2012, Andresen et al 2018) to answer the questions of: (i) how is aquatic
tundra responding to nutrient availability? (ii) How environmental nutrient status influence leaf
nutrients in aquatic tundra? (iii) What are the spectral responses (NDVI) of aquatic tundra to

nutrient availability?
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2. METHODS

2.1 Study Sites

This study was conducted in the Barrow Peninsula, Alaska, (W156°, N70°) near the town
of Uqtiagvik (formerly known as Barrow). Physiographically, the area is located in the Arctic
Coastal Plain (ACP, ~60,000 km?) of northern Alaska, which stretches from the western coast
along the Chukchi Sea to the Beaufort coastal Canadian border. i

n A h o h
ow—aha O a S O

Shaveretal1979The ACP is dominated by thick continuous permafrost with high ground-ice
content for the Arctic peaty lowland of the peninsula (Hinkel et al 2003). Soil organic horizon

varies across the landscape due to the age of the landform (i.e. drained thaw lake basin) and
cryoturbation of the soil. Nonetheless, sites are located in old and ancient drained thaw lake

basins where the surface organic thickness ranges between 15 and 35c¢m from surface (Hinkel et
al 2003). A complex mosaic of ice-wedge patterned ground landforms developed over millennial
seasonal cycles of cracking, heaving, and thawing producing its characteristic pond- and lake-

dominated landscape (Andresen and Lougheed 2015, Jorgenson and Shur 2007). These aquatic
habitats of the ACP are hosts for aquatic graminoid tundra that grows in shallow standing water
with a depth range 5-50cm. This study focuses on 2 species: C. aquatilis and A. fulva. These
graminoids are the dominant cover in aquatic habitats, generally grow as monotypic stands on
the edge and/or inside tundra ponds (Villarreal et al 2012, Andresen et al 2017) and their
distribution is in low- and sub-Arctic. Although these species have growth forms in moist and
dry tundra (Shaver et al 1979), this study focuses on their aquatic phenotypes.

A total of seventeen tundra ponds were sampled in early August (4-9"") 2013 along a
nutrient gradient with long-term sources of nutrients. Sites were grouped in four categories
according their geographic location and nutrient source as: (i) enriched urban, (ii) enriched
thermokarst, (iii) reference, and (iv) southern (Figure 1, 2, Appendix 1). Enriched urban ponds
were located within the town of Utqiagvik, AK and their source of nutrients was mainly from
village runoff. Enriched thermokarst ponds were situated within the Barrow Environmental
Observatory (BEO), and their nutrient inputs originate from permafrost slumping into ponds.
Reference sites were located across the region in the historical International Biological Program
(IBP) sites and in the BEO; but these sites do not contain evidence of continuous permafrost
slumping. Southern latitude ponds were located 100 km south of Utqiagvik, near the town of
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Atqasuk, AK. We sampled these ponds in order to expand the geographic footprint of the study
and serve as reference to Utqiagvik area. It is important to note that while C. aquatilis occurs in
all ponds, A. fulva does not occur in thermokarst ponds nor in IBP-C and WL02 ponds
(Appendix 1).

Figure 1. Map of Utqiagvik sites sampled in this study. For site details including southern sites
see Appendix 1.
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Figure 2. Aerial view the Arctic coastal plain near Utqiagvik, AK, and examples of sites sampled
in this study. Images indicate site name (top-left) and picture date Y/M/D (top-right).
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2.2 Plant nutrients

We collected live, green samples of A. fulva and C. aquatilis at peak growing season
(July 25-August 5, 2013). Each sample consisted of 10-15 plants collected from different water
depths and multiple haphazardiyrandomly selected locations in pond habitats within monotypic
stands of each species. The collected plants were separated into leaves and roots, then rinsed
with distilled water, oven-dried at 60°C for 24 hrs inside open paper envelopes, then shipped to
Utah State University Analytical Labs (USUAL) for immediate processing. Most macro- and
micro-nutrients in leaves of each plant were analyzed using an inductively-coupled plasma
spectrometer (ICP-MS). NitregenTotal nitrogen was analyzed by combustion analysis
(HNO3/H20> digestion, Leco Instrument).

