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Abstract. Land surface modelers need measurable proxies to constrain the quantity of carbon dioxide (CO2) 

assimilated by continental plants through photosynthesis, known as Gross Primary Production (GPP). Carbonyl 

sulfide (COS), which is taken up by leaves through their stomates and then hydrolysed by photosynthetic enzymes, 

is a candidate GPP proxy. A former study with the ORCHIDEE land surface model used a fixed ratio of COS 

uptake to CO2 uptake normalized to respective ambient concentrations for each vegetation type (Leaf Relative 30 

Uptake, LRU). COS leaf fluxes were then computed from GPP, and the resulting concentrations were transported 

with an atmospheric model which included all other known COS fluxes as inputs. Modelled COS concentrations 

could then be compared to COS measurements from the NOAA air sampling tower network.), to compute 

vegetation COS fluxes from GPP. The LRU approach is known to have limited accuracy since the LRU ratio 

changes with variables such as Photosynthetically Active Radiation (PAR): while CO2 uptake slows under low 35 

light, COS uptake is not light limited. However, the LRU approach has been popular for COS-GPP proxy studies 

because of its ease of application and apparent low contribution to uncertainty for regional scale applications. In 

this study we refined the COS-GPP relationship and implemented in ORCHIDEE a mechanistic model that 

describes COS uptake by continental vegetation. We compared the simulated COS fluxes against measured hourly 

COS fluxes at two sites, and studied the model behaviour and links with environmental drivers. We performed 40 

simulations at global scale, and estimated the global COS uptake by vegetation to be -756 Gg S yr-1, in the middle 

range of former studies (-490 to -1335 Gg S yr-1). Based on monthly mean fluxes simulated by the mechanistic 

approach in ORCHIDEE, we derived new LRU values for the different vegetation types, ranging between 0.92 

and 1.72, close to recently published averages for observed values of 1.21 for C4 and 1.68 for C3 plants. We 

transported the COS using the monthly vegetation COS fluxes derived from both the mechanistic and the LRU 45 

approaches, and evaluated the simulated COS concentrations at NOAA sites. Although the mechanistic approach 



2 

 

was more appropriate when comparing to high-temporal-resolution COS flux measurements, both approaches 

gave similar results when transporting with monthly COS fluxes and evaluating COS concentrations at stations. 

In our study, uncertainties between these two approaches are of second importance as compared to the uncertainties 

in the COS global budget, which are currently a limiting factor to the potential of COS concentrations to constrain 50 

GPP simulated by land surface models on the global scale.  

1 Introduction 

Humanity has to face the urgency of climate change if it hopes to limit adverse future impacts (Allen et al., 2018; 

IPCC, 2019a, 2019b). In order to make reliable predictions of future climate, scientists have built powerful 

numerical Earth System Models (ESMs), where they continuously integrate gained knowledge on a multitude of 55 

climate-related and climate-interacting processes. The carbon cycle is at the heart of the present global warming, 

caused by anthropogenic CO2 emissions (Ciais et al., 2013). In the global carbon budget, the land component 

shows the largest uncertainty (Le Quéré et al., 2018; Bloom et al., 2016). Land Surface Models (LSMs) struggle 

to correctlyaccurately represent the large spatial and temporal variability of the CO2 gross and net fluxes (Anav et 

al., 2015). CO2 is first assimilated through plant photosynthesis, before being respired by the ecosystem. The 60 

quantity of assimilated carbon is called Gross Primary Productivity (GPP). All other carbon fluxes and stocks 

derive from this first gross assimilation flux. To help reduce uncertainties in the estimated GPP, LSMs can benefit 

from knowledge obtained through local eddy covariance measurements of the net ecosystem-atmosphere CO2 

exchange (Friend et al., 2007; Kuppel et al., 2014).  

