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Abstract. Understanding the dependencies of the terrestrial carbon and water cycle
::::
with

:::::::::::::
meteorological

::::::::
conditions

:
is a pre-

requisite to anticipate their behaviour under climate change conditions. However, terrestrial ecosystems and the atmosphere

interact via a multitude of variables , time- and space
:::::
across

::::::::
temporal

:::
and

::::::
spatial

:
scales. Additionally the

::::
these interactions

might differ among vegetation types or climatic regions. Today, novel algorithms aim to disentangle the causal structure be-

hind such interaction
:::::::::
interactions

:
from empirical data. Visualising the estimated structure in networks, the

:::
The

:::::::::
estimated5

:::::
causal

::::::::
structures

::::
can

::
be

:::::::::
interpreted

::
as

:::::::::
networks,

:::::
where

:
nodes represent relevant meteorological determinants and

::::::::
variables

::
or

land-surface fluxes, and the links
:::
the dependencies among them possibly including their lag and strength

::::::::
(possibly

::::::::
including

:::::::
time-lags

::::
and

:::
link

::::::::
strength). Here we show that

::::::
derived

:::::
causal

::::::::
networks

:::
for

:::::::
different

::::::
seasons

::
at
::::
119

:::::::::::::
eddy-covariance

::::
flux

:::::
tower

::::::::::
observations

::
in

:::
the

::::::::::
FLUXNET

:::::::
network.

:::
We

:::::
show

:::
that

:::
the

::::::::
networks

::
of

:
biosphere–atmosphere interactions are strongly shaped

by meteorological conditions. For example, we find that temperate and high latitude ecosystems during peak productivity ex-10

hibit very similar biosphere–atmosphere interaction networks as tropical forests. In times of anomalous conditions like drought

:::::::
droughts

:
though, both ecosystems behave more like

::::::
typical Mediterranean ecosystems during their dry season. Our results

demonstrate that ecosystems from different climate
::::
zones

:
or vegetation types have similar biosphere–atmosphere interactions

if their meteorological conditions are similar. We anticipate our analysis to foster the use of network approaches as they allow

a more comprehensive understanding of the state of ecosystem functioning. Long term or even irreversible changes in network15

structure are rare and thus can be indicators of fundamental functional ecosystem shifts.

1 Introduction

Ecosystems
::::::::
Terrestrial

::::::::::
ecosystems

:
and the atmosphere constantly exchange energy, matter, and momentum (Bonan, 2015).

These interactions result in biosphere–atmosphere fluxes (in particular carbon, waterand sensible heat ,
:::
and

::::::
energy

:
fluxes) that

are shaped by a variety of climatic conditions and states of the terrestrial biosphere (McPherson, 2007). Understanding how20

biosphere–atmosphere fluxes interact and how they causally depend on the short-term meteorological and long-term climate
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conditions is crucial for building predictive terrestrial biosphere models (Detto et al., 2012; Green et al., 2017). However, the

exact causal structure of dependencies between surface and atmosphere variables is still subject to unknowns (Baldocchi et al.,

2016; Miralles et al., 2019). For example, we still do not understand well under which conditions certain climate extremes

turn ecosystems into carbon sources or sinks (Sippel et al., 2017; Flach et al., 2018; von Buttlar et al., 2018). One reason for25

our incomplete understanding is that the causal dependencies underlying biosphere–atmosphere interactions might vary among

ecosystems due to their structure and
::::::::
depending

:::
on

::::::::
vegetation

::::::::
structure

:::
and

::
its

:
long-term adaptation to climatic conditions. An

other is that causal techniques are still rarely used. The

:::::::::
Conducting

::
a

::::::::::
comparative

:::::
study

:::::
across

::::::::::
ecosystems,

:::::::
focusing

:::
on

::::
their

:::::::::
interactions

::::
with

:::
the

::::::::::
atmosphere

:::
has

:::
two

::::::::::::
requirements:

::::::
Firstly,

:::
we

::::
need

:::::::::::
standardised

::::
data

::::::::
encoding

::::::::
biosphere

::::::
fluxes

:::
and

:::::::::::::
meteorological

:::::::::
conditions.

:::::::::
Secondly,

::
an

:::::::::
analytical

::::
tool

::
is30

::::::
needed

:::
that

:::::::
extracts

::
an

:::::::::
interaction

::::::::
structure

::::
from

:::::
these

::::
data

::::::::::
empirically.

:::
The

:::::
latter

:::::::
requires

:::::::
handling

::
of
:::::::::::
multivariate

::::::::
processes

:::
and

:::::::::
estimating

:::::::::::
dependencies

::::::
beyond

::::::::::
correlations.

::::
The

:::
first

::::::::::
requirement

::
is

::::
best

:::
met

::
by

:::
the

::::::::::
FLUXNET

:::::::
database

:::::::::::::::
(Baldocchi, 2014),

:
a
:
collection of global long-term observation of biosphere–atmosphere fluxes measured via the eddy covariance method in

FLUXNET (Baldocchi, 2014) should, however, allow us to disentangle such questions.

A variety of causal discovery methods have been developed over the past few years (see Runge et al., 2019a, for a recent overview).35

They allow to infer causal networks from empirical data enabled by certain general assumptions about the underlying processes.

Some methods only consider two variables, such as (bivariate classical) Granger causality (Granger, 1969), convergent cross

mapping (Sugihara et al., 2012), or transfer entropy (Schreiber, 2000). Other methods allow us to understand how multiple

variables interact, accounting for common drivers and mediators by using conditioning approaches as suggested by multiple

studies (Detto et al., 2012; Goodwell and Kumar, 2017; Papagiannopoulou et al., 2017a; Claessen et al., 2019; Runge et al., 2019b).40

One example for the latter is PCMCI , a
:::::::::::::::::
(Aubinet et al., 2012).

::::
The

:::::
spatial

::::::::::
distribution

::
of

:::::::::
FLUXNET

::::
sites

::
is
::::::
biased

::
to

::::::::
European

:::
and

:::::
North

:::::::::
American

::::
sites,

:::
yet

::
it
::::
still

::::::
covers

::::
most

:::::::
climate

:::::
zones

:::
and

:::::::::
vegetation

:::::
types

:::::::
ranging

::::
from

::::::
boreal

::::::
steppe

::
to

:::::::
tropical

::::::::
rainforests

:::::::::::
surprisingly

::::
well

::::::::::::::::::::
Reichstein et al. (2014).

:::::::
Further,

:::
the

::::
data

::
is

::::::::
processed

:::::::::::::
homogeneously

::::::
across

:::::
sites.

::::
The

::::::
second

::::::::::
requirement

::
is

::::::::
addressed

:::
by

::::::
causal

:::::::::
inference.

::::::
Various

::::::::
methods

::::
exist

::::::
today

:::::::::::::::::::::::::::::::::::::::
(see Runge et al., 2019a, for a recent overview),

::::
some

::
of

::::::
which

::::
have

::::
been

::::::
applied

::::::
already

::
in

:::
the

:::::::::::::
biogeosciences

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ruddell and Kumar, 2009; Detto et al., 2012; Green et al., 2017; Papagiannopoulou et al., 2017b; Shadaydeh et al., 2019; Claessen et al., 2019).45

:::
One

::
of
::::
that

:::::
group

::
is

:::::::
PCMCI

::::::::::::::::::
(Runge et al., 2019b),

:
a
:::::
causal

:::::
graph

:::::::::
discovery

::::::::
algorithm

:::::
based

::
on

::
a combination of the PC algo-

rithm (named after its inventors Peter and Clark (Spirtes and Glymour, 1991)) and the Momentary Conditional Independence

(MCI) test (Runge et al., 2019b). Krich et al. (2020) showed that the PCMCI approach is useful to assess causal dependencies

of ecosystem fluxes and atmospheric variables.
::
By

::::::::
applying

::::
such

::::
tests,

::
it
:::::::
becomes

:::::::
possible

::
to
:::::::
account

:::
for

:::::::
common

::::::
drivers

::::
and

::::::::
mediators

:::::
which

:::
can

:::::
cause

::::
two

:::::::
variables

:::
to

:::::::
correlate

::::
even

:::::::
though,

::
no

:::::
direct

::::::
causal

:::
link

:::::
exists

:::::::
between

:::::
them.

:::::
Then

::::
MCI

::::::
partial50

:::::::::
correlations

:::::::::
estimated

::
by

:::::::
PCMCI

::::
yield

::
a

:::::
better

:::::::::::
interpretation

::
of

:::
the

:::::::
strength

::
of

:
a
::::::
causal

::::::::::
mechanism

:::
than

:::
the

::::::::
common

:::::::
Pearson

:::::::::
correlation.

:::::::::::::::::::::
Krich et al. (2020) tested

::::::
PCMCI

::::::::
regarding

::
its

:::::::::
suitability

:::
for

:::::::::
interpreting

:::::
eddy

:::::::::
covariance

::::
data.

:::
The

:::::::
method

::::::
proved

::
to

::
be

::::::::
consistent

:::::::
despite

:::
the

:::::
data’s

:::::::
inherent

:::::
noisy

::::::::
character

:::
and

::::
was

::::::
capable

::
to

::::::
extract

::::
well

:::::::::::
interpretable

:::::::::
interaction

:::::::::
structures.

:
A
::::::
causal

:::::::::::
interpretation

::
of

:::::::
specific

:::::
links,

::::::
though,

::::
has

::
to

:::
take

::::
into

:::::::
account

:::::::::
potentially

:::::
unmet

:::::::::::
assumptions.

:

In this study, we use
:::::::::
investigate

:
multivariate time series from global ecological observation networks such as FLUXNET55

to investigate how
:::::::::
FLUXNET

:::::
tower

::::
data

::
to

::::::::::
understand

::::
how

:::::::
networks

:::
of biosphere–atmosphere interactions vary across veg-
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etation types and climate zones.
:::
The

::::::::
rationale

::
is

::
as

:::::::
follows:

:
If biosphere–atmosphere interactions substantially vary

:::::
varied

::::::::::
significantly

:
across climate gradients or among

:::::::
between vegetation types, then this may indicatethat

:::
this

:::::
could

::::::::
indicate,

:::
for

:::::::
example,

::::
that

:::::::::
ecosystem responses to climatic extremes may differ substantially and

::::
could

:::::
differ

:::::::::::
significantly

:::
and

::::::
would

:
re-

quire terrestrial biosphere models to account for them differently. If, however, the opposite applies and ecosystems of the60

Earth exhibit similar biosphere–atmosphere interaction types, then common principles can be identified that can serve as em-

pirical reference for global vegetation models. The assessment of these questions includes investigating the effect of extreme

meteorological events on the network structure
::
We

::::::::::
hypothesise

::::
first

:::
that

:::
the

:::::::::
accessible

:::::
states of biosphere–atmosphere interac-

tions
:::
are

::::::
limited

:::
and

::::
can

::
be

:::::::::::
characterised

:::
by

:::
few

:::::::::
functional

:::::
states

::::::
despite

:::
the

:::::::::
complexity

::::
and

:::::::::
differences

::::::
among

:::::::::
ecosystems.

To do so, we characterise biosphere–atmosphere interactions as weighted networks estimated via PCMCI (see Sect. 2.3). The65

nodes in these networks represent biosphere–atmosphere fluxes and meteorological variables (see Sect. 2.1). Any significant

dependence among the variables is depicted as a link between the respective nodes and the link strength is measured by
:::::::
Second,

::::::::
attributing

::
to
:::

an
::::::::::
ecosystems

:::::::::
adaptation,

:::
we

::::::
further

::::::::::
hypothesise

::::
that

:::::::
specific

:::::::::
ecosystem

:::
can

::::
only

::::::
access

:
a
:::::::
limited

::::::
fraction

:::
of

the MCI partial correlation value (see Sect. 2.2). We estimated overall 10.038 networks from 119 ecosystemsusing sliding

windows of three months over the available time-series length. This captures also an ecosystem’s temporal development. Each70

of the estimated networks constitutes one high-dimensional observation with a network’s links spanning the high dimensional

space. Projecting this high dimensional space onto two dimensions using methods of non-linear dimensionality reduction (here

t-SNE, see Sect. 2.4) reveals the dominant features of transitions between different statesof biosphere–atmosphere interactions,

i. e. , which links are strong descriptors of differences between networks
:::::::::
functional

:::::
states.

:::
The

:::::
study

::
is

:::::::
designed

:::
as

:::::::
follows:

::::::
Firstly,

::
we

:::::::
perform

::::::
causal

::::::::
discovery

:::
by

::::::
PCMCI

::
at
::::
each

:::::
eddy

:::::::::
covariance

:::
site

::::
and

:::::::
seasons.75

::::::::
Secondly,

:::
we

:::::
solely

::::::::::
investigate

:::
the

:::::::
resulting

::::::::::
interaction

::::::::
networks

:::
and

::::::::
visualise

:::::
them

::
in

::
a

::::::::::::::
low-dimensional

:::::
space. We then

start with analysing the structure of the low dimensional embedding (Sect. 3.1). Subsequently we focus on ecosystem level

behaviour, i.e. the seasonal median (Sect. 3.3) and individual years during extreme conditions (Sect. 3.4). Section 3.5 puts

the results into broader perspective.
:::::::
interpret

:::
the

::::::::::::::
low-dimensional

:::::
space

::
of

::::::::::::::::::
biosphere–atmosphere

::::::::::
interactions

::::
and

:::::::::
investigate

:::::::
seasonal

::::::
cycles,

:::::::::::
characteristic

::::::
states,

:::
the

::::
role

::
of

:::::::::
vegetation

:::::
types

::::
and

::::::
finally

::::::
discuss

:::
the

::::::::
potential

::::
role

::
of

:::::::::
adaptation

:::
to

:::
the80

:::::::::
underlying

::::::
climate

:::::
space.