2.3  Ancillary data

Concomitant with the collection of aquatic plants for nutrient analysis, we collected soil
and water samples, harvested aboveground plant biomass, measured spectral reflectance, and
monitored most sites using time-lapse photography (Andresen-et-al;2048)(Figure 2)-(Andresen
et al 2018) (Figure 2). For each site, sediment samples from the active root soil depth of 10-
20cm for each species were collected in triplicates within the site. Samples where then combined

in a plastic bag and frozen until analysis, Soil at this depth range (10-20cm) was a combination - W Formatted: Font: NimbusSanL-Regu, Font color: Accent

of mineral and organic horizon and varied among sites and within each site. Thus, the 1

combination of 3 soil samples in each site aided to minimize soil heterogeneity discrepancies and
give an overall picture of soil conditions at each site. In the lab, soil samples were air dried for 3

days after thaw, then analyzed for physical and chemical factors including pH, electric
conductance (EC), and macronutrients (Bksand Nitrate)—Waterchemistrywas-determined
using-standard-methods-as-deseribed-in-Lougheed-et-a201 ) For logistical reasons, only P, K,

and Nitrate were analyze). Water chemistry followed standard methods (American Public Health
Association 1998) where nitrate-nitrogen was quantified by cadmium reduction; ammonia using
phenate method; total phosphorus by ascorbic acid method with persulfate digestion; soluble

reactive phosphorus by the ascorbic acid method; and, silica using the heteropoly blue method.

In contrast to sediment, which was sampled for each plant type, water samples from open water
mid-column were assumed to be representative of the whole pond, including both plant species
given the relatively well mixed environment.

Aboveground plant biomass was harvested within duplicate representative S0cm x 20cm
quadrats for each species at each site In addition reflectance measurements of canopy radiance

= { Formatted: Font color: Text 1
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Following Andresen et al (2018), reflectance measurements were collected during sunny
conditions between 12 and 4 pm for maximum solar elevation angles (29°-33° ~2pm is highest

https://www.esrl.noaa.gov/) and to best match satellite observations. The person doing the
collection was standing in the opposite direction of the solar azimuth angle to avoid any effects
of shading by the instrument or person. All plots for both aquatic species were inundated at time
of sampling (including soil, plant and spectral samples) with a water depth (+SD) of 25.2 + 4.6
for A. fulva and 10.3 + 3.22 cm for C. aquatilis. Solar specular reflection of water on aquatic
emergent plant spectral measurements was insignificant given that solar elevation angles are
relatively low in the Arctic (~33°, peak season) and solar specular reflection was outside of the
~1 m spectral footprint of the measured plot. The reflectance ratio was estimated between plot
radiance at nadir and the calibration standard radiance. White calibration standard (38 mm wide)
was positioned 30 mm at nadir below the field spectrometer optic fiber (field of view of 25°) at
each calibration, then capped closed to minimize degradation. NDVI measurements from 5 scans
were averaged in each plot, and 46 plots per pond for comparison with leaf nutrients.
Normalized Difference Vegetation Index (NDVI) was estimated from reflectance ratio values
using the formula: NDVI = (800 nm— 680 nm) / (800 nm+ 680 nm). NDVI is a standard proxy of
plant productivity and biomass in the Arctic and has been used to track plot (Soudani et al 2012,
Gamon et al 2013, Andresen et al 2018) to regional and global seasonal and decade time-scale
productivity trends (Bhatt et al 2010, Walker et al 2012a, Zeng and Jia 2013).

