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Abstract. Understanding the dependencies of the terrestrial carbon and water cycle with meteorological conditions is a pre-

requisite to anticipate their behaviour under climate change conditions. However, terrestrial ecosystems and the atmosphere

interact via a multitude of variables across temporal and spatial scales. Additionally these interactions might differ among veg-

etation types or climatic regions. Today, novel algorithms aim to disentangle the causal structure behind such interactions from

empirical data. The estimated causal structures can be interpreted as networks, where nodes represent relevant meteorological5

variables or land-surface fluxes, and the links the dependencies among them (possibly including time-lags and link strength).

Here we derived causal networks for different seasons at 119 eddy-covariance flux tower observations in the FLUXNET net-

work. We show that the networks of biosphere–atmosphere interactions are strongly shaped by meteorological conditions.

For example, we find that temperate and high latitude ecosystems during peak productivity exhibit very similar biosphere–

atmosphere interaction networks as tropical forests. In times of anomalous conditions like droughts though, both ecosystems10

behave more like typical Mediterranean ecosystems during their dry season. Our results demonstrate that ecosystems from dif-

ferent climate zones or vegetation types have similar biosphere–atmosphere interactions if their meteorological conditions are

similar. We anticipate our analysis to foster the use of network approaches as they allow a more comprehensive understanding

of the state of ecosystem functioning. Long term or even irreversible changes in network structure are rare and thus can be

indicators of fundamental functional ecosystem shifts.15

1 Introduction

Terrestrial ecosystems and the atmosphere constantly exchange energy, matter, and momentum (Bonan, 2015). These inter-

actions result in biosphere–atmosphere fluxes (in particular carbon, water, and energy fluxes) that are shaped by a variety of

climatic conditions and states of the terrestrial biosphere (McPherson, 2007). Understanding how biosphere–atmosphere fluxes

interact and how they causally depend on the short-term meteorological and long-term climate conditions is crucial for building20

predictive terrestrial biosphere models (Detto et al., 2012; Green et al., 2017). However, the exact causal structure of dependen-
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cies between surface and atmosphere variables is still subject to unknowns (Baldocchi et al., 2016; Miralles et al., 2019). For

example, we still do not understand well under which conditions certain climate extremes turn ecosystems into carbon sources

or sinks (Sippel et al., 2017; Flach et al., 2018; von Buttlar et al., 2018). One reason for our incomplete understanding is that

the causal dependencies underlying biosphere–atmosphere interactions might vary among ecosystems depending on vegetation25

structure and its long-term adaptation to climatic conditions.

Conducting a comparative study across ecosystems, focusing on their interactions with the atmosphere has two require-

ments: Firstly, we need standardised data encoding biosphere fluxes and meteorological conditions. Secondly, an analytical

tool is needed that extracts an interaction structure from these data empirically. The latter requires handling of multivariate

processes and estimating dependencies beyond correlations. The first requirement is best met by the FLUXNET database (Bal-30

docchi, 2014), a collection of global long-term observation of biosphere–atmosphere fluxes measured via the eddy covariance

method (Aubinet et al., 2012). The spatial distribution of FLUXNET sites is biased to European and North American sites,

yet it still covers most climate zones and vegetation types ranging from boreal steppe to tropical rainforests surprisingly well

Reichstein et al. (2014). Further, the data is processed homogeneously across sites. The second requirement is addressed by

causal inference. Various methods exist today (see Runge et al., 2019a, for a recent overview), some of which have been applied35

already in the biogeosciences (Ruddell and Kumar, 2009; Detto et al., 2012; Green et al., 2017; Papagiannopoulou et al., 2017;

Shadaydeh et al., 2019; Claessen et al., 2019). One of that group is PCMCI (Runge et al., 2019b), a causal graph discovery

algorithm based on a combination of the PC algorithm (named after its inventors Peter and Clark (Spirtes and Glymour, 1991))

and the Momentary Conditional Independence (MCI) test (Runge et al., 2019b). By applying such tests, it becomes possible

to account for common drivers and mediators which can cause two variables to correlate even though, no direct causal link40

exists between them. Then MCI partial correlations estimated by PCMCI yield a better interpretation of the strength of a causal

mechanism than the common Pearson correlation. Krich et al. (2020) tested PCMCI regarding its suitability for interpreting

eddy covariance data. The method proved to be consistent despite the data’s inherent noisy character and was capable to extract

well interpretable interaction structures. A causal interpretation of specific links, though, has to take into account potentially

unmet assumptions.45

In this study, we investigate multivariate time series from FLUXNET tower data to understand how networks of biosphere–

atmosphere interactions vary across vegetation types and climate zones. The rationale is as follows: If biosphere–atmosphere

interactions varied significantly across climate gradients or between vegetation types, this could indicate, for example, that

ecosystem responses to climatic extremes could differ significantly and would require terrestrial biosphere models to account

for them differently. If, however, the opposite applies and ecosystems of the Earth exhibit similar biosphere–atmosphere inter-50

action types, then common principles can be identified that can serve as empirical reference for global vegetation models. We

hypothesise first that the accessible states of biosphere–atmosphere interactions are limited and can be characterised by few

functional states despite the complexity and differences among ecosystems. Second, attributing to an ecosystems adaptation,

we further hypothesise that specific ecosystem can only access a limited fraction of the functional states.

The study is designed as follows: Firstly, we perform causal discovery by PCMCI at each eddy covariance site and seasons.55

Secondly, we solely investigate the resulting interaction networks and visualise them in a low-dimensional space. We then
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interpret the low-dimensional space of biosphere–atmosphere interactions and investigate seasonal cycles, characteristic states,

the role of vegetation types and finally discuss the potential role of adaptation to the underlying climate space.

2 Data and Methods

2.1 Eddy-covariance observations60

We used eddy covariance data from the FLUXNET database (Baldocchi et al., 2001) aggregated to daily time resolution. To

maximise the available ecosystems and time series length, we took the union of the LaThuile Fair use (Baldocchi, 2008) and

FLUXNET2015 Tier 1 (Pastorello et al., 2020) datasets (Nelson et al., 2020) with at least 5 years of measurement. If a site

year was available in both datasets we selected the one from FLUXNET2015. A detailed list of used sites and years is given

in table A1. The final dataset contains 119 sites from the major plant functional types and covers the major Koeppen-Geiger65

climate classes, i.e. tropical to polar climate zones. The majority of sites belong to evergreen needleleaf forests, grasslands

and deciduous broadleaf forests. The dominant climate classes are continental, temperate and dry climates. The dataset’s

variables, including meteorological and eddy covariance measurements, were quality checked, filtered, gap-filled, and par-

titioned with standard tools (Papale et al., 2006; Pastorello et al., 2020) and provided with per-variable quality flags. We

extracted following variables, comparable between the two dataset, and their corresponding quality controls (if available):70

shortwave downward radiation (or global radiation, Rg), air temperature (T), net ecosystem exchange (NEE) (inverted, so that

positive values signify carbon uptake into the biosphere), vapour pressure deficit (VPD), sensible heat- (H), latent heat flux

(LE), gross primary productivity (GPP), precipitation (P) and soil water content (SWC, measured at the shallowest sensor).

Within the FLUXNET2015 dataset these variables are named as: "SW_IN_F_MDS", "TA_F_MDS", "NEE_VUT_USTAR50",

"VPD_F_MDS", "H_F_MDS", "LE_F_MDS", "GPP_NT_VUT_USTAR50", "P", "SWC_F_MDS_1", respectively. Corre-75

spondingly for the LaThuile dataset:"Rg_f", "Tair_f", "NEE_f", "VPD_f", "LE_f", "H_f", "GPP_f", "precip", "SWC1_f",

respectively. GPP is calculated via the commonly used night time flux partitioning (Reichstein et al., 2005). Here GPP is

the difference between ecosystem respiration and NEE. The latter is estimated via a model which is parameterised using night

time values of NEE.

2.2 PCMCI80

To analyse biosphere–atmosphere interactions, we estimated network structures using the causal network discovery algorithm

PCMCI. PCMCI is tailored to estimate time-lagged dependencies from potentially high-dimensional and autocorrelated mul-

tivariate time series. Dependencies can be interpreted causally under certain assumptions. The algorithm is explained from a

biogeoscience viewpoint in Krich et al. (2020). A comprehensive description from theoretical assumptions to numerical ex-

periments is given in Runge et al. (2019b). As a brief summary, PCMCI efficiently conducts conditional independence tests85

among variables to reconstruct a dependency network. While PCMCI can also be combined with nonlinear tests, here we esti-

mate conditional independence using partial correlation (ParCorr), implying that we only consider linear dependencies. Partial

3



correlation between two variables X and Y given a variable set Z is defined as the correlation between the residuals of X and

Y after regressing out the (potentially multivariate) conditions Z. The conditions Z can consist of lagged third variables or

time-lags of X and Y .90

PCMCI has two phases. In the first phase, the ’condition selection’, a superset of lagged parents (up to some maximum time

lag τmax) of each variable, Xj
t , is estimated based on a fast variant of the PC algorithm (Spirtes and Glymour, 1991). A parent

of Xj
t is any lagged variable, Xi

t−τ , that is directly influencing Xj
t . This can be the own past, i= j,τ > 0 or other variables,

i 6= j,τ > 0. A pseudo-code of this procedure is given in the supplementary materials of Runge et al. (2019b). In the second

phase, ’momentary conditional independence’ (MCI) is estimated among all pairs of contemporaneous and lagged variables95

(Xi
t−τ ,X

j
t ) for τ ≥ 0. The MCI test removes the influence of the lagged drivers (obtained in the first phase) using ParCorr and

yields link strengths and p-values (based on a two-sided t-test). The link strength is here given by the MCI partial correlation .

In short, the MCI value gives an estimate of dependence between two time series, one potentially lagged, with the influence of

other lagged drivers including autocorrelation removed, yielding a better interpretation of the strength of a causal mechanism

than the common Pearson correlation. For a more detailed discussion of the interpretation, see Runge et al. (2019b). As a100

particular partial correlation, the MCI value is independent of the variables’ mean value and is normalised in [-1, 1] and can,

hence, be compared between variable pairs with different units of measurement. Lagged links are directed forward in time.

Contemporaneous dependencies are left undirected as no time information reveals the direction of influence unless they are

defined as unidirectional by the user (pcmci parameter selected_links, see table B1). A causal interpretation of links rests on

the standard assumptions of causal discovery. Here we assume time order, the causal Markov condition, faithfulness, causal105

sufficiency, causal stationarity, and no contemporaneous causal effects. The use of ParCorr additionally requires stationarity

in the mean and variance and linear dependencies (Runge et al., 2019b). In particular, a statistical independence (here at a

0.1 two-sided significance level) between a pair of variables conditional on the other lagged variables is interpreted as the

absence of a causal link (Faithfulness condition). On the other hand, a causal interpretation of the estimated links is here to be

understood only with respect to the variables included in the analysis. The dependence structure among variables can finally110

be visualised by weighted networks with the nodes representing the variables and the links significant dependencies with its

strengths given by the MCI partial correlation.