GPP proxies are also used, such as Solar-Induced Fluorescence (Norton et al., 2019; Bacour et al., 2019), isotopic 65 

composition of atmospheric CO2 (𝛿 𝑂18 : Farquhar et al., 1993; Welp et al., 2011; 𝛿 𝐶13 : Peters et al., 2018) and 

Carbonyl Sulfide (COS) atmospheric concentrations (Hilton et al., 2015). Using atmospheric COS measurements 

as a tracer for terrestrial photosynthesis was first suggested by Sandoval-Soto et al. (2005) and Montzka et al. 

(2007), and Campbell et al. (2008) provided quantitative evidence using airborne observations of COS and CO2 

concentrations and an atmospheric transport model. COS is an atmospheric trace gas that has a molecular structure 70 

very similar to CO2 and is likewise taken up by plants through stomatastomates. COS is then hydrolysed within 

the leaf, this reaction being catalysed by the enzyme Carbonic Anhydrase (CA). This reaction is light-independent 

(Protoschill-Krebs et al., 1996; Goldan et al., 1998) and, because of the high catalytic efficiency of this enzyme 

(Ogawa et al., 2013; Ogée et al., 2016; Protoschill-Krebs et al., 1996), COS hydrolysis inside the leaf seems 

therefore to be limited by COS supply driven by changes in stomatal conductance (Goldan et al., 1988; Sandoval-75 

Soto et al., 2005; Seibt et al., 2010; Stimler et al., 2010). Leaves’ uptake of COS and CO2 are thus very similar, 

but leaves do not produce COS (Protoschill-Krebs et al., 1996; Notni et al., 2007), whereas they emit CO2 through 

respiration. That is why vegetation COS fluxes could be used as a proxy for GPP. It is however to be noted that 

Gimeno et al. (2017) reported COS emissions by bryophytes during daytime.  

The approach generally adopted to constrain GPP with COS relies on the determination of a Leaf Relative Uptake 80 

(LRU), which is the ratio of COS to CO2 uptake normalized by their atmospheric concentrations (Sandoval-Soto 

et al., 2005):  

𝐿𝑅𝑈 =
𝐹𝐶𝑂𝑆

𝐺𝑃𝑃

[𝐶𝑂2]𝑎

[𝐶𝑂𝑆]𝑎

 (1) 
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where 𝐹𝐶𝑂𝑆 is the flux of COS uptake (μmolpmol COS m-2 s-1), 𝐺𝑃𝑃 is the gross flux of CO2 assimilation  (μmol 

CO2 m-2 s-1), [𝐶𝑂𝑆]𝑎  is the atmospheric COS mixing ratio (µmolpmol COS mol-1, ppt), and [𝐶𝑂2]𝑎  is the 

atmospheric CO2 mixing ratio (µmol CO2 mol-1, ppm). 85 

LRU can be measured experimentally, for instance in branch chambers (Kooijmans et al., 2019), and then used as 

a scaling factor for estimating GPP. LRU can be estimated experimentally, and then used as a scaling factor for 

estimating GPP, if 𝐹𝐶𝑂𝑆, [𝐶𝑂𝑆]𝑎 and [𝐶𝑂2]𝑎 are available. Measurements can be made at leaf level using branch 

chambers (Seibt et al., 2010; Kooijmans et al., 2019); LRU can also be estimated at ecosystem level: eddy-

covariance flux towers measure the ecosystem total COS flux (Kohonen et al., 2020), removing the soil 90 

contribution gives access to the vegetation part (Wehr et al., 2017). Soil can absorb and emit COS (Whelan et al., 

2016; Kitz et al., 2020), the magnitude of their flux being generally much lower than that of vegetation fluxes 

(Berkelhammer et al., 2014; Maseyk et al., 2014; Wehr et al., 2017; Whelan et al., 2018). Epiphytes (lichen, 

mosses) could also have a significant contribution to the ecosystem COS budget (Kuhn and Kesselmeier, 2000; 

Rastogi et al., 2018). 95 

However, LRU does not appear constant under some environmental conditions. For example, the fixation of 

carbon from CO2 relies on light-dependent reactions, unlike the uptake of COS by the CA enzyme, which is light-

independent (Stimler et al., 2011). Because of these different responses of COS and CO2 uptake in leaves, LRU 

varies with light conditions, and decreases sharply with PAR increase (Stimler et al., 2010, 2011 ; Maseyk et al., 

