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S1 36 

 37 

1. Harvested trees 38 

1.1 Plot setup  39 

The purpose of plot selection was to establish fixed and permanent plots representing regional 40 

Eucalyptus growing conditions and to provide harvested tree data on the single-tree scale with 41 

adequate consideration of spatial heterogeneity. Patches were selected first and met the following six 42 

conditions: (1) patch records were available from FMPI data for 2009; (2) forest stands were 43 

classified as timber or commercial forest; (3) forest patches were disturbance-free during the 44 

previous seven years, including but not limited to logging, fire, and pests; (4) forest patches were not 45 

replanted; (5) patches contained closed canopy forests; and (6) patches were monocultures, not 46 

mixed stands. Based on these six conditions, 2,980 Eucalyptus patches were selected from the FMPI 47 

data and fixed and permanent plots were established. The 2,980 selected patches were divided into 48 

ten groups based on forest age. Each stand group had been planted at the same time. We calculated 49 

the mean basal area for each group and used this as the basis for fixed plot selection, which was 50 

obtained from specified plot design and sampling procedures. In parallel, we considered site 51 

conditions, forest use, and forest origin (natural vs. man-made), and subsequently established 30 52 

permanent square plots (20 m × 20 m). We recorded fixed-plot conditions by assigning a code to 53 

each fixed plot and recorded environmental conditions, including the following direct and indirect 54 

attributes: age, community structure, canopy density, and understory shrub conditions. Finally, a full 55 

tree survey was conducted in each fixed plot to obtain the following: DBH for every tree ≥ 8 cm in 56 

diameter, tree height, and other tree attributes.  57 

1.2 Selection and cutting of standard wood 58 

Standard wood was selected following a full tree survey. The following selection criteria were used: 59 

(1) Wood was located within the plot; stems were representative of the plot, with no disturbances 60 

(e.g., pests, fire, or anthropogenic activities); and the wood was healthy. (2) Based on the full tree 61 
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survey data, a tree sampling method was used to calculate average basal area and three trees closest 62 

to the average values were selected (i.e., standard trees). These standard trees were cut down and the 63 

average biomass was calculated and multiplied by the stems per unit area to obtain the total 64 

Eucalyptus biomass per unit area. 65 

1.3 Harvested tree measurements 66 

Aboveground biomass was divided into three tissue types: stems, branches, and foliage. Four to six 67 

branches were systematically sampled from each tree at regular intervals over the entire crown length. 68 

Foliage was collected from each of the sampled branches. Stems were sectioned into meter-long 69 

pieces using a chainsaw. 70 

The fresh weight of three tissue types was obtained in the field and 500 g of each tissue type (i.e., 71 

stems, branches, and foliage) were placed in plastic bags. The samples were stored under 72 

refrigeration during transportation to the laboratory. Fresh samples were oven dried at 85 °C to 73 

determine the constant dry weight. 74 

2. Introduction to machine learning 75 

2.1 Support vector machines for regression 76 

A support vector machine (SVM) is a type of categorized algorithm that improves generalized 77 

machine learning ability by minimizing structural risks in order to minimize empirical risk and 78 

confidence intervals. In this way, it achieves adequate statistical trends from a limited number of 79 

samples. Compared with traditional machine learning methods, SVM adopts the principle of 80 

minimizing structural risks. Along with minimizing sample point errors, SVM simultaneously 81 

narrows the upper bound of generalized error in the model to improve the generalization ability of 82 

the model and to solve the problems of excessive model learning, nonlinearity, and dimensionality 83 

(Ukil, 2002). 84 

The SVM classification model was trained using a C-classification method, with longitude, DBH, 85 

tree height, and forest age as the selection characteristics and the biomass data from the 30 plots as 86 

model training samples. The Gaussian inner product function served as the kernel function. 87 
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2.2 Radial basis function artificial neural networks  88 