2.3 Network Estimation

Dependencies are estimated using PCMCI among the variables Rg , T, NEE, VPD, H and LE using time lags ranging from

zero to five. As was already discussed by Krich et al. (2020), eddy covariance data and the choice of our variable set do not115

fully fulfil all assumptions of PCMCI. Causal sufficiency and no contemporaneous links are obviously not fulfilled which can

lead to spurious links. Yet, in the present context we aim to compare networks and a causal interpretation of each link is not

the focus. We further can not rule out non-linear dependencies. In case they have a strong linear part, we nevertheless can

detect them. Based on findings in Krich et al. (2020), we subtracted a smoothed seasonal mean from each variable to remove

the common driver influence of the seasonal cycle that would yield spurious dependencies. The seasonal mean was smoothed120

by setting the high frequency components (> 20 days−) of its Fourier transform to zero. This decreases the detection of false
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links while leaving the detection of true links largely unaffected. We estimated networks in sliding windows of three months,

taking the centre month as the time index of each network. The sliding windows help to capture the temporal evolution of

biosphere–atmosphere interactions and provide enough data points for the network estimation via PCMCI. Additionally, we

improve stationarity of the data further and address the requirement of causal stationarity, i.e. a causal link persists throughout125

the time period of network estimation. Further we set Rg as a potential driver of the system (by excluding its parents from the

PCMCI parameter ’selected_links’, see table B1). We acknowledge the possibility of Rg being influenced by other variables,

e.g. via transpiration and subsequent cloud formation. Yet, on the ecosystem scale we work with, we presume this effect to be

rather small and likely dominated by lateral transport. Besides these possibilities, setting Rg as driver can account for remaining

non stationarities (Runge, 2018). Missing data was flagged as such and is ignored by PCMCI. To avoid effects on the network130

structure from gap-filling we used the following quality flag thresholds. A daily datapoint is not used if its quality flag is below

0.6 (i.e. more than 60% of measured and good quality gap filled data). In case more than 25% of datapoints of the three month

window are flagged as bad quality, the time window is removed from the analysis. To analyse the factors influencing network

structure, we consider the mean values over the respective time period of the variables included in the network calculation,

and additionally those of GPP, P and SWC. GPP, P and SWC were not included in the network calculation because certain135

characteristics can impinge on network estimation. GPP is derived using NEE and T. Any of the links GPP–T and GPP–NEE

thus could be due to its processing rather than an actual dependence. P, on the other hand, typically yields non intuitive results

due to its binary character (precipitation of a certain amount - zero precipitation), while its effects occur more smoothly (e.g.

increase in transpiration or respiration) and its strong deviation from a normal distribution. Further, it can happen that over

the time period of network estimation no precipitation occurs rendering such periods not analysable. The issue with SWC is140

its lower availability and for those sites that have such measurements it might be applied at differing depth. The depth that is

mostly present is at shallow depths of 5 or 10 cm. The upper soil layer, however, dries out quickly and can explain only little

of the latent heat flux.

2.4 Dimensionality Reduction

For the dimensionality reduction, we tested principal component analysis (PCA; Pearson, 1901), t-distributed stochastic neigh-145

bour embedding (t-SNE; Maaten and Hinton, 2008), and uniform manifold approximation and projection (UMAP; McInnes

et al., 2018). PCA is the standard method for dimensionality reduction, it is commonly used, linear, fast, and easily inter-

pretable regarding the meaning of its axes (the principal components). A PCA embedding typically fails to reveal complex

clusterings, because it maintains large scale gradients but often produces embeddings in which far away points appear very

close in the embedding. In contrast t-SNE aims to preserve local neighbourhoods. Therefore it calculates first similarity scores150

for each point pair using euclidean distances and Gaussian distributions. Subsequently it randomly projects the data onto the

lower dimensional space and attempts to rearrange points in a way that the previously determined similarities are obtained.

To assess the similarities in the low dimensional space, however, it uses a Student-t distribution. This helps to separate points

which are also originally separated. This procedure makes t-SNE very good at visualising clusters in the data and non-linear

relationships. Drawbacks are the difficult interpretability of the embedding axes due to the non-linear nature and its fairly long155
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computation time for large datasets. Further, distances between far separated points and those belonging to different clusters

in the embedding space are not (necessarily) comparable to the original distances. This is as t-SNE does not preserve both the

global and local structure at the same time, which is attempted by UMAP. UMAP was developed as an improvement of t-SNE

regarding structure preservation and results also in a shorter run time especially for higher dimensions. A comparison of t-SNE

and UMAP is given in appendix C in McInnes et al. (2018). According to Kobak and Linderman (2019), the global structure160

preservation of UMAP is not an inherent characteristic of the method itself but rather stems from the choosen initialization.

As we are dealing with an unsupervised method there is no obvious measure to assess the quality of an embedding, as each

method optimises a different error function. A measure commonly used for the comparison and characterisation of dimension-

ality methods is the agreement between K-ary neighborhoods (the K nearest points to an observation) in the high dimensional

and low dimensional space. The measure RNX(K) (Lee et al., 2015) gives a measure of the improvement of the embedding of165

K-ary neighborhoods over random embeddings. For an embedding with random coordinates we obtain RNX(K)≈ 0 and if the

K-ary neighborhoods are perfectly preserved we obtain RNX(K) = 1. As this measure depends on the neighborhood size, K,

we can draw a curve over K that characterizes if the method is better at maintaining global or local neighborhoods. The area

under the RNX(K) curve gives an idea of the overall quality of the embedding. An intercomparison of the three dimensionality

reduction methods using this measure shows t-SNE to perform best (see Fig. A1, B1, C1).170

2.5 Distance Correlation

Distance correlation (Székely et al., 2007) is a non linear measure to quantify the dependence between two vectors. It has been

used successfully to assess the influence of variables on the low dimensional embedding (Kraemer et al., 2020b). Székely et al.

(2007) details its empirical definition for a sample (X,Y) = {(Xk,Yk) : k = 1, ...,n} with X ∈ Rp and Y ∈ Rq as follows:

R2
n(X,Y) =


√

V2
n(X,Y)

V2
n(X,X)V2

n(Y,Y) , V
2
n(X,X)V2

n(Y,Y)> 0,

0, V2
n(X,X)V2

n(Y,Y) = 0.
175

where V2
n(X,Y) is the empirical distance covariance with V2

n(X,Y) = 1
n2

∑n
k,l=1AklBkl. Akl and Bkl are distance matrices

defined by

Akl = akl− āk − āl + ā, ā=
1

n2

n∑
k,l=1

akl, āk =
1

n

n∑
k=1

akl, āl =
1

n

n∑
l=1

akl, akl = |Xk −Xl|p

Distance correlation can be used to quantify the dependence between two sets of observations of differing dimensionality. In

our case these two vectors are firstly a link strength or a underlying quantity of the networks (1d) and secondly the networks’180

position in the low dimensional embedding (2d). The resulting dependence value is used to rank the quantities in their ability

to describe the structure of the low dimensional embedding.
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2.6 Clustering and median network trajectories

On the reduced space we applied a clustering method named Ordering Points To Identify the Clustering Structure (OPTICS;

Ankerst et al., 1999). OPTICS finds clusters by identifying regions of high density that contain a certain number of datapoints185

(minsamples). The cluster borders are defined by a certain drop in reachability of further datapoints (maxeps and xi). This allows

points that lie outside the reachability of neighbouring clusters to remain unclustered. The following settings were used for

clustering: min_samples=80, max_eps=8 and xi=0.5. We calculated mean networks for each cluster by calculating the mean

MCI value for each contemporaneous link among all networks contained in the cluster and only took those links that had an

absolute value above 0.2.190

2.7 Visualising ecosystem trajectories

As we calculated networks for each month for each measurement year for each FLUXNET site (if data requirements are

fulfilled, see Sect. 2.3), annual trajectories can be visualised in the low dimensional embedding by connecting the dots repre-

senting the monthly networks of a specific year. Further, for each ecosystem, we calculated a monthly median trajectory within

the t-SNE space which is composed of its monthly median networks. To this end, we calculated non-intersecting convex hulls195

which consisted of at least three datapoints (networks within the t-SNE space belonging to the same ecosystem, representing

the same month, in at least three years). The monthly median network is the average of the networks lying on (≥ 3 networks)

or in the inner hull (< 3 networks).

2.8 Workflow

Our restrictions on the data length and quality resulted in a selection of 119 FLUXNET sites (Fig. 1a). Applying above200

described procedure we obtained 10.038 networks for the different months and sites. An example network estimated by PCMCI

is shown in Fig. 1c. The strongest and most consistent links are contemporaneous, indicating that interactions happen on time

scales shorter than the time resolution. While lagged common drivers are excluded, contemporaneous links can still be spurious

due to contemporaneous confounding (see Sect. 2.2). Nevertheless, we focus our analysis on these 15 links, as they contain

most information. This is done by performing the dimensionality reduction on contemporaneous links and neglecting the lagged205

ones. The rational of employing a dimensionality reduction is the following. Each of the estimated networks constitutes one

observation in a high dimensional space with a network’s links spanning its axes (Fig. 1d). Projecting this high dimensional

space onto two dimensions (Fig. 1e) allows first of all for visualisation. In case the data consists of a structure that can be

’identified’ by the dimensionality reduction method, the visualisation reveals the dominant features of transitions between

different states of biosphere–atmosphere interactions. The dominant features are the links that appear with strong gradients in210

the low dimensional embedding. To quantify and later rank the gradients exhibited by each link, we use the measure distance

correlation (see Sect. 2.5). Therefore, we calculate the distance correlation of the link strengths (1d) with their position on the

low dimensional embedding axes (2d). We also examine the distance correlation of secondary quantities with the axes. The

secondary quantities are firstly mean values of variables calculated for each three month period of network estimation as well
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Figure 1. Schematic representation of the workflow. a) Eddy covariance data from the FLUXNET database are selected (119 sites). b) For

each site we used the time series of global radiation Rg , air temperature T, vapour pressure deficit VPD, net ecosystem exchange NEE,

sensible heat H, latent heat LE, gross primary productivity GPP, precipitation P and sail water content SWC. Networks are estimated in

three month moving windows using Rg, T, NEE, VPD, LE and H. c) An example interaction network for FI-Hyy May 2002. The strongest

and most persistent links are contemporaneous (i.e. undirected). Thus we limit our analysis to those links. d) Each three-month network

can be interpreted as an observation in a 15-dimensional space (each contemporaneous link is one dimension). e) Dimensionality reduction

projects all interaction networks into a two dimensional space preserving its local neighbourhood structure. Here any subsequent analysis

and interpretation will be realised.
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as secondly static values like climate class, vegetation type or location. The secondary quantities are used to find covariates of215

the low dimensional embedding that can help to explain its structure. In a next step, we cluster the low dimensional embedding

to further understand to which network structures the gradients of link strength lead (see Sect. 2.4) and calculate the cluster’s

average networks (a simple mean). Up to this point (Sect. 3.1 and 3.2), we analysed the manifold of biosphere–atmosphere

interactions and can address the first part of our hypothesis. As each point of the low dimensional embedding represents

the biosphere–atmosphere interactions of a specific ecosystem at a specific time we can investigate the behaviour of specific220

ecosystems (see Sect. 2.7). Therefore we look at the monthly median and annual trajectories of certain ecosystems (Sect. 3.3

and 3.4). This leads to the answer of the second part of our hypothesis.

3 Results and Discussions

3.1 Two-dimensional embedding of biosphere–atmosphere networks

To find the most suitable dimensionality reduction method, we evaluated three different methods (PCA, t-SNE and UMAP) with225

respect to their ability to project the high dimensional network space onto two dimensions. To compare the low-dimensional

embedding spaces, we used the RNX(K) measure (see Sect. 2.4) which quantifies how well neighbourhoods are preserved

when projecting the high dimensional space onto fewer dimensions. We found that t-SNE achieved the best projection, by

best preserving both local and distant neighbourhoods (cf. Sect. 2.4, Fig. A1, B1). This is unexpected as UMAP is said to

intentionally preserve the global structure. Yet, as can be seen in Fig. 4a, the networks almost form a continuum. Thus, by230

maintaining the local neighbourhood structure, also the global structure is preserved within t-SNE.

The two-dimensional embedding by t-SNE of biosphere–atmosphere interactions is ordered primarily by dependencies in-

cluding carbon flux (NEE) and energy distributions (LE, H). This can be seen in Fig. 2 which shows the 2d embedding colour-

coded by the strength of individual links, i.e. MCI partial correlation values. The colouring reveals that the link strengths are

ordered along gradients, i.e. they exhibit some dependence with the t-SNE axes. Using distance correlation to rank those gra-235

dients (see Sect. 2.5), we find the links NEE–LE (R= 0.75), Rg–LE (R= 0.73) and T–H (R= 0.69) to have the strongest

gradients. The connection between carbon and water fluxes as well as the role of energy input to sustain water fluxes (if

available in the soil) are well known and investigated dependencies (Beer et al., 2010; Luyssaert et al., 2007).