:

2 Data and Methods

2.1 Eddy-covariance observations

We used eddy covariance data from the FLUXNET database (Baldocchi et al., 2001) aggregated to daily time resolution. To

maximise the available ecosystems and time series length, we took the union of the LaThuile Fair use (Baldocchi, 2008) and85

FLUXNET2015 Tier 1 (Pastorello et al., 2020) datasets (Nelson et al., 2020) with at least 5 years of measurement. If a site

year was available in both datasets we selected the one from FLUXNET2015. A detailed list of used sites and years is given

in table A1. The final dataset contains
:::
119

:
sites from the major plant functional types and covers the major Koeppen-Geiger

climate classes, i.e. tropical to polar climate zones. The majority of sites belong to evergreen needleleaf forests, grasslands
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and deciduous broadleaf forests. The dominant climate classes are continental, temperate and dry climates. The dataset’s90

variables, including meteorological and eddy covariance measurements, were quality checked, filtered, gap-filled, and par-

titioned with standard tools (Papale et al., 2006; Pastorello et al., 2020) and provided with per-variable quality flags. We

extracted following variables, comparable between the two dataset, and their corresponding quality controls (if available):

shortwave downward radiation (or global radiation, Rgg), air temperature (T), net ecosystem exchange (NEE) (
:::::::
inverted,

::
so

::::
that

positive values signify carbon uptake into the biosphere), vapour pressure deficit (VPD), sensible heat- (H), latent heat flux95

(LE), gross primary productivity (GPP), precipitation (P) and soil water content (SWC, measured at the shallowest sensor).

Within the FLUXNET2015 dataset these variables are named as: "SW_IN_F_MDS", "TA_F_MDS", "NEE_VUT_USTAR50",

"VPD_F_MDS", "H_F_MDS", "LE_F_MDS", "GPP_NT_VUT_USTAR50", "P", "SWC_F_MDS_1", respectively. Corre-

spondingly for the LaThuile dataset:"Rg_f", "Tair_f", "NEE_f", "VPD_f", "LE_f", "H_f", "GPP_f", "precip", "SWC1_f",

respectively. GPP is calculated via the commonly used night time flux partitioning (Reichstein et al., 2005). Here GPP is100

the difference between NEE and ecosystem respiration
:::::::::
ecosystem

:::::::::
respiration

::::
and

::::
NEE. The latter is estimated via a model

which is parameterized
:::::::::::
parameterised

:
using night time values of NEE.

2.2 PCMCI

To analyse biosphere–atmosphere interactions, we estimated network structures using the causal network discovery algorithm

PCMCI. PCMCI is tailored to estimate time-lagged dependencies from potentially high-dimensional and autocorrelated mul-105

tivariate time series. Dependencies can be interpreted causally under certain assumptions. The algorithm is explained from

a biogeoscience viewpoint in Krich et al. (2020). A comprehensive description from theoretical assumptions to numerical

experiments is given in Runge et al. (2019b).

As a brief summary, PCMCI efficiently conducts conditional independence tests among the contemporaneous (i.e. the

dependence between two non-lagged variables) and time-lagged (up to some maximum time lag) variables to reconstruct a110

dependency network. While PCMCI can also be combined with nonlinear tests, here we estimate conditional independence

using partial correlation (ParCorr), implying that we only consider linear dependencies. Partial correlation between X and Y

given Z
:::
two

::::::::
variables

::
X

:::
and

:::
Y

:::::
given

:
a
:::::::
variable

:::
set

::
Z

:
is defined as the correlation between the residuals of X and Y

::
X

::::
and

::
Y after regressing out the (potentially multivariate) condition Z

::::::::
conditions

:::
Z.

::::
The

:::::::::
conditions

::
Z

::::
can

::::::
consist

::
of

::::::
lagged

:::::
third

:::::::
variables

::
or

::::::::
time-lags

::
of

:::
X

:::
and

::
Y .115

PCMCI has two phases. In the first phase, the ’condition selection’, a superset of lagged parents
:::
(up

::
to

:::::
some

:::::::::
maximum

::::
time

:::
lag

:::::
τmax)

:
of each variable,

::::
Xj
t ,

:
is estimated based on a fast variant of the PC algorithm (Spirtes and Glymour, 1991).

:
A
::::::

parent
::
of

::::
Xj
t :

is
::::

any
::::::
lagged

:::::::
variable,

::::::
Xi
t−τ ,

::::
that

:
is
:::::::

directly
::::::::::
influencing

::::
Xj
t .

::::
This

:::
can

:::
be

:::
the

::::
own

::::
past,

::::::::::
i= j,τ > 0

::
or

:::::
other

::::::::
variables,

::::::::::
i 6= j,τ > 0.

::
A

:::::::::::
pseudo-code

::
of

::::
this

:::::::::
procedure

::
is

:::::
given

::
in

:::
the

::::::::::::
supplementary

::::::::
materials

:::
of

:::::::::::::::::
Runge et al. (2019b).

:
In

the second phase,
:
’momentary conditional independence’ (MCI)

::
is

::::::::
estimated among all pairs of contemporaneous and lagged120

variables (Xi
t−τ ,X

j
t ) for τ ≥ 0is estimated. The MCI test removes the influence of the lagged drivers (obtained in the first

phase) and yields
::::
using

:::::::
ParCorr

::::
and

:::::
yields

::::
link

::::::::
strengths

::::
and p-values (based on a two-sided t-test)for causal links among

each time-lagged and contemporaneous variable pair. The strength of links
:
.
:::
The

::::
link

:::::::
strength is here given by the MCI partial
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correlation
:
.
::
In

:::::
short,

:::
the

::::
MCI

:::::
value

::::
gives

:::
an

:::::::
estimate

::
of

::::::::::
dependence

:::::::
between

:::
two

:::::
time

:::::
series,

:::
one

:::::::::
potentially

:::::::
lagged,

::::
with

:::
the

:::::::
influence

:::
of

::::
other

::::::
lagged

::::::
drivers

::::::::
including

:::::::::::::
autocorrelation

::::::::
removed,

:::::::
yielding

:
a
:::::
better

::::::::::::
interpretation

::
of

:::
the

:::::::
strength

::
of

:
a
::::::
causal125

:::::::::
mechanism

::::
than

:::
the

:::::::
common

:::::::
Pearson

:::::::::
correlation.

::::
For

:
a
::::
more

:::::::
detailed

:::::::::
discussion

::
of

:::
the

:::::::::::
interpretation,

:::
see

::::::::::::::::::
Runge et al. (2019b).

::
As

::
a

::::::::
particular

::::::
partial

:::::::::
correlation,

:::
the

:::::
MCI

::::
value

::
is
:::::::::::
independent

::
of

:::
the

::::::::
variables’

:::::
mean

:::::
value

:::
and

::
is
::::::::::
normalised

::
in [

::
-1,

::
1]

:::
and

:::
can,

::::::
hence,

:::
be

::::::::
compared

::::::::
between

:::::::
variable

::::
pairs

:::::
with

:::::::
different

:::::
units

::
of

:::::::::::
measurement. Lagged links are directed forward in

timeand contemporaneous .
::::::::::::::::
Contemporaneous dependencies are left undirected

::
as

::
no

:::::
time

::::::::::
information

::::::
reveals

:::
the

::::::::
direction

::
of

::::::::
influence

:::::
unless

:::::
they

:::
are

::::::
defined

:::
as

:::::::::::
unidirectional

:::
by

:::
the

::::
user

:::::::
(pcmci

::::::::
parameter

:::::::::::::
selected_links,

:::
see

:::::
table

:::
B1). A causal130

interpretation of links rests on the standard assumptions of causal discovery
:
.
::::
Here

:::
we

:::::::
assume

::::
time

:::::
order,

:::
the

::::::
causal

:::::::
Markov

::::::::
condition,

:::::::::::
faithfulness,

:::::
causal

::::::::::
sufficiency,

::::::
causal

::::::::::
stationarity,

::::
and

:::
no

:::::::::::::::
contemporaneous

:::::
causal

:::::::
effects.

::::
The

:::
use

:::
of

:::::::
ParCorr

::::::::::
additionally

:::::::
requires

::::::::::
stationarity

::
in

:::
the

:::::
mean

::::
and

:::::::
variance

::::
and

:::::
linear

::::::::::::
dependencies

:
(Runge et al., 2019b). In particular, a

statistical independence (here at a 0.1 two-sided significance level) between a pair of variables conditional on the other lagged

variables is interpreted as the absence of a causal link (Faithfulness condition). On the other hand, a causal interpretation of135

the estimated links is here to be understood only with respect to the variables included in the analysis. Unobserved common

drivers can still render links as spurious. In the present context we aim to classify networks and a causal interpretation of

each link is not the focus. The dependence structure among variables can finally be visualised by weighted networks with

link weights given by the MCI partial correlation. MCI partial correlation removes the influence of other lagged drivers and

autocorrelation, yielding a better interpretation of the strength of a causal mechanism than the common Pearson correlation. At140

the same time,
:::
the

:::::
nodes

::::::::::
representing

:::
the

::::::::
variables

:::
and

:::
the

:::::
links

:::::::::
significant

:::::::::::
dependencies

::::
with

::
its

::::::::
strengths

:::::
given

::
by

:::
the

:
MCI

partial correlationvalues are normalised in -1, 1and can, hence, well be compared between variable pairs with different units of

measurement.

2.3 Network Estimation

Networks145

:::::::::::
Dependencies

:
are estimated using PCMCI between

:::::
among

:
the variables Rg:g , T, NEE, VPD, H and LE using time lags

between
:::::::
ranging

::::
from

:
zero to fivedays (see Supplementary Material Table B1 for settings)

:
.
:::
As

::::
was

:::::::
already

::::::::
discussed

:::
by

:::::::::::::::
Krich et al. (2020),

:::::
eddy

:::::::::
covariance

::::
data

::::
and

:::
the

::::::
choice

:::
of

:::
our

:::::::
variable

:::
set

:::
do

:::
not

:::::
fully

::::
fulfil

:::
all

:::::::::::
assumptions

::
of

::::::::
PCMCI.

:::::
Causal

::::::::::
sufficiency

::::
and

::
no

:::::::::::::::
contemporaneous

:::::
links

:::
are

:::::::::
obviously

:::
not

:::::::
fulfilled

::::::
which

:::
can

::::
lead

:::
to

:::::::
spurious

:::::
links.

::::
Yet,

:::
in

:::
the

::::::
present

::::::
context

:::
we

::::
aim

::
to

:::::::
compare

::::::::
networks

::::
and

:
a
::::::
causal

:::::::::::
interpretation

::
of

::::
each

::::
link

::
is

:::
not

:::
the

:::::
focus.

::::
We

::::::
further

:::
can

:::
not

::::
rule150

:::
out

::::::::
non-linear

::::::::::::
dependencies.

:::
In

::::
case

::::
they

::::
have

::
a
::::::
strong

:::::
linear

::::
part,

:::
we

:::::::::::
nevertheless

:::
can

::::::
detect

:::::
them. Based on findings in

Krich et al. (2020), we subtracted a smoothed seasonal mean from each variable to remove the common driver influence of

the seasonal cycle that would yield spurious dependencies. The seasonal mean was smoothed by setting the high frequency

components (> 20 days−) of its Fourier transform to zero.
::::
This

::::::::
decreases

:::
the

::::::::
detection

::
of

::::
false

::::
links

:::::
while

::::::
leaving

:::
the

::::::::
detection

::
of

:::
true

:::::
links

:::::
largely

::::::::::
unaffected. We estimated networks in sliding windows of three months, taking the centre month as the time155

index of each network.
:::
The

::::::
sliding

::::::::
windows

::::
help

::
to

::::::
capture

:::
the

::::::::
temporal

::::::::
evolution

::
of

::::::::::::::::::
biosphere–atmosphere

::::::::::
interactions

::::
and

::::::
provide

:::::::
enough

::::
data

:::::
points

:::
for

:::
the

:::::::
network

:::::::::
estimation

:::
via

::::::::
PCMCI.

:::::::::::
Additionally,

:::
we

:::::::
improve

:::::::::
stationarity

:::
of

:::
the

::::
data

::::::
further
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:::
and

::::::
address

:::
the

:::::::::::
requirement

::
of

:::::
causal

::::::::::
stationarity,

:::
i.e.

::
a

:::::
causal

::::
link

::::::
persists

:::::::::
throughout

:::
the

:::::
time

:::::
period

::
of

:::::::
network

::::::::::
estimation.

::::::
Further

:::
we

::
set

:::
Rg::

as
::
a
:::::::
potential

:::::
driver

:::
of

::
the

::::::
system

::::
(by

::::::::
excluding

::
its

:::::::
parents

::::
from

:::
the

:::::::
PCMCI

::::::::
parameter

::::::::::::::
’selected_links’,

:::
see

::::
table

::::
B1).

:::
We

:::::::::::
acknowledge

:::
the

::::::::
possibility

::
of

:::
Rg:::::

being
:::::::::
influenced

::
by

:::::
other

::::::::
variables,

:::
e.g.

:::
via

::::::::::
transpiration

::::
and

:::::::::
subsequent

:::::
cloud160

::::::::
formation.

::::
Yet,

:::
on

::
the

:::::::::
ecosystem

:::::
scale

:::
we

::::
work

:::::
with,

::
we

::::::::
presume

:::
this

:::::
effect

::
to

::
be

::::::
rather

::::
small

::::
and

:::::
likely

:::::::::
dominated

::
by

::::::
lateral

::::::::
transport.

::::::
Besides

:::::
these

:::::::::::
possibilities,

:::::
setting

:::
Rg::

as
::::::
driver

:::
can

:::::::
account

::
for

:::::::::
remaining

:::
non

:::::::::::
stationarities

:::::::::::::
(Runge, 2018).

:::::::
Missing

:::
data

::::
was

:::::::
flagged

::
as

::::
such

::::
and

::
is

:::::::
ignored

::
by

::::::::
PCMCI. To avoid effects on the network structure from gap-filling we used the

following quality flag thresholds. A daily datapoint is not used if its quality flag is below 0.6 (i.e. more than 60% of measured

and good quality gap filled data). In case more than 25% of datapoints of the three month window are flagged as bad quality, the165

time window is removed from the analysis. To analyse the factors influencing network structure, we consider the mean values

over the respective time period of the variables included in the network calculation, and additionally those of GPP, P and

SWC. GPP, P and SWC were not included in the network calculation because certain characteristics can impinge on network

estimation. GPP is derived using NEE and T. Any of the links GPP–T and GPP–NEE thus could be due to its processing rather

than an actual dependence. P, on the other hand, typically yields non intuitive results due to its binary character (precipitation170

::
of

:
a
::::::
certain

::::::
amount

:
- no precipitation).