The basic components of radial basis function artificial neural networks (RBF-ANNs) include an 89 

input layer, a hidden layer, and an output layer, which are able to provide the best approximation for 90 

nonlinear functions and optimal global performance (Elanayar and Shin, 1994). The change from the 91 

input layer space to the hidden layer space is nonlinear, whereas the spatial transformation from the 92 

hidden layer to the output layer space is linear. The RBF-ANN has good generalizability, requires 93 

fewer calculations, and has a faster learning speed than other machine learning algorithms. Therefore, 94 

the RBF-ANN avoids lengthy iterative calculations, such as those found in the learning algorithms of 95 

back propagation neural networks, and the possibility of falling into a local extremum. RBF-ANN is 96 

widely used in many fields, including meteorology (Nath et al., 2016), soil (Zakian, 2017), 97 

vegetation (Hilbert and Ostendorf, 2001), and engineering control (Sarimveis et al., 2004). 98 

2.3 Random forest 99 

The random forest (RF) algorithm model is a relatively new machine learning technique and data 100 

mining method developed by Breiman in 2001. It is a modern classification and regression 101 

technology that combines self-learning technologies (Breiman, 2001). In order to achieve a better 102 

performance than individual classifiers, combinatorial learning approaches integrate several individual 103 

classifiers to determine the final classification of a case. If a single classifier is considered as a 104 

decision maker, the method of combinatorial learning is equivalent to a decision-making process 105 

involving multiple decision makers. 106 

3. Introduction to P-BSHADE 107 

P-BSHADE is an extension of the BSHADE method, which stands for the best linear unbiased 108 

estimation (BLUE) model for biased-spatial-location data (Hu et al., 2013). With the BSHADE 109 

model, the spatial correlation and heterogeneity of the target data are added into the model using 110 

prior knowledge (such as forest AGB). In addition, through rectification of sample points, the BLUE 111 

model can estimate the target subjects. The strategy of the algorithm is to transform the problem into 112 

one of solving for the extremum of a multivariate function with constraint conditions, followed by 113 

using the Lagrange multiplier method and the overall estimate to acquire the corresponding 114 
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parameters (Wang et al., 2011) (i.e., each sample in this method is given a certain weight, so that the 115 

variance between each sample and the true value is minimized to achieve rectification).  116 

Based on the BSHADE method, P-BSHADE is a BLUE-based interpolation method that considers 117 

both temporal and spatial heterogeneity. It can use biased samples to deduce the corresponding 118 

attributes of regions with missing samples. Therefore, the P-BSHADE model includes the following 119 

characteristics and assumptions: (1) the spatial distribution of the target data (such as forest AGB) is 120 

heterogeneous and (2) the correlations and differences among the target data in different forests (or 121 

sites) is included in the operation of the model (Xu et al., 2013). The performance of the P-BSHADE 122 

method has been tested using average annual temperature data in China from 1950 to 2000 (Xu, 2013).  123 

4 Forest Management and Planning Inventory (FMPI) data 124 

The FMPI data for the entire study area were provided by the Forestry Department of Fujian Province, 125 

China. This forest inventory used large-scale sampling methods to collect detailed information about 126 

the characteristics and conditions of each forest type. The FMPI data consisted of irregular polygons 127 

that were drawn based on the structured characteristics of the forest. Each polygon was 128 

homogeneously structured. In this study, we selected FMPI data for Eucalyptus plantation forests 129 

(2,980 patches). 130 

In every patch, all trees with a diameter at breast height (DBH) greater than 8 cm were measured. The 131 

data contained patch area, tree age (which was the same for all trees in a given patch because they were 132 

planted at the same time), plantation density, mean DBH, mean tree height, and total volume of each 133 

patch. All variables were measured within each forest patch and the average values were used as the 134 

factor value for each patch. The accuracy of forest patch variables was tested using systematic 135 

sampling. A 95% sampling precision was required. Table B.1 lists the statistical description of the 136 