To search for covariates that help to explain - and if thought further, help to predict the network structures- we colour coded

the embedding by the networks’ underlying mean conditions, i.e. the average over the respective time window, of the exchange240

rates (GPP, NEE, LE and H) as well as meteorological conditions (Rg, T, VPD, P). This is shown in Fig. 3. Clearly, the mean

exchange rates and meteorological conditions - although not considered in the estimation of the networks - are related to the

observed biosphere–atmosphere interactions. On the contrary, corresponding vegetation types and Köppen-Geiger classes are

not as much related as displayed in the Supplementary Material section Fig. D2. The results show that a high dimensional

space encompassing more than 10000 ecosystem networks representing the states of biosphere–atmosphere interactions from245

ecosystems of various geographic origins can be reduced to a compact two dimensional manifold characterised by four edges

and gradients of mean biosphere and atmosphere conditions. While gradients in MCI partial correlation strength are expected
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Figure 2. Two-dimensional embedding of three-monthly biosphere–atmosphere networks realised via t-SNE. Shown is the distribution of link

strengths among the networks. The strength is estimated via MCI partial correlation values. Subfigures are sorted by the distance correlation

of the link’s MCI value with the axes (value in upper right corner). As Rg is set as potential driver (PCMCI parameter ’selected_links’, see

table B1), connections including Rg are directed →.
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Figure 3. Two-dimensional embedding coloured by underlying mean exchange rates and meteorological conditions. The mean values are

calculated over the respective time periods used for the network estimation. Each network is estimated on a three month window of daily

time series data. Values are cut off at the highest and lowest percentile.

as they were used as features in the dimensionality reduction, gradients in mean climatic and biospheric conditions were not.

This information thus must be entailed in the networks’ structure. To better grasp the distribution of network structures, we

further analyse the emerging clusters.250

3.2 Clusters of characteristic ecosystem–atmosphere networks

As we apply a significance threshold to each link of the estimated network structures (see Sect. 2.3), the networks typically

lack weak links. This leads to a certain degree of clustering among the networks, which we identified using the OPTICS

approach (see Sect. 2.6; Ankerst et al., 1999)) (Fig. 4a). Cluster boundaries are shown by the convex hulls in Fig. 4b, where

we also visualise the mean networks of each cluster. This visualisation reveals that the mean networks of the clusters situated255

at the embedding’s edges can be regarded as archetypes of network structures, i.e. extremal, characteristic states (similar to the

concept of endmember states). The four states can be described as follows:

Type 1 is a sparsely connected network. Links, if present, are very weak and predominantly exist among atmospheric variables.

Mean atmospheric conditions are characterised by low energy input (low Rg and T). Carbon and water fluxes are con-
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sequently close to zero, and daily averages of sensible heat can even reach negative values. Such conditions reflect high260

latitude ecosystem winter states experienced by ecosystems like the evergreen needle leaf forests (ENF) of Finnland,

i.e. Hyytiälä (FI-Hyy) and Sodankyla (FI-Sod) as well as Canada, i.e., the UCI-1850 burn site (CA-NS1) and Quebec -

Eastern Boreal (CA-Qcu) during December and January.

Type 2 consists of strong links among atmospheric variables but LE and NEE are weakly, not, or even negatively connected to

the atmosphere, i.e. the meteorological variables. This network structure coincides with high energy input (high Rg and265

T) but low water availability (low P and SWC, high VPD). A high Bowen ratio, i.e. the ratio between sensible heat and

latent heat, representing aridity, and low absolute carbon fluxes (GPP and NEE) are the consequence. These conditions

are typically present at semi-arid ecosystems like the woody savanna (WSA) Santa Rita Mesquite (US-SRM) as well as

the grasslands Santa Rita (US-SRG), Audubon Research Ranch (US-Aud) and Sturt Plains (AU-Stp) during dry season.

Type 3 exhibits the same strong links among Rg, VPD and H as Type 2 but T is weakly or not connected. The opposite is true270

for links of LE and NEE which are strongly connected to the other variables (except T). Rg and T are considerably lower

than in Type 2 (approximately by 100 W/m2 and 10◦C) but because of sufficient water availability the Bowen ratio is

between 0 and 1. Typical ecosystems in this state are mid to high latitude forests during spring or autumn, e.g. Harvard

Forest EMS Tower (US-Ha1, deciduous broadleaf forest (DBF)), Roccarespampani 1 (IT-Ro1, DBF), Vielsalm (BE-Vie,

mixed forest (MF)) and Hyytiälä (FI-Hyy, ENF).275

Type 4 is fully and strongly connected. Both energy input and water availability are high leading to Bowen ratios around 1.

This network state is typically present in tropical forests like the Guyaflux site in French Guiana (GF-Guy) (evergreen

broadleaf forest (EBF)) but can temporarily be also reached by a variety of other ecosystems, e.g. mid and high latitude

forests like Hainich (DE-Hai, DBF), Tharandt (DE-Tha, ENF), BE-Vie (MF), FI-Hyy (ENF) as well as woody savannas

(WSA) as Howard Springs (AU-How) and grasslands as Daly River Savanna (AU-Dap).280

The archetypes of networks are located at the edges of the two-dimensional space and thus could define two imaginary axes.

From a physical point of view, energy is required for each process and interaction to occur, e.g. photosynthesis or evaporation

(Bonan, 2015). Therefore, transitions along the axis connecting the network types 1 and 4 might be interpreted as energy

controlled as dependencies among all variables fade or increase consistently. Transitions along the axis connecting network

types 2 and 3 are explainable by a combination of water availability and a temperature gradient. Low water availability but285

high temperatures cause shut down of stomatal conductance or ecosystems to enter a dormant state which leads to low carbon

and water fluxes and low connectivity. On the other hand, sufficient water and medium temperatures (around the optimum of

photosynthesis) allow for carbon and water fluxes but reduce the influence of varying temperatures leading to connected NEE

and LE but disconnected T. And indeed these patterns and gradients exist. Mean Rg is lowest at network type 1 and almost

linearly increases towards network type 4. P is lowest at network type 1 and 2. In combination with high energy input network290

type 2 has lowest SWC values and the highest Bowen ratios (see Supplementary Material section Fig. D2). SWC is higher but

quite dispersed elsewhere suggesting that at a certain point water limitations are fading out. T values of course also show an
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Figure 4. Structure of the two-dimensional embedding. left: t-SNE space clustered by the OPTICS approach (Ankerst et al., 1999). Colours

represent different clusters, black dots are not attributed to a cluster. Indicated are the four archetypes of network connectivity and the

networks underlying meteorological conditions. right: Convex hulls of clusters and their average network, i.e. average over all networks

belonging to one cluster. Average networks are thresholded at a minimum link strength of 0.2. A finer clustering can be found in the

Supplementary Material section Fig. D1.

increase from network type 1 to 4 (as radiation) but also from network type 3 to 2 and are actually rather low (8◦C to 15 ◦C)

at network type 3 (see Fig 3). As meteorological conditions affect biosphere productivity, network type 1 and 2 exhibit low,

type 3 medium and type 4 high productivity i.e. estimated as GPP. In short, the clustering revealed that changes in energy and295

water availability can explain major transitions between different states of biosphere–atmosphere interactions. This is in line

with a recent study showing that a variety of land-surface processes can be largely summarised by on the one hand productivity

measures and on the other hand water and energy availability. Both, water and energy availability, need to be high for high

productive states, yet the lack of either of them leads to low productivity (Kraemer et al., 2020a). This biosphere state triangle

is found in our analysis by the network type 1 (cold - low connectivity), 2 (dry - NEE/LE weakly connected) and 4 (high300

productivity - fully connected). Yet, a fourth network type (type 3) is naturally occurring in the t-SNE space as we here include

interactions with the atmosphere.

Up to this point we have found strong evidence supporting our first hypothesis. The manifold of biosphere–atmosphere

interactions can be represented rather well by two dimensions which we identified to be most consistent with energy and water

availabilities. It is confined by four characteristic states and populated homogeneously by the observed network states. Having305

an understanding of the low dimensional embedding’s structure now allows us to analyse specific ecosystem behaviour.
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3.3 Ecosystems’ median trajectories

Each point in the reduced t-SNE space represents a biosphere–atmosphere interaction network for a given month and ecosys-

tem. Hence, we can trace an ecosystem’s trajectory through time. We are first focusing on an ecosystem’s median monthly

trajectory (see Sect. 2.7) within the low dimensional space. We can see that the median trajectories reflect seasonal patterns310

of meteorological conditions (Fig. 5). For example, mid-latitude sites like FR-Pue (EBF), DE-Hai (DBF) and FI-Hyy (ENF)

exhibit a strong seasonal variation of Rg and span a long distance in the t-SNE space. In contrast, tropical ecosystems like

GF-Guy (EBF) constantly have high Rg and exhibit predominantly network type 4 indicative of high productive conditions

- while DE-Hai or FI-Hyy reach this connectivity pattern only during peak growing season. US-SRM (WSA), however, has

similar or even higher Rg values throughout the year but barely manages to deviate from type 2 which is in accordance with315

its low water availability. The amount of precipitation further aligns with differences and characteristics of the trajectories of

FR-Pue, DE-Hai and FI-Hyy. For example, FI-Hyy shows some deviation towards edge 2 in February and March, FR-Pue in

June, July and August. For both, mean precipitation is lowest during these months. These behaviours demonstrate what the

previous figures (Fig. 3 and 4) have already suggested: Ecosystem’s populate the low dimensional space and migrate within as

allowed by their climatic conditions. Thereby they can exhibit a wide range of interaction structures as can be seen from the320

mid-latitude sites. As these behaviours are multi year averages they could resemble more ecosystem adaptation to median cli-

matic conditions than flexible adjustment of biosphere–atmosphere interactions to quickly changing meteorological conditions.

If biosphere–atmosphere interactions are confined by adaptation shall be investigated in the final analysis section.

3.4 Deviations from ecosystem median trajectories

The remaining open question is, how flexible do the networks adjust to deviations from mean climatic conditions. Therefore,325

we look at climatic anomalies. Figure 6 shows the trajectories of ecosystems during anomalous dry or wet conditions. During

the European heatwave of 2003, in July and August the trajectories of two temperate central European forests, DE-Hai and

DE-Tha, no longer manage to establish a network structure resembling network type 4, typical for these ecosystems during

their high productive phase. Instead they are shifted towards network type 2, associated with drier conditions (Fig. 6a, b).

Similarly, the ecosystem BR-Sa3 (EBF) in the Brazilian tropical rainforest shows substantial deviations towards network type330

2 during the exceptional dry season of 2001 (Aug, Sep, Oct) (Marengo et al., 2018) (Fig. 6c). In contrast, US-Wkg is a grassland

accustomed to dry conditions and thus predominantly exhibits low water and carbon fluxes resulting in network structures as of

network type 2, i.e. water and carbon fluxes are barely or even disconnected. Carbon and water fluxes of semi-arid ecosystems,

however, are known to respond quickly and strongly to sufficient precipitation (Potts et al., 2019; Leon et al., 2014; Reynolds

et al., 2004). This sensitivity is found to carry over to the network structure as well. The network structure of US-Wkg becomes335

fully connected (network type 4) in September 2014 with above average precipitation (NOAA) (Fig. 6d). Summarising, climatic

extremes are visible in an ecosystem’s trajectory as strong deviations from the median trajectory. With this finding we have

to reject our second hypothesis that owing to an ecosystem’s adaptation its accessible functional states are limited to a certain
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Figure 5. Median trajectories of selected sites (left) and their corresponding mean values of radiation, precipitation and the Bowen ratio

(right). In winter month the Bowen ratio can turn negative. Nevertheless we set the lower limit of the y-axis to 0. As networks are calculated

using a centred three month moving window, each month is ascribed a network. Thus, the behaviour of an ecosystem can be tracked by its

monthly networks, which form trajectories for each year. An ecosystem’s monthly median trajectory is composed of the two dimensional

monthly median networks (see Sect. 2.7 for details).

range. The opposite seems to be valid. Biosphere–atmosphere interactions can follow flexibly atmospheric conditions and are

not confined to certain states.340

3.5 Functional convergence of biosphere–atmosphere interactions

We have seen that networks representing biosphere–atmosphere interactions strongly align with prevailing mean meteorolog-

ical conditions. Moreover, the visualisation of ecosystem trajectories within the t-SNE space (Fig. 5, 6) and the distributions

of vegetation types and climatic regions (Supplementary Material Fig. D2) reveal that ecosystems across vegetation types

and climatic regions can exhibit similar biosphere–atmosphere interactions if their meteorological conditions are similar. For345

example, we found a fully connected network (type 4) to be associated with high radiation and water availability and thus

optimal growing conditions, which results in high carbon and water fluxes. Diverging from optimal growing conditions, links

in the networks weaken and disappear. This behaviour can be understood as functional convergence of ecosystems which cor-

roborates the hypothesis that ecosystems have a low number of key processes that determine ecosystem behaviour (Lambert,
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Figure 6. Abnormal conditions in meteorological conditions (here precipitation) become visible in an ecosystem’s trajectory. left: Trajectories

within the low dimensional space of the ecosystems Hainich (DE-Hai, DBF), Tharand (DE-Tha, ENF), Santarem-Km83-Logged Forest (BR-

Sa3, EBF) and Walnut Gulch Kendall Grasslands (US-Wkg, GRA). right: Three monthly average of daily precipitation data.
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2006; Meinzer, 2003; Shaver et al., 2007) rendering their behaviour transparent and predictable. Criticism might rise as the350

larger part of the biosphere–atmosphere interaction network indeed is a pure atmospheric network, i.e. Rg, T, VPD and H.