::::
zero

::::::::::::
precipitation),

::::
while

:::
its

::::::
effects

:::::
occur

::::
more

::::::::
smoothly

::::
(e.g.

:::::::
increase

::
in

:::::::::::
transpiration

::
or

:::::::::
respiration)

::::
and

::
its

::::::
strong

::::::::
deviation

::::
from

::
a

::::::
normal

::::::::::
distribution.

:::::::
Further,

::
it

:::
can

::::::
happen

::::
that

::::
over

:::
the

::::
time

:::::
period

:::
of

:::::::
network

::::::::
estimation

:::
no

::::::::::
precipitation

::::::
occurs

::::::::
rendering

:::::
such

::::::
periods

:::
not

::::::::::
analysable.

:::
The

:::::
issue

::::
with

:::::
SWC

::
is

::
its

:::::
lower

:::::::::
availability

::::
and

:::
for

::::
those

::::
sites

::::
that

::::
have

::::
such

::::::::::::
measurements

::
it
:::::
might

:::
be

::::::
applied

::
at
::::::::
differing

:::::
depth.

::::
The

:::::
depth

::::
that

::
is

::::::
mostly

::::::
present

::
is

::
at

:::::::
shallow

:::::
depths

::
of

::
5
::
or

:::
10

:::
cm.

::::
The

:::::
upper

:::
soil

:::::
layer,

::::::::
however,

::::
dries

:::
out

:::::::
quickly

:::
and

:::
can

:::::::
explain

::::
only

::::
little

::
of

:::
the

:::::
latent

::::
heat

::::
flux.175

2.4 Dimensionality Reduction

Applying above described procedure we obtained 10.038 networks for the different months and sites. Each network, with 6

variables and 6 time lags, contains 216 links and can, hence, be embedded into a 216 dimensional space. However, here we only

focus on the 15 contemporaneous links since we found them to be strongest and most robust. Therefore, the dimensionality

reduction step was performed on those links only . For the dimensionality reduction, we tested principal component analysis180

(PCA; Pearson, 1901), t-distributed stochastic neighbour embedding (t-SNE; Maaten and Hinton, 2008), and uniform mani-

fold approximation and projection (UMAP; McInnes et al., 2018). PCA is the standard method for dimensionality reduction,

it is commonly used, linear, fast, and easily interpretable regarding the meaning of its axes (the principal components). A PCA

embedding typically fails to reveal complex clusterings, because it maintains large scale gradients but often produces embed-

dings in which far away points appear very close in the embedding. In contrast t-SNE preserves local neighbourhoodswhich185

makes it
::::
aims

::
to

:::::::
preserve

::::
local

::::::::::::::
neighbourhoods.

::::::::
Therefore

::
it

::::::::
calculates

::::
first

::::::::
similarity

:::::
scores

:::
for

::::
each

::::
point

::::
pair

:::::
using

::::::::
euclidean

:::::::
distances

::::
and

:::::::
Gaussian

:::::::::::
distributions.

:::::::::::
Subsequently

::
it
::::::::
randomly

:::::::
projects

:::
the

:::
data

::::
onto

:::
the

:::::
lower

::::::::::
dimensional

:::::
space

::::
and

:::::::
attempts

::
to

::::::::
rearrange

:::::
points

:::
in

:
a
::::

way
::::

that
:::
the

::::::::::
previously

:::::::::
determined

::::::::::
similarities

:::
are

::::::::
obtained.

:::
To

::::::
assess

:::
the

::::::::::
similarities

::
in

:::
the

::::
low

::::::::::
dimensional

:::::
space,

::::::::
however,

::
it

::::
uses

:
a
::::::::
Student-t

::::::::::
distribution.

::::
This

:::::
helps

::
to

:::::::
separate

::::::
points

:::::
which

:::
are

::::
also

::::::::
originally

:::::::::
separated.

::::
This

::::::::
procedure

::::::
makes

::::::
t-SNE

:
very good at visualising clusters in the data and non-linear relationships. Drawbacks are the190

difficult interpretability of the embedding axes due to the non-linear nature and its fairly long computation time for large
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datasets.
:::::::
Further,

::::::::
distances

:::::::
between

:::
far

::::::::
separated

:::::
points

::::
and

::::
those

:::::::::
belonging

::
to

:::::::
different

:::::::
clusters

::
in

:::
the

::::::::::
embedding

:::::
space

:::
are

:::
not

::::::::::
(necessarily)

::::::::::
comparable

::
to

:::
the

:::::::
original

::::::::
distances.

::::
This

::
is

::
as

::::::
t-SNE

::::
does

:::
not

:::::::
preserve

::::
both

:::
the

::::::
global

:::
and

::::
local

::::::::
structure

::
at

::
the

:::::
same

:::::
time,

:::::
which

::
is

::::::::
attempted

:::
by

::::::
UMAP.

:
UMAP was developed as an improvement of t-SNE regarding computation time

while having an embedding with similar properties as
:::::::
structure

:::::::::::
preservation

:::
and

::::::
results

::::
also

::
in

::
a

::::::
shorter

:::
run

::::
time

:::::::::
especially195

::
for

::::::
higher

:::::::::::
dimensions.

::
A

::::::::::
comparison

::
of

:
t-SNE

::
and

:::::::
UMAP

::
is

:::::
given

::
in
::::::::

appendix
:::

C
::
in

::::::::::::::::::
McInnes et al. (2018).

:::::::::
According

:::
to

::::::::::::::::::::::::
Kobak and Linderman (2019),

:::
the

::::::
global

:::::::
structure

:::::::::::
preservation

::
of

::::::
UMAP

::
is

:::
not

::
an

:::::::
inherent

::::::::::::
characteristic

::
of

:::
the

::::::
method

:::::
itself

:::
but

:::::
rather

:::::
stems

::::
from

:::
the

:::::::
choosen

:::::::::::
initialization.

As we are dealing with an unsupervised method there is no obvious measure to assess the quality of an embedding, as each

method optimises a different error function. A measure commonly used for the comparison and characterisation of dimension-200

ality methods is the agreement between K-ary neighborhoods (the K nearest points to an observation) in the high dimensional

and low dimensional space. The measure RNX(K) (Lee et al., 2015) gives a measure of the improvement of the embedding of

K-ary neighborhoods over random embeddings. For an embedding with random coordinates we obtain RNX(K)≈ 0 and if the

K-ary neighborhoods are perfectly preserved we obtain RNX(K) = 1. As this measure depends on the neighborhood size, K,

we can draw a curve over K that characterizes if the method is better at maintaining global or local neighborhoods. The area205

under the RNX(K) curve gives an idea of the overall quality of the embedding. An intercomparison of the three dimensionality

reduction methods using this measure shows t-SNE to perform best (see Fig. A1, B1, C1).

2.5
:::::::

Distance
::::::::::
Correlation

:::::::
Distance

:::::::::
correlation

:::::::::::::::::::
(Székely et al., 2007) is

::
a
:::
non

:::::
linear

:::::::
measure

::
to
::::::::
quantify

::
the

::::::::::
dependence

::::::::
between

:::
two

:::::::
vectors.

:
It
:::
has

:::::
been

::::
used

::::::::::
successfully

::
to

:::::
assess

:::
the

::::::::
influence

::
of

:::::::
variables

:::
on

::
the

::::
low

::::::::::
dimensional

:::::::::
embedding

::::::::::::::::::::
(Kraemer et al., 2020b).

::::::::::::::::::::::
Székely et al. (2007) details210

::
its

::::::::
empirical

::::::::
definition

:::
for

:
a
::::::
sample

:::::::::::::::::::::::::::::
(X,Y) = {(Xk,Yk) : k = 1, ...,n}

::::
with

:::::::
X ∈ Rp

:::
and

:::::::
Y ∈ Rq

::
as

:::::::
follows:

:

R2
n(X,Y) =


√

V2
n(X,Y)

V2
n(X,X)V2

n(Y,Y) , V
2
n(X,X)V2

n(Y,Y)> 0,

0, V2
n(X,X)V2

n(Y,Y) = 0.
:::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::::::::
V2
n(X,Y)

:
is
:::
the

::::::::
empirical

:::::::
distance

::::::::::
covariance

::::
with

::::::::::::::::::::::::::
V2
n(X,Y) = 1

n2

∑n
k,l=1AklBkl.::::

Akl :::
and

:::
Bkl:::

are
:::::::
distance

::::::::
matrices

::::::
defined

::
by

:

Akl = akl− āk − āl + ā,
:::::::::::::::::::

ā=
1

n2

n∑
k,l=1

akl,

:::::::::::::

āk =
1

n

n∑
k=1

akl,

::::::::::::

āl =
1

n

n∑
l=1

akl,

::::::::::::

akl = |Xk −Xl|p
::::::::::::::

215

:::::::
Distance

:::::::::
correlation

:::
can

:::
be

::::
used

::
to

:::::::
quantify

:::
the

::::::::::
dependence

:::::::
between

:::
two

::::
sets

::
of

::::::::::
observations

::
of
::::::::
differing

:::::::::::::
dimensionality.

::
In

:::
our

::::
case

::::
these

::::
two

::::::
vectors

:::
are

:::::
firstly

::
a
:::
link

:::::::
strength

:::
or

:
a
:::::::::
underlying

:::::::
quantity

::
of

:::
the

::::::::
networks

::::
(1d)

::::
and

:::::::
secondly

:::
the

:::::::::
networks’

::::::
position

:::
in

:::
the

:::
low

::::::::::
dimensional

::::::::::
embedding

::::
(2d).

::::
The

:::::::
resulting

::::::::::
dependence

:::::
value

::
is

::::
used

::
to

::::
rank

:::
the

:::::::::
quantities

::
in

::::
their

::::::
ability

::
to

:::::::
describe

:::
the

:::::::
structure

::
of

:::
the

::::
low

::::::::::
dimensional

::::::::::
embedding.
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2.6 Clustering and median network trajectories220

On the reduced space we applied a clustering method named Ordering Points To Identify the Clustering Structure (OPTICS;

Ankerst et al., 1999). Clusters are found
:::::::
OPTICS

:::::
finds

:::::::
clusters by identifying regions of high density that contain a certain

number of datapoints
:::::::::
(minsamples). The cluster borders are defined by a certain drop in reachability of further datapoints

::::::
(maxeps

:::
and

:::
xi). This allows points that lie outside the reachability of neighbouring clusters to remain unclustered. Following

:::
The

::::::::
following settings were used for clustering: minsamples::::::::

_samples=80, maxeps::::
_eps=8 and xi=0.5. We calculated mean networks225

for each cluster by calculating the mean MCI value for each contemporaneous link of each network
::::::
among

:::
all

::::::::
networks

contained in the cluster and only took those links that had an absolute value above 0.2.

2.7
:::::::::

Visualising
:::::::::
ecosystem

::::::::::
trajectories

::
As

:::
we

:::::::::
calculated

::::::::
networks

:::
for

:::::
each

::::::
month

:::
for

::::
each

::::::::::::
measurement

::::
year

:::
for

::::
each

::::::::::
FLUXNET

::::
site

::
(if

::::
data

::::::::::::
requirements

:::
are

:::::::
fulfilled,

:::
see

:::::
Sect.

:::::
2.3),

::::::
annual

::::::::::
trajectories

:::
can

:::
be

:::::::::
visualised

::
in

::::
the

:::
low

:::::::::::
dimensional

::::::::::
embedding

:::
by

:::::::::
connecting

::::
the

::::
dots230

::::::::::
representing

:::
the

:::::::
monthly

::::::::
networks

:::
of

:
a
:::::::

specific
:::::
year. Further, for each ecosystem, we calculated an annual

:
a

:::::::
monthly

:
me-

dian trajectory within the t-SNE space which is composed of its monthly median networks. To this end, we calculated

non-intercepting
:::::::::::::
non-intersecting convex hulls which consisted of at least three datapoints (networks within the t-SNE space

belonging to the same ecosystem, representing the same month, in at least three years). The monthly median network is the

average of the networks lying on (≥ 3 networks) or in the inner hull (< 3 networks).235

2.8
::::::::

Workflow

:::
Our

::::::::::
restrictions

:::
on

:::
the

::::
data

::::::
length

:::
and

:::::::
quality

:::::::
resulted

::
in

::
a
::::::::
selection

::
of

::::
119

::::::::::
FLUXNET

::::
sites

:::::
(Fig.

::::
1a).

::::::::
Applying

::::::
above

::::::::
described

::::::::
procedure

:::
we

:::::::
obtained

::::::
10.038

::::::::
networks

::
for

:::
the

::::::::
different

::::::
months

:::
and

:::::
sites.

:::
An

:::::::
example

:::::::
network

::::::::
estimated

::
by

:::::::
PCMCI

:
is
::::::
shown

::
in

::::
Fig.

:::
1c.

:::
The

::::::::
strongest

:::
and

:::::
most

::::::::
consistent

:::::
links

:::
are

:::::::::::::::
contemporaneous,

::::::::
indicating

::::
that

::::::::::
interactions

::::::
happen

:::
on

::::
time

:::::
scales

::::::
shorter

::::
than

::
the

::::
time

:::::::::
resolution.

::::::
While

:::::
lagged

::::::::
common

::::::
drivers

:::
are

::::::::
excluded,

::::::::::::::
contemporaneous

:::::
links

:::
can

:::
still

:::
be

:::::::
spurious240

:::
due

::
to

:::::::::::::::
contemporaneous

:::::::::::
confounding

:::
(see

:::::
Sect.

::::
2.2).

