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Abstract. Turbidity flows – underwater avalanches – are large-scale physical disturbances that are believed to have profound 

and lasting impacts on benthic communities in the deep sea, with hypothesised effects on both productivity and diversity. In 

this review we summarize the physical characteristics of turbidity flows and the mechanisms by which they influence deep sea 

benthic communities, both as an immediate pulse-type disturbance and through longer term press-type impacts. Further, we 10 

use data from turbidity flows that occurred hundreds to thousands of years ago as well as three more recent events to assess 

published hypotheses that turbidity flows affect productivity and diversity. We find, unlike previous reviews, that evidence for 

changes in productivity in the studies was ambiguous at best, whereas the influence on regional and local diversity was more 

clear-cut: as had previously been hypothesized turbidity flows decrease local diversity but create mosaics of habitat patches 

that contribute to increased regional diversity. Studies of more recent turbidity flows provide greater insights into their impacts 15 

in the deep sea but without pre-disturbance data the factors that drive patterns in benthic community productivity and diversity, 

be they physical, chemical, or a combination thereof, still cannot be identified. We propose criteria for data that would be 

necessary for testing these hypotheses and suggest that studies of Kaikōura Canyon, New Zealand, where an earthquake-

triggered turbidity flow occurred in 2016, will provide insights into the impacts of turbidity flows on deep-sea benthic 

communities as well as the impacts of other large-scale disturbances such as deep-sea mining.   20 

1 Introduction 

Turbidity flows are a type of large-scale physical disturbance that is prevalent in the deep sea (i.e., at water depths >200 m). 

They are a component of gravity-driven sediment flows (Nardin et al., 1979) that occur in every ocean basin across the globe 

(Heezen et al., 1955; Levin et al., 2001; Weaver and Rothwell, 1987). The flows form when submarine landslides disintegrate 

and mix with seawater (Talling et al., 2014) creating high density parcels of turbid water filled with suspended sediment 25 

(Kuenen and Migliorini, 1950) that travel downslope beneath less dense seawater (submarine landslides and turbidity flows 

are sometimes collectively known as ‘mass wasting’ or ‘mass sediment movement’ events) (Fig. 1a). Submarine landslides 

occur along continental margins even at fairly low slope gradients but are most frequent on steep-sided geomorphic features 

such as canyon walls, seamount flanks, and ocean trench walls and ridges (Hughes Clarke et al., 1990; Masson et al., 1996; 
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Nardin et al., 1979). Initiation of submarine landslides can be triggered by over-steepening of slopes due to sediment build up, 30 

increase in pore pressure, typhoons and atmospheric storms, river flooding and outflow, benthic storms, and earthquakes 

(Carter et al., 2012; Heezen et al., 1955; Meiburg and Kneller, 2010; Solheim et al., 2005; Talling, 2014; Talling et al., 2013). 

In situ measurements have recorded turbidity flow velocities greater than 120 cm s-1. (Khripounoff et al., 2003) and shown 

flows carrying heavy objects (800 kg) or moving moorings down-canyon (Heerema et al. 2020).  
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Figure 1: (a) Generalized schematic of a large, single flow, earthquake triggered turbidity flow within a continental slope canyon 

with environmental variables at the moment of the event (adapted from NOAA, Talling et al. 2013, Talling et al. 2014, Stetten et al. 

2015, Heerema et al. 2020). (b & c) Our hypothesised response of the benthic community productivity (abundance and biomass) and 
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diversity along the turbidity flow path at three time points (the instantaneous moment of the event, tens of years after, and hundreds 

to thousands of years after).  40 

 

The frequency of turbidity flows is highly variable; some can occur annually to decadally (Dennielou et al., 2017; Heezen et 

al., 1964; Liao et al., 2017; Vangriesheim et al., 2009) while others such as those initiated by earthquakes > 7.0 Mw off the 

coast of Japan are estimated to occur every 30-900 years (Bao et al., 2018; Yamanaka and Kikuchi, 2004) (Fig. 2). The size 

and scale of turbidity flows in the deep sea is variable, with the spatial scale being dependent on the quantity of source material, 45 

distance from continental margins, basin morphology, and bathymetric gradient (Gorsline, 1980).  

 

Figure 2: Graph summarizing the frequency (years) and extent patch size (km2) of physical disturbances in the marine environment. 

Specific data ellipses are not attributed to particular sources because each is based on our interpretation of figures and data from 

Hall et al. 1994, Glover et al. 2010, Harris et al. 2014, and references therein.   50 

Turbidity flows transport massive volumes of sediment and associated organic material from the near shore environment into 

the deep sea. Ancient turbidity flows (e.g., Grand Banks, and others noted below) have transported an estimated average 

volume of 0.525 km3 to 185 km3 (Griggs and Kulm, 1970; Heezen and Ewing, 1952; Weaver and Rothwell, 1987) of organic-

rich sediment (0.25% - 2.2% organic carbon) (Briggs et al., 1985; Griggs et al., 1969; Huggett, 1987) at scales of tens to 
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hundreds of thousands of km2 (see references in Sect. 2.1). At these scales turbidity flows present a major hazard to human 55 

infrastructure such as submarine telecommunication cables and oil and gas platforms (Carter et al., 2014; Heezen et al., 1964; 

Heezen and Ewing, 1952; Hsu et al., 2008; Hughes Clarke et al., 1990; Solheim et al., 2005) as well as causing destructive 

disturbance to benthic faunal communities.  

Physical   disturbances, such as turbidity flows, are a structuring factor for biotic communities in all environments (Churchill 

and Hanson, 1958; Dayton, 1971; Dial and Roughgarden, 1998; Levin and Paine, 1974; Paine, 1979; Raup, 1957; Sousa, 1979; 60 

Weaver, 1951; Webb, 1958). In the marine environment disturbances can be caused by natural physical processes such as the 

battering of intertidal regions by tides and storms (Dayton, 1971; Levin and Paine, 1974; Paine, 1979), biological processes 

such as bioturbation of sediment (Hall et al., 1994; Preen, 1996; Reidenauer and Thistle, 1981; Thrush et al., 1991), and 

anthropogenic impacts such as those arising from bottom trawling (Collie et al., 2000; Lundquist et al., 2010; Thrush et al., 

1998). Compared to other physical disturbances experienced by benthic communities, turbidity flows represent a major 65 

disturbance (Fig. 2).   