forest patch data. 137 

5 Robustness of combined models 138 

We established 22 independent sample plots (Figure C.2) and conducted non-destructive 139 

measurements of each tree in July 2019. We then repeated the plot-level model construction 140 
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workflow for these data and evaluated the models. The independent sample plots were widely 141 

distributed throughout the eastern section of the study area. 142 

6 Model application and upscaling of AGB mapping 143 

We applied the chosen optimal model to each Eucalyptus forest patch (2,980 patches) and estimated 144 

the total AGB for all patches in the study area. We regarded the irregular polygon forest patches from 145 

the FMPI as a homogenous sample plot and applied the optimal plot-level model to upscale forest 146 

AGB. We compared this upscaled forest AGB with the AGB map obtained by an allometric model 147 

and calculated the relative error (RE) (see Equation A.1) of AGB between the two methods.  148 

RE = หݕ − ݕ/หݕ × 100%                   (A.1) 149 

where ݕ represents the predictive AGB value of each irregular polygon forest patch by the optimal 150 

model and ݕ is the predicted AGB value of each irregular polygon forest patch by the allometric 151 

model. 152 

The allometric model was expressed as follows: 153 

AGB = a((ܪܤܦ)ଶܪ)               (A.2) 154 

where, DBH is the diameter at breast height (m), H is the tree height (m), and a and b are constants. 155 

This model is acknowledged as a fast, simple, and basic method to calculate regional AGB. In our 156 

study, we used the AGB, mean H, and mean DBH of the 30 sample plots to create the plot-level 157 

allometric model. 158 

 159 

Figure C.3 shows the spatial distribution of the AGBs predicted by the RF & P-BSHADE model. The 160 

range of AGBs was 7.54-89.93 Mg·ha−1, with an average AGB of 41.21 Mg·ha−1, a median AGB of 161 

43.53 Mg·ha−1, a standard deviation of 18.83 Mg·ha−1, and a coefficient of variation of 45.69%.  162 

The total AGB of the Nanjing area (2,980 forest patches) estimated by RF & P-BSHADE was 163 

122,812.1 Mg·ha−1 and that estimated by the allometric model was 123,021.5 Mg·ha−1. The relative 164 

percent difference in total AGB between the two methods was 0.17%. Meanwhile, the MRE of AGB 165 

between the two methods ranged from 0.04% to 99.8%, with an average MRE of 19.93%.166 
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S2 167 

 168 

 169 

Table B.1 Statistical description of forest patch data. 170 

 171 

 

Number of 

patches 
Minimum Maximum Mean 

Standard 

deviation 

Age (years) 2,980 1 51 5.05 2.42 

Stand density 

(stems/ha) 2,980 135 3450 1377.63 241.10 

DBH (cm) 2,980 5.0 60.0 12.30 3.55 

Tree height (m) 2,980 1.5 48.50 13.40 3.99 

Note: Of the 2,980 forest patches, for which the maximum age was 51 years, only 24 forest patches 172 

were older than 10 years, all of which were identified as mature forest. 173 

 174 

Table B.2 Tree structures for calculating the biomass of the 90 harvested trees. 175 

 176 

Age DBH Height Individual biomass (kg)  Age DBH Height Individual biomass (kg) 

(yr) (cm) (m) Aboveground  (yr) (cm) (m) Aboveground 

1 3.3 4.3 1.9376  6 15.0 20.8 82.2273 

3.0 4.0 2.2500  15.3 20.8 99.3969 

3.2 4.3 1.8514  15.0 21.1 102.5718 

2.1 3.3 1.1061  15.3 19.9 97.7377 

2.1 3.4 1.0697  15.0 21.2 93.3897 

2.4 3.3 1.3143  14.5 20.8 89.4676 

3.4 4.6 2.2976  14.6 19.4 81.7034 

3.3 4.7 2.3782  15.0 19.4 81.8693 

3.3 4.5 2.0494  14.6 20.1 87.1974 

2 7.6 10.1 14.4861  7 18.0 20.4 119.9316 

8.0 8.5 14.7833  17.8 20.8 106.3167 

8.1 9.9 14.3030  18.0 20.4 143.0096 

7.2 10.5 12.1682  16.7 20.0 113.6738 
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7.0 10.4 11.7154  16.6 20.9 99.6045 