::::::::::::
Nevertheless,

:::
we

:::::
focus

:::
our

:::::::
analysis

:::
on

::::
these

:::
15

:::::
links,

::
as

::::
they

:::::::
contain

::::
most

::::::::::
information.

::::
This

::
is

::::
done

:::
by

:::::::::
performing

:::
the

::::::::::::
dimensionality

::::::::
reduction

::
on

:::::::::::::::
contemporaneous

::::
links

:::
and

:::::::::
neglecting

:::
the

::::::
lagged

::::
ones.

::::
The

:::::::
rational

::
of

:::::::::
employing

:
a
:::::::::::::

dimensionality
::::::::
reduction

::
is

:::
the

:::::::::
following.

:::::
Each

::
of

:::
the

::::::::
estimated

::::::::
networks

:::::::::
constitutes

::::
one

:::::::::
observation

::
in
::

a
::::
high

::::::::::
dimensional

::::::
space

::::
with

:
a
:::::::::
network’s

::::
links

::::::::
spanning

::
its

:::::
axes

::::
(Fig.

::::
1d).

:::::::::
Projecting

:::
this

::::
high

:::::::::::
dimensional

::::
space

:::::
onto

:::
two

::::::::::
dimensions

:::::
(Fig.

:::
1e)

::::::
allows

::::
first

::
of

:::
all

:::
for

:::::::::::
visualisation.

::
In

::::
case

:::
the

::::
data

:::::::
consists

:::
of

:
a
::::::::

structure
::::
that

:::
can

:::
be245

:::::::::
’identified’

:::
by

:::
the

::::::::::::
dimensionality

:::::::::
reduction

:::::::
method,

:::
the

:::::::::::
visualisation

::::::
reveals

:::
the

:::::::::
dominant

:::::::
features

::
of

:::::::::
transitions

::::::::
between

:::::::
different

:::::
states

::
of

:::::::::::::::::::
biosphere–atmosphere

::::::::::
interactions.

::::
The

::::::::
dominant

::::::
features

:::
are

:::
the

:::::
links

:::
that

::::::
appear

::::
with

::::::
strong

::::::::
gradients

::
in

::
the

::::
low

::::::::::
dimensional

::::::::::
embedding.

:::
To

:::::::
quantify

:::
and

:::::
later

::::
rank

:::
the

:::::::
gradients

::::::::
exhibited

:::
by

::::
each

::::
link,

:::
we

:::
use

:::
the

::::::::
measure

:::::::
distance

:::::::::
correlation

:::
(see

:::::
Sect.

::::
2.5).

:::::::::
Therefore,

:::
we

:::::::
calculate

:::
the

:::::::
distance

::::::::::
correlation

::
of

:::
the

:::
link

::::::::
strengths

::::
(1d)

::::
with

::::
their

:::::::
position

:::
on

:::
the

:::
low

::::::::::
dimensional

::::::::::
embedding

::::
axes

:::::
(2d).

:::
We

::::
also

:::::::
examine

:::
the

:::::::
distance

::::::::::
correlation

::
of

:::::::::
secondary

::::::::
quantities

::::
with

:::
the

:::::
axes.

::::
The250

::::::::
secondary

::::::::
quantities

:::
are

::::::
firstly

::::
mean

::::::
values

::
of

::::::::
variables

:::::::::
calculated

::
for

:::::
each

::::
three

::::::
month

:::::
period

:::
of

:::::::
network

:::::::::
estimation

::
as

::::
well
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Figure 1.
::::::::
Schematic

:::::::::::
representation

::
of

::
the

::::::::
workflow.

::
a)

::::
Eddy

::::::::
covariance

::::
data

::::
from

:::
the

::::::::
FLUXNET

:::::::
database

:::
are

::::::
selected

::::
(119

:::::
sites).

::
b)

:::
For

:::
each

:::
site

:::
we

::::
used

:::
the

::::
time

::::
series

:::
of

:::::
global

:::::::
radiation

:::
Rg ,

::
air

::::::::::
temperature

::
T,

:::::
vapour

:::::::
pressure

:::::
deficit

:::::
VPD,

:::
net

::::::::
ecosystem

:::::::
exchange

:::::
NEE,

::::::
sensible

:::
heat

:::
H,

::::
latent

::::
heat

:::
LE,

:::::
gross

::::::
primary

:::::::::
productivity

:::::
GPP,

:::::::::
precipitation

::
P
:::
and

:::
sail

:::::
water

::::::
content

:::::
SWC.

:::::::
Networks

:::
are

::::::::
estimated

::
in

::::
three

:::::
month

::::::
moving

:::::::
windows

::::
using

:::
Rg,

::
T,

::::
NEE,

:::::
VPD,

:::
LE

:::
and

::
H.

::
c)

:::
An

::::::
example

::::::::
interaction

:::::::
network

::
for

::::::
FI-Hyy

::::
May

::::
2002.

::::
The

:::::::
strongest

:::
and

::::
most

:::::::
persistent

::::
links

:::
are

:::::::::::::
contemporaneous

::::
(i.e.

:::::::::
undirected).

::::
Thus

:::
we

::::
limit

:::
our

:::::::
analysis

::
to

::::
those

::::
links.

:::
d)

::::
Each

:::::::::
three-month

:::::::
network

::
can

:::
be

::::::::
interpreted

::
as

::
an

:::::::::
observation

::
in

:
a
::::::::::::
15-dimensional

::::
space

:::::
(each

:::::::::::::
contemporaneous

:::
link

::
is

:::
one

:::::::::
dimension).

::
e)

:::::::::::
Dimensionality

::::::::
reduction

::::::
projects

::
all

::::::::
interaction

:::::::
networks

::::
into

:
a
:::
two

::::::::::
dimensional

::::
space

:::::::::
preserving

::
its

::::
local

:::::::::::
neighbourhood

::::::::
structure.

::::
Here

:::
any

::::::::
subsequent

:::::::
analysis

:::
and

::::::::::
interpretation

:::
will

::
be

:::::::
realised.
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::
as

:::::::
secondly

:::::
static

::::::
values

:::
like

::::::
climate

:::::
class,

:::::::::
vegetation

::::
type

::
or

::::::::
location.

:::
The

:::::::::
secondary

::::::::
quantities

:::
are

::::
used

::
to
::::
find

:::::::::
covariates

::
of

::
the

::::
low

::::::::::
dimensional

:::::::::
embedding

::::
that

:::
can

::::
help

::
to

::::::
explain

:::
its

::::::::
structure.

::
In

:
a
::::
next

::::
step,

:::
we

::::::
cluster

:::
the

:::
low

::::::::::
dimensional

::::::::::
embedding

::
to

::::::
further

:::::::::
understand

::
to

:::::
which

:::::::
network

:::::::::
structures

:::
the

::::::::
gradients

::
of

::::
link

:::::::
strength

:::
lead

::::
(see

:::::
Sect.

:::
2.4)

::::
and

::::::::
calculate

:::
the

:::::::
cluster’s

::::::
average

::::::::
networks

::
(a

::::::
simple

::::::
mean).

:::
Up

:::
to

:::
this

:::::
point

:::::
(Sect.

:::
3.1

::::
and

::::
3.2),

:::
we

::::::::
analysed

:::
the

::::::::
manifold

::
of

:::::::::::::::::::
biosphere–atmosphere255

:::::::::
interactions

::::
and

::::
can

::::::
address

::::
the

:::
first

::::
part

:::
of

:::
our

::::::::::
hypothesis.

:::
As

::::
each

:::::
point

:::
of

:::
the

::::
low

::::::::::
dimensional

::::::::::
embedding

:::::::::
represents

::
the

:::::::::::::::::::
biosphere–atmosphere

::::::::::
interactions

::
of

::
a
::::::
specific

:::::::::
ecosystem

::
at
::
a
:::::::
specific

::::
time

:::
we

:::
can

:::::::::
investigate

:::
the

:::::::::
behaviour

::
of

:::::::
specific

:::::::::
ecosystems

::::
(see

::::
Sect.

:::::
2.7).

::::::::
Therefore

:::
we

::::
look

::
at

:::
the

:::::::
monthly

:::::::
median

:::
and

::::::
annual

::::::::::
trajectories

::
of

::::::
certain

:::::::::
ecosystems

::::::
(Sect.

:::
3.3

:::
and

::::
3.4).

::::
This

:::::
leads

::
to

:::
the

::::::
answer

::
of

:::
the

::::::
second

::::
part

::
of

:::
our

::::::::::
hypothesis.

3 Results and Discussions260

3.1 Two-dimensional embedding of biosphere–atmosphere networks

The
::
To

:::
find

:::
the

:::::
most

::::::
suitable

:
dimensionality reduction method

:
,
:::
we

::::::::
evaluated

::::
three

::::::::
different

:::::::
methods

:::::
(PCA,

:
t-SNE performed

best at projecting
:::
and

:::::::
UMAP)

::::
with

:::::::
respect

::
to

:::::
their

:::::
ability

:::
to

::::::
project

:
the high dimensional space created by the networks

contemporaneous links
:::::::
network

:::::
space

:
onto two dimensions.

:::
To

::::::::
compare

:::
the

::::::::::::::
low-dimensional

::::::::::
embedding

::::::
spaces,

:::
we

:::::
used

::
the

::::::::
RNX(K)

::::::::
measure

::::
(see

:::::
Sect.

::::
2.4)

:::::
which

:::::::::
quantifies

::::
how

::::
well

::::::::::::::
neighbourhoods

:::
are

:::::::::
preserved

:::::
when

:::::::::
projecting

:::
the

:::::
high265

::::::::::
dimensional

:::::
space

::::
onto

:::::
fewer

::::::::::
dimensions.

:::
We

:::::
found

:::
that

::::::
t-SNE

:::::::
achieved

:::
the

::::
best

:::::::::
projection,

::
by

::::
best

:::::::::
preserving

::::
both

::::
local

::::
and

:::::
distant

::::::::::::::
neighbourhoods (cf. Sect. 2.4, Fig. A1, B1).

::::
This

::
is

:::::::::
unexpected

:::
as

::::::
UMAP

::
is

::::
said

::
to

:::::::::::
intentionally

:::::::
preserve

:::
the

::::::
global

:::::::
structure.

::::
Yet,

::
as

::::
can

::
be

::::
seen

::
in

::::
Fig.

:::
4a,

::
the

::::::::
networks

::::::
almost

::::
form

::
a
:::::::::
continuum.

:::::
Thus,

:::
by

::::::::::
maintaining

:::
the

::::
local

:::::::::::::
neighbourhood

:::::::
structure,

::::
also

:::
the

::::::
global

:::::::
structure

::
is

::::::::
preserved

::::::
within

::::::
t-SNE.

The two-dimensional embedding
::
by

::::::
t-SNE of biosphere–atmosphere interactions is ordered primarily by dependencies270

including carbon flux (NEE) and energy distributions (LE, H). This can be seen in Fig. 2 which shows the embedding

colour coded
::
2d

::::::::::
embedding

:::::::::::
colour-coded by the strength of individual links, i.e. MCI partial correlation values. The colour-

ing reveals that the link strengths are ordered along gradients. The strongest gradients measured via distance correlations

(Székely et al., 2007) are given by ,
:::
i.e.

::::
they

::::::
exhibit

:::::
some

::::::::::
dependence

::::
with

:::
the

::::::
t-SNE

::::
axes.

:::::
Using

:::::::
distance

::::::::::
correlation

::
to

::::
rank

::::
those

::::::::
gradients

::::
(see

::::
Sect.

::::
2.5),

:::
we

:::
find

:
the links NEE–LE (ρ= 0.75

::::::::
R= 0.75), Rg–LE (ρ= 0.73

::::::::
R= 0.73) and T–H (ρ= 0.69)275

::::::::
R= 0.69)

::
to
:::::
have

:::
the

:::::::
strongest

::::::::
gradients. The connection between carbon and water fluxes as well as the role of energy input

to sustain water fluxes
::
(if

:::::::
available

::
in
:::
the

::::
soil)

:
are well known and investigated dependencies (Beer et al., 2010; Luyssaert et al.,

2007). Further, gradients of mean climatic conditions emerge. This is depicted in Fig. 3 showing again the low dimensional

embedding, this time colour coded

::
To

::::::
search

::
for

:::::::::
covariates

::::
that

:::
help

::
to
:::::::
explain

:
-
:::
and

::
if
:::::::
thought

::::::
further,

::::
help

::
to

::::::
predict

:::
the

:::::::
network

:::::::::
structures-

:::
we

:::::
colour

::::::
coded280

::
the

::::::::::
embedding by the networks’ underlying mean conditions, i.e. the average over the respective time window, of the exchange

rates (GPP, NEE, LE and H) as well as meteorological conditions (Rg, T, VPD, P).
::::
This

::
is

:::::
shown

::
in
::::
Fig.

::
3.

:
Clearly, the mean

exchange rates and meteorological conditions - although not considered in the estimation of the networks - are related to the

observed biosphere–atmosphere interactions. On the contrary, corresponding vegetation types and Köppen-Geiger classes are

10



Figure 2. Two-dimensional embedding of three-monthly biosphere–atmosphere networks realised via t-SNE. Shown is the distribution of link

strengths among the networks. The strength is estimated via MCI partial correlation values. Subfigures are sorted by the distance correlation

of the link’s MCI value with the axes (value in upper right corner). As Rg can only be a cause
:
is
:::
set

::
as

:::::::
potential

::::
driver

:::::::
(PCMCI

::::::::
parameter

::::::::::::
’selected_links’,

::
see

::::
table

::::
B1), connections including Rg are directed →.
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Figure 3. Two-dimensional embedding coloured by underlying mean exchange rates and meteorological conditions. The mean values are

calculated over the respective time periods used for the network estimation. Each network is estimated on a three month window of daily

time series data. Values are cut off at the highest and lowest percentile.

not
::
as

:
much related as displayed in the Supplementary Material section Fig. D2. The results show that a high dimensional285

space encompassing more than 10000 ecosystem networks representing the states of biosphere–atmosphere interactions from

ecosystems of various geographic origins can be reduced to a compact two dimensional manifold characterised by four edges

and gradients of
:::::
mean biosphere and atmosphere conditions. While gradients in MCI partial correlation strength are expected

as they were used as features in the dimensionality reduction, gradients in
::::
mean

:
climatic and biospheric conditions were not.