Thus strong associations of networks and their trajectories with atmospheric conditions could be dominated by changes in

this atmospheric network. Fig. 2, however, suggests the opposite. The strongest gradients are given by the links NEE–LE and

Rg–LE and transitions along the axis connecting type 2 and 3 (cf. Fig. 4) are dominated by changes in biosphere connectivity,

i.e. LE and NEE.355

In fact, the dominance of climatic drivers in controlling the temporal evolution of ecosystem functioning emerges also in

other studies (Musavi et al., 2017; Schwalm et al., 2017; Kraemer et al., 2020a) as they showed that carbon fluxes are primarily

controlled by climatic factors. Yet, these and others also show the role of biotic factors in shaping the responses of ecosystem

processes to climatic variability. For example, Musavi et al. (2017) revealed in a global ecosystem study that species diversity

and ecosystem age decrease inter annual variability of GPP. Similarly, Wagg et al. (2017) showed biodiversity to increase long-360

term stability of ecosystem productivity. In regional studies Wales et al. (2020) found the stability of net primary production

to be affected by the kind and severity of disturbances. Tamrakar et al. (2018) showed that seasonal carbon fluxes were more

sensitive to environmental conditions in a homogeneous forest compared to a heterogeneous one. It would be of interest to

investigate, to which degree the effects of biotic factors also translates to the sensitivity of the network structure.

Furthermore, extreme heat and drought events (Sippel et al., 2018) or compound events in general (Zscheischler et al., 2020)365

can severely disrupt ecosystem functions. The time of recovery from such disturbances is a crucial parameter in assessing

ecosystem resilience. Schwalm et al. (2017) showed that the recovery time measured as the recovery in GPP is primarily

influenced by climate but secondarily by biodiversity and CO2 fertilisation. Assessing the recovery time via GPP already puts

the ecosystem functioning into focus. The here presented framework, i.e. the sensitivity of an ecosystem’s network structure to

meteorological conditions, might be a valuable asset to study reaction time and strength to and recovery from extreme events as370

it not only utilises one variable but the interactions of a set of variables, thereby capturing more comprehensively an ecosystem

state. A drawback is the reduced temporal resolution (a certain time period of daily or even half hourly measurements is

aggregated to one network) which can be offset by the here used moving window approach to a certain degree. Especially with

regard to climatic extreme conditions in recent years with observed vegetation dieback in, for example, DE-Hai (Schuldt et al.,

2020), further studies could also shed light on the role of adaptation in shaping biosphere–atmosphere interactions. Our study375

suggest that adaptation to a lesser degree limits the range of possible interactions but enables to sustain and persist certain

conditions for longer periods. The focus of further studies thus could be to elucidate the role of biotic factors in influencing

ecosystem trajectories as well as the role of adaptation and the response to extreme events.

3.6 Limitations of the study

Finally, we would like to take a critical view on our analysis approach. As stated in Sect. 2.2, PCMCI might fail to identify380

some spurious links due to the occurrence of contemporaneous confounders. Thus networks can not be interpreted causally

but this does not severely hinder their value for the current analysis. In addition we include a rather limited set of variables

into the network estimation. Thus we cannot and do not claim that ecosystems become fully alike under similar meteorological
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conditions. Yet, on the timescale investigated the data shows, that the interactions among the chosen set of variables can be

described by very similar structures. Follow up studies might search for and include further biosphere variables. Currently, an385

analysis of the biotic effects on the network structure is hampered because the t-SNE space is not metric. Thus, for instance,

the effect of a drought with similar magnitude in a boreal and temperate forest cannot simply be compared by the deviation

from their median trajectory.

4 Conclusions

We analysed the functional behaviour of a variety of ecosystems using the FLUXNET database of carbon, water, and energy390

flux measurements. In particular, we examined the interaction structure between biosphere–atmosphere fluxes as well as at-

mospheric state variables using PCMCI, a method to estimate causal relationships from empirical time series under certain

assumptions. Using non-linear dimensionality reduction, we find evidence supporting our hypothesis that the manifold of ex-

isting states is bound by few, i.e. four, archetypes of network states. They are characterised on the one hand by a fully connected

and almost unconnected network structure and on the other hand by an antagonistic coupling of carbon and water flux with395

temperature - when one is strongly coupled, the other is decoupled. The transitions between these states correlate well with

gradients of meteorological drivers, i.e. radiation and water availability. The movement of an ecosystem within that space there-

fore strongly aligns with changes in meteorological conditions. This, however, also leads to similar behaviour under similar

conditions for strongly contrasting ecosystems. For example, forests of mid or even high latitudes exhibit similar interaction

structure as tropical forests given high radiation and water availability during summer. Yet, this state can also be reached by400

predominantly dry ecosystems like steppe grasslands given sufficient precipitation. In contrast if productive ecosystems are

struck by a severe drought, like central European ecosystems in 2003, the behaviour can adapt more to that of a Mediterranean

ecosystem. Thus the second part of our hypothesis must be rejected. The analysis shows that the biosphere-atmosphere inter-

action structure can adapt flexibly to prevailing conditions and is widely independent of vegetation type and climatic region.

Such behaviour is strong evidence for functional convergence of ecosystems, i.e. their behaviour is determined by a low num-405

ber of key processes. For further studies, we suggest, to focus on the role of biotic factors as, for example, plant functional

types, ecosystem age and adaptation. These factors could play crucial roles in understanding the ecosystem copying strategies

to climatic extremes.

Code availability. Code scripts can be found at https://github.com/ckrich/Functional-convergence-of-biosphere-atmosphere-interactions-in-

response-to-meteorology410

Data availability. The eddy covariance data of the FLUXNET sites can be downloaded from the official webpage (https://fluxnet.fluxdata.org/).
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Appendix A: Methods

Table A1: List of FLUXNET sites used for the generation of artificial datasets and the time period used.

FLUXNET-ID IBGP Koeppen-Geiger Class start year end year data reference

AT-Neu GRA Dfb 2002 2012 Wohlfahrt et al. (2008)

AU-ASM ENF BSh 2010 2014 Cleverly et al. (2013)

AU-Cpr SAV Csa 2010 2014 Meyer et al. (2015)

AU-DaP GRA Aw 2007 2013 Beringer et al. (2011a)

AU-DaS SAV Aw 2008 2014 Hutley et al. (2011)

AU-Dry SAV 2008 2014 Cernusak et al. (2011)

AU-How WSA Aw 2001 2014 Beringer et al. (2007)

AU-Stp GRA Aw 2008 2014 Beringer et al. (2011b)

AU-Tum EBF Cfb 2001 2014 Leuning et al. (2005)

AU-Wom EBF Cfb 2010 2014 Arndt et al.

BE-Bra MF Cfb 1996 2014 Carrara et al. (2004)

BE-Lon CRO BSk 2004 2014 Moureaux et al. (2006)

BE-Vie MF Cfb 1996 2014 Aubinet et al. (2001)

BR-Sa3 EBF 2000 2004 Saleska et al. (2003)

CA-Mer WET Dwb 1998 2005 Lafleur et al. (2003)

CA-NS1 ENF BWk 2001 2005 Goulden et al. (2006)

CA-NS2 ENF BWk 2001 2005 Bond-Lamberty et al. (2004)

CA-NS3 ENF 2001 2005 Wang et al. (2002a)

CA-NS5 ENF BSk 2001 2005 Wang et al. (2002b)

CA-NS6 OSH BSk 2001 2005 Wang et al. (2002c)

CA-Qcu ENF Dwb 2001 2006 Giasson et al. (2006)

CA-Qfo ENF Dfb 2003 2010 Chen et al. (2006)

CA-SF2 ENF BSk 2001 2005 Rayment and Jarvis (1999a)

CA-SF3 OSH Dwc 2001 2006 Rayment and Jarvis (1999b)

CH-Cha GRA Cfb 2005 2014 Merbold et al. (2014)

CH-Dav ENF Dfc 1997 2014 Zielis et al. (2014)

CH-Fru GRA Dfb 2005 2014 Imer et al. (2013)

CH-Lae MF BWk 2004 2014 Etzold et al. (2011)

CH-Oe1 GRA Cfb 2002 2008 Ammann et al. (2009)

CH-Oe2 CRO BSk 2004 2014 Dietiker et al. (2010)

Continued on next page
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Table A1 – Continued from previous page

FLUXNET-ID IBGP Koeppen-Geiger Class start year end year data reference

CZ-BK1 ENF Dwb 2004 2014 Acosta et al. (2013)

CZ-BK2 GRA Dfb 2004 2012 Sigut et al.

CZ-wet WET Dfb 2006 2014 Dušek et al. (2012)

DE-Akm WET BWk 2009 2014 Bernhofer et al. (a)

DE-Geb CRO Cfb 2001 2014 Anthoni et al. (2004b)

DE-Gri GRA Dfb 2004 2014 Prescher et al. (2010a)

DE-Hai DBF Cfb 2000 2012 Knohl et al. (2003)

DE-Kli CRO Dfb 2004 2014 Prescher et al. (2010b)

DE-Lkb ENF Dwb 2009 2013 Lindauer et al. (2014)

DE-Obe ENF Dfb 2008 2014 Bernhofer et al. (b)

DE-Spw WET BWk 2010 2014 Bernhofer et al. (c)

DE-Tha ENF Dfb 1996 2014 Grünwald and Bernhofer (2007)

DE-Wet ENF Dfb 2002 2006 Anthoni et al. (2004a)

DK-NuF WET Dfc 2008 2014 Westergaard-Nielsen et al. (2013)

DK-Sor DBF Cfb 1996 2014 Pilegaard et al. (2011)

DK-ZaH GRA ET 2000 2014 Lund et al. (2012)

ES-ES1 ENF BSk 1999 2006 Sanz et al. (2004)

FI-Hyy ENF Dfb 1996 2014 Suni et al. (2003)

FI-Kaa WET Dfc 2000 2006 Aurela et al. (2007)

FI-Sod ENF BSk 2001 2014 Thum et al. (2007)

FR-Fon DBF Cfb 2005 2014 Delpierre et al. (2016)

FR-Gri CRO Cfb 2004 2014 Loubet et al. (2011)

FR-Hes DBF Cfb 1997 2006 Granier et al. (2000)

FR-LBr ENF Cfb 1996 2008 Berbigier et al. (2001)

FR-Pue EBF Csa 2000 2014 Rambal et al. (2004)

GF-Guy EBF Am 2004 2014 Bonal et al. (2008)