Parallel to reflectance NDVI measurements, we employed phenocams (optical
photography) at each site to calculate the “green excess” index (GEI) (Richardson et al 2009,
Andresen et al 2018) from peak-season oblique images using the formula: [2*G - (R + B)] where
G is the brightness value in the green, R is the brightness value in the red, and B is the brightness
value in the blue. Oblique-angle GEI collected from cameras in this study is strongly associated
to nadir-angle NDVI for both A. fulva and C. aquatilis (Andresen et al 2018). For additional
camera details and setup refer to Andresen et al (2018).

2.4 Statistical analysis

We employed principal components analysis (PCA) to generate linear combinations of
the plant leaf nutrient data to describe the primary gradients in plant nutrient enrichment among
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the sites. PCA assumes linear relationships among variables, which was confirmed with
scatterplots prior to analysis. Plant nutrient data was standardized to zero mean and unit variance
and logio transformed where applicable to obtain a normal distribution. PCA axes were then
associated to environmental data (i.e. soil and water nutrients, plant biomass, NDVI, GEI) using
a Pearson correlation. Variables were log-transformed as required to meet the assumptions of
normality. All statistical analyses were performed in SAS JMP software v4.0. Significance of the
PC axes was confirmed in PC-ORD. Differences in environmental and biological characteristics
among areas within ponds dominated by C. aquatilis and A. fulva were assessed using a paired t-
test, with areas compared within each sampled pond. Green-up dates by phenocams were
determined using a regression tree analysis as described in Andresen et al (2018).
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3. RESULTS
[Examining the relationships between plant biomass and macronutrient (N, P) content of the - { Formatted: Font. 12 pt
plant leaves and soil revealed that plant leaf phosphorus content was athe primary determinant of - { Formatted: Font: 12 pt
aquatic plant biomass, significantly explaining ene-third40%, of the variation in biomass for -~ { Formatted: Font: 12 pt
bethof C. aquatilis (p=0.01) and 32% of the biomass variation of A. fulva (marginally significant =~ { Formatted: Font: 12 pt
at p=0.6). Combining both aquatic, species, leaf P significantly explains 34% of aboveground . { Formatted: Font. 12 pt
”””””””””””””””””””””””””” - { Formatted: Font: 12 pt
leaf phosphorus and NDVI (Figure 3). There were no significant relationships between plant N { Formatted: Font. [talic
biomass and leaf nitrogensner-betweenrootnutrient-content-and-sotlnutrients:. Among site
types, enriched sites (Urban and Thermokarst) have statistically higher soil, leaf and water
nutrients compared to reference sites (p<0.001), no differences found for southern sites. - { Formatted: Font: Italic
There were no significant differences in leaf;+eet and soil macro-nutrients among plant
species in a given pond from reference sites (paired t-test, p>0.05) (Table 1). However, leaf - { Formatted: Font: ltalic
micronutrients among plant species differed. We found significantly higher amounts of leaf Al,
B, Ba, Mn, Na, Ni, Si and Zn in C. aquatilis compared to A. fulva (p<0.05 level). The most
abundant leaf element in both plant species was N, followed in decreasing order by K, P, S and
Mg and these ratios were consistent across the nutrient gradient sites (Figure 4).
There were significant differences in green-up date and peak season Greenness Excess
Index (GEI) among species (p<0.01, Table 1). A. fulva greened later (day 200 vs. 183) andhad - { Formatted: Font: Italic
lower GEI (9 vs. 33) as compared to C. aquatilis. These differences are associated to unique
phenotypic properties between species in the visual spectral range Andresen-et-als
2048)-(Andresen et al 2018). There was no corresponding difference in NDVI or biomass among
species (p>0.05). - { Formatted: Font: ltalic
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Figure 4. Descending order of element concentration in aboveground tissue among plant species.

Error bars represent one standard deviation from mean.

Table 1. Range of environmental variables by vegetation type from 17 ponds in Utqiagvik and

represents min and max.