This information thus must be entailed in the networks’ structure. To better grasp the distribution of network structures, we290

further analyse the emerging clusters.

3.2 Clusters of characteristic ecosystem–atmosphere networks

As we apply a significance threshold to each link of the estimated network structures (see Sect. 2.3), the networks typically lack

weak links. This leads to a certain degree of clustering among the networks, which we identified using the OPTICS approach

(see Sect. 2.6; Ankerst et al., 1999)) (Fig. 4a). Cluster boundaries are shown by the convex hulls in Fig. 4b, where we also295

visualise the mean interaction networks of each cluster. Based on this analysis we can identify four
::::
This

:::::::::::
visualisation

::::::
reveals
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:::
that

:::
the

:::::
mean

::::::::
networks

::
of

:::
the

:::::::
clusters

::::::
situated

::
at
:::
the

:::::::::::
embedding’s

:::::
edges

:::
can

:::
be

:::::::
regarded

:::
as archetypes of network structures

:
,

::
i.e.

::::::::
extremal,

::::::::::::
characteristic

:::::
states

::::::
(similar

::
to

:::
the

:::::::
concept

::
of

::::::::::
endmember

::::::
states).

::::
The

::::
four

:::::
states

:::
can

::
be

::::::::
described

:::
as

::::::
follows:

Type 1 is a sparsely connected network. Links, if present, are very weak and predominantly exist among atmospheric vari-

ables. Mean atmospheric conditions are characterised by low energy input (low Rg and T). Carbon and water fluxes are300

consequently close to zero, and daily averages of sensible heat can even reach negative values. Such conditions reflect

high latitude ecosystem winter states experienced by ecosystems like the evergreen needle leave
:::
leaf forests (ENF) of

Finnland, i.e. Hyytiälä (FI-Hyy) and Sodankyla (FI-Sod) as well as Canada, i.e., the UCI-1850 burn site (CA-NS1) and

Quebec - Eastern Boreal (CA-Qcu) during December and January.

Type 2 consists of strong links among atmospheric variables but LE and NEE are weakly, not, or even negatively connected
::
to305

::
the

:::::::::::
atmosphere,

:::
i.e.

:::
the

::::::::::::
meteorological

::::::::
variables. This network structure coincides with high energy input (high Rg and

T) but low water availability (low P and SWC, high VPD). A high Bowen ratio, i.e. the ratio between sensible heat and

latent heat, representing aridity, and low carbon fluxes
:::::::
absolute

::::::
carbon

:::::
fluxes

::::
(GPP

::::
and

:::::
NEE) are the consequence. These

conditions are typically present at semi-arid ecosystems like the woody savanna (WSA) Santa Rita Mesquite (US-SRM)

as well as the grasslands Santa Rita (US-SRG), Audubon Research Ranch (US-Aud) and Sturt Plains (AU-Stp) during310

dry season.

Type 3 exhibits the same strong links among Rg, VPD and H as Type 2 but T is weakly or not connectedand the opposite for
:
.

:::
The

:::::::
opposite

::
is

::::
true

::
for

:::::
links

::
of LE and NEE

:::::
which

:::
are

:::::::
strongly

::::::::
connected

::
to

:::
the

::::
other

::::::::
variables

::::::
(except

:::
T). Rg and T are

considerably lower than in Type 2
::::::::::::
(approximately

:::
by

::::
100

:::::
W/m2

:::
and

::::::
10◦C)

:
but because of sufficient water availability

the Bowen ratio is between 0 and 1. Typical ecosystems in this state are mid to high latitude forests during spring or315

autumn, e.g. Harvard Forest EMS Tower (US-Ha1, deciduous broadleaf forest (DBF)), Roccarespampani 1 (IT-Ro1,

DBF), Vielsalm (BE-Vie, mixed forest (MF)) and Hyytiälä (FI-Hyy, ENF).

Type 4 is fully and strongly connected. Both energy input and water availability are high leading to Bowen ratios around 1.

This network state is typically present in tropical forests like the Guyaflux site in French Guiana (GF-Guy) (evergreen

broadleaf forest (EBF)) but can temporarily be also reached by a variety of other ecosystems, e.g. mid and high latitude320

forests like Hainich (DE-Hai, DBF), Tharandt (DE-Tha, ENF), BE-Vie (MF), FI-Hyy (ENF) as well as woody savannas

(WSA) as Howard Springs (AU-How) and grasslands as Daly River Savanna (AU-Dap).

The archetypes of networks are located at the edges of the two-dimensional space and thus could define two imaginary axes.

From a physical point of view, energy is required for each process and interaction to occur, e.g. photosynthesis or evaporation

(Bonan, 2015). Therefore, transitions along the axis connecting the network types 1 and 4 might be interpreted as energy325

controlled as dependencies among all variables fade or increase consistently. Transitions along the axis connecting network

types 2 and 3 are explainable by a combination of water availability and a temperature gradient. Low water availability but

high temperatures lead
:::::
cause

:::
shut

::::::
down

::
of

:::::::
stomatal

:::::::::::
conductance

::
or

::::::::::
ecosystems

::
to

:::::
enter

:
a
:::::::
dormant

:::::
state

:::::
which

:::::
leads

:
to low

carbon and water fluxes and thus low connectivity. On the other hand
:
, sufficient water and medium temperatures allow for
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fluxes but likely
::::::
(around

:::
the

::::::::
optimum

::
of

:::::::::::::
photosynthesis)

:::::
allow

:::
for

::::::
carbon

:::
and

:::::
water

:::::
fluxes

:::
but

:
reduce the influence of varying330

temperatures leading to connected NEE and LE but disconnected T. And indeed these patterns and gradients exist. Mean Rg

is lowest at network type 1 and almost linearly increases towards network type 4. P is lowest at network type 1 and 2. In

combination with high energy input network type 2 has lowest SWC values and the highest Bowen ratios (see Supplementary

Material section Fig. D2). SWC is higher but quite dispersed elsewhere suggesting that at a certain point water limitations are

fading out. T values of course also show an increase from network type 1 to 4 (as radiation) but also from network type 3335

to 2 and are actually rather low (8◦C to 15 ◦C) at network type 3 (see Fig 3). As meteorological conditions affect biosphere

productivity, network type 1 and 2 exhibit low, type 3 medium and type 4 high productivity i.e. estimated as GPP. In short,

the clustering revealed that changes in energy and water availability can explain major transitions between different states of

biosphere–atmosphere interactions.
::::
This

::
is

::
in

::::
line

::::
with

::
a

:::::
recent

:::::
study

::::::::
showing

:::
that

::
a
::::::
variety

::
of

:::::::::::
land-surface

::::::::
processes

::::
can

::
be

::::::
largely

::::::::::
summarised

:::
by

:::
on

:::
the

:::
one

:::::
hand

::::::::::
productivity

::::::::
measures

:::
and

:::
on

:::
the

:::::
other

::::
hand

:::::
water

::::
and

::::::
energy

::::::::::
availability.

:::::
Both,340

::::
water

::::
and

::::::
energy

:::::::::
availability,

:::::
need

::
to

::
be

::::
high

:::
for

::::
high

:::::::::
productive

:::::
states,

:::
yet

:::
the

::::
lack

::
of

:::::
either

::
of

:::::
them

::::
leads

::
to

::::
low

::::::::::
productivity

:::::::::::::::::::
(Kraemer et al., 2020a).

::::
This

::::::::
biosphere

::::
state

:::::::
triangle

::
is

:::::
found

::
in

:::
our

:::::::
analysis

::
by

:::
the

:::::::
network

::::
type

::
1

::::
(cold

:
-
::::
low

:::::::::::
connectivity),

::
2

:::
(dry

::
-
:::::::
NEE/LE

::::::
weakly

::::::::::
connected)

:::
and

:
4
:::::

(high
:::::::::::
productivity

:
-
::::
fully

::::::::::
connected).

::::
Yet,

:
a
:::::
fourth

:::::::
network

::::
type

:::::
(type

::
3)

::
is

::::::::
naturally

::::::::
occurring

::
in

:::
the

:::::
t-SNE

:::::
space

::
as

:::
we

::::
here

::::::
include

::::::::::
interactions

::::
with

:::
the

::::::::::
atmosphere.

:

::
Up

:::
to

:::
this

:::::
point

:::
we

:::::
have

:::::
found

::::::
strong

::::::::
evidence

:::::::::
supporting

:::
our

::::
first

::::::::::
hypothesis.

::::
The

::::::::
manifold

::
of

:::::::::::::::::::
biosphere–atmosphere345

:::::::::
interactions

::::
can

::
be

::::::::::
represented

:::::
rather

::::
well

::
by

::::
two

:::::::::
dimensions

::::::
which

::
we

::::::::
identified

::
to
:::
be

::::
most

:::::::::
consistent

::::
with

:::::
energy

::::
and

:::::
water

:::::::::::
availabilities.

:
It
::
is
::::::::
confined

::
by

::::
four

:::::::::::
characteristic

:::::
states

:::
and

:::::::::
populated

:::::::::::::
homogeneously

::
by

:::
the

::::::::
observed

:::::::
network

:::::
states.

:
Having

an understanding of the low dimensional embedding’s structure now allows us to analyse specific ecosystem behaviour.

3.3 Ecosystems’ median trajectories

Each point in the reduced t-SNE space represents a biosphere–atmosphere interaction network for a given month and ecosys-350

tem. Hence, we can trace an ecosystem’s trajectory through time. An
:::
We

:::
are

::::
first

:::::::
focusing

:::
on

::
an

:
ecosystem’s median annual

:::::::
monthly trajectory (see Sect. 2.6

:::
2.7) within the low dimensional spacereflects .

::::
We

:::
can

:::
see

:::
that

:::
the

:::::::
median

:::::::::
trajectories

::::::
reflect

seasonal patterns of meteorological conditions (Fig. 5). For example, mid-latitude sites like FR-Pue (EBF), DE-Hai (DBF)

and FI-Hyy (ENF) exhibit a strong seasonal variation of Rg :g
and span a long distance in the t-SNE space. In contrast, trop-

ical ecosystems like GF-Guy (EBF) constantly have high Rg :g:and exhibit predominantly network type 4 indicative of high355

productive conditions - while DE-Hai or FI-Hyy reach this connectivity pattern only during peak growing season. US-SRM

(WSA), however, has similar or even higher Rg:g:values throughout the year but barely manages to deviate from type 2 which

is in accordance with its low water availability. The amount of precipitation further aligns with differences and characteristics

of the trajectories of FR-Pue, DE-Hai and FI-Hyy. For example, FI-Hyy shows some deviation towards edge 2 in February

and March, FR-Pue in June, July and August. For both, mean precipitation is lowest during these month. The strong control360

by energy and water availability is in line with a recent analysis showing that variability in land-surface processes is largely

explained by productivity measures as well as water and energy availability. Both, water and energy availability, need to be

high for high productive states, yet the lack of either of them leads to low productivity (Kraemer et al., 2020a). This biosphere
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Figure 4. Structure of the two-dimensional embedding. left: t-SNE space clustered by the OPTICS approach (Ankerst et al., 1999). Colours

represent different clusters, black dots are not attributed to a cluster. Indicated are the four archetypes of network connectivity and the

networks underlying meteorological conditions. right: Convex hulls of clusters and their average network, i.e. average over all networks

belonging to one cluster. Average networks are thresholded at a minimum link strength of 0.2. A finer clustering can be found in the

Supplementary Material section Fig. D1.

state triangle is found in our analysis by the network type 1 (cold), 2 (dry) and 4 (high productivity). Yet, a fourth network type

(type 3) is naturally occurring in the t-SNE space as we here include interactions with the atmosphere
::::::
months.

::::::
These

:::::::::
behaviours365

::::::::::
demonstrate

::::
what

:::
the

:::::::
previous

::::::
figures

:::::
(Fig.

:
3
::::
and

::
4)

::::
have

::::::
already

:::::::::
suggested:

:::::::::::
Ecosystem’s

:::::::
populate

:::
the

::::
low

::::::::::
dimensional

:::::
space

:::
and

:::::::
migrate

:::::
within

:::
as

:::::::
allowed

::
by

:::::
their

:::::::
climatic

:::::::::
conditions.

::::::::
Thereby

::::
they

:::
can

::::::
exhibit

::
a
:::::
wide

:::::
range

::
of

:::::::::
interaction

:::::::::
structures

::
as

:::
can

::
be

:::::
seen

::::
from

:::
the

::::::::::
mid-latitude

:::::
sites.

:::
As

:::::
these

:::::::::
behaviours

:::
are

:::::
multi

::::
year

:::::::
averages

::::
they

:::::
could

::::::::
resemble

:::::
more

:::::::::
ecosystem

::::::::
adaptation

:::
to

::::::
median

:::::::
climatic

:::::::::
conditions

::::
than

:::::::
flexible

:::::::::
adjustment

::
of

:::::::::::::::::::
biosphere–atmosphere

::::::::::
interactions

::
to

:::::::
quickly

::::::::
changing

::::::::::::
meteorological

:::::::::
conditions.

::
If
:::::::::::::::::::

biosphere–atmosphere
::::::::::
interactions

:::
are

::::::::
confined

::
by

:::::::::
adaptation

:::::
shall

::
be

::::::::::
investigated

::
in
::::

the
::::
final370

::::::
analysis

:::::::
section.

3.4 Deviations from ecosystem median trajectories

Climatic extremes are visible in an ecosystem’s trajectory as strong deviations from the median trajectory
:::
The

::::::::
remaining

:::::
open

:::::::
question

::
is,

::::
how

:::::::
flexible

::
do

:::
the

::::::::
networks

::::::
adjust

::
to

:::::::::
deviations

::::
from

:::::
mean

:::::::
climatic

::::::::::
conditions.

