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Abstract: Aboveground biomass (AGB) estimates at the plot level plays a major part in connecting 22 

accurate single-tree AGB measurements to relatively difficult regional-scale AGB estimates. However, 23 

complex and spatially heterogeneous landscapes, where multiple environmental covariates (such as 24 

longitude, latitude, and forest structure) affect the spatial distribution of AGB, make upscaling of 25 

plot-level models more challenging. To address this challenge, this study proposes an approach that 26 

combines machine learning with spatial statistics to construct a more accurate plot-level AGB model. 27 

The study was conducted in a Eucalyptus plantation in Nanjing, China. We developed, evaluated, and 28 

compared the accuracy and performance of three different machine learning models [support vector 29 

machine (SVM), random forest (RF), and the radial basis function artificial neural network 30 

(RBF-ANN)], one spatial statistics model (P-BSHADE), and three combinations thereof (SVM & 31 

P-BSHADE, RF & P-BSHADE, RBF-ANN & P-BSHADE) for forest AGB estimates based on AGB 32 

data from 30 sample plots and their corresponding environmental covariates. The results show that the 33 

performance indices RMSE, nRMSE, MAE, and MRE of all combined models are substantially 34 

smaller than those of any individual models, with the RF & P-BSHADE combined method giving the 35 

smallest value. These results demonstrate clearly that combined models, especially the RF & 36 

P-BSHADE model, can improve the accuracy of plot-level AGB models and reduce uncertainty on 37 

plot-level AGB estimates or even on large-forested-landscape AGB estimates. These research results 38 

are important because they reduce the uncertainty in estimates of the regional carbon balance. 39 

 40 
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1 Introduction 43 

Accurate maps of aboveground biomass (AGB) provide a solid foundation for sound decision-making in 44 

sustainable forest management scenarios, such as reducing deforestation, forest degradation, and 45 

greenhouse-gas emissions (Bustamante et al., 2016; Houghton et al., 2009; Mendoza-Ponce and Galicia, 46 

2010). Most AGB maps are constructed based on plot-level estimation models, which are challenging to 47 

scale up and can ultimately propagate uncertainty to regional AGB maps. The uncertainty of such 48 

regional maps can be attributed to two primary sources: (1) the use of inadequate sampling data to 49 

construct the plot level prediction models, and (2) model-dependent uncertainty, including 50 

unreasonable model-parameter assumptions and improper model structure (Chen et al., 2015; Gao et al., 51 

2016; McRoberts et al., 2016). The present study mainly focuses on reducing the second source of 52 

uncertainty. 53 

An estimated 18%–103% of the uncertainty in AGB mapping can be attributed to model-dependent 54 

uncertainty (Djomo and Chimi, 2017; Malhi et al., 2004). Although the allometric model, which is the 55 

most popular plot-level model, has produced useful results for forest AGB estimates (Conti et al., 2019; 56 

Huang et al., 2019), selection error in plot-level allometric modeling still leads to over 40% uncertainty 57 

(Djomo et al., 2016; Fayolle et al., 2013; Chave et al., 2014), and simple or complex forms of the 58 

allometric model account for 20%–60% of the uncertainty (Picard et al., 2015). 59 

Many different plot-level prediction models other than allometric models have been applied to 60 

constructing accurate AGB maps, including linear models (Andersen et al., 2014; Morel et al., 2012), 61 

machine learning models (Chen, 2015; Gleason and Im, 2012), and spatial statistical models (Benitez et 62 

al., 2016; Propastin, 2012;Van der Laan et al., 2014). With the development of computer-science 63 

techniques and advances in nonlinear biomass modeling, machine learning methods have become 64 

prevalent. Traditional parametric methods, which summarize data with a fixed number of parameters 65 

based on sample size (e.g., logistic regression and perceptron) (Gao and Hailu, 2012), have difficulty 66 

characterizing nonlinear relationships between AGB and multiple environmental covariates. By 67 

comparison, nonparametric machine learning algorithms, in which the number of parameters depends 68 

on the number of training examples (e.g., K-nearest neighbor, support vector machine, and random 69 

forest), are advantageous because they are more elastic and do not restrict variable types, the 70 

distribution of predictor variables, or the relationship between response and predictor variables (Lu et 71 
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al., 2007). In addition, nonparametric machine learning algorithms may offer higher prediction accuracy 72 

(Frey et al., 2019; Gleason and Im, 2012). 73 

Another group of models frequently used to estimate the relationship between forest AGB and multiple 74 

environmental covariates is based on spatial statistical approaches, including geographically weighted 75 

regression and Kriging (Du et al., 2010; Van der Laan et al., 2014; Viana et al., 2012). Spatial statistical 76 

methods are based on analyses of attribute information, such as spatial location (Schabenberger and 77 

Gotway, 2005). Compared with traditional statistical methods, spatial methods integrate spatial factors 78 

that affect model responses, thus removing the constraints of traditional statistical methods that assume 79 

sample independence (Rangel and Bini, 2010) and improving our understanding of spatial 80 

autocorrelation and heterogeneity (He et al., 2011; Rosenberg and Anderson, 2011). 81 

Although many studies have integrated ground-based plot data, multi-source remote-sensing data (e.g., 82 

LiDAR and Landsat), and machine learning or spatial statistical methods, the prediction accuracy of 83 

current AGB spatial mapping still suffers from uncertainty (McRoberts et al., 2018; Paul et al., 2016; 84 

Saatchi et al., 2011; Zheng et al., 2004; Jachowski et al., 2013; Zhang et al., 2014). First, existing 85 

studies that used machine learning methods have not considered the spatial heterogeneity of multiple 86 

environmental covariates (such as longitude, latitude, and forest structure), which affects the spatial 87 

distribution of AGB (Babcock et al., 2015; Fassnacht et al., 2014). Second, the assumptions of the spatial 88 

statistical method (e.g., spatial autocorrelation and spatial stratified heterogeneity) may not always apply 89 

to forest AGB.  90 

AGB estimates at the plot level serve as a bridge to connect single-tree AGB measurements to AGB 91 

estimates on a regional scale. Accurate AGB mapping at the plot scale provides a basis for future 92 

upscaling to the regional scale. However, the uncertainty and error propagation inherent in different 93 

prediction models make this process challenging. Allometric models are most commonly used to 94 

construct plot-level AGB models, but they cannot fully capture the complex and spatially 95 

heterogeneous landscapes where multiple environmental covariates (such as longitude, latitude, and 96 

forest structure) affect the spatial distribution of AGB. The objective of the present study is to develop 97 

and evaluate a combined machine learning and spatial statistical method that uses ground-based samples 98 

to improve the prediction accuracy of AGB spatial mapping at the plot level. The proposed method 99 
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integrates the nonlinear mapping capabilities of machine learning algorithms [i.e., radial basis function 100 

artificial neural network (RBF-ANN), support vector machine (SVM), and random forest (RF)] with the 101 

spatial autocorrelation and stratified heterogeneous advantages of a spatial statistical model (i.e., the 102 

point estimation model of biased sentinel hospital-based area disease estimation, P-BSHADE) (Xu et al., 103 