7.0 10.8 11.1324  16.4 21.4 98.7499 

7.2 9.2 12.3033  16.9 19.8 102.7874 

7.2 9.5 11.0665  16.9 20.2 97.2996 

7.0 8.1 10.2483  15.6 20.3 89.5590 

3 6.1 6.3 5.5350  8 14.3 21.1 89.6489 

7.0 6.9 8.8532  14.5 19.8 72.6971 

6.4 6.8 7.5987  14.0 19.2 90.9861 

6.2 7.6 6.3156  16.4 19.7 99.4468 

7.2 7.9 9.5706  16.4 20.1 97.8657 

7.2 7.7 9.7457  17.2 21.2 112.4650 

6.1 6.9 6.4039  14.0 17.7 63.5059 

6.2 9.4 9.2803  15.0 20.3 81.3824 

5.4 6.6 5.7853  14.9 19.3 84.1050 

4 11.1 18.6 36.7169  9 16.9 25.5 110.3010 

12.1 17.3 50.7412  17.2 25.1 146.4738 

11.8 17.3 44.8078  17.5 24.5 130.5710 

8.9 11.7 16.5647  16.1 23.5 117.4427 

9.2 17.4 27.9658  15.8 22.9 106.7083 

8.8 15.2 24.5316  15.9 23.3 112.0993 

13.2 17.9 56.0009  18.4 26.6 168.4229 

13.1 18.2 58.7273  18.4 24.7 144.5210 

12.4 17.8 51.5655  18.3 26.0 167.0830 

5 13.2 19.7 62.9911  10 18.2 27.0 136.6728 

13.9 16.5 68.7846  18.5 25.0 163.4031 

12.9 16.1 58.5322  18.2 26.2 150.9330 

13.4 19.3 81.9325  14.0 18.5 69.9841 

13.4 19.4 84.0987  13.9 22.1 76.9977 

13.1 18.9 73.2317  13.9 24.0 91.4171 

13.4 19.0 70.4283  17.6 23.8 118.4468 

12.9 17.1 70.5207  17.6 22.2 149.1616 

13.8 18.6 96.5537  17.6 25.6 138.2509 

 177 

  178 
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Table B.3 Construction of the optimal model. 179 

 180 

Leave-one-out Model 1 Model 2 … Model 7 

Validation 

data            

(Plot AGB) 

Training data                            

(Plot AGB and 

predictor 

variables) 

Simulated 

data1            

(Simulated 

AGB 1) 

Simulated 

data2            

(Simulated 

AGB2) 

Simulated 

data            

(Simulated 

AGB) 

Simulated 

data7            

(Simulated 

AGB7) 

Plot ID Plot ID Plot ID Plot ID Plot ID Plot ID 

1 2-30 1 S1 1 S2 … 1 S7 

2 1,3-30 2 S1 2 S2 … 2 S7 

3 1-2,4-30 3 S1 3 S2 … 3 S7 

… … … … … … 

29 1-28,30 29 S1 29 S2 … 29 S7 

30 1-29 30 S1 30 S2 … 30 S7 

AGB (group 

M) 
 

AGB 

(group1) 
AGB (group2) … 

AGB 

(group7) 
      

  

MAE1, 

MRE1 and 

RMSE1 

MAE2, MRE2 

and RMSE2 
… 

MAE7, 

MRE7 and 

RMSE7 

 181 

Table B.4 Statistical description of AGB and selected variables for sample plots. 182 

 183 

Variables Mean Median 
Standard 

deviation 

Coefficien

t of 

variation 

Minimum Maximum 

Aboveground 

biomass, AGB 
47.34 46.64 34.46 0.73 1.02 135.79 
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(t/ha) 