:::::::::
Therefore,

::
we

:::::
look

::
at

:::::::
climatic

::::::::
anomalies. Figure 6 shows the trajectories of ecosystems during anomalous dry or wet conditions. During the European heat-375

wave of 2003, in July and August the trajectories of two temperate central European forests, DE-Hai and DE-Tha, no longer
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Figure 5. Median trajectories of selected sites (left) and their corresponding mean values of radiation, precipitation and the Bowen ratio

(right).
::
In

:::::
winter

:::::
month

:::
the

:::::
Bowen

::::
ratio

:::
can

:::
turn

:::::::
negative.

::::::::::
Nevertheless

::
we

:::
set

::
the

:::::
lower

::::
limit

::
of

::
the

:::::
y-axis

::
to

::
0. As networks are calculated

using a centred three month moving window, each month is ascribed a network. Thus, the behaviour of an ecosystem can be tracked by its

monthly networks, which form trajectories for each year. An ecosystem’s
::::::
monthly

:
median trajectory is composed of the two dimensional

monthly median networks (see Sect. 2.6
:::
2.7 for details).

manage to establish a network structure resembling network type 4, typical for these ecosystems during their high productive

phase. Instead they are shifted towards network type 2, associated with drier conditions (Fig. 6a, b). Similarly, the ecosystem

BR-Sa3 (EBF) in the Brazilian tropical rainforest shows substantial deviations towards network type 2 during the exceptional

dry season of 2001 (Aug, Sep, Oct) (Marengo et al., 2018) (Fig. 6c). In contrast, US-Wkg is a grassland accustomed to dry con-380

ditions and thus predominantly exhibits low water and carbon fluxes resulting in network structures as of network type 2, i.e.

water and carbon fluxes are barely or even disconnected. Carbon and water fluxes of semi-arid ecosystems, however, are known

to respond quickly and strongly to sufficient precipitation (Potts et al., 2019; Leon et al., 2014; Reynolds et al., 2004). This

sensitivity is found to carry over to the network structure as well. The network structure of US-Wkg becomes fully connected

(network type 4) in September 2014 with above average precipitation (NOAA) (Fig. 6d). The relevance of climatic conditions385

in controlling biosphere–atmosphere interactions on three monthly time windows thus shows also on ecosystemlevel as they

are strong enough to explain deviations from
:::::::::::
Summarising,

:::::::
climatic

::::::::
extremes

:::
are

:::::
visible

:::
in

::
an

::::::::::
ecosystem’s

::::::::
trajectory

::
as

::::::
strong

::::::::
deviations

:::::
from

:::
the

::::::
median

:::::::::
trajectory.

::::
With

:::
this

:::::::
finding

::
we

:::::
have

::
to

:::::
reject

:::
our

::::::
second

:::::::::
hypothesis

::::
that

:::::
owing

::
to

:
an ecosystem’s

median trajectory and lead to the detection of climatic extremes
::::::::
adaptation

:::
its

::::::::
accessible

:::::::::
functional

:::::
states

:::
are

::::::
limited

::
to

:
a
::::::
certain
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:::::
range.

::::
The

:::::::
opposite

:::::
seems

::
to
:::
be

:::::
valid.

:::::::::::::::::::
Biosphere–atmosphere

::::::::::
interactions

:::
can

::::::
follow

::::::
flexibly

::::::::::
atmospheric

:::::::::
conditions

::::
and

:::
are390

:::
not

:::::::
confined

::
to

:::::::
certain

:::::
states.

3.5 Functional convergence of biosphere–atmosphere interactions

We have seen that networks representing biosphere–atmosphere interactions are strongly shaped by
:::::::
strongly

::::
align

::::
with

:
prevail-

ing mean meteorological conditions. Moreover, the visualisation of ecosystem trajectories within the t-SNE space (Fig. 5, 6)

and the distributions of vegetation types and climatic regions (Supplementary Material Fig. D2) reveal that ecosystems across395

vegetation types and climatic regions can exhibit similar biosphere–atmosphere interactions if their meteorological conditions

are similar. For example, at
:::
we

:::::
found

:
a
:::::
fully

::::::::
connected

:::::::
network

:::::
(type

::
4)

::
to
:::
be

:::::::::
associated

::::
with high radiation and water avail-

ability , i.e.
:::
and

::::
thus optimal growing conditions, ecosystems exhibit fully connected networks (type 4) as well as

:::::
which

::::::
results

::
in high carbon and water fluxes. Diverging from optimal growing conditions, links in the networks weaken and disappear.

This behaviour can be understood as functional convergence of ecosystems which corroborates the hypothesis that ecosystems400

have a low number of key processes that determine ecosystem behaviour (Lambert, 2006; Meinzer, 2003; Shaver et al., 2007)

rendering their behaviour transparent and predictable. Criticism might rise as the larger part of the biosphere–atmosphere in-

teraction network indeed is a pure atmospheric network, i.e. Rg, T, VPD and H. Thus strong associations of networks and their

trajectories with atmospheric conditions could be dominated by changes in this atmospheric network. Fig. 2, however, suggests

the opposite. The strongest gradients are given by the links NEE–LE and Rg–LE and transitions along the axis connecting type405

2 and 3 (cf. Fig. 4) are dominated by changes in biosphere connectivity, i.e. LE and NEE.

In fact, the dominance of climatic drivers in controlling the temporal evolution of ecosystem functioning emerges also in

other studies (Musavi et al., 2017; Schwalm et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Musavi et al., 2017; Schwalm et al., 2017; Kraemer et al., 2020a) as

they showed that carbon fluxes are primarily controlled by climatic factors. Yet, these and others also show the role of biotic

factors in shaping the responses of ecosystem processes to climatic variability. For example, Musavi et al. (2017) revealed in a410

global ecosystem study that species diversity and ecosystem age decrease inter annual variability of GPP. Similarly, Wagg et al.

(2017) discovered
::::::
showed biodiversity to increase long-term stability of ecosystem productivity. In regional studies Wales et al.

(2020) found the stability of net primary production to be affected by the kind and severity of disturbances. Tamrakar et al.

(2018) showed that seasonal carbon fluxes were more sensitive to environmental conditions in a homogeneous forest compared

to a heterogeneous one. It would be of interest to investigate, to which degree the effects of biotic factors also translates to the415

sensitivity of the network structure.

Furthermore, extreme heat and drought events (Sippel et al., 2018) or compound events in general (Zscheischler et al., 2020)

can severely disrupt ecosystem functions. The time of recovery from such disturbances is a crucial parameter in assessing

ecosystem resilience. Schwalm et al. (2017) showed that the recovery time measured as the recovery in GPP is primarily

influenced by climate but secondarily by biodiversity and CO2 fertilisation. Assessing the recovery time via GPP already puts420

the ecosystem functioning into focus. The here presented framework, i.e. the sensitivity of an ecosystem’s network structure to

meteorological conditions, might be a valuable asset to study reaction time and strength to and recovery from extreme events as

it not only utilises one variable but the interactions of a set of variables, thereby capturing more comprehensively an ecosystem
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Figure 6. Abnormal conditions in meteorological conditions (here precipitation) become visible in an ecosystem’s trajectory. left: Trajectories

within the low dimensional space of the ecosystems Hainich (DE-Hai, DBF), Tharand (DE-Tha, ENF), Santarem-Km83-Logged Forest (BR-

Sa3, EBF) and Walnut Gulch Kendall Grasslands (US-Wkg, GRA). right: Three monthly average of daily precipitation data.
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state. A drawback is the reduced temporal resolution (a certain time period of daily or even half hourly measurements is

aggregated to one network) which can be offset by the here used moving window approach to a certain degree. Especially with425

regard to climatic extreme conditions in recent years with observed vegetation dieback in, for example, DE-Hai (Schuldt et al.,

2020), further studies could also shed light on the role of adaptation in shaping biosphere–atmosphere interactions. Our study

suggest that adaptation to a lesser degree limits the range of possible interactions but enables to sustain and persist certain

conditions for longer periods. The focus of further studies thus could be to elucidate the role of biotic factors in influencing

ecosystem trajectories as well as the role of adaptation and the response to extreme events.430

3.6
:::::::::

Limitations
:::
of

:::
the

:::::
study

::::::
Finally,

:::
we

::::::
would

:::
like

::
to
::::
take

::
a
::::::
critical

::::
view

:::
on

:::
our

:::::::
analysis

:::::::::
approach.

:::
As

:::::
stated

::
in

:::::
Sect.

:::
2.2,

:::::::
PCMCI

:::::
might

::::
fail

::
to

:::::::
identify

::::
some

::::::::
spurious

::::
links

::::
due

::
to

:::
the

:::::::::
occurrence

:::
of

::::::::::::::
contemporaneous

:::::::::::
confounders.

:::::
Thus

::::::::
networks

:::
can

::::
not

::
be

::::::::::
interpreted

:::::::
causally

:::
but

:::
this

::::
does

::::
not

:::::::
severely

::::::
hinder

::::
their

:::::
value

:::
for

:::
the

::::::
current

::::::::
analysis.

::
In

:::::::
addition

:::
we

:::::::
include

:
a
:::::
rather

:::::::
limited

:::
set

::
of

::::::::
variables

:::
into

:::
the

:::::::
network

:::::::::
estimation.

:::::
Thus

:::
we

:::::
cannot

::::
and

::
do

:::
not

:::::
claim

:::
that

::::::::::
ecosystems

:::::::
become

::::
fully

::::
alike

:::::
under

::::::
similar

:::::::::::::
meteorological435

:::::::::
conditions.

::::
Yet,

::
on

:::
the

:::::::::
timescale

::::::::::
investigated

:::
the

::::
data

::::::
shows,

:::
that

::::
the

::::::::::
interactions

::::::
among

:::
the

::::::
chosen

:::
set

::
of

::::::::
variables

:::
can

:::
be

::::::::
described

::
by

::::
very

::::::
similar

:::::::::
structures.

::::::
Follow

:::
up

::::::
studies

:::::
might

::::::
search

::
for

::::
and

::::::
include

::::::
further

:::::::::
biosphere

::::::::
variables.

::::::::
Currently,

:::
an

::::::
analysis

:::
of

:::
the

:::::
biotic

::::::
effects

::
on

:::
the

:::::::
network

::::::::
structure

::
is

::::::::
hampered

:::::::
because

:::
the

::::::
t-SNE

:::::
space

::
is

:::
not

::::::
metric.

:::::
Thus,

:::
for

::::::::
instance,

::
the

::::::
effect

::
of

:
a
:::::::
drought

::::
with

:::::::
similar

:::::::::
magnitude

::
in

:
a
::::::
boreal

:::
and

:::::::::
temperate

:::::
forest

::::::
cannot

::::::
simply

:::
be

::::::::
compared

:::
by

:::
the

::::::::
deviation

::::
from

::::
their

::::::
median

:::::::::
trajectory.440

4 Conclusions

We analysed the functional behaviour of a variety of ecosystems using the FLUXNET database of eddy covariance
::::::
carbon,

:::::
water,

::::
and

::::::
energy

::::
flux measurements. In particular, we examined the interaction structure between biosphere–atmosphere

fluxes as well as atmospheric state variables using PCMCI, an algorithm a
:::::::
method to estimate causal relationships from empiri-

cal time series . In total we included 119 measurement sites with cumulative 1067 measurement years leading to 10038 monthly445

networks.
:::::
under

::::::
certain

:::::::::::
assumptions.

:
Using non-linear dimensionality reduction, we found four

:::
find

:::::::
evidence

:::::::::
supporting

::::
our

:::::::::
hypothesis

:::
that

:::
the

::::::::
manifold

::
of

:::::::
existing

:::::
states

::
is

:::::
bound

:::
by

:::
few,

:::
i.e.

:::::
four, archetypes of network statesdefining the edges of the

low dimensional embedding. They are characterised on the one hand by a fully connected and almost unconnected network

structure and on the other hand by an antagonistic coupling of carbon and water flux with temperature - when one is strongly

coupled, the other is decoupled. The transitions between these states correlate well with gradients of meteorological drivers,450

i.e. radiation and water availability. The movement of an ecosystem within that space therefore strongly aligns with changes

in meteorological conditions. This, however, also leads to similar behaviour under similar conditions for strongly contrasting

ecosystems. For example, forests of mid or even high latitudes exhibit similar interaction structure as tropical forests given

high radiation and water availability during summer. Yet, this state can also be reached by predominantly dry ecosystems like

steppe grasslands given sufficient precipitation. In contrast if productive ecosystems are struck by a severe drought, like cen-455
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tral European ecosystems in 2003, the behaviour can adapt more to that of a Mediterranean ecosystem. Overall this
::::
Thus

:::
the

::::::
second

:::
part

:::
of

:::
our

:::::::::
hypothesis

:::::
must

::
be

::::::::
rejected.

::::
The analysis shows that the biosphere-atmosphere interaction structure can

adapt flexibly to prevailing conditions and is widely independent of vegetation type and climatic region. Such behaviour is

strong evidence for functional convergence of ecosystems, i.e. their behaviour is determined by a low number of key processes.

For further studies, we suggest, to focus on the role of biotic factors as, for example, plant functional types, ecosystem age and460

adaptation. These factors could play crucial roles in copying strategies of
:::::::::::
understanding

:::
the

:::::::::
ecosystem

:::::::
copying

:::::::::
strategies

::
to

climatic extremes.

Code availability. Code scripts can be found at https://github.com/ckrich/Functional-convergence-of-biosphere-atmosphere-interactions-in-

response-to-meteorology

Data availability. The eddy covariance data of the FLUXNET sites can be downloaded from the official webpage (https://fluxnet.fluxdata.org/).465

Appendix A: Methods

Table A1: List of FLUXNET sites used for the generation of artificial datasets and the time period used.