Pickett and White (1985) define a disturbance as “…any relatively discrete event in time that disrupts ecosystem, community, 

or population structure and changes resources, substrate availability, or the physical environment.” By creating patches and 

freeing limiting resources (space, refuge, nutrients, etc.) disturbances structure ecological succession and increase habitat 

heterogeneity thus enhancing biodiversity (Hall, 1994; Sousa, 1984, 2001; Willig and Walker, 1999). Disturbances are 70 

measured by their frequency (the number of events per unit of time), extent (spatial area of impact), and two components of 

magnitude: intensity (physical force of the event), and severity (consequence to some component of the ecological system) 

(Sousa, 2001). Disturbances have been categorized into two types: pulse (disturbances which have immediate and 

instantaneous impacts) and press (disturbances that operate over prolonged periods of time) (Bender et al., 1984). These 

characteristics of a disturbance, along with the functional diversity (based on biological traits such as feeding mode) of the 75 

impacted community, influence the resilience of the biotic community to the disturbance, i.e., how resistant it may be  or how 

quickly it may be able to recover following disturbance (Folke et al., 2004; Holling, 1996; Naeem and Wright, 2003; Oliver et 

al., 2015; Walker et al., 2004).  

For seabed or benthic communities, as already noted above, the effect of a disturbance varies within a community depending 

on the characteristics of the disturbance as well as the biological characteristics or traits of the impacted organisms. For 80 

example, the more mobile the organism the greater its likelihood of escaping the disturbance altogether, either by being able 

to burrow below the area impacted by the event (in the case of small organisms) or leave the area altogether (in the case of 

larger megafaunal organisms) (Crandall et al., 2003). Additionally, small mobile organisms can sometimes burrow upwards 

when disturbances bury them rather than being smothered (Maurer et al., 1986; Nichols et al., 1978; Tiano et al., 2020). It can 

be harder to determine the impact of disturbances to mobile organisms such as demersal fish compared to sessile organisms, 85 

because they may not be killed outright by the event. Newly exposed or dead benthic fauna resulting from turbidity flows can 

provide an immediate and concentrated source of food for fish (Okey, 1997). However, after such short-term benefits are 
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exploited, because disturbances mostly eliminate or create shortages of vital resources such as food or cover for mobile 

organisms, populations tend to decline until these resources have regenerated (Sousa, 1984). 

While we know that turbidity flows can have damaging impacts on seabed communities in the deep sea (see Sect. 2.2), we do 90 

not understand clearly how benthic communities respond to these catastrophic events or how patterns of benthic productivity 

and diversity are influenced by them. As noted by Glover et al. (2010), turbidity flows have historically been studied via 

palaeontological proxies due to their size, the time scales at which they occur, and the inaccessibility of the deep-sea 

environment (Fig. 2). These proxies are identifiable by their characteristic deposition of graded sediment known as turbidites 

(Kuenen and Migliorini, 1950). 95 

This review is timely since the previous review on the topic, which was limited to studies of ancient turbidites (Young et al., 

2001), a growing body of studies has been published on more recent turbidity flows. This review was further prompted by the 

2016 Kaikōura Earthquake (New Zealand) and subsequent turbidity flow, which presents an exceptional opportunity to 

advance our understanding of turbidity flow impacts on deep-sea benthic communities. Here we evaluate published data on 

turbidity flows to assess the influence of this type of disturbance on: (1) benthic community productivity; (2) local and regional 100 

diversity of benthic communities; and (3) consider further research to address the gaps in our understanding of how turbidity 

flows impact benthic communities in the deep sea. 

2 Turbidity Flows 

2.1 Examples of deep-sea turbidity flows 

The classic case study of a turbidity flow is that described by Heezen and Ewing (1952) following the Grand Banks Earthquake 105 

in November 1929. Following the 7.2 (Mw) earthquake on the continental slope south of Newfoundland (Canada), submarine 

telegraph cables extending along the continental slope at different depths were broken in an orderly progression, whereas there 

was no damage to cables on the continental shelf. Heezen and Ewing (1952) argued that the earthquake caused a slump on the 

continental slope that incorporated water to form a fast-moving turbidity flow that travelled 1100 km from its source. The 

sediment or turbidite deposited by this turbidity flow on the Sohm Abyssal Plain to the south of the cable breaks has since 110 

been estimated to cover an area of 160,000 km2 with a volume of 185 km3 (Masson et al., 1996). 

Three well-studied but ancient turbidity flow sites were reviewed by Young et al. (2001); those that have occurred in the 

Cascadia Channel, the Venezuela Basin, and the Madeira Abyssal Plain. The Cascadia Channel, adjacent to the states of 

Oregon and Washington on the west coast of the United States of America (USA), has evidence of multiple turbidites 

originating from the Columbia River drainage, which collectively extend at least 650 km along the channel axis and are 115 

estimated to have transported on average 0.525 km3 of sediment per event (Griggs et al., 1969; Griggs and Kulm, 1970). The 

last recorded turbidity flow occurred in the Cascadia Channel around 6600 years ago (Nelson et al., 1968). The Venezuela 

Abyssal Plain in the Caribbean Sea received regular turbidity flows of organic-rich terrestrial materials from the Magdalena 

Fan, the last one having occurred around 2000 years ago (Young and Richardson, 1998). The Madeira Abyssal Plain off 
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northwest Africa consists of multiple turbidite layers (up to 5 m thick) interspersed with layers of pelagic clays (centimetre to 120 

decimetre thick). The Madeira Abyssal Plain turbidites have estimated volumes ranging from 4.5 km3 to 126 km3 and cover 

an area of up to 80,000 km2 (Weaver and Rothwell, 1987) the most recent having occurred around 930 years ago (Thomson 

and Weaver, 1994). More recent turbidity flows, which have not previously been reviewed, include the 1999 storm-triggered 

turbidity flow in Cap Breton Canyon, France (Anschutz et al., 2002; Hess et al., 2005), periodic turbidity flows in the Congo 

Channel off southwest Africa (Khripounoff et al., 2003; Vangriesheim et al., 2009), and a turbidity flow off the coast of Japan 125 

triggered by the 9.0 (Mw) 2011 Tōhoku Earthquake that transported an estimated 0.2 km3 of sediment (Kioka et al., 2019) 

(Fig. 3 and Table 1). 