2013). Our aim is to answer two specific questions: (1) What are the differences in prediction accuracy 104 

of AGB maps based on different methods? (2) Can the integration of spatial statistical and machine 105 

learning methods improve the accuracy of AGB models at the plot level? We explore these two 106 

questions by studying an empirical case for predicting an AGB map at a Eucalyptus plantation in 107 

Nanjing County, China. 108 

2 Materials and Methods 109 

2.1 Site description 110 

Nanjing County (117°00'–117°36'E, 24°26'–25°00'N, Fig. 1b) is located in the upstream region of the 111 

Jiulong River in Fujian Province, China. Seventy-four percent (145 009 ha) of the county comprises 112 

forests and 79 346 ha are plantations. The region is affected by the South Asian tropical monsoon climate. 113 

In 2014, the average annual temperature in Nanjing County was 21.1°C, with an annual precipitation of 114 

1700 mm and 340 frost-free days. The major soil type is red soil. 115 

The study area has a complex topography with significantly varying elevation (0–1566 m). Forest 116 

composition, structure, and biomass are spatiotemporally heterogeneous. The main tree species are 117 

Eucalyptus grandis x urophylla, Pinus massoniana, and Cunninghamia lanceolata. Recently, the area of 118 

Eucalyptus plantations has increased rapidly, reaching 13 338 ha, which is an increase of 10 862 ha in 119 

one decade. 120 
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 121 

Figure 1. The study area is a typical example of a non-representative–sample problem. (a) 122 

Geographical location of the study area. (b) Spatial distribution of Eucalyptus plantations (red) and 123 

other major forests. (c) Spatial distribution of the 30 sample plots used in this study (blue). 124 

2.2 Data collection 125 

2.2.1 Non-destructive sampling in sample plots  126 

A total of 30 fixed sample plots were selected in 2012 from the Yongfeng forest farm. The plots were 127 

located in the eastern section of the study area (Fig. 1). The 30 sampling plots included ten Eucalyptus 128 

plantation age groups. In each plot (0.04 ha, 20 m × 20 m), we measured the diameter at breast height 129 

(DBH) of all living stems ≥8 cm and the tree height (H). In addition, we measured mean plot-level 130 

variables, including stand age, density, longitude, latitude, and altitude. 131 
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2.2.2 Destructive sampling in sample plots: Tree harvest 132 

Trees were harvested from standard woods in the 30 fixed sample plots. Three trees with a DBH close 133 

to mean DBH of trees in each plot were cut down, for a total of 90 trees harvested from the 30 plots. 134 

We then measured the H and DBH of each harvested tree, as well as the biomass of each organ (foliage, 135 

stems, and branches) to obtain the AGB of each harvested tree. Table B.2 in section S2 of the 136 

Supplementary Material presents the data for the 90 harvest trees. Details on selection of the standard 137 

wood and the cutting process are provided in section S1 of the Supplementary Material. 138 

2.3 Construction of tree-level allometric models  139 

All analyses were based on the underlying assumption that the relationship between the response and 140 

predictor variables in the sample data used to construct the models was the same as the relationship in 141 

the entire population. We divided the 90 harvested trees into three age groups (1–2 yr, 3–5 yr, 6–10 yr) 142 

for the tree-level allometric models. The allometric models were then applied to each tree in each 143 

sample plot according to their age, DBH, and H, thereby producing a true measure of AGB for each 144 

sample plot. 145 

2.4 Construction of plot-level models 146 

Processing based on model screening was applied to alleviate uncertainty caused by model-dependence 147 

and consisted of the four steps shown in Fig. 2. 148 
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 149 

Figure 2. Workflow for screening an optimal model. 150 

2.4.1 Selection of variables and analysis of resulting spatial distribution 151 

To create the plot-level model, we first identified predictor variables. Based on our previous work (Ren 152 

et al., 2017), we selected plot-level environmental covariates including longitude and altitude, and forest 153 

attribute variables including forest distribution density, DBH, H, tree stem volume, and forest age. 154 

Pearson’s correlation coefficient was used to investigate the correlation between these variables and the 155 

true AGB of sample plots.  156 

We then analyzed the spatial autocorrelation and spatial heterogeneity of AGB data from the selected 157 

sample plots. We used Moran’s I (Cliff and Ord, 1981), a commonly used global spatial autocorrelation 158 

index, to evaluate spatial autocorrelation between the true AGBs of sample plots. The spatial stratified 159 

heterogeneity (which refers to the within-strata variance being less than the between-strata variance; it 160 

is ubiquitous in ecological phenomena, such as AGB) of the true AGB of sample plots was evaluated 161 

by using a q-statistic generated by applying the GeogDetector model, which is a software tool proposed 162 

by Wang et al. (2016) that analyzes spatial variation of the geographical strata of variables. First, we 163 

used the K-means algorithm to obtain the strata of true AGB for preprocessing by GeogDetector. Next, 164 
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we regarded the true AGB as Y, the strata of true AGB as X, and put them into the GeogDetector 165 

model to obtain the q-statistic (Wang et al., 2010; Wang et al., 2016). 166 

2.4.2 Split datasets 167 

We used the leave-one-out cross-validation method to split the 30 sample plots into 30 sets, with each set 168 

containing two groups of data: (1) validation data (the AGB of one plot) and (2) training data (the AGBs 169 

and predictor variables of the other 29 plots), see Table B.3. The leave-one-out cross-validation method 170 

assumes that, in a dataset containing n samples, each sample serves as a test sample with the other n − 1 171 

samples serving as training samples. Thus, with n iterations, we can obtain n training datasets and n 172 

validation datasets. 173 

2.4.3 Model training 174 

Seven models including three machine learning models [Figs. 3(a–3(c)], one spatial statistical model 175 