2014; Commane et al., 2015; Wehr et al., 2017; Yang et al., 2018). Consequently, LRU values are smaller at 100 

midday or in summerseasons with high incoming light (Kooijmans et al., 2019). Moreover, COS assimilation 

continues at night as stomatal conductance to gas transfer does not drop to zero, whereas CO2 uptake by plants 

stops, leading to an infinite value of LRU. Note however that stomatastomates mostly close at night, so the COS 

uptake at night is smaller than the COS uptake during the day. The diel (i.e. 24-hourly) variation of LRU with light 

may however be only of second order importance as GPP is very low at low light, and Yang et al. (2018) found 105 

that considering sub-daily variations of LRU when computing daily mean GPP values had no importance. It has 

also been shown that LRU varies between plant species (Stimler et al.., 2011), which is why different LRU values 

were estimated for different vegetation types (Seibt et al., 2010; Whelan et al., 2018). The variability of LRU with 

plant type, light, and time and over a day and season (inferred by changes in light-conditions) should therefore be 

carefully accounted for when COS concentrations or flux measurements are used to estimate GPP at the ecosystem 110 

and larger scales. We also have to acknowledge that there are still factors that are not accounted for if discrepancies 

between GPP and COS-based estimations are larger than their estimated respective uncertainties. 

The goal of this study is thusBefore being able to evaluateuse COS observations to constrain the advantages of 

using a mechanistic approach to simulate the uptake of atmospheric COS by continental vegetation within 

asimulated GPP, Land Surface Model (LSM), as comparedModels (LSMs) first need to the have an accurate model 115 

to simulate vegetation COS fluxes. In a former LRU approach developed instudy, Launois et al. (2015b), where 

the authors) simply defined the COS uptake by vegetation as that of CO2the CO2 gross uptake simulated by LSMs, 

scaled with a constant LRU value for each large vegetation class. The goal of this study is to now simulate the 

uptake of atmospheric COS by continental vegetation in a more complex and realistic way using a mechanistic 

approach within an LSM, and apply this model to evidence the shortcomings or pertinence of the LRU concept, 120 

depending on the studied scales. To this end:  
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i) We used the state-of-the art ORCHIDEE LSM (Krinner et al., 2015), and implemented in it the vegetation 

COS uptake model of Berry et al. (2013) to simulate the COS fluxes absorbed at the leaf and canopy levels 

by the continental vegetation. 

ii) We evaluated the simulated COS fluxes against measurements at two forest sites, namely the Harvard 125 

Forest, United States (Wehr et al., 2017), and Hyytiälä, Finland (Kooijmans et al., 2019; Kohonen et al., 

2020; Sun et al., 2018a). We studied the high-frequency behaviour of the modelled conductances over the 

season and the dependency of the LRU on the environmental and structural conditions. 

iii) We compared the simulated mechanistic COS fluxes at global scale to former estimates; we studied LRU 

values estimated from monthly fluxes, that are pertinent for atmospheric studies, and also compared 130 

different estimatesthem to monthly means of high-frequency LRU values. 

iv) The mechanistic and LRU simulated COS fluxes were used with the atmospheric transport model LMDz 

(Hourdin et al. 2006), to provide atmospheric COS concentrations that were evaluated against 

measurements at sites of the NOAA network. 

We present the model, data, and methodologies related to these four steps in section 2, detail the obtained results 135 

in section 3, and discuss them in section 4. We conclude and list paths for future research in section 5.  