 

Figure 3: Map showing the approximate location of the turbidity flows reviewed in this paper. See Table 1 for additional details. 
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Table 1: Metadata for turbidites and studies discussed and analysed in this review. *Study was reviewed in Young et al. (2001). 

**Includes data from Hess (2005) 

2.2 Initial impacts of turbidity flows on benthic communities 

Turbidity flows act as both press- and pulse-type disturbance with erosional and depositional forces (Harris, 2014). The 

immediate pulse-type impact is mass mortality, either due to dislodgment by erosional forces or burial by deposition (Fig. 1a 135 

and 1b). Organisms caught up in the erosional forces become part of the material transported to deeper depths and it is generally 

assumed that even if they are not killed outright, they would be unable to establish themselves in depositional environments 

that may be tens to hundreds of kilometres away and at deeper water depths (Griggs et al., 1969). However, some studies have 

found evidence of range extension of shallow water taxa in areas with regular sediment mass movements that might be the 

result of acclimation of transported fauna (Kawagucci et al., 2012; Rathburn et al., 2009; Tsujimoto et al., 2020).   140 

It has been suggested that the impacts of burial in areas of deposition may be greater for deep-sea fauna than the erosional 

forces (Miller et al., 2002). Whether deep-sea organisms will survive the deposition of a turbidite depends on depth of sediment 

deposition, the type of material being deposited compared to the sediment already there, and the impacted organisms (Young 

and Richardson, 1998). In shallow water environments where sedimentation rates are higher and physical disturbances more 

frequent, studies have shown some organisms are able to survive burials between 30 and 50 cm, with the more mobile fauna 145 

able to migrate up through the deposited material to the sediment-water interface (Maurer et al., 1986; Nichols et al., 1978). 

Survival rates are higher if the deposited material is similar to the underlying sediment (Kranz, 1974). Organisms tend to be 

adapted for a particular substrate type and unlike their shallow water counterparts, deep-sea organisms have evolved to survive 

very low sedimentation rates; typically 0.1-2.9 cm kyr-1 for the abyssal plain (Stordal et al., 1985; Weaver and Rothwell, 1987).  

Because of this general lack of adaptation to deep burial, it has been predicted that sessile deep-sea fauna in depositional zones 150 

of the turbidity flow would be killed by as little as a few millimetres to ten centimetres of sediment (Jumars, 1981). The more 

mobile the organism the better its chance of avoiding being buried (Young and Richardson, 1998). 

The unconsolidated nature and sometimes quite fine grain size of the sediment transported by turbidity flows means that the 

impacts of the mass wasting are often spread over a large area (Lambshead et al., 2001). The clogging impact of increased 

Turbidite site Latitude Longitude Depth (m) Trigger
Year of 

event

Age of 

turbidite at 

time of study 

(years)

Volume 

(km
3
)

Fauna 

size class 

studied

Studies used in Fig. 4 and 

Fig. 5 
References for metadata

Cascadia Channel/Abyssal Plain, NE 

Pacific
44°40'N 127°20'W 2900 Unknown Unknown Approx. 6600 0.525

Macrofauna, 

Megafauna

Griggs et al. 1969*; Carey 1981; 

Pearcy et al. 1982

Nelson et al. 1968; Griggs et al. 1970

Venezuela Basin, Caribbean Sea 13°45'N 67°45'W 5050 Unknown Unknown Approx. 2000 Unknown

Meiofauna, 

Macrofauna, 

Megafauna

Tietjen 1984; Richardson et al. 1985*; 

Woods and Tietjen 1985*; Briggs et 

al. 1996*; Lambshead et al. 2001

Young and Richardson 1998

Maderia Abyssal Plain, Mid-Atlantic 31°N 21°W 4950 Unknown Unknown Approx. 930 4.5–126

Meiofauna, 

Macrofauna, 

Megafauna

Thurston et al. 1994*; Lambshead et 

al. 1995; Gooday 1996; Glover et al. 

2001; Lambshead et al. 2001

Weaver and Rothwell 1987

Grand Banks, NW Atlantic 44°N 55°W 220–4800 Earthquake 1929 59 185 NA NA
Heezen and Ewing 1952; Mayer et al. 

1988; Masson et al. 1996

Cap Breton Canyon, NE Atlantic 43°37'N 01°43'W 251–1478 Storm 1999 18 Unknown
Meiofauna, 

Macrofauna

Hess 2005; Hess and Jorrison 

2009**; Frutos and Sorbe 2017

Anschutz et al. 2002; Hess 2005

Congo Channel, SE Atlantic 05°43'S 08°27'E 3964 - 4960
River 

Flooding
2001, 2004

< 1 year, 

Unknown
Unknown

Meiofauna, 

Macrofauna

Galéron et al. 2009; Van Gaever et 

al. 2009; Olu et al. 2017

Khripounouff et al. 2003; 

Vangriesheim et al. 2009

Japan Trench, NW Pacific 38 °N 142°E 300–7556 Earthquake 2011 8 0.2 Meiofauna

Kitahashi et al. 2014; Kitahashi et al. 

2016; Nomaki et al. 2016; Kitahashi 

et al. 2018; Tsujimoto et al. 2020

Oguri et al. 2013; Oguri et al. 2016; 

Kioka et al. 2019

Kaikōura Canyon, SW Pacific 42 °S 173°E 900–1200 Earthquake 2016 2 0.9 NA NA
De Leo et al. 2010; Mountjoy et al. 