[Fig. 3(d)], and three combined machine learning and spatial statistical models [Figs. 3(a) and 3(d), 3(b) 176 

and 3(d), and 3(c) and 3(d)] were developed and trained to predict the AGB of sample plots. The three 177 

machine learning models were (a) SVM, (b) RBF-ANN, and (c) RF.  178 

The spatial statistical model (P-BSHADE) required AGB-related variables (reference series). In this 179 

case study, we used the reference-plot AGB data as the variables. The allometric model (Qiu et al., 180 

2018) was applied to obtain the AGB of each tree in each sample plot. Next, the reference-plot AGB 181 

data consisted of the sum of the AGB of each tree. This method produces the P-BSHADE model shown 182 

in Fig. 3(d). For the combined machine learning and spatial statistical models, the reference plot AGB 183 

data in P-BSHADE were obtained from the results of the SVM [Fig. 3(a)], the RBF-ANN [Fig. 3(b)], or 184 

the RF [Fig. 3(c)]. The three combined models are denoted SVM & P-BSHADE [Figs. 3(a) and 3(d)], 185 

RBF-ANN & P-BSHADE [Figs. 3(b) and 3(d)], and RF & P-BSHADE [Figs. 3(c) and 3(d)]. Each 186 

model was trained on 30 datasets, yielding a total of 30 predicted AGB datasets for 30 sample plots (see 187 

Table B.3, section S2 in the Supplementary Material). 188 
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 189 

 190 

Figure 3. Framework for estimating (a)–(c) the machine learning models, (d) the P-BSHADE model, 191 

and the three models that combine machine learning with the P-BSHADE model (a+d, b+d, c+d). 192 

 193 

(1) Machine learning 194 

SVM is a method of supervised learning in machine learning and is often used to solve classification 195 

problems. The basic principle of SVM is to find a hyperplane in the feature space and separate the 196 

positive and negative samples with the minimum misclassification rate (Hearst et al., 1998). RBF-ANN 197 

is a three-layer neural network model, which includes an input layer, a hidden layer, and an output layer. 198 

The transformation from input space to hidden space is nonlinear, whereas the transformation from 199 

hidden space to output space is linear. The function of the hidden layer is to map the vector from the 200 

indivisible low-dimensional linear state to the separable high-dimensional linear state, so as to greatly 201 
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accelerate the learning and convergence speed and avoid getting stuck in a local optimum (Elanayar and 202 

Shin, 1994; Xia and Xiu, 2007). RF is a combination of tree predictors such that each tree depends on 203 

the values of a random vector sampled independently and with the same distribution for all trees in the 204 

forest. RF is an effective tool in prediction. Because of the Law of Large Numbers, RF does not overfit. 205 

Injecting the right type of randomness means that RF makes accurate classifiers and regressors (Breiman, 206 

2001).  207 

The schematic function for machine learning is  208 

y = ,,ଵݔ)݂ ,,ଶݔ ,,ଷݔ  ,ସ)                      (1) 209ݔ

where y is the AGB of the ݆th sample plot predicted by a machine learning model, ݂(… ) is a machine 210 

learning model represented by a function of ݔ,  (݇ = 1, … ,4); and ݔ,ଵ, ݔ,ଶ, ݔ,ଷ, and ݔ,ସ are the 211 

central longitude, the mean DBH, the mean H, and the forest age of the ݆th sample plot, respectively. A 212 

specific description of the three machine learning models is given in section S1 of the Supplementary 213 

Material. 214 

(2) Spatial statistical model: P-BSHADE 215 

P-BSHADE is an optimal linear unbiased estimation interpolation method based on the assumption of 216 

the simultaneous existence of the spatial autocorrelation and heterogeneity of the target object. We use 217 

it here to solve the problem of an unrepresentative sample imposed by the spatial location of a 218 

convenient sample at the plot level. 219 

The core of the model is to minimize the variances between predicted error and unbiased estimation. 220 

The prediction process of the P-BSHADE model requires strong spatio-temporal coordination between 221 

the predictive variable (forest AGB of target plots) and the reference series (reference forest AGB of 222 

target plots), so as to realize the spatial interpolation of the predictive variable. The model is also a data 223 

fusion approach that combines the observed samples with the reference series (related variable).  224 

P-BSHADE is markedly different from the Kriging and Inverse Distance Weighting (IDW) algorithms. 225 

Compared with Kriging and IDW, the application of P-BSHADE to forest AGB interpolation has 226 

obvious advantages. The spatial distribution of forest AGB is also characterized by spatial 227 

autocorrelation and heterogeneity, which have been taken into account in the P-BSHADE model. 228 
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Taking into account spatial heterogeneity can effectively solve the difference in forest AGB 229 

distribution caused by different terrain or geographical location. However, Kriging and IDW only 230 

consider the spatial correlation between plots. In addition, P-BSHADE considers strongly correlated 231 

sample plots as neighboring plots, whereas the Kriging and IDW algorithms consider sites that are 232 

close in proximity. 233 

In brief, the P-BSHADE model includes two steps. First, it obtains reference AGB for all sample plots 234 

by using the allometric model. Second, it uses the reference AGB of the target sample plot and the true 235 

AGB of other sample plots to obtain the weight relationship between the target sample plot and the 236 

other sample plots and puts the true AGB of other sample plots and the weights into Eq. (2) to predict 237 

the AGB of the sample plots. Therefore, positions and distances between plots do not apply here. The 238 

specific mathematical formula for the P-BSHADE model is now described (Hu et al., 2013; Xu et al., 239 

2013). 240 

a. Objective 241 

The objective is to interpolate the AGB data of the target sample plot by using data acquired from other 242 

sample plots. A theoretical description is  243 

ොݕ = ୀଵߑ
                                 (2) 244ݕݓ

where ݕො is the AGB of the ݆th sample plot estimated by the P-BSHADE model (݆ = 1 − 30, ݊ =245 

݅)  is the true AGB of the ݅th sample plotݕ ;(30 = 1 − 30, ݊ =   is the weight (contribution) 246ݓ ;(30

of the true AGB of the ݅th sample plot to the AGB to be interpolated of the ݆th sample plot (when ݆ =247 