2 Models, Data, and Methodology 

2.1 Implementation of plant COS uptake in the ORCHIDEE LSM to simulate COS vegetation fluxes 

2.1.1 The ORCHIDEE LSM 

ORCHIDEE is an LSM developed mainly at Institut Pierre Simon Laplace (IPSL), that computes the water, carbon 140 

and energy balances at the interface between land surfaces and atmosphere. (Krinner et al., 2005). Fast processes 

including hydrology, photosynthesis and energy balance are run at a half-hourly timestep, while other slower 

processes such as carbon allocation and mortality are simulated at a daily timestep. The sub-grid variability for 

vegetation is represented using fractions of Plant Functional Types (PFTs), grouping plants with similar 

morphologies and behaviours growing under similar climatic conditions. Photosynthesis follows the Yin and 145 

Struik (2009) approach, bringing improvements to the standard Farquhar et al. (1980) model for C3 plants, the 

Collatz et al. (1992) model for C4 plants, and the Ball et al. (1987) model for the stomatal conductance. The 

temperature-dependence of the photosynthetic capacity follows the Kattge and Knorr (2007) model.A main 

novelty is the introduction of a mesophyll conductance linking the CO2 concentration at the carboxylation sites, 

𝐶𝑐, to the CO2 intracellular concentration, 𝐶𝑖. For each PFT, the reference value for the maximum photosynthetic 150 

capacity at 25°C, 𝑉𝑚𝑎𝑥,25, is derived from literature survey, observation databases, possibly later calibrated using 

FLUXNET observations (e.g. Kuppel et al., 2012). To compute the maximum photosynthetic capacity at leaf level, 

𝑉𝑚𝑎𝑥, the reference value is multiplied at a daily time step by the relative photosynthetic efficiency of leaves based 

on the mean leaf age following Ishida et al. (1999) (see equation A12 and Figure A12 in Krinner et al., 2005). 

Leaves are very efficient when they are young and stay so till they approach their pre-defined leaf lifespan. The 155 

temperature-dependence of the maximum photosynthetic capacity follows Medlyn et al. (2002) and Kattge and 

Knorr (2007). A water stress function varying between 0 and 1 depending on soil moisture and root profile (de 

Rosnay and Polcher, 1998) is applied on photosynthetic capacity and conductances. maximum photosynthetic 
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capacity and conductances. The canopy is discretized in several layers of growing thickness, the number depending 

on the actual Leaf Area Index (LAI). All the incoming light is considered to be diffuse, and no distinction is made 160 

between sun and shaded leaves. The light is attenuated through the canopy following a simple Beer-Lambert 

absorption law. The CO2 assimilation, the stomatal conductance and the intercellular CO2 concentration 𝐶𝑖 are 

computed per LAI layer, provided LAI is higher than 0.01 and the monthly mean air temperature is higher than -

4°C. The CO2 assimilation and the stomatal conductance are further summed-up over all layers to compute GPP 

and the total conductance at canopy level. The scaling to the grid cell is made using means weighted by the Plant 165 

Functional Types fractions. The sub-grid variability for vegetation is represented using fractions of Plant 

Functional Types (PFTs), grouping plants with similar morphologies and behaviours growing under similar 

climatic conditions. Phenology is fully prognostic with PFT-specific phenological models as described in Botta et 

al. (2000) and MacBean et al. (2015). ORCHIDEE can be run from the site scale to the global scale, coupled with 

an atmospheric general circulation model, or in off-line mode forced by meteorological fields. In this study, we 170 

prescribed the vegetation distribution for site simulations and used yearly PFT maps derived from the ESA Climate 

Change Initiative (CCI) land cover products for global simulations (Poulter et al., 2015). The soil type is derived 

from the Zobler map (Zobler, 1986). To account for the CO2 fertilization effect, we considered global means of 

[𝐶𝑂2]𝑎 with yearly varying values, as provided by the TRENDY model inter-comparison project (Sitch et al., 

2015). The impact of not taking into account the spatial and temporal variations of [𝐶𝑂2]𝑎 on GPP has been studied 175 

in Lee et al. (2020); while this simplification has indeed no impact at global yearly scale for GPP, this may be less 

true at site and seasonal scales. We used the recent ORCHIDEE version fine-tuned for the Climate Model 

Intercomparison Project (CMIP) 6 exercise (Peylin et al., in prep.), forced by micro-meteorology fields at 

FLUXNET sites or by 2-degree CRUNCEP reanalyses at global scale (https://rda.ucar.edu/datasets/ds314.3/). 