2018
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turbidity, especially to filter and suspension feeders, may persist for long periods following the triggering event. Turbid waters 155 

were observed in Sagami Bay for up to three hours following the 5.4 (Mw) Off-Izu Peninsula Earthquake in April 2006 off 

Japan (Kasaya et al., 2009). This turbid water prolongs the impact of turbidity flows triggered by earthquakes as aftershocks 

can cause the recently transported fine grain sediments to be resuspended into nepheloid layers (layers that contain significant 

amounts of suspended sediment). After the 2011 Tōhoku Earthquake off Japan, increased turbidity was observed at multiple 

sites, up to three months after the initial earthquake (Kawagucci et al., 2012). These nepheloid layers ranged between 30 and 160 

50 m above the seafloor (Oguri et al., 2013). Persistent turbidity could delay an organism's ability to settle the disturbed patches 

of the seafloor or even, in the case of aftershocks, cause additional mortalities of colonising fauna. A comparison of the ratio 

of detritus to filter feeders in the Congo Channel found a higher proportion of detritus feeders in the distributary system than 

in adjacent areas, which may reflect the possible deleterious impacts of turbidity flows on filter feeders as opposed to the 

potential benefit to detritus feeders (Heezen et al., 1964) 165 

Another way in which turbidity flows act as press-type disturbances and may delay faunal community response to the newly 

available sediment deposits is the creation of anoxic and hypoxic conditions. The introduction of large volumes of organic 

matter, either from organic-rich coastal sediments or organisms caught up in the mass sediment movement, can lead to anoxic 

conditions developing as bacteria break down the newly settled and buried organic matter. The presence of these near-surface 

reducing zones has been observed as layers of thin, iron-rich crust in the Venezuela Basin turbidites (Briggs et al., 1985). 170 

These anoxic or hypoxic conditions restrict organisms that rely on aerobic respiration and as a result may delay recruitment of 

benthic fauna as colonisation cannot begin until oxygen is again present in the bottom water (Froelich et al., 1979). Low 

oxygen persistence is a function of the volume and organic content of the turbidite, speed and direction of the benthic boundary 

layer currents, and diagenetic processes in the sediment (Sholkovitz and Soutar, 1975). 

Turbidity flows can create completely new habitats in the deep sea not only by removing existing faunal communities but also 175 

by uncovering or creating new resources. For example, chemosynthetic communities; unique assemblages of organisms that 

are fuelled by the chemosynthesis of reduced chemical compounds rather than photosynthetic detritus (Sibuet and Olu, 1998), 

will occur where there is enough organic material to support reducing conditions (Gooday et al., 1990). Turbidity flows initiate 

the development of chemosynthetic communities both through the burial of large volumes of organic material and through 

exposure of methane bearing sediments by erosion (Rathburn et al., 2009). Chemosynthetic communities have been observed 180 

at the Laurentian Fan in the path of the Grand Banks turbidity flow, in Monterey Canyon slide scarps, and at the Congo deep-

sea fan (Embley et al., 1990; Mayer et al., 1988; Savoye et al., 2000). In the Laurentian Fan the chemosynthetic communities 

were associated with gravel exposed by the Grand Banks turbidity flow that allowed methane rich fluids to percolate to the 

surface (Mayer et al., 1988). The chemosynthetic communities in Monterey Canyon were also associated with the erosional 

environments of ~100-year-old slump scars, and it was predicted that these communities would persist as long as the methane 185 

was available (Paull et al., 2010). At the Congo deep-sea fan, the chemosynthetic communities are associated with turbidite 

deposits of terrigenous material from the Congo river basin that were transported through the Congo Channel (Pruski et al., 

2017; Stetten et al., 2015). These communities, as dense as cold seep communities in typical continental margin settings (Olu 
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et al. 2017), consist of mobile seep endemic and vagrant species that are adapted to take advantage of the abundant resources, 

while tolerating periods of high stress from burial and erosion (Sen et al., 2017). 190 

3 Response of benthic communities to turbidity flows 

3.1 Influence on productivity  

Prior to the introduction of the concept of turbidity flows, it was widely accepted that all non-chemosynthetic fauna in the 

abyss (i.e., generally 2000 m or 3000 m to 6000 m) were dependent on organic detritus sinking from the upper layers of the 

ocean, either via marine snow or through the rafting of terrestrial matter (Marshall, 1954). A positive correlation between 195 

increased organic flux from surface waters to the benthos and greater biomass, larger body size, and higher bioturbation rates 

has been observed (Jahnke and Jackson, 1992; Smith, 1992; Trauthl et al., 1997), but these rates of organic flux are well below 

the rates associated with turbidity flows. Following a 6.8 (Mw) magnitude earthquake in Venezuela in July 1997, the measured 

carbon flux to the Caraico Basin (1,400 m water depth) was 30 times higher for the two-week period in which the earthquake 

occurred than for the preceding two-weeks (Thunell et al., 1999). Carbon flux measured in situ from a turbidity flow in the 200 

Congo Canyon in 2001 was 100 times higher than normal (Khripounoff et al., 2003). In 1955, Heezen, Ewing, and Menzies 

proposed that turbidity flows may act as an additional vector for the transport of near-shore or terrestrial materials to the deep 

sea. They hypothesised that there would be a “high correlation between nutrient rich turbidity current areas and a high standing 

crop of abyssal animals” (Heezen et al., 1955). They tested their hypothesis at the Congo Canyon where the presence of 

turbidity flows was again determined from submarine cable breaks. Contrary to normal expectation, they found that the 205 

abundance of fauna in biological trawl samples did not decrease with depth along the presumed turbidity flow path (depth 

range sampled: 1635 - 2137 m), which they interpreted as a positive influence of the turbidity flow on productivity (Heezen et 

al., 1964). Despite the suggestive nature of these data from the Congo, there was little other evidence at the time and Heezen 

et al. (1964) themselves acknowledged that more information was necessary to test their central hypothesis that turbidity flows 

provide a significant carbon subsidy to the abyss that is reflected in increased benthic productivity (e.g., evidenced by increased 210 

faunal abundance and/or biomass) in regions most affected by the deposition of turbidites. Subsequently, changes in sediment 

characteristics, increases in overall total organic carbon, unique faunal lebensspuren (tracks, burrows and other signs of life 

and activity on the seafloor, including bioturbation) and faunal assemblages were detected between turbidites and pelagic 

sediments even thousands of years after the turbidites had been deposited (Huggett, 1987), but Heezen et al.’s hypothesis on 

benthic faunal productivity remained largely untested.   215 

 Young et al. (2001) reviewed several studies from abyssal turbidites (Cascadia Channel-Abyssal Plain, Venezuela 