1, ݅ = 2, 3, … , 30; when ݆ = 1, ݅ = 1, 3, 5, …   is calculated by the true AGB of the ݅-th 248ݓ ;(30,

sample plot and the allometric model estimation of the AGB in the ݆-th sample plot.  249 

As expected, the estimates of the two properties in Eq. (2) are unbiased: 250 

(ݕ)ܧ =  ̂൯                             (3) 251ݕ൫ܧ

Minimum estimation variance is expressed as 252 

min௪ ቂߪ௬ොೕ
ଶ = ොݕ൫ܧ − ൯ݕ

ଶቃ                    (4) 253 

where ܧ is the statistical expectation. 254 
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b. Ratio of data from target sample plot to those from other sample plots 255 

The ratio between data from the target sample plot to those from other sample plots is one of the most 256 

important inputs for estimating the ABG of the target sample plot and is an index of heterogeneity in 257 

the AGB spatial distribution. The relationship between data from the target sample plot and from the 258 

other sample plots is expressed as 259 

ܾݕܧ =                            (5) 260ݕܧ

In most cases, the AGB of any two plots are not equal, and the relationship between them can be 261 

further expressed as the relative bias ܾ   between the mathematical expectation of ݕ  and ݕ . 262 

Considering Eq. (2), Eq. (5) can be written as 263 

∑ ݓ ܾ = 1
ୀଵ                          (6) 264 

This equation is generally valid for nonhomogeneous conditions. Clearly, the determination of ܾ 265 

requires calculating the coefficients ݓ (݅ = 1, … , ݊, ݆ = 1, … , ݊), which is addressed in the following 266 

section. 267 

 268 

c. Weight estimation 269 

The main challenge in estimation is finding the weights ݓ that satisfy the unbiased condition and 270 

that minimize estimation variance: 271 

௬ොೕߪ
ଶ = ොݕ൫ܧ − ൯ݕ

ଶ
= ො൯ݕොݕ൫ܥ + (ݕݕ)ܥ −  ൯           (7) 272ݕොݕ൫ܥ2

 273 

These weights can be calculated by minimizing the estimation variance and taking unbiasedness into 274 

account: 275 

⎣
⎢
⎢
(ଵݕଵݕ)ܥ⎡ ⋯ (ݕଵݕ)ܥ ܾଵ

⋮ ⋱ ⋮ ⋮
(ଵݕݕ)ܥ ⋯ (ݕݕ)ܥ ܾ

ܾଵ … ܾ 0 ⎦
⎥
⎥
⎤

൦

ଵݓ
⋮

ݓ
ߤ

൪ =

⎣
⎢
⎢
൯ݕଵݕ൫ܥ⎡

⋮
൯ݕݕ൫ܥ

1 ⎦
⎥
⎥
⎤
          (8) 276 

 277 

where ߤ is a Lagrange multiplier. The minimized variance in the estimation error can then be written 278 

as 279 

௬ߪ
ଶ = ௬ߪ

ଶ + ୀଵߑ
 ୀଵߑ

 (ݕݕ)ܥ − ୀଵߑ2
 ൯ݕݕ൫ܥݓ + ୀଵߑ൫ߤ2

 ݓ ܾ − 1൯   (9) 280 
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 281 

The P-BSHADE model is a geospatial model because it has the following characteristics:  282 

1. The P-BSHADE model is mainly based on the assumptions of spatial autocorrelation and spatial 283 

heterogeneity of forest AGB. Therefore, before using P-BSHADE, we first applied the statistical test of 284 

these two theoretical hypotheses (spatial autocorrelation test and spatial differentiation test) for forest 285 

AGB. 286 

2. The prediction process of the P-BSHADE model requires strong spatio-temporal coordination 287 

between the predictive variable (forest AGB of target plots) and the reference sequence (reference 288 

forest AGB of target plots), so as to spatially interpolate the predictive variable. 289 

3. P-BSHADE is an optimal linear unbiased estimation interpolation method that considers temporal 290 

and spatial heterogeneity. Spatial autocorrelation and heterogeneity of AGB data can be added into the 291 

model based on prior knowledge (reference AGB data), following which the linear unbiased optimal 292 

estimation of the target-plot AGB can be obtained by correcting data from a convenient sample plot. 293 

Specifically, for example, the ratio of data from the target sample plot to that from other sample plots is 294 

used [see 2.4.3(2)b section]. In the P-BSHADE model, this ratio plays a very important role in 295 

estimating the forest AGB of the target plots. This ratio is a manifestation of the spatial heterogeneity 296 

of AGB data. P-BSHADE takes into account the reality of the spatial distribution of AGB data and 297 

emphasizes that the spatial distribution of AGB data is heterogeneous. 298 

(3) Combination of machine learning and spatial statistical models 299 

Considering the inherent advantages and disadvantages of P-BSHADE and machine learning, this study 300 

investigates whether their combination can improve the accuracy of forest AGB estimates. Therefore, 301 

P-BSHADE was separately integrated with the three machine learning methods (SVM, RBF-ANN, and 302 

RF) to form three combined models (SVM & P-BSHADE, RBF-ANN & P-BSHADE, and RF & 303 

P-BSHADE). The reference AGBs of the 30 sample plots were replaced by the estimates produced by 304 

the machine learning models. Each combined model was represented as follows: 305 

ොݕ = ୀଵߑ
                                  (10) 306ݕݓ
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where ݕො  is the estimated AGB of the ݆ th sample plot using the combined model (݆ =307 

1, 2, … , 30, ݊ = ݅)  is the true AGB of the ݅th sample plotݕ ;(30 = 1, 2, … , 30, ݊ =   is the 308ݓ ;(30

contribution in weight of the ith true AGB of the sample plot to the ݆th sample plot AGB to be 309 

interpolated (when ݆ = 1, ݅ = 2, 3, … , 30 ; when ݆ = 1, ݅ = 1, 3, 5, … , 30 ݓ ;(  is calculated by 310 

using the true AGB of the ݅th sample plot and the machine learning estimate of the AGB of the ݆th 311 

sample plot. A detailed description of the combined models and the algorithm formulas is presented in 312 

section S1 of the Supplementary Material. 313 

2.4.4 Model evaluation and comparison 314 

To evaluate the accuracy of the AGB estimates of the seven models (SVM, RBF-ANN, RF, P-BSHADE, 315 