2.1.2 The Berry model for plant COS uptake 180 

We implemented in the ORCHIDEE LSM the mechanistic model of plant COS uptake based on Berry et al. (2013). 

In this model, COS follows a diffusive law from the atmosphere to the leaf interior, where it is consumed by CA 

in the chloroplasts. The uptake from the atmosphere is assumed unidirectional, reflecting the fact that COS is 

generally not produced by plants. The model distinguishes three conductances along the COS path between the 

atmosphere and the leaf interior: (1) the boundary layer conductance (𝑔𝐵_𝐶𝑂𝑆) to heat and gas transfer between the 185 

leaf surface and the atmosphere, (2) the stomatal conductance (𝑔𝑆_𝐶𝑂𝑆), and (3) the internal conductance (𝑔𝐼_𝐶𝑂𝑆). 

Internal conductance combines the mesophyll conductance and the CA activity into a single equivalent 

conductance.  

The stomatal and boundary layer conductances are associated with factors describing diffusion of COS relative to 

that of water vaporvapour (1.94 and 1.56, respectively, Stimler et al., 2010). In the chloroplast, the COS hydrolysis 190 

is catalysed by the enzyme CA, following first order kinetics. COS uptake depends on the amount of CA and its 

relative location to intercellular air spaces, which brings in the mesophyll conductance. These two factors have 

been shown to scale with the maximum reaction rate of the Rubisco enzyme, 𝑉𝑚𝑎𝑥 (μmol m-2 s-1) (Badger and 

Price, 1994; Evans et al., 1994). The mesophyll conductance and the first-rate constant are then regrouped into a 

single equivalent internal conductance, proportional to 𝑉𝑚𝑎𝑥: 195 

𝑔𝐼_𝐶𝑂𝑆 = 𝛼 ∗ 𝑉𝑚𝑎𝑥  (2) 
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The parameter 𝛼 takes two values depending on the plant photosynthetic pathway (C3 or C4). These values were 

determined experimentally by Berry et al. (2013), who estimated an 𝛼 = 0.0012 for C3 and an 𝛼 = 0.013 for C4 

species. We thus have the final equation: 

𝐹𝐶𝑂𝑆 =  [𝐶𝑂𝑆]𝑎 ∗ [
1.0

𝑔𝑆_𝐶𝑂𝑆

+
1.0

𝑔𝐵_𝐶𝑂𝑆

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

𝑔𝑇_𝐶𝑂𝑆 =  [𝐶𝑂𝑆]𝑎 ∗ [
1.0

𝑔𝐵_𝐶𝑂𝑆

+
1.0

𝑔𝑆_𝐶𝑂𝑆

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

= [𝐶𝑂𝑆]𝑎 ∗ [
1.94

𝑔𝑆_𝑊

+
1.56

𝑔𝐵_𝑊

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

[
1.56

𝑔𝐵_𝑊

+
1.94

𝑔𝑆_𝑊

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

  

(3) 

where 𝐹𝐶𝑂𝑆  is the flux of COS uptake (μmolpmol COS m-2 s-1), [𝐶𝑂𝑆]𝑎  is the background atmospheric COS 

mixing ratio considered here as a constant (0.0005 µmol COS mol-1500 ppt), 𝑔𝑇_𝐶𝑂𝑆, 𝑔𝐵_𝐶𝑂𝑆, 𝑔𝑆_𝐶𝑂𝑆, 𝑔𝐵_𝐶𝑂𝑆 and 200 