Basin, and Madeira Abyssal Plain) to formally evaluate Heezen et al.’s (1955) hypothesis. They concluded that the data from 

the studies they examined did not support the hypothesis. However, the studies cited by Young et al. (2001) are not as 

conclusive as they were interpreted to be. The Cascadia Channel-Abyssal Plain and Venezuela Basin studies sampled three 

main sedimentary regimes, termed: turbidite, pelagic, and hemipelagic. Hemipelagic sediments have higher biogenic and 220 
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terrigenous material than pelagic sediments as they are found on continental slopes beneath highly productive surface waters. 

At the Madeira Abyssal Plain the study sites also included an abyssal plain below more productive surface waters, in this case 

seasonally eutrophic waters, an oligotrophic turbidite, and oligotrophic non-turbidite abyssal plain. Young et al. (2001) focused 

on the difference between the faunal abundances and biomass in the turbidites and those in the hemipelagic or eutrophic 

sediments, rather than considering the nearby pelagic sediments. 225 

In the Cascadia Channel-Abyssal Plain, the abundance (1011 animals/m2) and biomass (2.2 wet wt. g/m2) of macrofauna at 

the turbidite site was consistently higher than at the two nearby pelagic sediment sites (abundance: 330 and 154 animals/m2, 

biomass: 1.82 and 0.98 wet wt. g/m2), and comparable to the hemipelagic abundance (1170 animals/m2) (Griggs et al., 1969). 

The four-times-greater faunal abundance in the turbidites compared to pelagic sediments, and abundance comparable to the 

shallower and highly productive hemipelagic sediments, led Griggs et al. (1969) to support Heezen et al.’s hypothesis. 230 

However, because Young et al. (2001) only considered the hemipelagic biomass (5.57 g/m2) in their comparison, they 

concluded that these data did not support the hypothesis. Similarly, Young et al. (2001) only note that the biomass was largest 

for all fauna class sizes in the hemipelagic sediments from the Venezuela Basin studies. However, when comparing the 

turbidite against pelagic sediments from the original studies, the biomass for all faunal size classes was either higher in the 

turbidite, or there was no significant difference between the two sites (Tietjen, 1984; Woods and Tietjen, 1985; Briggs et al., 235 

1996). The abundance of meiofauna (nematodes) was also highest in the hemipelagic but there was, again, no significant 

difference in abundance between the pelagic and turbidite site (Tietjen, 1984). No significant difference in abundance for 

macrofauna or megafauna was detected between any of the sedimentary regimes (Richardson et al., 1985; Richardson and 

Young, 1987). A later study found differences in megafaunal abundance between the sites; with the pelagic site having the 

highest abundances, then the hemipelagic site, and lastly the turbidite site (Briggs et al. 1996). The authors of these original 240 

studies in the Venezuela Basin all attributed the observed variation in abundance and biomass to varying availability of 

phytodetritus and terrigenous material at the sites (Briggs et al., 1996; Richardson et al., 1985; Richardson and Young, 1987). 

Thus, the evidence from the original study in the Cascadia Channel – Abyssal Plain support Heezen et al.’s hypothesis, while 

the studies from the Venezuela Basin are somewhat equivocal. That is, there is some evidence that the biomass but not the 

abundance of all faunal size classes is higher in turbidites than in nearby pelagic sediments. 245 

Thurston et al. (1994) observed that megafaunal abundance and biomass were lower at the Madeira Abyssal Plain (turbidite) 

compared to the Porcupine Abyssal Plain (non-turbidite) in the northeastern Atlantic. Thurston et al. (1994) attributed these 

differences between the sites to variation in surface productivity, supplying phytodetritus to the Porcupine Abyssal Plain and 

not the Madeira Abyssal Plain. In this case Young et al. (2001) noted that sediment trap data showed similar overall fluxes of 

suspended material to the seafloor at both sites (Honjo and Manganini, 1993; Newton et al., 1994) and therefore, argued that 250 

the turbidite and not phytodetritus was the driving factor of variation observed between megafauna at the two sites. However, 

a subsequent study comparing foraminiferal communities, as a proxy for the meiofaunal communities, at the two sites showed 

that not only was there a higher amount of phytodetritus at the Porcupine Abyssal Plain but there was also foraminiferal 

communities uniquely suited to exploiting phytodetrital aggregates (Gooday, 1996). Similarly, the dominant megafauna seen 
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at the Porcupine Abyssal Plain were “vacuum cleaner” holothurians, which are well suited to utilizing phytodetritus aggregates 255 

(Thurston et al., 1994). Further, each of these studies included third sites which are close to the Madeira Abyssal Plain and 

similar to it in terms of suspended material flux but have not been impacted by turbidites. For both megafauna and foraminifera 

(meiofauna), there was no significant difference in abundance or biomass between the Madeira Abyssal Plain turbidite site and 

the additional non-turbidite sites, but abundance and biomass was higher in the Porcupine Abyssal Plain than all other sites 

(Gooday, 1996; Thurston et al., 1994). A later study by Thurston et al. (1998) specifically accounted for the turbidite’s potential 260 

influence on megafauna invertebrates in the NE Atlantic. They selected two sites from the Madeira Abyssal Plain that had not 

been impacted by turbidites and found that while there were significant differences in abundance and biomass between these 

two non-turbidite sites, the general trends between the sites (low abundance, low biomass, dominance of non-detritivore taxa) 

compared to the Porcupine Abyssal Plain non-turbidite site indicated a regional uniformity that supported the previous finding 

that the Madeira Abyssal Plain turbidite site was similar to other non-turbidite sites (Thurston et al., 1994, 1998). This 265 

conclusion was further supported by a study examining polychaete abundance in the northeast Atlantic (Glover et al., 2001). 