Arctophila fulva

Carex aquatilis

Variable Mean Range Mean Range
Soil pH 5.23 4.7-6.3 5.14 4.7-6.3
Soil EC (dS/m) 0.86 0.26-2.75 0.589 0.12-2.67
Soil P, available (mg/kg) 4.78 2.1-10.5 5.625 2-21.3
Soil K, available (mg/kg) 42.82 19-80 44.188 11-109
Soil Nitrate-N (mg/kg) 1.87 0.01-7.6 1.2 0.01-3.8
*Greening day (DOY) 198 198-199 182 175-191
*GEI 8.57 0-18 33.44 29-37
NDVI 0.65 0.485-0.759 0.646 0.459-0.860
Biomass (g/m?) 222.23 124-532 197.4 109-365
Leaf TN (%) 2.36 1.71-3.06 2.36 1.35-2.76
Leaf P (%) 0.2 0.1-0.32 0.2 0.012-0.28
Root TN (%) 1.1 0.67-1.45 0.96 0.69-1.2
Root P (%) 0.15 0.06-0.56 0.13 0.07-0.26
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3.1  Arctophila fulva
For A. fulva, the first four PC axes explained 72% of the variation in plant leaf nutrients.

was positively correlated with the plant macronutrients N, P, K, Ca, Mg, S as well as other
elements such as Al, B, Ba, Mn, S, Zn, and negatively correlated with Ni, Pb and Fe. On the
other hand, PC axis 4 explained 13% of the variation and was positively correlated with As, Ca,
Cr, Ni, Si, Zn. (Table 2, Figure 5).

Site types for A. fulva were clearly separated along axes PCA-1 and PCA-4 (Figure 5).
Enriched urban systems were located on the upper left quadrant, coinciding with higher
concentrations of many leaf nutrients and environmental variables such as soil P, EC, water P,
Si, DOC, plant biomass and higher green spectral indices (NDVI, GEI). Conversely, reference
sites and those at southern latitude were located in the opposite quadrants of the plot with a wider
distribution along PCA-4 and thus, wider variability in leaf nutrients and environmental
conditions. Southern sites for A. fulva showed a similar distribution to reference sites (Figure 5).

3.2 Carex aquatilis

C. aquatilis PC axis 1 and 2 explained 50% of the variation in the plant nutrient data. PC
axis 1 (26%) showed positive relationships with important macronutrients N, P, and Mg and
other elements such as Al, Ba, Co, Cu, Fe, Mo, Pb, Zn. PC axis 2 explained 24% of the variation
in leave nutrients and was positively associated with Al, Ba, K, Mn, P, S, Sr, and negatively
associated with Ni, Mo, Se, Zn (Table 2).

The C. aquatilis PC plot of axes 1 and 2 also showed sites grouped by type (Figure 5).
We observed a good separation along PCA-2 of enriched urban ponds as compared to reference,
southern and enriched thermokarst. Similar to A. fulva, the enriched sites were found at the
positive end of an axis that was positively associated with water nutrients, alkalinity,
conductance, plant biomass, NDVI and soil K (Table 3). Environmental variables positively
associated with the vertical distribution of sites along axis 1 included soil EC, water nutrients
(TDP, SRP, NO3), and negative correlations with water pH, alkalinity and C. aquatilis green-up
date (Table 2). We noticed grouping of enriched thermokarst and reference sites for C. aquatilis
in a portion of the plot associated with high electrical conductance and water TDP, SRP and
NO:s. Conversely to A. fulva, the southern sites were clustered away from other sites, in the lower
left quadrant, likely reflecting earlier green up, higher GEI, and lower soil and water nutrients.

14
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Figure 5. Plots of PCA site scores for Arctophila fulva (rightleft) and Carex aquatilis (Jeftright)
plant nutrient data. Eigenvectors depict PCA axis correlations with environmental variables.

Eigenvectors are scaled for clarity.