SVM & P-BSHADE, RBF-ANN & P-BSHADE, and RF & P-BSHADE), the AGB results were 316 

compared to the reference AGBs of the sample-plot groups (AGB group M in Table B.3). We calculated 317 

four performance indicators, as given by Eqs. (11)–(14) [mean absolute error (MAE), mean relative 318 

error (MRE), root mean square error (RMSE), and normalized root mean square error (nRMSE)]: 319 

MAE = ൫∑ หݕ
 − หݕ

ୀଵ ൯/݊       (11) 320 

MRE = (∑ ݕ|
 − |ݕ

ୀଵ ݕ)/( × ݊)      (12) 321 

RMSE = ටቀ∑ ൫ݕ
 − ൯ݕ

ଶ
ୀଵ ቁ ݊⁄       (13) 322 

nRMSE =
ටቀ∑ ൫௬

ି௬൯
మ

సభ ቁ ൗ

௬ഢതതത
       (14) 323 

where ݕ
 is the predictive value of the different models, ݕ is the AGB of the ݅th sample plot, and ݊ 324 

is the number of training datasets. 325 

We then used the calculated MAE, MRE, RMSE, and nRMSE to identify the optimal model. 326 

2.4.5 Robustness of combined models 327 

To evaluate the robustness of the combined machine learning and spatial statistical models, we selected 328 

22 independent sample plots (see details in S1 and S3 of the Supplementary Material) and made 329 

nondestructive measurements of each tree in July 2019. We repeated the workflow used for 330 

constructing the plot-level model and evaluated the models. We then evaluated whether the combined 331 
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models produced higher accuracy than the plot-level models by using the accuracy-assessment indexes 332 

(MAE, MRE, RMSE, and nRMSE). 333 

2.5 Model application and upscaling 334 

We treated the irregular polygon forest patches (2980 patches) of the Forest Management and Planning 335 

Inventory (FMPI) as a homogenous sample plot and used the optimal plot-level model to upscale forest 336 

AGB (see section S1 of the Supplementary Material). We then compared the upscaled forest AGB with 337 

the AGB map obtained from the allometric model and calculated the MRE of AGB between the two 338 

methods (see Eq. A.15 in section S1 of the Supplementary Material). 339 

3 Results 340 

3.1 True AGB of sample plots 341 

The true AGB for the 30 sample plots ranged from 1.02 to 135.79 Mg·ha−1, with an average value of 342 

47.34 Mg·ha−1 and a standard deviation of 34.46 Mg·ha−1. The coefficients of variation of the AGB for 343 

all the sample plots and for the 10 age categories were 0.73 and 0.07–0.37, respectively. 344 

3.2 Spatial distribution test and the selection of variables  345 

3.2.1 The effect of different variables 346 

Figure 4 shows the correlation-coefficient matrix of variables. The following variables were strongly 347 

correlated with AGB: longitude (r = −0.56) , DBH (r = 0.79) , H (r = 0.84) , trunk volume 348 

(r = 0.86), and forest age (r = 0.82). Timber volume and stem volume were both estimated based on 349 

H and DBH, so they were excluded as covariates for the AGB plot-level models. To summarize, four 350 

variables (longitude, DBH, H, and forest age) were selected as covariates for the AGB plot-level 351 

models of the Eucalyptus forest in the Nanjing region. Table B.4 in section S2 of the Supplementary 352 

Material lists the statistical descriptions of these covariates and the AGB statistics for the 30 sample 353 

plots. 354 
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 355 

 356 

Figure 4. Pearson’s correlation coefficients between AGB and other variables represented by numbers 357 

and squares. Negative (red) numbers indicate that the corresponding variables are negatively correlated 358 

and are colored in red, whereas positive (blue) numbers represent positive correlations. Larger absolute 359 

numbers are indicated by darker colors, larger squares indicate stronger correlations, and the symbol “×360 

" indicates insignificant correlations.  361 

3.2.2 Spatial autocorrelation test 362 

The spatial distribution of the true AGBs of the 30 sample plots displayed a pattern of aggregation (see 363 

red regions in Fig. C.1, section S3 of the Supplementary Material and Table 1). In addition, because 364 

less than 1% of the AGB data were randomly distributed (see blue regions in Figs. C.1 and S3 of the 365 

Supplementary Material and Table 1), the possibility of an aggregated distribution was greater than that 366 

of random distribution. Furthermore, the null hypothesis was significantly rejected (p < 0.01). These 367 

results suggest that the spatial distribution of the AGB data displays aggregation and a pattern of strong 368 
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spatial autocorrelation. 369 

Table 1. Spatial autocorrelation and heterogeneity test. 370 

Spatial autocorrelation  Spatial heterogeneity 

Items Values  Factors q value p value 

Moran I 0.36 

 AGB 0.87 <0.01 

 Longitude, long 0.38 <0.01 

z-score 4.78  Diameter at breast height, DBH 0.54 <0.01 

p-value 0.00 
 Tree height, H 0.63 <0.01 

 Age 0.92 <0.01 

3.2.3 Spatial heterogeneity test 371 

As shown in Table 1, the true AGBs of the sample plots were divided into three strata by using k-means 372 

clustering. We then ran the GeogDetector model and obtained a ݍ value of 0.87 and a  value less 373 

than 0.01. These results indicate that the within-layer variances were far less than the sum of variances 374 

among different strata. The results also suggest that the reference AGBs of the 30 sample plots were 375 

associated with obvious spatially stratified heterogeneity. 376 

3.3 Performance of plot-level models 377 

We developed seven models for estimating AGB: three machine learning models (SVM, RBF-ANN, 378 

and RF), one spatial statistical model (P-BSHADE), and three combined models that integrated each 379 

machine learning method with the spatial statistical method (SVM & P-BSHADE, RBF-ANN & 380 

P-BSHADE, and RF & P-BSHADE). Furthermore, we used the leave-one-out cross-validation method 381 

to split the datasets and evaluated the prediction performance of these seven methods based on the 382 

indicators MAE [Fig. 5(a)], MRE [Fig. 5(b)], RMSE [Fig. 5(c)], and nRMSE [Fig. 5(d)]. 383 

 384 
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 385 

Figure 5. Prediction performance of the seven different models. (a) MAE and (b) MRE are presented as 386 

boxplots for each prediction method, with the median (black horizontal line in the box), inter-quartile 387 

range (25%–75% in the box), the range 5%–95% (whiskers), and outliers (asterisks) labeled (S1=SVM, 388 