Thus, evidence from the NE Atlantic does not support Heezen et al.’s (1955) hypothesis that benthic productivity in the abyss 

is affected by carbon delivered by turbidity flows, albeit 930 years after the deposition of turbidites on the Madeira Abyssal 

Plain. 

Samples of the macrofauna and meiofauna communities from throughout the flow path of turbidity flows in the Congo Channel 270 

and a nearby control site, have been examined by multiple studies that occurred after the review by Young et al. (2001). The 

study sites include the channel floor which is regularly disturbed by turbidity flows, a levee site that is only impacted by 

turbidity flows that are large enough to spill over the canyon walls (Savoye et al., 2009) (which occurred during a March 2001 

turbidity flow (Khripounoff et al., 2003) but not during a January 2003 event (Vangriesheim et al., 2009)), and multiple sites 

on the terminal fan that is formed by the periodic deposition of turbidity flows (Savoye et al., 2009). The multiple sites at the 275 

fan are from five lobes which are differently impacted by the turbidity flows, including one ‘abandoned’ lobe no longer 

receiving deposited sediment (Dennielou et al., 2017; Sen et al., 2017). The control site is roughly the same water depth (4000 

m) and 150 km south of the channel and levee site (Van Gaever et al., 2009; Galéron et al., 2009). Total organic carbon content 

on the fan ranged between 3.3-3.7% (Stetten et al., 2015) compared to 1.2% at the Congo Channel (Galéron et al., 2009), 

which suggests that organic matter food availability is largely driven by horizontal downslope transport processes and not 280 

vertical fluxes from the surface. The density of macrofauna at the levee site was lower than a continental margin control site 

at similar depths (Galéron et al., 2009). Similarly, meiofauna at the channel, the levee, and the fan site closest to the channel 

(with the highest turbidity flow intensity), also had lower density than the continental margin control site (Van Gaever et al., 

2009). A possible reason for these lower faunal densities is that the organic material carried by turbidity flows in the Congo 

Channel is degraded compared to the pelagic material the continental margin control site receives (Treignier et al., 2006), 285 

which raises the question of whether or not the material transported by turbidity flows is of sufficient quality for the benthic 

fauna to benefit as Heezen et al. (1955) predicted . Macrofauna at the four sites in the active sediment deposition region of the 

fan had higher densities than the abandoned lobe reference site, and the levee and continental margin control site sampled by 
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Galéron et al. (Galéron et al., 2009; Olu et al., 2017). The lower macrofaunal densities at the channel and levee, compared to 

the fan, may be due to the physical disturbance and/or lower organic carbon content caused by the turbidity flows. Of the fan 290 

sites sampled by Olu et al. (2017), the fan site with the highest turbidity flow intensity had the lowest macrofaunal densities. 

The low meiofaunal densities observed at this same fan site by Van Gaever et al. (2009) were attributed to periodic sediment 

burial preventing the full development of the community. Further, Galéron et al. (2009) collected data from the levee before 

and after the March 2001 turbidity flow, and although they observed an increase in density of macrofauna over the course of 

their sampling they did not attribute this change to the turbidity flow’s influence. The levee and control site also received  an 295 

increased flux of organic material of pelagic origins during the study period. Since the continental margin control site saw a 

greater increase in macrofauna density than the levee site during the study period, the authors proposed that rather than 

positively influencing the community at the levee site via increased food, the disturbance from the turbidity flow may have 

instead delayed the macrofauna’s ability to respond to the pelagic influx (Galéron et al., 2009). Thus, overall the Congo 

Channel studies provide further equivocal evidence for Heezen et al. (1955)’s hypothesis. However, they suggest that the 300 

location of the faunal community along the turbidity flow path is critical to whether or not the impact is positive or negative. 

Three studies evaluating the impact of turbidity flows on the meiofauna and prokaryote communities following the turbidity 

flow triggered by the 9.0 (Mw) 2011 Tōhoku Earthquake found that in general faunal density was no different after the event, 

but that vertical distribution in the sediments trended deeper. Kitahashi et al. (2014, 2016, 2018) conducted studies of the 

impact on meiofauna along a north (123 – 5604 m water depth) and south line (150 – 3960 m water depth) in the Japan Trench 305 

off the coast of Sanriku. These data, collected 4.5 months and 1.5 years after the turbidity flow, were compared to data collected 

24-30 years before the turbidity flow along the same northern line (Shirayama and Kojima, 1994). They found that the overall 

meiofaunal densities had not changed but meiofaunal vertical distributions did change; for up to a year following the event, 

meiofauna peaks were seen in the subsurface rather than the surface sediments, as was the case in the original samples 

(Kitahashi et al., 2014; Shirayama and Kojima, 1994). A similar subsurface peak was observed for foraminifera (meiofauna) 310 

at nearby sites (3250 – 3585 m water depth) following the 2011 turbidity flow (Tsujimoto et al., 2020). These anomalous peaks 

were attributed to an increase in available carbon, for reasons similar to Heezen et al.’s hypothesis, but other explanatory 

variables such as dissolved oxygen could not be ruled out (Kitahashi et al., 2014, 2016, 2018).  

Subsurface peaks in the vertical distribution of meiofauna and macrofauna were also observed in the Congo Channel (Van 

Gaever et al., 2009; Galéron et al., 2009) and meiofauna in Cap Breton Canyon (Hess et al., 2005). In the Congo Channel the 315 

peak for macrofauna was attributed to either the distribution of organic material or the periodic burial by turbidity flows, which 

favours living deeper as a strategy to avoid disturbance (Galéron et al., 2009). At Cap Breton, the peak was, again, attributed 

to the increased carbon but other explanatory factors such as the oxygen content, chemical factors, or grain size could not be 

ruled out (Anschutz et al., 2002; Hess et al., 2005; Hess and Jorissen, 2009).  