𝑔𝐼_𝐶𝑂𝑆 are respectively the stomataltotal, boundary layer, stomatal, and internal conductances to COS (mol COS 

m-2 s-1), and 𝑔𝐵_𝑊 and 𝑔𝑆_𝑊 and 𝑔𝐵_𝑊 are respectively the stomatal and boundary layer and stomatal conductances 

to water vaporvapour (mol H2O m-2 s-1). Note that in this work [𝐶𝑂𝑆]𝑎 is held constant when computing the COS 

fluxes, contrary to Berry et al. (2013) and Campbell et al. (2017), where [𝐶𝑂𝑆]𝑎 is dynamic and taken from the 

previous time step's PCTM (Parameterized Chemical Transport Model) value. The uncertainty introduced by this 205 

simplification is evaluated in the Discussion section. The vegetation COS flux and related conductances are 

computed for each LAI layer, and then summed-up to get total values at canopy level. Unless specified otherwise, 

fluxes, conductances and LRU are further presented and discussed at canopy level. 

2.1.3 Minimal conductances 

As plant CO2 uptake only occurs under certain conditions such as with sufficient light, temperature, and water, 210 

CO2 assimilation is not calculated in ORCHIDEE when these conditions are not fulfilled. Therefore, the stomatal 

conductance to CO2 that is needed to obtain the stomatal conductance to COS is not always computed in 

ORCHIDEE. However, some studies have shown incomplete stomatal closure at night (Dawson et al., 2007; 

Lombardozzi et al., 2017; Kooijmans et al., 2019), leading to nighttime COS plant uptake (Berry et al., 2013; 

Kooijmans et al., 2017). Therefore, we had to define a minimal stomatal conductance to COS under these particular 215 

conditions when there is no CO2 assimilation. The minimal conductance to CO2 used in ORCHIDEE is based on 

the residual stomatal conductance if the irradiance approaches zero, represented as the 𝑔0 offset in the stomatal 

conductance models (see equations (15) for C3 and (25) for C4 plants in Yin and and Struik, 2009). In the absence 

of water stress, 𝑔0 takes a constant value for C3 (0.00625 mol CO2 m−2 s−1) and C4 (0.01875 mol CO2 m−2 s−1) 

plants. This constant is multiplied by a water-stress function to compute the minimal conductance. This minimal 220 

conductance to CO2 was then applied under conditions when there is no CO2 assimilation, multiplied by the ratio 

to convert the conductance to CO2 into a conductance to COS. We thus model COS assimilation even at night, for 

all PFTs, and in winter for evergreen species, depending on water stress conditions.  

2.1.4 Simulations protocol 

All simulations were preceded by a “spin-up” phase to get to an equilibrium state where the considered carbon 225 

pools and fluxes are stable with no residual trends in the absence of any disturbances (climate, land use change, 

CO2 atmospheric concentrations) (e.g. Wei et al., 2014). A few decades are enough to equilibrate above-ground 

biomass and GPP. As we will transport not only COS, but also CO2 (see Sect. 2.4 below), we need a longer spin-

up where all carbon pools including those in the soil are stable and the net CO2 fluxes oscillate around zero. 
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Equilibrating the ecosystem photosynthesis with its respiration takes a long time as the slowest soil carbon pool 230 

has a residence time on the order of one thousand years. The ORCHIDEE model has a built-in spin-up procedure 

to accelerate the convergence towards this equilibrium state, using a pseudo-analytical iterative estimation of the 

targeted carbon pools, based on Lardy et al. (2011). For global simulations, we first performed a 340-year spin-up 

phase with non-varying pre-industrial atmospheric CO2 concentration and vegetation map, cycling over the same 

10 years of meteorological forcing files, where the final relative variation of the global slowest soil carbon pool 235 

was less than 5%. Starting from this equilibrium state, a transient state simulation was then run applying climate 

change, land use change and increasing CO2 atmospheric concentrations, and COS and GPP fluxes were calculated 

from 1860 to 2017. We performed site simulations at the Harvard Forest (United States) and Hyytiälä (Finland) 

FLUXNET sites (see below). For the two sites, we first performed a spin-up simulation cycling over the available 

years of the FLUXNET forcing files, for around 340 years, using a constant atmospheric CO2 concentration 240 

corresponding to the first year of the FLUXNET forcing file. We then performed the transient simulations over 

the available FLUXNET years, for each site, with a varying CO2 atmospheric concentration.  