HU-Bug GRA Dfb 2002 2006 Nagy et al. (2005)

IL-Yat ENF BWh 2001 2006 Grünzweig et al. (2003)

IT-Amp GRA Dsb 2002 2006 Gilmanov et al. (2007)

IT-BCi CRO Csa 2004 2014 Vitale et al. (2016)

IT-Col DBF Dsb 1996 2014 Valentini et al. (1996)

IT-Cpz EBF Csa 1997 2009 Garbulsky et al. (2008)

Continued on next page
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Table A1 – Continued from previous page

FLUXNET-ID IBGP Koeppen-Geiger Class start year end year data reference

IT-Lav ENF Dwb 2003 2014 Marcolla et al. (2003)

IT-MBo GRA Dfb 2003 2013 Marcolla et al. (2011)

IT-Noe CSH BSk 2004 2014 Reichstein et al. (2002)

IT-Non DBF Cfa 2001 2006 Nardino et al. (2002)

IT-Ren ENF BSk 1998 2013 Marcolla et al. (2005)

IT-Ro1 DBF Csa 2000 2008 Rey et al. (2002)

IT-Ro2 DBF Csa 2002 2012 Tedeschi et al. (2006)

IT-SRo ENF BSk 1999 2012 Chiesi et al. (2005)

IT-Tor GRA BSk 2008 2014 Galvagno et al. (2013)

JP-SMF MF Cfa 2002 2006 Matsumoto et al. (2008)

NL-Hor GRA Csb 2004 2011 Jacobs et al. (2007)

NL-Loo ENF Cfb 1996 2014 Moors (2012)

PT-Esp EBF Csa 2002 2006 Rodrigues et al. (2011)

RU-Cok OSH Dwd 2003 2014 van der Molen et al. (2007)

RU-Fyo ENF Dwb 1998 2014 Kurbatova et al. (2008)

SD-Dem SAV BWh 2005 2009 Ardö et al. (2008)

SE-Deg WET Dwc 2001 2005 Sagerfors et al. (2008)

SE-Fla ENF Dwc 1996 2002 Valentini et al. (2000)

SE-Nor EBF BSk 1996 2005 Lagergren et al. (2008)

UK-Gri ENF Csb 1997 2006 Medlyn et al. (2005)

US-ARM CRO Csa 2003 2012 Fischer et al. (2007)

US-Aud GRA BSk 2002 2006 -

US-Blo ENF Csb 1997 2007 Schade et al.

US-Bo1 CRO Dfa 1996 2007 Meyers and Hollinger (2004)

US-Cop GRA BWk 2001 2007 Ruehr et al. (2012a)

US-FPe GRA BSk 2000 2006 Gilmanov et al. (2005)

US-GBT ENF BWk 1999 2006 Zeller and Hehn (1996)

US-GLE ENF Dsc 2004 2014 Zeller and Nikolov (2000)

US-Ha1 DBF Dfb 1991 2012 Wofsy et al. (1993)

US-Ho1 ENF Dfb 1996 2004 Armstrong and Ernst (1999)

US-Los WET Dfb 2000 2014 Baker et al. (2003)

US-MMS DBF Dfa 1999 2014 Pryor et al. (1999)

Continued on next page
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Table A1 – Continued from previous page

FLUXNET-ID IBGP Koeppen-Geiger Class start year end year data reference

US-Me2 ENF Dsb 2002 2014 McDowell et al. (2004)

US-Me6 ENF BSk 2010 2014 Ruehr et al. (2012b)

US-Myb WET Csb 2010 2014 Ruehr et al. (2012c)

US-NR1 ENF Dfc 1998 2014 Reich et al. (1998)

US-Ne1 CRO Dwa 2001 2013 Gitelson et al. (2003)

US-Ne2 CRO Dwa 2001 2013 Cassman et al. (2003a)

US-Ne3 CRO Dwa 2001 2013 Cassman et al. (2003b)

US-PFa MF Dwb 1995 2014 Yi et al. (2001)

US-Prr ENF Dwc 2010 2014 Ruehr et al. (2012d)

US-SP1 ENF BWh 2000 2005 Thomas et al. (1999a)

US-SP2 ENF Csa 1998 2004 Thomas et al. (1999b)

US-SP3 ENF Csa 1999 2004 Thomas et al. (1999c)

US-SRG GRA BSh 2008 2014 Ruehr et al. (2012e)

US-SRM WSA BSh 2004 2014 Scott et al. (2008)

US-Syv MF Dfb 2001 2014 Desai et al. (2005)

US-Ton WSA Csa 2001 2014 Tang et al. (2003)

US-Twt CRO Csb 2009 2014 Hatala et al. (2012)

US-UMB DBF Dfb 2000 2014 Rothstein et al. (2000)

US-UMd DBF BWk 2007 2014 Nave et al. (2011)

US-Var GRA Csa 2000 2014 Xu et al. (2004)

US-WCr DBF Dfb 1999 2014 Potter et al. (2001)

US-Whs OSH BWk 2007 2014 Scott et al. (2006)

US-Wkg GRA BWk 2004 2014 Emmerich (2003)

ZA-Kru SAV BSh 2000 2013 Archibald et al. (2009)

ZM-Mon DBF Aw 2000 2009 Merbold et al. (2009)
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Table B1. PCMCI parameters that were used differently from default settings.

PCMCI parameter Setting

significance α 0.1

αpc None

tau_min 0

tau_max 5

mask_type ’y’

fdr_method ’fdr_bh’

selected_links

(for variable set [Rg , T, NEE, VPD, H, LE])

{0: [],

for i in [1,2,3,4,5]:

i:[(i,-1), (i,-2)] + [(j,0), (j,-1), (j,-2) for j in [1,2,3,4,5] and j6=i]}
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Figure A1. Quality assessment of dimensionality reduction techniques. To visualize and subsequently analyse the network space we reduce

its dimensionality. We compared PCA, t-SNE and UMAP including various parameter settings (here: PCA’s leading two principal compo-

nents, t-SNE with perplexity 30, and UMAP with nneighbors equal 5 for 2 dimensions). The test statistic RNX(k) (y-axis) gives the improvement

of the embedding of k-neighborhoods (x-axis) over a random embedding. The area under the curves (preserving the log-scaled x-axis) is

given in the legend and gives an idea of the overall quality of the embedding Lee et al. (2015). We chose t-SNE with perplexity 30, as it

preserves best local neighbourhoods and performs well on larger distances.

Appendix C: Results and Discussion
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Figure B1. Same metric as Fig. A1. Optimisation of the dimensionality reduction via t-SNE by using different perplexity values.
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Figure C1. Same metric as Fig. A1. Optimisation of the dimensionality reduction to two dimensions via UMAP by using different values

for the parameter nneighbors.
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Figure D1. As Fig. 4 but with smaller clusters exhibiting the finer structure of the t-SNE space.
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Figure D2. t-SNE space coloured by underlying mean Bowenratio and precipitation, as well as the ecosystems respective Koeppen Geiger

class and IGBP type.
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Dušek, J., Čížková, H., Stellner, S., Czerný, R., and Květ, J.: Fluctuating Water Table Affects Gross Ecosystem Production and Gross530

Radiation Use Efficiency in a Sedge-Grass Marsh, Hydrobiologia, 692, 57–66, https://doi.org/10.1007/s10750-012-0998-z, 2012.

Emmerich, W. E.: Carbon Dioxide Fluxes in a Semiarid Environment with High Carbonate Soils, Agricultural and Forest Meteorology, 116,

91–102, https://doi.org/10.1016/S0168-1923(02)00231-9, 2003.

32

https://doi.org/https://doi.org/10.1016/j.agrformet.2004.05.002
https://doi.org/10.1146/annurev.energy.28.040202.122858
https://doi.org/10.1146/annurev.energy.28.040202.122858
https://doi.org/\{10.1016/j.agrformet.2011.01.006\}
https://doi.org/10.1016/j.agrformet.2006.08.005
https://doi.org/10.1016/j.agrformet.2005.09.011
https://doi.org/10.5194/bg-2019-212
https://www.biogeosciences-discuss.net/bg-2019-212/
https://www.biogeosciences-discuss.net/bg-2019-212/
https://www.biogeosciences-discuss.net/bg-2019-212/
https://doi.org/\{10.1002/jgrg.20101\}
https://doi.org/10.1111/nph.13771
https://doi.org/10.1016/j.agrformet.2004.09.005
https://doi.org/10.1086/664628
https://doi.org/10.1086/664628
https://doi.org/10.1086/664628
https://doi.org/10.1086/664628
https://doi.org/10.1016/j.agee.2010.09.002
https://doi.org/10.1007/s10750-012-0998-z
https://doi.org/10.1016/S0168-1923(02)00231-9


Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häsler, R., Eugster, W., and Buchmann, N.: The Carbon Balance of

Two Contrasting Mountain Forest Ecosystems in Switzerland: Similar Annual Trends, but Seasonal Differences, Ecosystems, 14, 1289–535

1309, https://doi.org/10.1007/s10021-011-9481-3, 2011.

Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S.: Spatiotemporal Variations in Growing Season Exchanges of CO2,

H2O, and Sensible Heat in Agricultural Fields of the Southern Great Plains, Earth Interactions, 11, 1–21, https://doi.org/10.1175/EI231.1,

2007.

Flach, M., Sippel, S., Gans, F., Bastos, A., Brenning, A., Reichstein, M., and Mahecha, M. D.: Contrasting biosphere responses to hydromete-540

orological extremes: revisiting the 2010 western Russian heatwave, Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-

2018, https://www.biogeosciences.net/15/6067/2018/, 2018.

Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M.,

and Migliavacca, M.: Phenology and Carbon Dioxide Source/Sink Strength of a Subalpine Grassland in Response to an Exceptionally

Short Snow Season, Environmental Research Letters, 8, 025 008, https://doi.org/10.1088/1748-9326/8/2/025008, 2013.545

Garbulsky, M. F., Peñuelas, J., Papale, D., and Filella, I.: Remote Estimation of Carbon Dioxide Uptake by a Mediterranean Forest, Global

Change Biology, 14, 2860–2867, https://doi.org/10.1111/j.1365-2486.2008.01684.x, 2008.

Giasson, M.-A., Coursolle, C., and Margolis, H. A.: Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after

scarification, Agricultural and Forest Meteorology, 140, 23–40, 2006.

Gilmanov, T., Soussana, J.-F., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C., Cernusca, A.,550

et al.: Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light

response function analysis, Agriculture, ecosystems & environment, 121, 93–120, 2007.

Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A. B., Haferkamp, M. R., Meyers, T. P., and Morgan, J. A.: Integration

of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: Potential

for quantitative spatial extrapolation, Global Ecology and Biogeography, 14, 271–292, 2005.555

Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., and Leavitt, B.: Remote Estimation of Leaf Area Index and Green

Leaf Biomass in Maize Canopies, Geophysical Research Letters, 30, https://doi.org/10.1029/2002GL016450, 2003.

Goulden, M. L., Winston, G. C., McMILLAN, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R.: An Eddy Co-

variance Mesonet to Measure the Effect of Forest Age on Land–Atmosphere Exchange, Global Change Biology, 12, 2146–2162,

https://doi.org/10.1111/j.1365-2486.2006.01251.x, 2006.560

Granier, A., Ceschia, E., Damesin, C., Dufrêne, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., et al.: The

carbon balance of a young beech forest, Functional ecology, 14, 312–325, 2000.

Green, J., G. Konings, A., Alemohammad, S. H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J.-E., and Gentine, P.:

Regionally strong feedbacks between the atmosphere and terrestrial biosphere, NATURE GEOSCIENCE, 10, 410–414,

https://doi.org/http://dx.doi.org/10.1038/ngeo2957, https://www.nature.com/ngeo/journal/v10/n6/pdf/ngeo2957.pdf, 2017.565

Grünwald, T. and Bernhofer, C.: A Decade of Carbon, Water and Energy Flux Measurements of an Old Spruce Forest at the Anchor Station

Tharandt, Tellus B: Chemical and Physical Meteorology, 59, 387–396, https://doi.org/10.1111/j.1600-0889.2007.00259.x, 2007.