Table 2. Correlation coefficients between PC axes and leaf nutrients for Carex aquatilis (right)

and Arctophila fulva (left).
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4. DISCUSSION

We explored the effects of plant nutrient enrichment in the dominant aquatic tundra
species of the Arctic Coastal Plain: A. fulva and C. aquatilis. Our study is unique as it focuses on
aquatic emergent plants and is based on natural responses to non-experimentexperimental, long-
term nutrient enrichment compared to previous studies of fertilization treatment experiments.
Plant leaf nutrients were a function of soil and water nutrients in Arctic tundra ponds.
Phosphorus was the main driver of biomass in aquatic plants and plant greenness measured by
NDVI in both plant species.

4.1 Leaf nutrients

The environmental gradient investigated in this study was highlighted by the principal
component analysis and allowed better understanding of the factors influencing leaf nutrients.
Our analysis shows how soil and water nutrients in ponds influence plant leaf nutrients and
aboveground biomass of aquatic tundra graminoids. The Arctic is typically nutrient limited in
inorganic forms of N and P in both soil (Beermann-et-al;2015; Keuperetal;2012: Maeketal;

) 5 )

B
0
v

and-thus;-taxa-speeific nutrient content-(Chapin-etal1975)(Mack et al 2004, Keuper et al 2012,
Beermann et al 2015) and surface waters (Rautio et al 2011). Similar to aquatic growth forms,
moist and wet tundra C. aquatilis and A. fulva appear to be P limited (Chapin et al 1995, Mack et
al 2004, Boelman et al 2003, Beermann et al 2015) given the highly organic soil which enhances
recycling of N by mineralization of soil organic matter (Beermann et al 2015, Chapin et al

1975). On the aquatic side, primary productivity of phytoplankton and periphyton in tundra
ponds in the Utgiagvik area (including some of our study sites) have been shown to be largely
NP co-limited (Lougheed et al 2015). In fact, Lougheed et al (2015) suggested that macrophytes
may be outcompeting algae for available nitrogen, which may account for the N limitation of
algae but N sufficiency of plants. Soil nutrients were similar among cover types which may

explain the homogeneous leaf macronutrient concentrations among C. aquatilis and A. fulva.
However, we observed higher micronutrients and other non-essential minerals in C. aquatilis
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compared to A. fulva. These disparities are likely attributed to differences in taxonomic groups
and thus, taxa-specific nutrient content (Chapin et al 1975).
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We designed the sample collection to give an overall representation of plant-soil

relationships for detection using remote sensing. The plant leaf samples and soil samples were
not taken within the exact location, but rather, plants were collected in different areas of the

monotypic stands trying to have a diverse representation of the species within each pond.

Similarly, soils were collected in 3 different locations within the same area and mixed together
for processing. However, given the high heterogeneity in soil properties on polygonal tundra due

to cryoturbation, the relationships between soil and leaf nutrients are likely weakened and may
explain the low strength of the relationships of Figure 3.

Compared to historical studies in the Utgiagvik area, we found that the major plant
macronutrients in C. aquatilis had increased since they were determined in 1970 by Chapin et al
(1975). N, P and Ca plant percentage content increased from 2.18+0.09 to 2.4+0.2 (10%
increase), 0.154+0.02 to 0.18+0.03 (20%), 0.08+0.02 to 0.14+0.08 (75%) respectively, for
samples collected in early August. However, K and Mg were lower compared to 1970. Increase
in leaf nutrients are concomitant with long-term observations of nutrient increases in tundra
ponds of nitrate, ammonia and soluble reactive phosphorus (Lougheed et al 2011). Increased
plant nutrients may be a result of nutrient release from long-term increases of active layer depth
(Andresen and Lougheed 2015), thawing permafrost (Reyes and Lougheed 2015, Keuper et al
2012) and nitrogen mineralization (Uhlifov4 et al 2007, Weintraub and Schimel 2003) leached
from terrestrial inputs. The remarkable increase in Ca observed by Chapin et al (1975) between
1970 and 2013 is likely associated to accumulation from high transpiration (Chapin 1980) and

suggests enhanced C. aquatilis evapotranspiration rates compared to 50 years ago as a result of
modern warmer temperatures in both air and water (Lougheed et al 2011, Andresen and
Lougheed 2015). It is important to note that C. aquatilis has been shown to have phenotypical
differences across moisture gradients (Shaver et al. 1979). Thus, C. aquatilis sampled in wet
meadows (Chapin et al 1975) might have different physiological characteristics, and therefore,
different nutrient tissue composition compared to C. aquatilis in aquatic habitats.