S2=RBF-ANN, S3=RF, S4=P-BSHDE, S5=SVM & P-BSHDE, S6=RBF-ANN & P-BSHDE, S7=RF 389 

& P-BSHDE, ML=machine learning, Sp Stats=Spatial statistics). Histogram distributions of RMSE and 390 

nRMSE for each prediction method are presented in panels (c) and (d), respectively. 391 

 392 

The forest AGB estimates obtained by the three machine learning methods were significantly more 393 

accurate than those obtained by the spatial statistical method. The performance indicators for 394 

P-BSHADE were MAE=18.37 Mg·ha−1, MRE=39.13%, RMSE=14.08 Mg·ha−1, and nRMSE=29.57%, 395 

whereas those for the machine learning methods covered the following ranges: MAE 10.16–12.15 396 

Mg·ha−1, MRE 24.79%–26.69%, RMSE 9.43–10.39 Mg·ha−1, and nRMSE 19.80%–21.82%. 397 

Among the three machine learning methods, the accuracy of RF was highest. The four evaluation 398 

indexes (MAE=10.16 Mg·ha−1, MRE=25.93%, RMSE=9.43 Mg·ha−1, and nRMSE=19.80%) were 399 
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substantially less than those for P-BSHADE and those for the other two machine learning methods 400 

(MAE=11.17–12.15 Mg·ha−1, MRE=24.79%–26.69%, RMSE=10.39–10.39 Mg·ha−1, and nRMSE = 401 

21.82%). Finally, the combination of machine learning and spatial statistical models produced smaller 402 

MAE (5.68–10.14 Mg·ha−1), MRE (12.47%–20.49%), RMSE (5.30–9.63 Mg·ha−1), and nRMSE 403 

(11.13%–20.23%) than the single machine learning methods. Of the three combined methods, RF & 404 

P-BSHADE produced the highest accuracy with the smallest MAE (5.68 Mg·ha−1), a modest MRE 405 

(12.97%), and the smallest RMSE (5.30 Mg·ha−1) and nRMSE (11.13%). In contrast, RBF-ANN & 406 

P-BSHADE had the highest MAE (10.14 Mg·ha−1), MRE (20.49%), RMSE (9.63 Mg·ha−1), and 407 

nRMSE (20.23%). Compared with the RF model, the RF&P-BSHADE model led to a reduction of the 408 

cross-validated prediction error of 43.80%~50.00% (44.08% for MAE, 50.00% for MRE, and 43.80% 409 

for RMSE and nRMSE). 410 

We also explored the relationship between the observed and predicted AGBs in terms of 411 

cross-validation results (Fig. 6). The quantity R2 was calculated for the linear regression model applied 412 

to the observed and predicted AGBs; R2 for every model was greater than 0.9. Although P-BSHADE 413 

had the highest R2, its distribution of dots in Fig. 6(d) differed quite significantly from the 1:1 line. Of 414 

the seven models, the accuracy of RF & P-BSHADE was the highest and the distribution of dots in Fig. 415 

6(g) was closest to the 1:1 line. Therefore, we concluded that RF & P-BSHADE was the optimal 416 

model. 417 
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 418 

Figure 6. Comparisons of predicted and observed AGBs for accuracy assessment. Panels (a)–(g) show 419 

SVM (S1), RBF-ANN (S2), RF (S3), P-BSHADE (S4), SVM & P-BSHADE (S5), RBF-ANN & 420 

P-BSHADE (S6), RF & P-BSHADE (S7), respectively. Green dashed lines represent a 1:1 relationship; 421 

dots represent individual sample plots; solid yellow lines indicate trend lines for dots. 422 
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We compared three machine learning methods with three corresponding combined machine learning 423 

and spatial statistical methods by using differences in MAE, MRE, RMSE, and nRMSE during two 424 

periods, 2012 and 2019 (Fig. 7). The results suggest that the combined models improved the accuracy 425 

of single machine learning models during both years. This suggests that the combined methods are 426 

robust. 427 

 428 

Figure 7. The improvement in accuracy assessment indexes of three combined machine learning and 429 

spatial statistical methods by comparison with three corresponding machine learning methods. Panels 430 

(a)–(d) show the MAE, MRE, RMSE, and nRMSE, respectively; S1-S5 represents RMSE comparison 431 

of S5 with S1, S2-S6 represents RMSE comparison of S6 with S2, and S3-S7 represents RMSE 432 

comparison of S7 with S3 (S1=SVM, S2=RBF-ANN , S3=RF, S4=P-BSHDE , S5=SVM & P-BSHDE, 433 

S6=RBF-ANN & P-BSHDE, S7=RF & P-BSHDE). 434 

 435 

Figure C.3 in section S3 of the Supplementary Material shows the spatial distribution of AGBs 436 
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predicted by the RF & P-BSHADE model. The predicted AGBs were 7.54–89.93 Mg·ha−1, with an 437 

average of 41.21 Mg·ha−1, a median of 43.53 Mg·ha−1, a standard deviation of 18.83 Mg·ha−1, and a 438 

coefficient of variation of 45.69%. The total AGB of the Nanjing region (2980 forest patches) 439 

estimated by RF & P-BSHADE was 122 812.1 Mg, whereas that estimated by the allometric model 440 

was 123 021.5 Mg. The percent difference in total AGB between the two methods was 0.17%. 441 

Meanwhile, the AGB MRE between the two methods ranged from 0.04% to 99.8%, with an average of 442 

19.93%. 443 

4 Discussion 444 

we developed, evaluated, and compared the accuracy and performance of three different machine 445 

learning models [support vector machine (SVM), random forest (RF), and the radial basis function 446 

artificial neural network (RBF-ANN)] in this study, which contains one spatial statistics model 447 

(P-BSHADE) and three combinations thereof (SVM & P-BSHADE, RF & P-BSHADE, ANN & 448 