2.2 Evaluation of vegetation COS fluxes at two FLUXNET sites 

Vegetation COS flux direct or derivedfluxes can be measured using branch chambers or estimated using the 

difference between measurements of ecosystem and soil fluxes. Such measurements were available at the Hyytiälä 245 

(Finland) and Harvard Forest (United States) FLUXNET sites. The Hyytiälä site (61.85°N, 24.29°E) is a boreal 

evergreen needleleaf forest dominated by Scots pine. (Pinus sylvestris). Branch measurements of COS fluxes were 

made in a Scots pine tree from March to July 2017 using gas-exchange chambers (Kooijmans et al., 2019); fluxes 

were derived from mole fraction changes when the chambers were closed once every hour. Measurements were 

made with an Aerodyne Quantum Cascade Laser Spectrometer (QCLS) and were calibrated against reference 250 

standards (Kooijmans et al., 2016). Fluxes from empty chambers were regularly measured to be able to correct for 

gas exchange by the chamber and tubing material (Kooijmans et al., 2019). We also used the Hyytiälä COS 

ecosystem fluxes (Kohonen et al., 2020); eddy covariance fluxes were measured during years 2013-2017 at 23 m 

height, approximately 6 m above the canopy height. Flux data were processed, quality screened and gap-filled 

according to recommendations by Kohonen et al. (2020).  Soil fluxes were also available for year 2015 (Sun et al., 255 

2018a), we thus derived the COS vegetation fluxes at canopy scale for that year from the difference between 

ecosystem and soil fluxes. Soil fluxes were generally low compared to plant uptake. 

The Harvard Forest site (42.54°N, 72.17°W) is a temperate deciduous broadleaf forest with mainly red oak, 

(Quercus rubra), red maple (Acer rubrum) and hemlock. (Tsuga canadensis). Ecosystem COS eddy flux 

measurements were carried out from a tower from May to October, in 2012 and 2013, using an Aerodyne QCLS 260 

and calibrated using gas cylinders. They were further split into vegetation and soil components, using soil chamber 

CO2 measurements and a sub-canopy flux-gradient approach (Wehr et al., 2017).  

The simulated COS fluxes were evaluated against measurements using the Root Mean Square Deviation: 

𝑅𝑀𝑆𝐷 =
√∑ (𝐹𝐶𝑂𝑆

𝑂𝑏𝑠(𝑛) − 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛))

2
𝑁
𝑛=1

𝑁
 

(4) 

where 𝑁 is the number of considered observations, 𝐹𝐶𝑂𝑆
𝑂𝑏𝑠(𝑛) is the nth observed COS flux and 𝐹𝐶𝑂𝑆

𝑀𝑜𝑑(𝑛) is the nth 

modelled COS flux, and the relative RMSD: 265 
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𝑟𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆𝐷

∑ 𝐹𝐶𝑂𝑆
𝑂𝑏𝑠(𝑛)𝑁

𝑛=1

𝑁

𝑅𝑀𝑆𝐷

𝐹𝐶𝑂𝑆
𝑂𝑏𝑠̅̅ ̅̅ ̅̅

 (5) 

which is the RMSD divided by the mean value of observations. 

We also computed the bias, standard deviations and correlation coefficient: 

𝑏𝑖𝑎𝑠 = 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑̅̅ ̅̅ ̅̅ ̅ − 𝐹𝐶𝑂𝑆

𝑂𝑏𝑠̅̅ ̅̅ ̅̅  (6) 

𝑆𝐷𝑀𝑜𝑑 = √∑ (𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛) − 𝐹𝐶𝑂𝑆

𝑀𝑜𝑑̅̅ ̅̅ ̅̅ ̅)
2

𝑁
𝑛=1

𝑁
 

𝑆𝐷𝑂𝑏𝑠 = √∑ (𝐹𝐶𝑂𝑆
𝑂𝑏𝑠(𝑛) − 𝐹𝐶𝑂𝑆

𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )
2

𝑁
𝑛=1

𝑁
 

(7) 