Nomaki et al. (2016) also found a similar anomalous vertical distribution compared to general deep-sea trends in prokaryote 320 

and meiofauna communities one year after the 2011 turbidity flow off the coast of Tōhoku (310 – 880 m water depth), near 

the epicentre of the earthquake. However, unlike Kitahashi et al. (2014, 2016) and the Cap Breton studies, Nomaki et al. (2016) 
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also collected data for chemical and physical properties of the sediment to address what factors were driving the anomalous 

distributions. They found that for prokaryotes, peaks correlated with sediment grain size and organic carbon availability, 

whereas for copepods vertical distribution was correlated with dissolved oxygen content, and for nematodes vertical 325 

distribution was correlated with ammonium concentrations (Nomaki et al., 2016). It is worth noting that these environmental 

measurements (carbon content, oxygen and ammonium) are related to early diagenetic processes along a gradient of redox 

conditions and are proxies for organic matter degradation (Hyacinthe et al. 2001). Overall, the studies following the turbidity 

flows off Japan and in the Cap Breton Canyon, France provide further equivocal evidence for Heezen et al. (1955)’s 

productivity hypothesis (Fig. 4). Additionally, they provide some insights into what factors (grain size, carbon content, and 330 

chemical peaks) might be driving the communities’ responses to turbidity flows. Nonetheless, the studies lack sufficient pre-

disturbance and/or environmental data to draw any definitive conclusions. 

 

Figure 4: Graphs of the impacts of turbidity flows on   the biomass and abundance (proxies of productivity) of benthic communities 

in three size classes (mega-, macro-, and meiofauna) and a summary group of all size classes (“All Fauna”). Increase, decrease, or 335 
no change in abundance or biomass in turbidite-affected areas was assessed by comparing individual measurements of these 

productivity metrics at different sites in the studies listed in Table 1. 
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3.2 Influence on diversity  

Although Young et al. (2001) dismissed the productivity-based hypothesis of Heezen et al. (1955), after their review of a small 

selection of the studies discussed above, they did conclude that turbidity flows likely have an impact on deep-sea faunal 340 

diversity as proposed by Angel and Rice (1996). Young et al. (2001) supported the hypothesis that while the initial impacts of 

turbidity flows can cause local mortalities either by erosional or depositional forces and therefore negatively impact local 

diversity (Fig. 1c), overall they contribute to the high regional species richness of deep-sea benthic communities by creating 

mosaics of habitats in time and space (Angel & Rice 1996).  

In general, locally depressed diversity and increased dominance has been observed in turbidites, a pattern typical of disturbed 345 

regimes throughout marine environments (Aller, 1997; Glover et al., 2001; Okey, 1997; Paterson and Lambshead, 1995). 

These general trends of lower local diversity at turbidites as predicted by Angel and Rice (1996) have been found in a number 

of turbidity flow studies (Briggs et al., 1996; Frutos and Sorbe, 2017; Van Gaever et al., 2009; Glover et al., 2001; Hess and 

Jorissen, 2009; Kitahashi et al., 2016; Lambshead et al., 2001; Olu et al., 2017; Tsujimoto et al., 2020). While at a regional 

scale these same studies and others have noted that the turbidites host unique communities of species not seen at other sites in 350 

the region and therefore increase the diversity of the region as a whole (Briggs et al., 1996; Frutos and Sorbe, 2017; Van 

Gaever et al., 2009; Glover et al., 2001; Hess and Jorissen, 2009; Olu et al., 2017; Tietjen, 1984) and supporting Angel and 

Rice’s (1996) hypothesis (Fig. 5).  
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Figure 5: Graphs of the impact of turbidity flows on diversity in three size classes (mega-, macro-, and meiofauna). For local 355 
diversity, the increase, decrease, or no change in species richness or other diversity indices was assessed from individual 

measurements of these metrics made in the studies listed in Table 1. For regional diversity, the assessment was made based on 

“unique community” as noted by the authors of these studies, or our interpretation of ‘uniqueness’ from the presented community 

data (e.g., nMDS plots or dendrograms). 

Additional studies from the turbidite sites discussed previously attempt to shed light on what characteristics of the turbidites 360 

may be driving these diversity patterns. Glover et al. (2001) compared diversity of polychaetes and other macrofauna in the 

NE Atlantic and Lambshead et al. (2001) reviewed meiofaunal nematode diversity at disturbed sites in the NE Atlantic and 

Venezuela Basin. The Madeira Abyssal Plain turbidite site was characterised by low polychaete and nematode species diversity 

and high dominance (Glover et al., 2001; Lambshead et al., 2001), a pattern also observed for nematodes at the HEBBLE site, 

an area of the deep sea that is regularly disturbed by benthic storms (Aller, 1997; Lambshead et al., 2001). The authors of these 365 

studies interpreted the polychaete and nematode communities as being characteristic of a site that has been recolonized after a 

disturbance (Glover et al., 2001; Lambshead et al., 2001). Similar high dominance by various meiofauna species described as 

‘opportunistic early colonizers’ have been noted at the Congo Channel (Van Gaever et al., 2009), Cap Breton Canyon (Hess 

et al., 2005; Hess and Jorissen, 2009), and off the coast of Japan (Tsujimoto et al., 2020). However, nematode diversity at the 

Venezuela Basin showed no impact from the turbidite (Lambshead et al., 2001). This difference in results between the Madeira 370 
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Abyssal Plain and Venezuela Basin nematodes was attributed to the difference in the age of the respective turbidites (Madeira 

Abyssal Plain: 930 years, Venezuela Basin: 2,000 years) and the difference in local sedimentation rates (Madeira Abyssal 

Plain: 0.1-1.0 cm kyr-1 (Weaver and Rothwell, 1987), Venezuela Basin: 7.2 cm kyr-2 (Cole et al., 1985)). The Venezuela Basin 

nematode community has had longer to recover, and a more pelagic-influenced sediment regime has developed on top of the 

turbidite. Deep-sea macrofaunal diversity has been positively related to sediment diversity (Etter and Grassle, 1992), and 375 

similar direct links between nematode diversity and sediment characteristics have also been observed (Carman et al., 1987; 

Leduc et al., 2012; Tietjen, 1984). Therefore, Lambshead et al. (2001) postulated that on a local level alterations of the physical 

characteristics (grain size and shear strength) of the sediments (Huggett, 1987) caused by turbidites continue to affect 

macrofaunal and meiofaunal communities, though meiofaunal communities appear to show a greater resilience to these 

disturbances than do macrofauna. However, as seen in the studies off the coast of Japan and in the Cap Breton Canyon carbon, 380 

oxygen and other chemical signals cannot be ruled out as factors that may be influencing community composition as well as 

community productivity (Anschutz et al., 2002; Hess et al., 2005; Hess and Jorissen, 2009; Nomaki et al., 2016; Tsujimoto et 

al., 2020). 