P-BSHADE) on forest AGB estimates. Those findings suggested that the combined models, especially 449 

the RF & P-BSHADE model, could improve the accuracy of plot-level AGB estimates and could reduce 450 

the uncertainty of plot-level AGB estimates, owing to its integrated the theoretical advantages of 451 

machine learning and spatial statistics. 452 

4.1 Significance of the optimal AGB model at the plot-level 453 

In the past, ecologists converted AGB estimates from forest sample plots into regional AGB estimates 454 

by scaling up from the tree-level to the regional scale (Malhi et al., 2004). Plot-level AGB models 455 

therefore link tree-level AGB models to regional-scale AGB models. Research by Chen et al. (2015) 456 

found that ignoring the uncertainty of plot-level models increased the total uncertainty of pixel-level 457 

estimates by 6%. In addition, Marvin et al. (2014) found that the distribution pattern of most AGB is 458 

either non-Gaussian, skewed, or multi-modal, especially in tropical and subtropical regions. Different 459 

intensity and direction of factors are coupled together, resulting in high heterogeneity and clear 460 

nonlinearity in the spatial distribution of forest AGB. 461 

Here, we integrated the advantages of machine learning and spatial statistics at the plot level (the key 462 

scale linking the tree-level scale to the landscape scale) to construct a plot-level AGB model for a 463 
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subtropical region. The approach provides a high-precision plot-level AGB model whose estimates can 464 

be compared with those obtained from remote sensing, ground observations, and model simulations. It 465 

also provides a foundation for making informed forest management decisions (e.g., the method enables 466 

quantitative evaluation of carbon emissions from deforestation). Combining the advantages of 467 

machine-learning-based quantification of AGB and the complex nonlinear relationships between 468 

multiple environmental covariates, in conjunction with the P-BSHADE model, allows the spatial 469 

autocorrelation and heterogeneity of multiple environmental covariates to be incorporated into the model. 470 

In addition, the sample points are subsequently rectified, thus leading to the best linear unbiased estimate 471 

of the target plots. 472 

4.2 Model comparisons 473 

4.2.1 Machine learning outperforms the spatial statistical model 474 

Regarding the AGB plot-level models, the machine learning methods outperformed the spatial statistical 475 

method (P-BSHADE) in terms of prediction accuracy. This may be because machine learning offers an 476 

array of supervised learning models capable of relating forest AGB to multi-variables, including forest 477 

variables and environmental variables, via complex, potentially nonlinear functional relationships. 478 

Machine learning models appear adept at tackling high-dimensional problems, particularly in areas 479 

where effective algorithms are lacking and where programs must dynamically adapt to changing 480 

conditions (Görgens et al., 2015; Latifi et al., 2010; Stojanova et al., 2010). In addition, the P-BSHADE 481 

model yielded negative weights between a small number of plots, which might introduce a slight degree 482 

of uncertainty into the results (Xu et al., 2013). Our results were consistent with those of Povak et al. 483 

(2014) and Li et al. (2011), who found that a machine learning method (RF) outperformed the spatial 484 

statistical method (e.g., Geographically Weighted Regression, Inverse Distance Weighting ) in terms of 485 

prediction accuracy. 486 

4.2.2 Why a combined model outperforms a single machine learning or spatial statistical model 487 

As expected, the prediction accuracies of the combined methods were higher than those of any single 488 

method (either machine learning or spatial statistical). This may due to the advantages of machine 489 

learning, which can compensate for the inherent defects of the P-BSHADE model, and vice versa.  490 

On the one hand, the P-BSHADE model has its own merits: (1) It takes into account the spatial 491 
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autocorrelation and spatial heterogeneity of the distribution of the target objects, not only to solve the 492 

difference between target objects caused by the different terrain or geographical location but also to 493 

solve the problem of strong correlation between target objects with remote geographical locations due 494 

to similar terrain condition. (2) The P-BSHADE model calculates the covariance between objects by 495 

using a reference sequence between objects (which means the reference AGB data between plots in our 496 

study). This method is more reliable because it avoids the second-order stationary hypothesis (i.e., 497 

when using the Kriging algorithm, semi-variograms need this hypothesis), which does not correspond 498 

with the actual situation. (3) P-BSHADE regards strongly correlated plots as neighboring plots. 499 

However, the P-BSHADE model is also handicapped by the fact that the founding assumption does not 500 

conform to reality. The assumption is that estimated AGB is accurate in all sampling plots except the 501 

target sampling plot. In other words, the premise behind using only the P-BSHADE model is that the 502 

reference AGB data is accurate or strongly correlated with AGB. In reality, the AGB of each sampling 503 

plot has a varying degree of uncertainty because it is obtained from the allometric model. Since the 504 

P-BSHADE model combined with machine learning uses the results optimized by machine learning as 505 

the reference series, it further improves the accuracy of AGB mapping.  506 

Machine learning also has its advantages and disadvantages. As we described in the previous section 507 

(4.2.2), machine learning has the advantage of being able to handle complex, potentially nonlinear 508 

relationships between forest AGB and other variables. However, the initial samples of machine 509 

learning are randomly selected, which may lead to differences in the results of each operation of the 510 

model. In addition, machine learning uses the average value of all regression trees in the calculation, 511 

which may result in overestimating the lower value and underestimating the higher value. As opposed 512 

to machine learning, the P-BSHADE model takes into account the spatial autocorrelation and spatial 513 

heterogeneity of forest AGB and of environmental covariates, and the bias of the observed values of the 514 

sampling plots, which corresponds more to actual situations. A combined model takes the result of 515 

machine learning as the reference series of P-BSHADE, so that the fitting process of the combined 516 

model takes spatial relationships more into account than is the case for the single machine learning 517 

model. The end result is improved accuracy. 518 

Machine learning models or the P-BSHADE model have been used to model the uncertainty of 519 

temperature measurements obtained by weather stations (Fassnacht et al., 2014; Paul et al., 2016; Xu et 520 

https://doi.org/10.5194/bg-2020-36
Preprint. Discussion started: 25 February 2020
c© Author(s) 2020. CC BY 4.0 License.