FLUXNET-ID start year end year data reference
:::::
IBGP FLUXNET-ID

:::::::::::::
Koeppen-Geiger

:::::
Class start year end year data reference

AT-Neu
::::
GRA

: :::
Dfb

:
2002 2012 Wohlfahrt et al. (2008)

:::::::::::::::::::
Wohlfahrt et al. (2008)

::::::::
AU-ASM IT-BCi

::::
ENF

:
2004

::::
BSh

::::
2010 2014 Vitale et al. (2016)

::::::::::::::::::
Cleverly et al. (2013)

AU-ASM
::::::
AU-Cpr

: ::::
SAV

: :::
Csa

:
2010 2014 Cleverly et al. (2013)

::::::::::::::::
Meyer et al. (2015)

::::::
AU-DaP

:
IT-Col

::::
GRA

:
1996

:::
Aw

:
2014

::::
2007

:
Valentini et al. (1996)

::::
2013

:::::::::::::::::::
Beringer et al. (2011a)

AU-Cpr
:::::::
AU-DaS 2010

:::
SAV

: :::
Aw

::::
2008 2014 Meyer et al. (2015)

::::::::::::::::
Hutley et al. (2011)

::::::
AU-Dry

:
IT-Cpz

::::
SAV

:
1997 2009

::::
2008

:
Garbulsky et al. (2008)

::::
2014

: :::::::::::::::::::
Cernusak et al. (2011)

AU-DaP
:::::::
AU-How

:
2007

:::::
WSA 2013

:::
Aw

:
Beringer et al. (2011a)

::::
2001

:
IT-Lav

::::
2014 2003

::::::::::::::::::
Beringer et al. (2007)

::::::
AU-Stp

: ::::
GRA

: :::
Aw

::::
2008 2014 Marcolla et al. (2003)

:::::::::::::::::::
Beringer et al. (2011b)

AU-DaS
:::::::
AU-Tum

:
2008

:::
EBF

: :::
Cfb

: ::::
2001 2014 Hutley et al. (2011)

:::::::::::::::::
Leuning et al. (2005)

::::::::
AU-Wom IT-MBo

:::
EBF

:
2003

:::
Cfb

:
2013

::::
2010

:
Marcolla et al. (2011)

::::
2014

:::::::::
Arndt et al.

AU-Dry
:::::::
BE-Bra 2008

:::
MF

:::
Cfb

: ::::
1996 2014 Cernusak et al. (2011)

:::::::::::::::::
Carrara et al. (2004)

::::::
BE-Lon

:
IT-Noe

::::
CRO

: :::
BSk

:
2004 2014 Reichstein et al. (2002)

:::::::::::::::::::
Moureaux et al. (2006)

AU-How
::::::
BE-Vie 2001

:::
MF

:::
Cfb

: ::::
1996 2014 Beringer et al. (2007)

:::::::::::::::::
Aubinet et al. (2001)

::::::
BR-Sa3

:
IT-Non

::::
EBF

: ::::
2000

::::
2004

:::::::::::::::::
Saleska et al. (2003)

::::::
CA-Mer

: ::::
WET

: :::
Dwb

: ::::
1998

::::
2005

:::::::::::::::::
Lafleur et al. (2003)

Continued on next page
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Table A1 – Continued from previous page

FLUXNET-ID start year end year data reference
:::::
IBGP FLUXNET-ID

:::::::::::::
Koeppen-Geiger

:::::
Class start year end year data reference

:::::::
CA-NS1

: ::::
ENF

: :::::
BWk 2001 2006

::::
2005

:
Nardino et al. (2002)

::::::::::::::::::
Goulden et al. (2006)

AU-Stp
:::::::
CA-NS2 2008

:::
ENF

:
2014

::::
BWk Beringer et al. (2011b)

::::
2001

:
IT-Ren

::::
2005 1998

:::::::::::::::::::::::
Bond-Lamberty et al. (2004)

:::::::
CA-NS3

:
2013

:::
ENF

:
Marcolla et al. (2005)

::::
2001

::::
2005

:::::::::::::::::
Wang et al. (2002a)

AU-Tum
:::::::
CA-NS5

: ::::
ENF

: :::
BSk

:
2001 2014

::::
2005

:
Leuning et al. (2005)

::::::::::::::::
Wang et al. (2002b)

:::::::
CA-NS6

:
IT-Ro1

::::
OSH

:
2000

::::
BSk 2008

::::
2001

:
Rey et al. (2002)

::::
2005

:::::::::::::::::
Wang et al. (2002c)

AU-Wom
::::::
CA-Qcu

: ::::
ENF

: :::
Dwb

: ::::
2001

::::
2006

:::::::::::::::::
Giasson et al. (2006)

::::::
CA-Qfo

: ::::
ENF

: :::
Dfb

: ::::
2003 2010 2014

:::::::::::::::
Chen et al. (2006)

::::::
CA-SF2

:
Arndt et al.

::::
ENF IT-Ro2

:::
BSk

:
2002

::::
2001

:
2012

::::
2005

:
Tedeschi et al. (2006)

:::::::::::::::::::::::
Rayment and Jarvis (1999a)

BE-Bra
:::::::
CA-SF3 1996

::::
OSH

:
2014

::::
Dwc Carrara et al. (2004)

::::
2001

:
IT-SRo

::::
2006

:
1999

:::::::::::::::::::::::
Rayment and Jarvis (1999b)

::::::
CH-Cha

:
2012

:::::
GRA Chiesi et al. (2005)

:::
Cfb

::::
2005

::::
2014

::::::::::::::::::
Merbold et al. (2014)

BE-Lon
:::::::
CH-Dav 2004

:::
ENF

: :::
Dfc

: ::::
1997 2014 Moureaux et al. (2006)

:::::::::::::::
Zielis et al. (2014)

::::::
CH-Fru

:
IT-Tor

::::
GRA

:
2008

:::
Dfb

: ::::
2005 2014 Galvagno et al. (2013)

:::::::::::::::
Imer et al. (2013)

BE-Vie
::::::
CH-Lae

:
1996

:::
MF

:::::
BWk

::::
2004 2014 Aubinet et al. (2001)

::::::::::::::::
Etzold et al. (2011)

::::::
CH-Oe1

:
JP-SMF

::::
GRA

:::
Cfb

:
2002 2006

::::
2008

:
Matsumoto et al. (2008)

::::::::::::::::::
Ammann et al. (2009)

BR-Sa3
:::::::
CH-Oe2 2000

::::
CRO

: :::
BSk

:
2004 Saleska et al. (2003)

::::
2014

:
NL-Hor

:::::::::::::::::
Dietiker et al. (2010)

:::::::
CZ-BK1

: ::::
ENF

: :::
Dwb

:
2004 2011

::::
2014

:
Jacobs et al. (2007)

::::::::::::::::
Acosta et al. (2013)

CA-Mer
:::::::
CZ-BK2

:
1998

:::::
GRA 2005

:::
Dfb

:
Lafleur et al. (2003)

::::
2004

:
NL-Loo

::::
2012

:
1996

:::::::::
Sigut et al.

::::::
CZ-wet

: ::::
WET

: :::
Dfb

: ::::
2006 2014 Moors (2012)

::::::::::::::::
Dušek et al. (2012)

CA-NS1
:::::::
DE-Akm

:
2001

:::::
WET 2005

::::
BWk Goulden et al. (2006)

::::
2009 PT-Esp

::::
2014

:
2002

:::::::::::::::
Bernhofer et al. (a)

::::::
DE-Geb

:
2006

::::
CRO

:
Rodrigues et al. (2011) CA-NS2

:::
Cfb

:
2001 2005

::::
2014

:
Bond-Lamberty et al. (2004)

::::::::::::::::::
Anthoni et al. (2004b)

::::::
DE-Gri RU-Cok

::::
GRA 2003

:::
Dfb

: ::::
2004 2014 van der Molen et al. (2007)

:::::::::::::::::::
Prescher et al. (2010a)

CA-NS3
::::::
DE-Hai 2001

::::
DBF

:
2005

:::
Cfb

:
Wang et al. (2002a)

::::
2000 RU-Fyo

::::
2012

:
1998

:::::::::::::::
Knohl et al. (2003)

::::::
DE-Kli 2014

::::
CRO

:
Kurbatova et al. (2008) CA-NS5

:::
Dfb

:
2001

::::
2004

:
2005

::::
2014

:
Wang et al. (2002b)

:::::::::::::::::::
Prescher et al. (2010b)

::::::
DE-Lkb

:
SD-Dem

::::
ENF 2005

::::
Dwb 2009 Ardö et al. (2008)

::::
2013

: ::::::::::::::::::
Lindauer et al. (2014)

CA-NS6
:::::::
DE-Obe

:
2001

:::
ENF

:
2005

:::
Dfb

:
Wang et al. (2002c)

::::
2008 SE-Deg

::::
2014

:
2001

:::::::::::::::
Bernhofer et al. (b)

::::::
DE-Spw

:
2005

:::::
WET Sagerfors et al. (2008) CA-Qcu

::::
BWk

:
2001

::::
2010

:
2006

::::
2014

:
Giasson et al. (2006)

::::::::::::::::
Bernhofer et al. (c)

::::::
DE-Tha

:
SE-Fla

::::
ENF

: :::
Dfb

:
1996

::::
2014

::::::::::::::::::::::::::
Grünwald and Bernhofer (2007)

::::::
DE-Wet

: ::::
ENF

: :::
Dfb

:
2002 Valentini et al. (2000)

::::
2006

::::::::::::::::::
Anthoni et al. (2004a)

CA-Qfo
:::::::
DK-NuF

:
2003

:::::
WET 2010

:::
Dfc

:
Chen et al. (2006)

::::
2008

:
SE-Nor

::::
2014

: :::::::::::::::::::::::::::
Westergaard-Nielsen et al. (2013)

::::::
DK-Sor

: ::::
DBF

: :::
Cfb

:
1996 2005

::::
2014

:
Lagergren et al. (2008)

::::::::::::::::::
Pilegaard et al. (2011)

CA-SF2
:::::::
DK-ZaH

:
2001

:::::
GRA 2005

::
ET

:
Rayment and Jarvis (1999a)

::::
2000

:
UK-Gri

::::
2014

:
1997

:::::::::::::::
Lund et al. (2012)

::::::
ES-ES1

: ::::
ENF

: :::
BSk

: ::::
1999 2006 Medlyn et al. (2005)

:::::::::::::::
Sanz et al. (2004)
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Table A1 – Continued from previous page

FLUXNET-ID start year end year data reference
:::::
IBGP FLUXNET-ID

:::::::::::::
Koeppen-Geiger

:::::
Class start year end year data reference

CA-SF3
::::::
FI-Hyy 2001

:::
ENF

:
2006

:::
Dfb

:
Rayment and Jarvis (1999b)

::::
1996 US-ARM

::::
2014

:
2003

:::::::::::::::
Suni et al. (2003)

::::::
FI-Kaa 2012

:::::
WET Fischer et al. (2007)

:::
Dfc

: ::::
2000

::::
2006

::::::::::::::::
Aurela et al. (2007)

CH-Cha
:::::
FI-Sod

:
2005

:::
ENF

: :::
BSk

: ::::
2001 2014 Merbold et al. (2014)

::::::::::::::::
Thum et al. (2007)

::::::
FR-Fon

:
US-Aud

::::
DBF 2002

:::
Cfb

:
2006

::::
2005

:
-
::::
2014

: ::::::::::::::::::
Delpierre et al. (2016)

CH-Dav
:::::
FR-Gri

:
1997

::::
CRO

: :::
Cfb

: ::::
2004 2014 Zielis et al. (2014)

::::::::::::::::
Loubet et al. (2011)

::::::
FR-Hes

:
US-Blo

:::
DBF

: :::
Cfb

:
1997 2007

::::
2006

:
Schade et al.

:::::::::::::::::
Granier et al. (2000)

CH-Fru
:::::::
FR-LBr 2005

:::
ENF

:
2014

:::
Cfb

:
Imer et al. (2013)

::::
1996

:
US-Bo1

::::
2008

:
1996

:::::::::::::::::::
Berbigier et al. (2001)

::::::
FR-Pue

:
2007

:::
EBF

:
Meyers and Hollinger (2004)

:::
Csa

::::
2000

::::
2014

:::::::::::::::::
Rambal et al. (2004)

CH-Lae
:::::::
GF-Guy

::::
EBF

: :::
Am

:
2004 2014 Etzold et al. (2011)

:::::::::::::::
Bonal et al. (2008)

::::::
HU-Bug

:
US-Cop

::::
GRA 2001

:::
Dfb

:
2007

::::
2002

:
Ruehr et al. (2012a)

::::
2006

: :::::::::::::::
Nagy et al. (2005)

CH-Oe1
:::::
IL-Yat

:
2002

:::
ENF

:
2008

::::
BWh Ammann et al. (2009)

::::
2001

:
US-FPe

::::
2006

:
2000

:::::::::::::::::::
Grünzweig et al. (2003)

::::::
IT-Amp

: ::::
GRA

: :::
Dsb

: ::::
2002 2006 Gilmanov et al. (2005)

:::::::::::::::::::
Gilmanov et al. (2007)

CH-Oe2
:::::
IT-BCi

: ::::
CRO

: :::
Csa

:
2004 2014 Dietiker et al. (2010)

::::::::::::::::
Vitale et al. (2016)

::::::
IT-Col US-GBT

::::
DBF 1999

:::
Dsb

:
2006

::::
1996

:
Zeller and Hehn (1996)

::::
2014

::::::::::::::::::
Valentini et al. (1996)

CZ-BK1
::::::
IT-Cpz 2004

:::
EBF

:
2014

:::
Csa

:
Acosta et al. (2013)

::::
1997

:
US-GLE

::::
2009 2004

:::::::::::::::::::
Garbulsky et al. (2008)

::::::
IT-Lav

::::
ENF

: :::
Dwb

: ::::
2003 2014 Zeller and Nikolov (2000)

::::::::::::::::::
Marcolla et al. (2003)

CZ-BK2
:::::::
IT-MBo 2004

:::::
GRA 2012

:::
Dfb

:
-

::::
2003 US-Ha1

::::
2013

:
1991

::::::::::::::::::
Marcolla et al. (2011)

::::::
IT-Noe 2012

::::
CSH

:
Wofsy et al. (1993) CZ-wet

::::
BSk 2006

::::
2004

:
2014 Dušek et al. (2012)