4 Conclusion and future research directions 

Evidence for the effects of turbidity flows on the productivity of faunal communities in the deep sea is ambiguous at best. 385 

From the reviewed studies, it is difficult to draw a conclusion on the general validity of Heezen et al.’s (1955) turbidity flow 

productivity hypothesis in the deep sea. Some studies show a positive influence on proxies of productivity, particularly biomass 

(Briggs et al., 1996; Carey, 1981; Griggs et al., 1969; Hess and Jorissen, 2009; Richardson et al., 1985; Thurston et al., 1994) 

while these same studies and others show negative or no influence on other proxies of productivity, specifically abundance 

(Briggs et al., 1996; Carey, 1981; Van Gaever et al., 2009; Galéron et al., 2009; Glover et al., 2001; Gooday, 1996; Kitahashi 390 

et al., 2014, 2016; Lambshead et al., 1995, 2001; Pearcy et al., 1982; Richardson et al., 1985; Woods and Tietjen, 1985). The 

difficulty in distinguishing a clear effect of turbidity flows on deep-sea benthic productivity among these studies is most likely 

related to the particular nature of the sites used to evaluate the hypothesis. The location relative to the turbidity flow path, and 

the time since impact will influence a community’s response, and the type of measurement used can influence our perception 

of that response. For example, the location along the flow path determines whether the impact was mostly erosional or 395 

depositional (Fig. 1a). The time since impact by a turbidity flow (months to years to thousands of years) determines what, if 

any, influence is still observable at the site (Fig. 1b and 1c). In addition, the community response is variable across proxies of 

productivity; i.e. abundance or biomass.  

In contrast, the evidence in support of Angel and Rice’s (1996) diversity hypothesis is relatively clear. However,  even in the 

case of Angel and Rice’s (1996) hypothesis, where evidence for lower local diversity (Briggs et al., 1996; Frutos and Sorbe, 400 

2017; Van Gaever et al., 2009; Glover et al., 2001; Gooday, 1996; Hess and Jorissen, 2009; Kitahashi et al., 2016; Lambshead 

et al., 2001; Olu et al., 2017; Tietjen, 1984) and higher regional diversity (Briggs et al., 1996; Frutos and Sorbe, 2017; Van 
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Gaever et al., 2009; Glover et al., 2001; Hess and Jorissen, 2009; Olu et al., 2017; Tietjen, 1984) seems to exist, the driving 

factors underlying these patterns are unclear. This review has indicated that turbidity flows may be influencing benthic 

communities via increased carbon or other nutrient availability, or due to physio-chemical characteristics of the sediments, or 405 

some combination thereof (reflective of organic matter degradation and resultant hypoxic or toxic conditions). Attempting to 

understand how turbidity flows impact the deep sea by looking at ancient turbidites is confounded by other natural processes, 

such as the flux of carbon from the surface to the benthos, and the hundreds to thousands of years since the turbidity flows 

occurred. Further, the hypotheses considered here focus on the distal deposition environment, usually abyssal habitats (the 

environment that Heezen et al. (1955) originally specified) but turbidity flows and studies of them evaluate the impact to the 410 

benthic communities all along the flow’s path. In Figure 1b and 1c we propose potential along-path patterns in proxies of 

productivity and diversity for a large, generalized turbidity flow in a canyon at three different time points following the event. 

A better way to test Heezen et al.’s (1955) hypothesis of productivity and Angel & Rice’s (1996) hypothesis of regional 

diversity, and to understand why these impacts are occurring and in which environments, is to look at more recent turbidity 

flows such as those triggered by the 1999 storm in Cap Breton Canyon, France, periodic turbidity flows induced by river 415 

flooding in the Congo Channel, SE Atlantic, and the 2011 Tōhoku Earthquake off Japan. However, even these studies lack 

sufficient pre-disturbance data or the spatial spread of data to interpret the impacts of the turbidity flow on the benthic 

community.  

A recent turbidity flow event in Kaikōura Canyon, New Zealand, triggered by the 2016 Kaikōura earthquake (Mountjoy et al. 

2018) may provide an ideal opportunity to test turbidity flow hypotheses. Ten years before the turbidity flow, the canyon head 420 

to depths of 1,300 m was surveyed using photographic seabed transects, sediment cores, and grabs, yielding detailed 

information about epibenthic megafaunal, infaunal megabenthic invertebrate, and demersal fish communities which indicated 

that the canyon was a benthic biomass hotspot (DeLeo et al. 2010). Additional sediment cores were collected six years before 

the turbidity flow providing further information on the macro- and meio-infaunal communities and confirmed Kaikōura 

Canyon’s contribution to regional biodiversity (Leduc et al., 2014, 2020). Then, surveys conducted at 10 weeks and 10 months 425 

after the turbidity flow event collected comparable imagery, sediment cores, and grab samples after the event occurred, with 

the express purpose of quantifying changes in benthic community structure and sediment characteristics caused by the turbidity 

flow. Preliminary analysis of the video imagery collected at 10 weeks after the event indicated that the once highly productive 

epifauna community was wiped out by the turbidity flow but that new chemosynthetic habitats were developing (Mountjoy et 

al., 2018). Further data collection at the same sites is planned, and analysis of this dataset will allow us to better understand 430 

the recovery patterns of the benthic communities in the immediate aftermath of a turbidity flow, and evaluate what factors 

influence the potential resilience of deep-sea ecosystems to this type of widespread and reoccurring disturbance. Understanding 

these impacts will also provide insights into how deep-sea communities may respond to other large-scale disturbances such as 

mining of deep-sea polymetallic nodule fields. 

 435 
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