Grünzweig, J., Lin, T., Rotenberg, E., Schwartz, A., and Yakir, D.: Carbon sequestration in arid-land forest, Global Change Biology, 9,

791–799, 2003.

Hatala, J. A., Detto, M., and Baldocchi, D. D.: Gross Ecosystem Photosynthesis Causes a Diurnal Pattern in Methane Emission from Rice,570

Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL051303, 2012.

33

https://doi.org/10.1007/s10021-011-9481-3
https://doi.org/10.1175/EI231.1
https://doi.org/10.5194/bg-15-6067-2018
https://doi.org/10.5194/bg-15-6067-2018
https://doi.org/10.5194/bg-15-6067-2018
https://www.biogeosciences.net/15/6067/2018/
https://doi.org/10.1088/1748-9326/8/2/025008
https://doi.org/10.1111/j.1365-2486.2008.01684.x
https://doi.org/10.1029/2002GL016450
https://doi.org/10.1111/j.1365-2486.2006.01251.x
https://doi.org/http://dx.doi.org/10.1038/ngeo2957
https://www.nature.com/ngeo/journal/v10/n6/pdf/ngeo2957.pdf
https://doi.org/10.1111/j.1600-0889.2007.00259.x
https://doi.org/10.1029/2012GL051303


Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A.: A Sub-Continental Scale Living Laboratory: Spatial Pat-

terns of Savanna Vegetation over a Rainfall Gradient in Northern Australia, Agricultural and Forest Meteorology, 151, {1417–1428},

https://doi.org/{10.1016/j.agrformet.2011.03.002}, 2011.

Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and Spatial Variations of Soil CO2, CH4 and N2O Fluxes at Three Differently575

Managed Grasslands, Biogeosciences, 10, 5931–5945, https://doi.org/https://doi.org/10.5194/bg-10-5931-2013, 2013.

Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-

Uijl, A., and Veenendaal, E. M.: Variability of Annual CO2 Exchange from Dutch Grasslands, Biogeosciences, 4, 803–816,

https://doi.org/https://doi.org/10.5194/bg-4-803-2007, 2007.

Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large Carbon Uptake by an Unmanaged 250-Year-Old Deciduous Forest in Central580

Germany, Agricultural and Forest Meteorology, 118, 151–167, https://doi.org/10.1016/S0168-1923(03)00115-1, 2003.

Kobak, D. and Linderman, G. C.: UMAP does not preserve global structure any better than t-SNE when using the same initialization, bioRxiv,

https://doi.org/10.1101/2019.12.19.877522, https://www.biorxiv.org/content/early/2019/12/19/2019.12.19.877522, 2019.

Kraemer, G., Camps-Valls, G., Reichstein, M., and Mahecha, M. D.: Summarizing the state of the terrestrial biosphere in few dimensions,

Biogeosciences, 17, 2397–2424, 2020a.585

Kraemer, G., Reichstein, M., Camps-Valls, G., Smits, J., and Mahecha, M. D.: The Low Dimensionality of Development, Social Indicators

Research, pp. 1–22, 2020b.

Krich, C., Runge, J., Miralles, D. G., Migliavacca, M., Perez-Priego, O., El-Madany, T., Carrara, A., and Mahecha, M. D.: Estimating causal

networks in biosphere–atmosphere interaction with the PCMCI approach, Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-

1033-2020, https://www.biogeosciences.net/17/1033/2020/, 2020.590

Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.: Modeling Carbon Dynamics in Two Adjacent Spruce Forests with Different

Soil Conditions in Russia, Biogeosciences, 5, 969–980, https://doi.org/https://doi.org/10.5194/bg-5-969-2008, 2008.

Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S., and Moore, T. R.: Interannual variability in the peatland-atmosphere carbon dioxide

exchange at an ombrotrophic bog, Global Biogeochemical Cycles, 17, 2003.

Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., Mölder, M., Kolari, P., Pilegaard, K., and Vesala, T.:595

Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data, Tellus B: Chemical and Physical

Meteorology, 60, 143–152, 2008.

Lambert, W. D.: Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene mammal

faunas, Ecosystems, 9, 97–118, 2006.

Lee, J. A., Peluffo-Ordóñez, D. H., and Verleysen, M.: Multi-Scale Similarities in Stochastic Neighbour Embedding: Reducing Dimension-600

ality While Preserving Both Local and Global Structure, Neurocomputing, 169, 246–261, https://doi.org/10.1016/j.neucom.2014.12.095,

2015.

Leon, E., Vargas, R., Bullock, S., Lopez, E., Panosso, A. R., and La Scala, N.: Hot spots, hot moments, and spatio-

temporal controls on soil CO2 efflux in a water-limited ecosystem, Soil Biology and Biochemistry, 77, 12 – 21,

https://doi.org/https://doi.org/10.1016/j.soilbio.2014.05.029, http://www.sciencedirect.com/science/article/pii/S0038071714002004,605

2014.

Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D.: Carbon and Water Fluxes over a Temperate Eucalyptus Forest and a Tropical

Wet/Dry Savanna in Australia: Measurements and Comparison with MODIS Remote Sensing Estimates, Agricultural and Forest Meteo-

rology, 129, 151–173, https://doi.org/https://doi.org/10.1016/j.agrformet.2004.12.004, 2005.

34

https://doi.org/\{10.1016/j.agrformet.2011.03.002\}
https://doi.org/https://doi.org/10.5194/bg-10-5931-2013
https://doi.org/https://doi.org/10.5194/bg-4-803-2007
https://doi.org/10.1016/S0168-1923(03)00115-1
https://doi.org/10.1101/2019.12.19.877522
https://www.biorxiv.org/content/early/2019/12/19/2019.12.19.877522
https://doi.org/10.5194/bg-17-1033-2020
https://doi.org/10.5194/bg-17-1033-2020
https://doi.org/10.5194/bg-17-1033-2020
https://www.biogeosciences.net/17/1033/2020/
https://doi.org/https://doi.org/10.5194/bg-5-969-2008
https://doi.org/10.1016/j.neucom.2014.12.095
https://doi.org/https://doi.org/10.1016/j.soilbio.2014.05.029
http://www.sciencedirect.com/science/article/pii/S0038071714002004
https://doi.org/https://doi.org/10.1016/j.agrformet.2004.12.004


Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert, B.: Net Ecosystem Exchange over a Non-Cleared610

Wind-Throw-Disturbed Upland Spruce Forest—Measurements and Simulations, Agricultural and Forest Meteorology, 197, 219–234,

https://doi.org/10.1016/j.agrformet.2014.07.005, 2014.

Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C., Mascher, N., Genermont, S., Roche, R., Ferrara, R. M., Stella, P., Personne,

E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N., Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M., and

Cellier, P.: Carbon, Nitrogen and Greenhouse Gases Budgets over a Four Years Crop Rotation in Northern France, Plant and Soil, 343,615

109, https://doi.org/10.1007/s11104-011-0751-9, 2011.

Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard, H., and Tamstorf, M. P.: Trends in CO2 Exchange in a High

Arctic Tundra Heath, 2000–2010, Journal of Geophysical Research: Biogeosciences, 117, https://doi.org/10.1029/2011JG001901, 2012.

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S., Schulze, E.-D., Wingate, L., Matteucci, G., et al.:

CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global change biology, 13, 2509–2537, 2007.620

Maaten, L. v. d. and Hinton, G.: Visualizing data using t-SNE, Journal of machine learning research, 9, 2579–2605, 2008.

Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy Architecture and Turbulence Structure in a Coniferous Forest, Boundary-Layer Meteo-

rology, 108, 39–59, https://doi.org/10.1023/A:1023027709805, 2003.

Marcolla, B., Cescatti, A., Montagnani, L., Manca, G., Kerschbaumer, G., and Minerbi, S.: Importance of advection in the atmospheric CO2

exchanges of an alpine forest, Agricultural and Forest Meteorology, 130, 193–206, 2005.625

Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A., Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R.:

Climatic Controls and Ecosystem Responses Drive the Inter-Annual Variability of the Net Ecosystem Exchange of an Alpine Meadow,

Agricultural and Forest Meteorology, 151, 1233–1243, https://doi.org/10.1016/j.agrformet.2011.04.015, 2011.

Marengo, J. A., Alves, L. M., Alvala, R., Cunha, A. P., Brito, S., and Moraes, O. L.: Climatic characteristics of the 2010-2016 drought in the

semiarid Northeast Brazil region, Anais da Academia Brasileira de Ciências, 90, 1973–1985, 2018.630

Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y.,

Maximov, T. C., Dolman, A. J., and Hattori, S.: Energy Consumption and Evapotranspiration at Several Boreal and Temperate Forests in

the Far East, Agricultural and Forest Meteorology, 148, 1978–1989, https://doi.org/10.1016/j.agrformet.2008.09.008, 2008.

McDowell, N. G., Bowling, D. R., Bond, B. J., Irvine, J., Law, B. E., Anthoni, P., and Ehleringer, J. R.: Response of the Carbon Isotopic

Content of Ecosystem, Leaf, and Soil Respiration to Meteorological and Physiological Driving Factors in a Pinus Ponderosa Ecosystem,635

Global Biogeochemical Cycles, 18, https://doi.org/10.1029/2003GB002049, 2004.

McInnes, L., Healy, J., and Melville, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, 2018.

McPherson, R. A.: A review of vegetation—atmosphere interactions and their influences on mesoscale phenomena, Progress in Physical

Geography, 31, 261–285, https://doi.org/10.1177/0309133307079055, https://doi.org/10.1177/0309133307079055, 2007.

Medlyn, B. E., Berbigier, P., Clement, R., Grelle, A., Loustau, D., Linder, S., Wingate, L., Jarvis, P. G., Sigurdsson, B. D., and McMurtrie,640

R. E.: Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis, Agricultural and Forest Meteorology,

131, 97–124, 2005.

Meinzer, F. C.: Functional convergence in plant responses to the environment, Oecologia, 134, 1–11, 2003.

Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Bruegge-

mann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. a. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Dantec, V. L.,645

Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L.: Precipitation

35

https://doi.org/10.1016/j.agrformet.2014.07.005
https://doi.org/10.1007/s11104-011-0751-9
https://doi.org/10.1029/2011JG001901
https://doi.org/10.1023/A:1023027709805
https://doi.org/10.1016/j.agrformet.2011.04.015
https://doi.org/10.1016/j.agrformet.2008.09.008
https://doi.org/10.1029/2003GB002049
https://doi.org/10.1177/0309133307079055
https://doi.org/10.1177/0309133307079055


as Driver of Carbon Fluxes in 11 African Ecosystems, Biogeosciences, 6, 1027–1041, https://doi.org/https://doi.org/10.5194/bg-6-1027-

2009, 2009.

Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N.: Greenhouse Gas Budget (CO2, CH4 and N2O) of

Intensively Managed Grassland Following Restoration, Global Change Biology, 20, 1913–1928, https://doi.org/10.1111/gcb.12518, 2014.650

Meyer, W. S., Kondrlova, E., and Koerber, G. R.: Evaporation of Perennial Semi-Arid Woodland in Southeastern Australia Is Adapted for

Irregular but Common Dry Periods, Hydrological Processes, 29, {3714–3726}, https://doi.org/{10.1002/hyp.10467}, 2015.

Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the surface energy balance of maize and soybean, Agricultural and

Forest Meteorology, 125, 105–115, 2004.

Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land–atmospheric feedbacks during droughts and heatwaves: state of the655

science and current challenges, Annals of the New York Academy of Sciences, 1436, 19, 2019.

Moors, E. J.: Water Use of Forests in the Netherlands, Tech. Rep. 41, Vrije Universiteit, Amsterdam, 2012.

Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual Net Ecosystem Carbon Exchange by a Sugar Beet Crop,

Agricultural and Forest Meteorology, 139, 25–39, https://doi.org/https://doi.org/10.1016/j.agrformet.2006.05.009, 2006.

Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., Janssens, I., Knohl, A., Loustau, D., Roupsard, O., et al.:660

Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity, Nature ecology & evolution, 1,

0048, 2017.