:::::::::::::::::::
Reichstein et al. (2002)

::::::
IT-Non US-Ho1

::::
DBF 1996

:::
Cfa

:
2004

::::
2001

:
Armstrong and Ernst (1999)

::::
2006

:::::::::::::::::
Nardino et al. (2002)

DE-Akm
::::::
IT-Ren 2009

:::
ENF

:
2014

::::
BSk -

::::
1998 US-Los

::::
2013

: ::::::::::::::::::
Marcolla et al. (2005)

::::::
IT-Ro1

::::
DBF

: :::
Csa

:
2000 2014

::::
2008

:
Baker et al. (2003)

::::::::::::::
Rey et al. (2002)

DE-Geb
:::::
IT-Ro2

:
2001

::::
DBF

:
2014

:::
Csa

:
Anthoni et al. (2004b)

::::
2002

:
US-MMS

::::
2012

: ::::::::::::::::::
Tedeschi et al. (2006)

::::::
IT-SRo

::::
ENF

: :::
BSk

:
1999 2014

::::
2012

:
Pryor et al. (1999)

::::::::::::::::
Chiesi et al. (2005)

DE-Gri
:::::
IT-Tor 2004

:::::
GRA

:::
BSk

: ::::
2008 2014 Prescher et al. (2010a)

:::::::::::::::::::
Galvagno et al. (2013)

::::::
JP-SMF

:
US-Me2

:::
MF

: :::
Cfa 2002 2014

::::
2006

:
McDowell et al. (2004)

::::::::::::::::::::
Matsumoto et al. (2008)

DE-Hai
:::::::
NL-Hor 2000

:::::
GRA 2012

:::
Csb

:
Knohl et al. (2003)

::::
2004 US-Me6

::::
2011 2010

::::::::::::::::
Jacobs et al. (2007)

::::::
NL-Loo

:
2014

:::
ENF

:
Ruehr et al. (2012b) DE-Kli

:::
Cfb 2004

::::
1996

:
2014 Prescher et al. (2010b)

:::::::::::
Moors (2012)

::::::
PT-Esp US-Myb

::::
EBF 2010

:::
Csa

:
2014

::::
2002

:
Ruehr et al. (2012c)

::::
2006

: :::::::::::::::::::
Rodrigues et al. (2011)

DE-Lkb
:::::::
RU-Cok 2009

::::
OSH

:
2013

::::
Dwd Lindauer et al. (2014)

::::
2003 US-NR1

::::
2014

::::::::::::::::::::::
van der Molen et al. (2007)

::::::
RU-Fyo

: ::::
ENF

: :::
Dwb

:
1998 2014 Reich et al. (1998)

::::::::::::::::::::
Kurbatova et al. (2008)

DE-Obe
:::::::
SD-Dem

:
2008

:::
SAV

:
2014

::::
BWh -

::::
2005 US-Ne1

::::
2009

: :::::::::::::::
Ardö et al. (2008)

::::::
SE-Deg

: ::::
WET

: :::
Dwc

:
2001 2013

::::
2005

:
Gitelson et al. (2003)

::::::::::::::::::
Sagerfors et al. (2008)
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Table A1 – Continued from previous page

FLUXNET-ID start year end year data reference
:::::
IBGP FLUXNET-ID

:::::::::::::
Koeppen-Geiger

:::::
Class start year end year data reference

DE-Spw
:::::
SE-Fla

:
2010

:::
ENF

:
2014

::::
Dwc -

::::
1996 US-Ne2

::::
2002

:
2001

::::::::::::::::::
Valentini et al. (2000)

::::::
SE-Nor

:
2013

:::
EBF

:
Cassman et al. (2003a) DE-Tha

:::
BSk

:
1996 2014

::::
2005

:
Grünwald and Bernhofer (2007)

:::::::::::::::::::
Lagergren et al. (2008)

::::::
UK-Gri

:
US-Ne3

::::
ENF 2001

:::
Csb

:
2013

::::
1997

:
Cassman et al. (2003b)

::::
2006

: ::::::::::::::::
Medlyn et al. (2005)

DE-Wet
:::::::
US-ARM

: ::::
CRO

: :::
Csa

: ::::
2003

: ::::
2012

::::::::::::::::
Fischer et al. (2007)

::::::
US-Aud

: ::::
GRA

: :::
BSk

:
2002 2006 Anthoni et al. (2004a) -

:

::::::
US-Blo

:
US-PFa

:::
ENF

:
1995

:::
Csb

:
2014

::::
1997

:
Yi et al. (2001)

::::
2007

: ::::::::::
Schade et al.

DK-NuF
::::::
US-Bo1

:
2008

::::
CRO

:
2014

:::
Dfa

:
Westergaard-Nielsen et al. (2013)

::::
1996 US-Prr

::::
2007

:
2010

::::::::::::::::::::::::
Meyers and Hollinger (2004)

::::::
US-Cop

:
2014

:::::
GRA Ruehr et al. (2012d) DK-Sor

::::
BWk

:
1996

::::
2001

:
2014

::::
2007

:
Pilegaard et al. (2011)

::::::::::::::::
Ruehr et al. (2012a)

::::::
US-FPe

:
US-SP1

::::
GRA

:::
BSk

:
2000 2005

::::
2006

:
Thomas et al. (1999a)

::::::::::::::::::
Gilmanov et al. (2005)

DK-ZaH
:::::::
US-GBT

:
2000

:::
ENF

:
2014

::::
BWk Lund et al. (2012)

::::
1999 US-SP2

::::
2006

:
1998

:::::::::::::::::::
Zeller and Hehn (1996)

::::::::
US-GLE

::::
ENF

: :::
Dsc

:
2004 Thomas et al. (1999b)

::::
2014

: ::::::::::::::::::::::
Zeller and Nikolov (2000)

ES-ES1
:::::::
US-Ha1 1999

::::
DBF

:
2006

:::
Dfb

:
Sanz et al. (2004)

::::
1991

:
US-SP3

::::
2012

:
1999

::::::::::::::::
Wofsy et al. (1993)

::::::
US-Ho1

: ::::
ENF

: :::
Dfb

: ::::
1996

:
2004 Thomas et al. (1999c)

::::::::::::::::::::::::
Armstrong and Ernst (1999)

FI-Hyy
::::::
US-Los

:
1996

:::::
WET

:::
Dfb

: ::::
2000

:
2014 Suni et al. (2003)

::::::::::::::::
Baker et al. (2003)

::::::::
US-MMS US-SRG

::::
DBF 2008

:::
Dfa

: ::::
1999

:
2014 Ruehr et al. (2012e)

:::::::::::::::
Pryor et al. (1999)

FI-Kaa
:::::::
US-Me2 2000

:::
ENF

:
2006

:::
Dsb

:
Aurela et al. (2007)

::::
2002

:
US-SRM

::::
2014 2004

:::::::::::::::::::
McDowell et al. (2004)

::::::
US-Me6

: ::::
ENF

: :::
BSk

: ::::
2010

:
2014 Scott et al. (2008)

:::::::::::::::::
Ruehr et al. (2012b)

FI-Sod
:::::::
US-Myb 2001

:::::
WET

:::
Csb

: ::::
2010

:
2014 Thum et al. (2007)

::::::::::::::::
Ruehr et al. (2012c)

:::::::
US-NR1

:
US-Syv

:::
ENF

:
2001

:::
Dfc

: ::::
1998

:
2014 Desai et al. (2005)

:::::::::::::::
Reich et al. (1998)

FR-Fon
:::::::
US-Ne1 2005

::::
CRO

:
2014

::::
Dwa Delpierre et al. (2016)

::::
2001

:
US-Ton

::::
2013

: ::::::::::::::::::
Gitelson et al. (2003)

::::::
US-Ne2

: ::::
CRO

: :::
Dwa

:
2001 2014

::::
2013

:
Tang et al. (2003)

:::::::::::::::::::
Cassman et al. (2003a)

FR-Gri
::::::
US-Ne3

:
2004

::::
CRO

:
2014

::::
Dwa Loubet et al. (2011)

::::
2001

:
US-Twt

::::
2013

:
2009

:::::::::::::::::::
Cassman et al. (2003b)

::::::
US-PFa

: :::
MF

:::
Dwb

: ::::
1995

:
2014 Hatala et al. (2012)

::::::::::::
Yi et al. (2001)

FR-Hes
:::::
US-Prr

:
1997

:::
ENF

:
2006

::::
Dwc Granier et al. (2000)

::::
2010 US-UMB

::::
2014

: ::::::::::::::::
Ruehr et al. (2012d)

::::::
US-SP1

: ::::
ENF

: :::::
BWh 2000 2014

::::
2005

:
Rothstein et al. (2000)

::::::::::::::::::
Thomas et al. (1999a)

FR-LBr
:::::::
US-SP2 1996

:::
ENF

:
2008

:::
Csa

:
Berbigier et al. (2001)

::::
1998

:
US-UMd

::::
2004 2007

::::::::::::::::::
Thomas et al. (1999b)

::::::
US-SP3

: ::::
ENF

: :::
Csa

: ::::
1999

: ::::
2004

::::::::::::::::::
Thomas et al. (1999c)

::::::::
US-SRG

::::
GRA

: :::
BSh

: ::::
2008

:
2014 Nave et al. (2011)

:::::::::::::::::
Ruehr et al. (2012e)

FR-Pue
:::::::
US-SRM

:
2000

:::::
WSA

:::
BSh

: ::::
2004

:
2014 Rambal et al. (2004)

:::::::::::::::
Scott et al. (2008)

::::::
US-Syv

:
US-Var

:::
MF 2000

:::
Dfb

: ::::
2001

:
2014 Xu et al. (2004)

:::::::::::::::
Desai et al. (2005)

GF-Guy
:::::::
US-Ton 2004

:::::
WSA

:::
Csa

: ::::
2001

:
2014 Bonal et al. (2008)

:::::::::::::::
Tang et al. (2003)

::::::
US-Twt

:
US-WCr

::::
CRO 1999

:::
Csb

: ::::
2009

:
2014 Potter et al. (2001)

::::::::::::::::
Hatala et al. (2012)
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FLUXNET-ID start year end year data reference
:::::
IBGP FLUXNET-ID

:::::::::::::
Koeppen-Geiger

:::::
Class start year end year data reference

HU-Bug
::::::::
US-UMB 2002

::::
DBF

:
2006

:::
Dfb

:
Nagy et al. (2005)

::::
2000 US-Whs

::::
2014

::::::::::::::::::
Rothstein et al. (2000)

::::::::
US-UMd

::::
DBF

: :::::
BWk 2007 2014 Scott et al. (2006)

:::::::::::::::
Nave et al. (2011)

IL-Yat
::::::
US-Var 2001

:::::
GRA 2006

:::
Csa

:
Grünzweig et al. (2003)

::::
2000 US-Wkg

::::
2014 2004

:::::::::::::
Xu et al. (2004)

::::::::
US-WCr

::::
DBF

: :::
Dfb

: ::::
1999

:
2014 Emmerich (2003)

:::::::::::::::
Potter et al. (2001)

IT-Amp
:::::::
US-Whs 2002

::::
OSH

:
2006

::::
BWk Gilmanov et al. (2007)

::::
2007

:
ZA-Kru

::::
2014

:
2000

:::::::::::::::
Scott et al. (2006)

::::::::
US-Wkg 2013

:::::
GRA Archibald et al. (2009) IT-BCi

::::
BWk

:
2004 2014 Vitale et al. (2016)

:::::::::::::::
Emmerich (2003)

::::::
ZA-Kru

: ::::
SAV

: :::
BSh

: ::::
2000

: ::::
2013

::::::::::::::::::
Archibald et al. (2009)

ZM-Mon
::::
DBF

: :::
Aw 2000 2009 Merbold et al. (2009)

::::::::::::::::::
Merbold et al. (2009)
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Table B1. PCMCI parameters that were used differently from default settings.

PCMCI parameter Setting

significance α 0.1

αpc None

tau_min 0

tau_max 5

selected_variables T, NEE, VPD, H, LEmask_type ’y’

fdr_method ’fdr_bh’

selected_links

(for variable set [Rg , T, NEE, VPD, H, LE])

{0: [],

for i in [1,2,3,4,5]:

i:[(i,-1), (i,-2)] + [(j,0), (j,-1), (j,-2) for j in [1,2,3,4,5] and j6=i]}
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Figure A1. Quality assessment of dimensionality reduction techniques. To visualize and subsequently analyse the network space we reduce

its dimensionality. We compared PCA, t-SNE and UMAP including various parameter settings (here: PCA’s leading two principal compo-

nents, t-SNE with perplexity 30, and UMAP with nneighbors equal 5 for 2 dimensions). The test statistic RNX(k) (y-axis) gives the improvement

of the embedding of k-neighborhoods (x-axis) over a random embedding. The area under the curves (preserving the log-scaled x-axis) is

given in the legend and gives an idea of the overall quality of the embedding Lee et al. (2015). We chose t-SNE with perplexity 30, as it

preserves best local neighbourhoods and performs well on larger distances.

Appendix C: Results and Discussion
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Figure B1. Same metric as Fig. A1. Optimisation of the dimensionality reduction via t-SNE by using different perplexity values.

27



0.0

0.2

0.4

0.6

0.8

K

R
N

X�
K�

100 101 102 103 104

0.38 UMAP n = 5
0.36 UMAP n = 10
0.35 UMAP n = 20
0.34 UMAP n = 30
0.33 UMAP n = 40
0.33 UMAP n = 50
0.33 UMAP n = 70
0.32 UMAP n = 100

Figure C1. Same metric as Fig. A1. Optimisation of the dimensionality reduction to two dimensions via UMAP by using different values

for the parameter nneighbors.
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Figure D1. As Fig. 4 but with smaller clusters exhibiting the finer structure of the t-SNE space.
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Figure D2. t-SNE space coloured by underlying mean Bowenratio and precipitation, as well as the ecosystems respective Koeppen Geiger

class and IGBP type.
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