 

 26

al., 2013). However, the methods used in these studies were adopted independently. Conversely, the 521 

combination of machine learning and spatial statistics can improve the prediction accuracy of AGB 522 

maps, which in turn can be used as criteria for improving the accuracy of LiDAR remote-sensing 523 

technology and the results of ecological process models. Eventually, these improvements can promote 524 

process-oriented projects that require dynamic AGB predictions for large-scale forests in different 525 

forest management scenarios. 526 

In addition, we compared the prediction accuracy of AGB mapping obtained by the combined spatial 527 

statistical and machine learning models with that reported by recent studies using AGB plot-level 528 

models. In the current literature on remote-sensing estimation of forest AGB, nRMSE, RMSE, and R2 529 

were commonly used as indexes for evaluating the prediction performance of models affected by 530 

research sample size, data type, and forecasting methods (Fassnacht et al., 2014). In contrast, the 531 

present study used four conventional indexes for evaluating prediction performance: nRMSE, RMSE, 532 

MAE, and MRE. The criterion for model selection is to choose indexes summarized from sample 533 

prediction (such as nRMSE), rather than choosing the goodness-of-fit R2 (Babcock et al., 2015). Based 534 

on calculated nRMSE indexes, the AGB prediction accuracy of the combined RF & P-BSHADE model 535 

(11.13%) was higher than that obtained by Babcock et al. (2015) (33.91%) in Colorado, USA. In that 536 

study, the authors used a combination of airborne LiDAR, a forest inventory database, and a Bayesian 537 

spatial hierarchical framework model and introduced spatial random effects to compensate for the 538 

residual spatial dependence and non-stationary model covariates. The AGB prediction accuracy of the 539 

method developed in the current work was also greater than that obtained by Ioki et al. (2014) 540 

(nRMSE=26%) in northern Borneo using a stepwise linear regression model with airborne LiDAR and 541 

a ground survey. Furthermore, it exceeded the accuracy obtained by Hansen et al. (2015) in the tropical 542 

submontane rain forest (34.4%) using fusion maps of multi-source databases combined with multiple 543 

regression analysis. Our prediction accuracy is close to that obtained by Kim et al. (2016) (9.2%) who 544 

studied an intact tropical rain forest by using a voxel-based method based on airborne LiDAR in 545 

conjunction with field monitoring in Brunei. Our combined methods produce very small RMSE for the 546 

prediction accuracy of AGB, which we attribute to the following reasons: (1) The true AGBs of the 30 547 

sample plots were calculated from each tree by using an allometric model constructed from the 90 most 548 

accurate harvested trees. There were no differences in the range of true values. (2) Machine learning 549 
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methods were used to quantify the complex nonlinear relationship between AGB and multiple 550 

environmental covariates. (3) We applied a spatial statistical method based on the hypothesis of spatial 551 

heterogeneity. Although the nRMSE index was calculated by different studies using different datasets 552 

and prediction methods in different locations, most studies agreed that nRMSE was the most 553 

commonly used indicator for measuring the AGB prediction errors of plot-level models and for 554 

calculating the true AGB of forest sample plots. In contrast to other studies, our work reflects not only 555 

a focus on subtropical forests but also the methodological differences in uncertainty mitigation, 556 

especially in terms of comprehensively addressing the sources of uncertainty caused by multiple spatial 557 

and environmental covariates. 558 

4.2.3 Why RF & P-BSHADE method outperforms other combined methods 559 

The three combined machine learning and spatial statistical methods produced more accurate AGB 560 

predictions than any individual method. The accuracy of the RF & P-BSHADE and SVM & 561 

P-BSHADE methods were significantly higher than that of the individual methods, but the RBF-ANN 562 

& P-BSHADE method was only slightly higher. The accuracies of the combined methods depend on 563 

the accuracy of the reference series (machine learning predicted result) (Xu et al., 2013). In other words, 564 

the higher the accuracy of the predicted machine learning results, the higher the accuracy of the 565 

combined method. Therefore, the different improvements offered by the three combined methods may 566 

be attributed to the following two mechanisms: (1) the RF and SVM models are easier to use and 567 

optimize than RBF-ANN (Raczko and Zagajewski, 2017). RBF-ANN is sensitive to hyper-parameters 568 

and usually requires optimized parameters to obtain better fitting results. However, in the present study, 569 

we used no optimized algorithms, such as genetic algorithms, to obtain parameters in the machine 570 

learning model. Furthermore, the number of training samples determines the number of nodes in the 571 

hidden layer of the RBF-ANN model, and the number of nodes significantly affects the prediction 572 

accuracy. With only 30 training samples used in this study, the combined approach may have been 573 

unable to strongly improve prediction accuracy. (2) RBF-ANN is more suitable for nonlinear stochastic 574 

dynamic systems (Elanayar and Shin, 1994), whereas the relationship between AGB and environmental 575 

covariates in this study is likely a monotonically increasing function. 576 
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4.3 Comparing upscaling of RF&P-BSHADE with allometric model 577 

We used FMPI data to upscale the optimal plot-level AGB model from plot level to region scale. 578 

Because the allometric model offers a fast and simple calculation method, it has been used in many 579 

studies as the basis for determining the benchmark map. Nevertheless, spatial heterogeneity caused by 580 

multiple environmental covariates is not considered in the allometric model because potential errors in 581 

the AGB estimate may be propagated and affect the accuracy of the regional AGB map. Although we 582 

regarded the FMPI patches as homogeneous study units in the present study, the area of the forest 583 

patches is significantly larger than that of the sample plots. Upscaling results will thus have large 584 

uncertainties (see Figs. C.4, S3 of Supplementary Material) (Chen et al., 2015). The current study finds 585 

that the relative percent difference in total AGB between RF & P-BSHADE and the allometric model 586 

was 0.17%. Meanwhile, the relative error (RE) in AGB between the two models ranged from 0.04% to 587 

99.8% with a MRE of 19.93%. This suggests that the two methods are similar in terms of overall 588 

estimates of AGB but that the local spatial distribution of AGB differs. Differences in AGB spatial 589 

distribution have been reported in many studies of AGB maps. Babcock et al. (2015) asserted that the 590 

main reasons for the differences in the spatial distribution of AGB maps between different methods 591 

include the following: (1) The structural framework of different research methods and schemes cannot 592 

truly reflect actual forest growth. (2) The model is usually a simplification of an ecological process and 593 

ignores spatial heterogeneity at the regional scale. (3) The model does not consider the influence of 594 

multiple environmental covariates (vegetation, topography, and others) on forest growth in the region. 595 

5 Conclusions 596 

This paper proposes a method to integrate the advantages of machine learning and spatial statistics, 597 

different datasets, and multiple environmental covariates to improve the accuracy of plot-level 598 

AGB-estimation models. In this study, we explored the prediction performance of different AGB 599 

models and found that the model that combines the Random Forest and P-BSHADE models 600 

substantially improved estimates of forest AGB. Although data from the sample plots and harvested 601 

trees were collected only from Eucalyptus forests in the Nanjing region of China, the proposed model 602 

and the associated results can provide references for AGB mapping in other countries and in different 603 

types of tropical forests. 604 
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