Nagy, Z., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Pintér, K., Weidinger, T., Csintalan, Z., and Tuba, Z.: Some preliminary results of the

Hungarian grassland ecological research: carbon cycling and greenhouse gas balances under changing, Cereal Research Communications,

33, 279–281, 2005.665

Nardino, M., Georgiadis, T., Rossi, F., Ponti, F., Miglietta, F., and Magliulo, V.: Primary productivity and evapotranspiration of a mixed

forest, in: Congress CNR-ISA Fo., Istituto per i Sistemi Agricoli e Forestali del Mediterraneo, Portici, pp. 24–25, 2002.

Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Moine, J. L., Munoz, A. B., Nadelhoffer, K. J., Sparks, J. P., Strahm,

B. D., Vogel, C. S., and Curtis, P. S.: Disturbance and the Resilience of Coupled Carbon and Nitrogen Cycling in a North Temperate

Forest, Journal of Geophysical Research: Biogeosciences, 116, https://doi.org/10.1029/2011JG001758, 2011.670

Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., Gimeno, T. E., Wohlfahrt, G., Desai, A. R., Gi-

oli, B., Limousin, J.-M., Bonal, D., Paul-Limoges, E., Scott, R. L., Varlagin, A., Fuchs, K., Montagnani, L., Wolf, S., Delpierre, N.,

Berveiller, D., Gharun, M., Belelli Marchesini, L., Gianelle, D., Šigut, L., Mammarella, I., Siebicke, L., Andrew Black, T., Knohl, A.,

Hörtnagl, L., Magliulo, V., Besnard, S., Weber, U., Carvalhais, N., Migliavacca, M., Reichstein, M., and Jung, M.: Ecosystem tran-

spiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites, Global Change Biology, 00,675

https://doi.org/10.1111/gcb.15314, https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15314, 2020.

NOAA: National Centers for Environmental Information, State of the Climate: National Climate Report for Annual 2014, published online

January 2015, retrieved on August 4, 2020 from https://www.ncdc.noaa.gov/sotc/national/201413.

Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest, N. E. C., Depoorter, M., and Waegeman, W.: Vegetation anomalies caused

by antecedent precipitation in most of the world, Environmental Research Letters, 12, 074 016, http://stacks.iop.org/1748-9326/12/i=7/a=680

074016, 2017.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., et al.:

Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty

estimation, Biogeosciences, 3, 571–583, 2006.

36

https://doi.org/https://doi.org/10.5194/bg-6-1027-2009
https://doi.org/https://doi.org/10.5194/bg-6-1027-2009
https://doi.org/https://doi.org/10.5194/bg-6-1027-2009
https://doi.org/10.1111/gcb.12518
https://doi.org/\{10.1002/hyp.10467\}
https://doi.org/https://doi.org/10.1016/j.agrformet.2006.05.009
https://doi.org/10.1029/2011JG001758
https://doi.org/10.1111/gcb.15314
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15314
http://stacks.iop.org/1748-9326/12/i=7/a=074016
http://stacks.iop.org/1748-9326/12/i=7/a=074016
http://stacks.iop.org/1748-9326/12/i=7/a=074016


Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M.,685

et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Scientific data, 7, 1–27, 2020.

Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine, 2, 559–572, 1901.

Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen, N. O.: Increasing Net CO2 Uptake by a Danish Beech Forest during

the Period from 1996 to 2009, Agricultural and Forest Meteorology, 151, 934–946, https://doi.org/10.1016/j.agrformet.2011.02.013, 2011.

Potter, B. E., Teclaw, R. M., and Zasada, J. C.: The Impact of Forest Structure on Near-Ground Temperatures during Two Years of Contrasting690

Temperature Extremes, Agricultural and Forest Meteorology, 106, 331–336, https://doi.org/10.1016/S0168-1923(00)00220-3, 2001.

Potts, D. L., Barron-Gafford, G. A., and Scott, R. L.: Ecosystem hydrologic and metabolic flashiness are shaped by plant community traits and

precipitation, Agricultural and Forest Meteorology, 279, 107 674, https://doi.org/https://doi.org/10.1016/j.agrformet.2019.107674, http:

//www.sciencedirect.com/science/article/pii/S0168192319302904, 2019.

Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land Use Regulates Carbon Budgets in Eastern Germany: From NEE to NBP, Agricultural695

and Forest Meteorology, 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008, 2010a.

Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land Use Regulates Carbon Budgets in Eastern Germany: From NEE to NBP, Agricultural

and Forest Meteorology, 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008, 2010b.

Pryor, S. C., Barthelmie, R. J., and Jensen, B.: Nitrogen Dry Deposition at an AmeriFlux Site in a Hardwood Forest in the Midwest,

Geophysical Research Letters, 26, 691–694, https://doi.org/10.1029/1999GL900066, 1999.700

Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A.: The Growth Respiration Component in Eddy CO2 Flux from

a Quercus Ilex Mediterranean Forest, Global Change Biology, 10, 1460–1469, https://doi.org/10.1111/j.1365-2486.2004.00819.x, 2004.

Rayment, M. B. and Jarvis, P. G.: Seasonal Gas Exchange of Black Spruce Using an Automatic Branch Bag System, Canadian Journal of

Forest Research, 29, 1528–1538, https://doi.org/10.1139/x99-130, 1999a.

Rayment, M. B. and Jarvis, P. G.: Seasonal Gas Exchange of Black Spruce Using an Automatic Branch Bag System, Canadian Journal of705

Forest Research, 29, 1528–1538, https://doi.org/10.1139/x99-130, 1999b.

Reich, P. B., Walters, M. B., Ellsworth, D. S., Vose, J. M., Volin, J. C., Gresham, C., and Bowman, W. D.: Relationships of Leaf Dark

Respiration to Leaf Nitrogen, Specific Leaf Area and Leaf Life-Span: A Test across Biomes and Functional Groups, Oecologia, 114,

471–482, https://doi.org/10.1007/s004420050471, 1998.

Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J.-m., Rambal, S., Miglietta, F., Peressotti, A., Pecchiari, M., Tirone, G., and710

Valentini, R.: Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current

hypotheses?, Global Change Biology, 8, 999–1017, 2002.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,

Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,

Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir,715

D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved

algorithm, Global Change Biology, 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, https://onlinelibrary.wiley.com/

doi/abs/10.1111/j.1365-2486.2005.001002.x, 2005.

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and ecosystem functional biogeography, Proceed-

ings of the National Academy of Sciences, 111, 13 697–13 702, 2014.720

Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G., and Valentini, R.: Annual Variation in Soil Respiration and Its Components in a

Coppice Oak Forest in Central Italy, Global Change Biology, 8, 851–866, https://doi.org/10.1046/j.1365-2486.2002.00521.x, 2002.

37

https://doi.org/10.1016/j.agrformet.2011.02.013
https://doi.org/10.1016/S0168-1923(00)00220-3
https://doi.org/https://doi.org/10.1016/j.agrformet.2019.107674
http://www.sciencedirect.com/science/article/pii/S0168192319302904
http://www.sciencedirect.com/science/article/pii/S0168192319302904
http://www.sciencedirect.com/science/article/pii/S0168192319302904
https://doi.org/10.1016/j.agrformet.2010.03.008
https://doi.org/10.1016/j.agrformet.2010.03.008
https://doi.org/10.1029/1999GL900066
https://doi.org/10.1111/j.1365-2486.2004.00819.x
https://doi.org/10.1139/x99-130
https://doi.org/10.1139/x99-130
https://doi.org/10.1007/s004420050471
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2005.001002.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2005.001002.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1046/j.1365-2486.2002.00521.x


Reynolds, J. F., Kemp, P. R., Ogle, K., and Fernández, R. J.: Modifying the ‘pulse–reserve’paradigm for deserts of North America: precipi-

tation pulses, soil water, and plant responses, Oecologia, 141, 194–210, 2004.

Rodrigues, A., Pita, G., Mateus, J., Kurz-Besson, C., Casquilho, M., Cerasoli, S., Gomes, A., and Pereira, J.: Eight years of continuous carbon725

fluxes measurements in a Portuguese eucalypt stand under two main events: Drought and felling, Agricultural and Forest Meteorology,

151, 493–507, 2011.

Rothstein, D. E., Zak, D. R., Pregitzer, K. S., and Curtis, P. S.: Kinetics of Nitrogen Uptake by Populus Tremuloides in Relation to Atmo-

spheric CO2 and Soil Nitrogen Availability, Tree Physiology, 20, 265–270, https://doi.org/10.1093/treephys/20.4.265, 2000.

Ruddell, B. L. and Kumar, P.: Ecohydrologic process networks: 1. Identification, Water Resources Research, 45, n/a–n/a,730

https://doi.org/10.1029/2008WR007279, http://dx.doi.org/10.1029/2008WR007279, w03419, 2009.

Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on Carbon and Water Exchange in a

Young Ponderosa Pine Forest: Above- and Belowground Responses, Agricultural and Forest Meteorology, 164, 136–148,

https://doi.org/10.1016/j.agrformet.2012.05.015, 2012a.

Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on Carbon and Water Exchange in a735

Young Ponderosa Pine Forest: Above- and Belowground Responses, Agricultural and Forest Meteorology, 164, 136–148,

https://doi.org/10.1016/j.agrformet.2012.05.015, 2012b.

Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on Carbon and Water Exchange in a

Young Ponderosa Pine Forest: Above- and Belowground Responses, Agricultural and Forest Meteorology, 164, 136–148,

https://doi.org/10.1016/j.agrformet.2012.05.015, 2012c.740

Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on Carbon and Water Exchange in a

Young Ponderosa Pine Forest: Above- and Belowground Responses, Agricultural and Forest Meteorology, 164, 136–148,

https://doi.org/10.1016/j.agrformet.2012.05.015, 2012d.

Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on Carbon and Water Exchange in a

Young Ponderosa Pine Forest: Above- and Belowground Responses, Agricultural and Forest Meteorology, 164, 136–148,745

https://doi.org/10.1016/j.agrformet.2012.05.015, 2012e.

Runge, J.: Causal network reconstruction from time series: From theoretical assumptions to practical estimation, Chaos: An Interdisciplinary

Journal of Nonlinear Science, 28, 075 310, https://doi.org/10.1063/1.5025050, https://doi.org/10.1063/1.5025050, 2018.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J.,

et al.: Inferring causation from time series in Earth system sciences, Nature communications, 10, 2553, 2019a.750

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.: Detecting and quantifying causal associations in large nonlinear

time series datasets, Science Advances, 5, 2019b.

Sagerfors, J., Lindroth, A., Grelle, A., Klemedtsson, L., Weslien, P., and Nilsson, M.: Annual CO2 exchange between

a nutrient-poor, minerotrophic, boreal mire and the atmosphere, Journal of Geophysical Research: Biogeosciences, 113,

https://doi.org/10.1029/2006JG000306, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JG000306, 2008.755

Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., Crill, P.,

Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H.,

and Silva, H.: Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses, Science, 302, 1554–1557,

https://doi.org/10.1126/science.1091165, 2003.

38

https://doi.org/10.1093/treephys/20.4.265
https://doi.org/10.1029/2008WR007279
http://dx.doi.org/10.1029/2008WR007279
https://doi.org/10.1016/j.agrformet.2012.05.015
https://doi.org/10.1016/j.agrformet.2012.05.015
https://doi.org/10.1016/j.agrformet.2012.05.015
https://doi.org/10.1016/j.agrformet.2012.05.015
https://doi.org/10.1016/j.agrformet.2012.05.015
https://doi.org/10.1063/1.5025050
https://doi.org/10.1063/1.5025050
https://doi.org/10.1029/2006JG000306
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JG000306
https://doi.org/10.1126/science.1091165


Sanz, M., Carrara, A., Gimeno, C., Bucher, A., and Lopez, R.: Effects of a dry and warm summer conditions on CO2 and energy fluxes from760

three Mediterranean ecosystems, in: Geophys. Res. Abstr, vol. 6, p. 3239, 2004.

Schade, G. W., Goldstein, A. H., and Lamanna, M. S.: Are Monoterpene Emissions Influenced by Humidity?, Geophysical Research Letters,

26, 2187–2190, https://doi.org/10.1029/1999GL900444.