This study focused on peak season to reflect peak biomass (Andresen et al 2017) and
greenness (Andresen et al 2018) of aquatic graminoid tundra with different environmental
nutrient status. In addition, peak season is the preferred timing for assessing long-term Arctic
greenness trends from satellite platforms (Walker et al 2012b, Bhatt et al 2010). Nutrients are
known to affect seasonal phenology of aquatic graminoids by promoting earlier green-up date as
well as higher season greenness (Andresen et al 2018). However, the relationship between
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environmental nutrient status and seasonal plant nutrient dynamics is unclear in tundra
graminoids and should be further investigated.

There are other important seasonal considerations that are worth noting. Concentrations
of leaf nutrients have been shown to vary through the growing season in tundra vegetation
communities. In graminoids, N and P peak within 10 days of snowmelt and gradually decrease to
half of their concentration over the course of the growing season Chapin 75. On the other hand
water and soil nutrients may increase over the season in ponds as active layer thaws and soil
biogeochemical processes activate (e.g. N mineralization) resulting in increased nutrient leaching
from terrestrial to aquatic systems. Evaporation and evapotranspiration likely help increase
nutrient concentrations in small ponds. As climate change continues to stretch the growing

season, we need to further understand seasonal dynamics of plant nutrients and its implications
on productivity and land-atmosphere carbon exchange.

4.2 Nutrients, biomass, NDVI and GEI

NDVI of Arctic graminoid tundra has been noted to be a function of biomass caused by
increased nutrients (Boelman et al 2003, 2005, Epstein et al 2012, Raynolds et al 2012,
Andresen et al 2018). For example, Boelman et al. (2003) observed higher NDVI values in N
and P fertilized experimental treatments in wet sedge tundra communities compared to control
treatments. Also, Andresen et al (2018) noted higher NDVI and GEI greenness values
concomitant with higher biomass in enriched sites. Our study supports previous studies on the
importance of spectral measurements to be a function of environmental nutrient availability

through the enhancement of tundra biomass and leaf greenness at the plot level (Andresen et al
2018, Boelman et al 2005). In particular, this study highlights phosphorus as the main nutrient

augmenting aboveground biomass and plant greenness in aquatic tundra. Aquatic tundra

graminoids studied here showed higher biomass in nutrient rich sites which translated to higher
plot-level greenness (e.g. NDVI, GEI). We suspect that the combination of nutrient-induced
factors such as (i) increased plant density thorough increased foliage and leaf area as well as (ii)
plant vitality from chlorophyll production and other pigments enhanced NDVI and GEI spectral
signatures. It is important to consider that plot-scale spectral measurements such as NDVI and
GEI may differ from coarser remote sensing platforms given the spectral heterogeneity of the
radiance signal measured by the satellite sensor pixel (Guay et al 2014) and caution should be

given to interpretations of NDVI with coarse imagery.
Increases in terrestrial productivity of the Arctic as inferred from coarse satellite NDVI

measurements have been directly attributed to increasing temperatures associated to sea ice
decline (Bhatt et al 2010, Epstein et al 2012). However, satellite based observations of tundra
change are complex (Myers-Smith et al 2020) with differing trends of greening and browning
observed in recent decades (Pastick et al 2019, Verbyla 2008, Phoenix and Bjerke 2016). At the

plot level, biological factors influencing spectral greenness signals include community
composition (Forbes et al 2010) leaf area and phenology (Andresen et al 2018, Post et al 2018).
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These factors are greatly influenced by nutrient environmental availability as shown in this study
and others (Boelman et al 2003, Andresen et al 2018). As permafrost degradation and abrupt
thaw events continue to increase in frequency (Turetsky et al 2020, Reyes and Lougheed 2015,
Andresen et al 2020), it is imperative that we continue understanding plot-level spectral signals
and how they influence landscape-level satellite observations.