Longitude 117.48 117.47 0.02 0.13*10-5 117.446 117.503 

Diameter at breast 

height, DBH (cm) 
12.29 13.19 4.48 0.36 2.19 17.99 

Tree height, h (m) 12.98 14.42 4.72 0.36 2.83 18.23 

Age (years) 5.5 5.5 2.92 0.53 1 10 

  184 
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Table B.5 List of model accuracy indexes and their definitions. 185 

 186 

Model 

accuracy index 
Description Interpretation 

Mean Absolute 

Error 

(MAE) 

Mean absolute error is the mean of the 

absolute deviations of all individual 

measurements from arithmetical mean 

values. 

This represents the mean of absolute 

deviations of the true biomass of the 30 

sample plots from the average biomass of the 

30 sample plots obtained by a given 

prediction method. Because the deviations 

are expressed in absolute values, the mean 

absolute error is not cancelled out by 

positive and negative numbers. Therefore, 

the mean absolute error can better reflect the 

actual prediction error. 

Mean Relative 

Error 

(MRE) 

Mean relative error is the average value of 

the relative error, which is usually 

expressed as the absolute value (i.e., the 

absolute value of mean relative error). The 

relative error is the ratio of the absolute 

error to the measured value or the average 

of multiple measurements. 

This represents the average value of the ratio 

of the absolute error (the absolute value of 

the difference between the true value and the 

simulated value) for the biomass of each of 

the 30 sample plots to the predicted values. It 

is used to analyze the accuracy and precision 

of the results. 

Root Mean 

Square Error 

(RMSE) 

Square root of the ratio between the square 

of the deviation of the observed value from 

the true value and n, the number of 

observations. In actual measurement, the 

number of observations, n, is always limited 

and the true value can only be substituted 

by the most reliable (best) value. 

This represents the average of the square 

root of the following value: for real and 

simulated values of the biomass of each of 

the 30 sample plots, the square of their 

difference is divided by 30. Because the 

results are very sensitive to extremely large 

or small errors in a set of measurements, it 
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can better reflect the precision of the 

measurement. 

The Normalized 

Root Mean 

Square Error 

(nRMSE) 

The normalized root mean square error is 

the RMSE divided by the average of the 

observed values of a variable being 

predicted. 

When comparing the modelling accuracies 

of different studies presenting different forest 

types, nRMSE is more meaningful because 

the intrinsic AGB variability is very different 

between drastically different forest types 

(e.g., a tropical rainforest (large) and a 

Eucalyptus plantation (small)). 

Table B.6 Leave-one-out cross-validation for machine learning (support vector machine, 187 

artificial neural network, and random forest), spatial statistical analysis (P-BSHDE), and results from 188 

paired combinations of the two types. 189 

 190 

Method MAE MRE RMSE nRMSE 

SVM 11.168  0.2479 10.388 0.2182 

ANN 12.149  0.267 10.388 0.2182 

RF 10.155  0.259  9.429 0.1980 

P-BSHADE 18.371  0.391 14.077 0.2957 

SVM-＆P-BSHADE 6.883  0.125 6.304 0.1324 

ANN-＆P-BSHADE 10.136  0.205 9.633 0.2023 

RF-＆P-BSHADE 5.679  0.130 5.299 0.1113 

  191 
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S3 192 

 193 

 194 

 195 

Figure C.1 Spatial autocorrelation report. 196 
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 197 
Figure C.2 The location of experimental sample plots (blue dots) and independent sample plots 198 

(black dots). 199 
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 200 

Figure C.3 Upscaling map of AGB using RF & P-BSHADE. 201 

 202 
Figure C.4 Comparison of upscaling by RF & P-BSHADE with upscaling by the allometric 203 
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model. The green dashed line corresponds to a 1:1 relationship; each dot represents an individual 204 

forest patch; the solid yellow line indicates the trend line for the dots. 205 

  206 
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