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E., Hauck, M., Hajek, P., Hart-

mann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling,765

A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A first assess-

ment of the impact of the extreme 2018 summer drought on Central European forests, Basic and Applied Ecology, 45, 86 – 103,

https://doi.org/https://doi.org/10.1016/j.baae.2020.04.003, http://www.sciencedirect.com/science/article/pii/S1439179120300414, 2020.

Schwalm, C. R., Anderegg, W. R., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Wolf, A., et al.:

Global patterns of drought recovery, Nature, 548, 202–205, 2017.770

Scott, R. L., Huxman, T. E., Cable, W. L., and Emmerich, W. E.: Partitioning of Evapotranspiration and Its Relation to Carbon Dioxide

Exchange in a Chihuahuan Desert Shrubland, Hydrological Processes, 20, 3227–3243, https://doi.org/10.1002/hyp.6329, 2006.

Scott, R. L., Cable, W. L., and Hultine, K. R.: The Ecohydrologic Significance of Hydraulic Redistribution in a Semiarid Savanna, Water

Resources Research, 44, https://doi.org/10.1029/2007WR006149, 2008.

Shadaydeh, M., Denzler, J., Garcia, Y. G., and Mahecha, M.: Time-Frequency Causal Inference Uncovers Anomalous Events in Environ-775

mental Systems, in: German Conference on Pattern Recognition (GCPR), 2019.

Shaver, G. R., Street, L. E., Rastetter, E. B., Van Wijk, M. T., and Williams, M.: Functional convergence in regulation of net CO2 flux in het-

erogeneous tundra landscapes in Alaska and Sweden, Journal of Ecology, 95, 802–817, https://doi.org/10.1111/j.1365-2745.2007.01259.x,

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2745.2007.01259.x, 2007.

Sigut, L., Havrankova, K., Jocher, G., Pavelka, M., Janouš, D., Czerny, R., Stanik, K., and Trusina, J.: FLUXNET2015 CZ-BK2 Bily Kriz780

grassland, https://doi.org/10.18140/FLX/1440144.

Sippel, S., Forkel, M., Rammig, A., Thonicke, K., Flach, M., Heimann, M., Otto, F. E. L., Reichstein, M., and Mahecha, M. D.: Contrasting

and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems, Environmental Research Letters,

12, 075 006, https://doi.org/10.1088/1748-9326/aa7398, https://doi.org/10.1088%2F1748-9326%2Faa7398, 2017.

Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., and Frank, D.: Drought, heat, and the carbon cycle: a review,785

Current Climate Change Reports, 4, 266–286, 2018.

Spirtes, P. and Glymour, C.: An Algorithm for Fast Recovery of Sparse Causal Graphs, Social Science Computer Review, 9, 62–72,

https://doi.org/10.1177/089443939100900106, https://doi.org/10.1177/089443939100900106, 1991.

Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U., Dal Maso, M., Kulmala, M., and Vesala, T.: Long-Term Measurements

of Surface Fluxes above a Scots Pine Forest in Hyytiala, Southern Finland, 1996-2001, BOREAL ENVIRONMENT RESEARCH, 8,790

{287–301}, 2003.

Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: Measuring and testing dependence by correlation of distances, Ann. Statist., 35, 2769–2794,

https://doi.org/10.1214/009053607000000505, https://doi.org/10.1214/009053607000000505, 2007.

Tamrakar, R., Rayment, M. B., Moyano, F., Mund, M., and Knohl, A.: Implications of structural diversity for seasonal and

annual carbon dioxide fluxes in two temperate deciduous forests, Agricultural and Forest Meteorology, 263, 465 – 476,795

https://doi.org/https://doi.org/10.1016/j.agrformet.2018.08.027, http://www.sciencedirect.com/science/article/pii/S0168192318302934,

2018.

39

https://doi.org/10.1029/1999GL900444
https://doi.org/https://doi.org/10.1016/j.baae.2020.04.003
http://www.sciencedirect.com/science/article/pii/S1439179120300414
https://doi.org/10.1002/hyp.6329
https://doi.org/10.1029/2007WR006149
https://doi.org/10.1111/j.1365-2745.2007.01259.x
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2745.2007.01259.x
https://doi.org/10.18140/FLX/1440144
https://doi.org/10.1088/1748-9326/aa7398
https://doi.org/10.1088%2F1748-9326%2Faa7398
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/https://doi.org/10.1016/j.agrformet.2018.08.027
http://www.sciencedirect.com/science/article/pii/S0168192318302934


Tang, J., Baldocchi, D. D., Qi, Y., and Xu, L.: Assessing Soil CO2 Efflux Using Continuous Measurements of CO2 Profiles in Soils with

Small Solid-State Sensors, Agricultural and Forest Meteorology, 118, 207–220, https://doi.org/10.1016/S0168-1923(03)00112-6, 2003.

Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G., and Borghetti, M.: Soil respiration in a Mediterranean oak forest at different800

developmental stages after coppicing, Global Change Biology, 12, 110–121, 2006.

Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A., and Austin, K. A.: Plant diversity in managed forests: understory responses to

thinning and fertilization, Ecological applications, 9, 864–879, 1999a.

Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A., and Austin, K. A.: Plant diversity in managed forests: understory responses to

thinning and fertilization, Ecological applications, 9, 864–879, 1999b.805

Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A., and Austin, K. A.: Plant diversity in managed forests: understory responses to

thinning and fertilization, Ecological applications, 9, 864–879, 1999c.

Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P.: Parametrization of Two Photosynthesis Models at the Canopy Scale in a

Northern Boreal Scots Pine Forest, Tellus B, 59, 874–890, https://doi.org/10.1111/j.1600-0889.2007.00305.x, 2007.

Valentini, R., Angelis, P. D., Matteucci, G., Monaco, R., Dore, S., and Mucnozza, G. E. S.: Seasonal Net Carbon Dioxide Exchange of a810

Beech Forest with the Atmosphere, Global Change Biology, 2, 199–207, https://doi.org/10.1111/j.1365-2486.1996.tb00072.x, 1996.

Valentini, R., Matteucci, G., Dolman, A., Schulze, E.-D., Rebmann, C., Moors, E., Granier, A., Gross, P., Jensen, N., Pilegaard, K., et al.:

Respiration as the main determinant of carbon balance in European forests, Nature, 404, 861–865, 2000.

van der Molen, M. K., van Huissteden, J., Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev,

S. V., and Suzdalov, D. A.: The Growing Season Greenhouse Gas Balance of a Continental Tundra Site in the Indigirka Lowlands, NE815

Siberia, Biogeosciences, 4, 985–1003, https://doi.org/https://doi.org/10.5194/bg-4-985-2007, 2007.

Vitale, L., Di Tommasi, P., D’Urso, G., and Magliulo, V.: The Response of Ecosystem Carbon Fluxes to LAI and Environmental Drivers in a

Maize Crop Grown in Two Contrasting Seasons, International Journal of Biometeorology, 60, 411–420, https://doi.org/10.1007/s00484-

015-1038-2, 2016.

von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N.,820

Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani,

L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G.,

and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a

systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018,

https://www.biogeosciences.net/15/1293/2018/, 2018.825

Wagg, C., O’Brien, M. J., Vogel, A., Scherer-Lorenzen, M., Eisenhauer, N., Schmid, B., and Weigelt, A.: Plant diversity main-

tains long-term ecosystem productivity under frequent drought by increasing short-term variation, Ecology, 98, 2952–2961,

https://doi.org/10.1002/ecy.2003, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2003, 2017.

Wales, S. B., Kreider, M. R., Atkins, J., Hulshof, C. M., Fahey, R. T., Nave, L. E., Nadelhoffer, K. J., and Gough, C. M.:

Stand age, disturbance history and the temporal stability of forest production, Forest Ecology and Management, 460, 117 865,830

https://doi.org/https://doi.org/10.1016/j.foreco.2020.117865, http://www.sciencedirect.com/science/article/pii/S0378112719315191,

2020.

Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on Carbon Dioxide Flux from Black Spruce Coarse Woody Debris,

Oecologia, 132, 374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002a.

40

https://doi.org/10.1016/S0168-1923(03)00112-6
https://doi.org/10.1111/j.1600-0889.2007.00305.x
https://doi.org/10.1111/j.1365-2486.1996.tb00072.x
https://doi.org/https://doi.org/10.5194/bg-4-985-2007
https://doi.org/10.1007/s00484-015-1038-2
https://doi.org/10.1007/s00484-015-1038-2
https://doi.org/10.1007/s00484-015-1038-2
https://doi.org/10.5194/bg-15-1293-2018
https://www.biogeosciences.net/15/1293/2018/
https://doi.org/10.1002/ecy.2003
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2003
https://doi.org/https://doi.org/10.1016/j.foreco.2020.117865
http://www.sciencedirect.com/science/article/pii/S0378112719315191
https://doi.org/10.1007/s00442-002-0987-4


Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on Carbon Dioxide Flux from Black Spruce Coarse Woody Debris,835

Oecologia, 132, 374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002b.

Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on Carbon Dioxide Flux from Black Spruce Coarse Woody Debris,

Oecologia, 132, 374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002c.

Westergaard-Nielsen, A., Lund, M., Hansen, B. U., and Tamstorf, M. P.: Camera Derived Vegetation Greenness Index as Proxy for

Gross Primary Production in a Low Arctic Wetland Area, ISPRS Journal of Photogrammetry and Remote Sensing, 86, 89–99,840

https://doi.org/10.1016/j.isprsjprs.2013.09.006, 2013.

Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: Net Exchange of

CO2 in a Mid-Latitude Forest, Science, 260, 1314–1317, https://doi.org/10.1126/science.260.5112.1314, 1993.

Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A.: Seasonal and inter-annual variability of the net

ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management, Journal of Geophysical Research:845

Atmospheres, 113, 2008.

Xu, L., Baldocchi, D. D., and Tang, J.: How Soil Moisture, Rain Pulses, and Growth Alter the Response of Ecosystem Respiration to

Temperature, Global Biogeochemical Cycles, 18, https://doi.org/10.1029/2004GB002281, 2004.

Yi, C., Davis, K. J., Berger, B. W., and Bakwin, P. S.: Long-Term Observations of the Dynamics of the Continental Planetary Boundary Layer,

Journal of the Atmospheric Sciences, 58, 1288–1299, https://doi.org/10.1175/1520-0469(2001)058<1288:LTOOTD>2.0.CO;2, 2001.850

Zeller, K. and Hehn, T.: Measurements of Upward Turbulent Ozone Fluxes above a Subalpine Spruce-Fir Forest, Geophysical Research

Letters, 23, 841–844, 1996.

Zeller, K. F. and Nikolov, N. T.: Quantifying Simultaneous Fluxes of Ozone, Carbon Dioxide and Water Vapor above a Subalpine Forest

Ecosystem, Environmental Pollution, 107, 1–20, https://doi.org/10.1016/S0269-7491(99)00156-6, 2000.

Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss Subalpine Forest Is Significantly Driven855

Not Only by Current but Also by Previous Year’s Weather, Biogeosciences, 11, 1627–1635, https://doi.org/https://doi.org/10.5194/bg-11-

1627-2014, 2014.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A.,

Mahecha, M. D., et al.: A typology of compound weather and climate events, Nature reviews earth & environment, pp. 1–15, 2020.

41

https://doi.org/10.1007/s00442-002-0987-4
https://doi.org/10.1007/s00442-002-0987-4
https://doi.org/10.1016/j.isprsjprs.2013.09.006
https://doi.org/10.1126/science.260.5112.1314
https://doi.org/10.1029/2004GB002281
https://doi.org/10.1175/1520-0469(2001)058%3C1288:LTOOTD%3E2.0.CO;2
https://doi.org/10.1016/S0269-7491(99)00156-6
https://doi.org/https://doi.org/10.5194/bg-11-1627-2014
https://doi.org/https://doi.org/10.5194/bg-11-1627-2014
https://doi.org/https://doi.org/10.5194/bg-11-1627-2014