The wide range of environmental nutrient status and the broad spatial sampling
undertaken in this study provides a strong confidence on the use of spectral indices such as
NDVI to monitor environmental nutrient status at a regional scale. In particular, the strong
relationships between NDVI and phosphorous suggest that aquatic plant communities can be
used as hot-spots and/or hot moments indicators of nutrient availability and biochemical
landscape-scale processes. Hot-spots (disproportionately high reaction rates relative to the
surrounding landscape) and hot-moments (short periods of disproportionately high reaction rates
relative to longer time periods) are generally associated with rates and reactions of biochemical
processes (e.g. nutrient cycling, productivity) and often enhanced at the terrestrial-aquatic
interface where hydrological flow-paths mobilize substrates containing complimentary reactants
(e.g. nutrients) (MeClain-etal;2003)-(McClain et al 2003). Aquatic plant communities are
situated at the terrestrial-aquatic interface inside catch-points of small landscape drainages (e.g.
ponds, low-center polygons, ice wedge pits, etc) where biogeochemical changes such as
mobilization processes from permafrost degradation (hot-moment) and nutrient mineralization
(hot-moment) can be detected and mapped (hot-spot) with spatial detail over large areas.

5. Conclusion

This study highlights the influence and sensitivity of aquatic tundra-plantcommunitiesto
environmental nutrient status-graminoid tundra community to environmental nutrient status. In

particular, we addressed that (i) aquatic graminoids were responding to higher soil and water
nutrient availability through increased biomass and greenness, (ii) phosphorus was the principal

limiting nutrient driving aquatic graminoid plant biomass as well as (iii) positively enhancing
plot-level NDVI spectral signatures. With projected increased warming and associated terrestrial

biegeochemical processes such as increased active layer depth and permafrost thaw, increased
nutrient availability and mineralization and enhanced ecosystem carbon dynamics, aquatic plants
will continue to be a hot-spot/hot-moment of change in structure and function as they sustain
encroachment of aquatic habitats that are increasing in nutrients with potential carbon and
surface energy feedbacks to climate. Characterizing mechanisms for detection and quantification
of biogeochemical responses to climate change employing remote sensing will continue to be
pivotal into understanding spatial and temporal evolution of the Arctic terrestrial and aquatic
systems and their interactions.

6. Appendix

Apendix 1. Study sites and plant types. Plants species included C. aquatilis (C) and A. fulva (A).
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Site Site type Plant species Latitude Longitude

AHMA Enriched/urban AC 71.303809 -156.741201
ATQ-E Southern AC 70.447892 -157.362756
ATQ-W Southern AC 70.457525 -157.401083
BOXER Enriched/urban A,C 71.303617 -156.752594
BOXER-2 Enriched/urban AC 71.304114 -156.748877
IBP-10 Reference AC 71.2935 -156.70433
IBP-B Reference A,C 71.294924 -156.702552
IBP-C Reference C 71.2946 -156.70210
IBP-D Reference A,C 71.294851 -156.700166
IBP-J Reference AC 71.293626 -156.70144
IBP-X Reference A,C 71.295801 -156.699817
ITEX-N Reference AC 71.318141 -156.58322
TK1 Enriched/thermokarst C 71.27496 -156.632653
TK3 Enriched/thermokarst C 71.273975 -156.636431
UTIQ Enriched/urban AC 71.302004 -156.722267
WL02 Reference C 71.2797 -156.61891
WL03 Reference A,C 71.2823 -156.61625
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