𝑟 =
∑ (𝐹𝐶𝑂𝑆

𝑂𝑏𝑠(𝑛) − 𝐹𝐶𝑂𝑆
𝑂𝑏𝑠̅̅ ̅̅ ̅̅ ) ∙ (𝐹𝐶𝑂𝑆

𝑀𝑜𝑑(𝑛) − 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑̅̅ ̅̅ ̅̅ ̅)𝑁

𝑛=1

𝑁 ∙ 𝑆𝐷𝑂𝑏𝑠 ∙ 𝑆𝐷𝑀𝑜𝑑
 

(8) 

 

We used partial correlations to identify the main drivers of the modelled conductances. Given the high non-

linearity of the equations linking the conductances to their predictors, we also used Random Forests (RF) to 270 

simulate ORCHIDEE results, and applied a permutation technique on these RF models to rank predictors 

(Breiman, 2001). RF are well adapted for non-linear problems, they were for example used to rank variables of 

importance for soil COS fluxes in Spielman et al. (2020). 

2.3 Global scale flux estimates and Comparisons with the LRU approach 

We compared our estimate for plant COS uptake at global scale to former studies, with a focus on the LRU 275 

approach, evidencing some uncertainties when possible.. We also applied the LRU approach to derive new 

estimates of global plant COS uptake for comparison, using a monthly climatology of our modelled GPP fluxes 

over the 2000-2009 period, a constant atmospheric concentration of 500 ppt for COS and global yearly values for 

CO2 (from 368 ppm for year 2000 to 386 ppm for year 2009). We considered two sets of constant PFT-dependent 

LRU values. The first set (LRU_Seibt) was taken from Seibt et al. (2010), based on the observed LRU values 280 

displayed in their Table 3 (intermediate column). The second set (LRU_Whelan) used constant values for C3 

(1.68) and C4 (1.21) plants where the values are an average over different field and laboratory measurements as 

assembled by Whelan et al. (2018). Both sets are listed in Table 1. 

Reciprocally, we derived LRU values using equation (1) applied to the monthly climatology of our modelled COS 

and GPP fluxes over the 2000-2009 period., these will be further called LRU_MonthlyFluxes values. 285 

LRU_MonthlyFluxes values were computed for all strictly positive GPP values. For each PFT, we studied the 

spatio-temporal distribution of LRU values among grid cells where the PFT was present._MonthlyFluxes values 

among grid cells where the PFT was present. We also compared these LRU_MonthlyFluxes values computed from 

a climatology of monthly fluxes, to the climatology of monthly mean LRU values, directly computed from the 

original half-hourly LRU values, and further called Monthly_LRU. Given the non-linearity of the problem, we 290 

expect LRU_MonthlyFluxes to be different from Monthly_LRU values. Considering that the objective of the LRU 

approach was to estimate COS fluxes from GPP using a constant value per PFT, the optimal LRU value for each 

PFT was obtained by linearly regressing monthly COS fluxes against monthly GPP fluxes multiplied by the ratio 

of the mean COS to CO2 concentrations, with no offset, thus: 
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𝐿𝑅𝑈_𝑂𝑝𝑡 =

∑ 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛)𝐺𝑃𝑃𝑀𝑜𝑑(𝑛)

[𝐶𝑂𝑆(𝑛)]𝑎

[𝐶𝑂2(𝑛)]𝑎

𝑁
𝑛=1

∑ (𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛))

2
𝑁
𝑛=1

 (9) 

with N the number of grid cell-month simulated fluxes where the PFT is present in the monthly climatology. 295 

We compared this new set of optimal PFT-dependent LRU values against LRU_Seibt and LRU_Whelan. 

We finally used the 𝐿𝑅𝑈_𝑂𝑝𝑡 values to re-compute the monthly mean COS fluxes from our modelled monthly 

mean GPP, and compared with the mechanistic COS flux calculation. The differences, due to the non-linearity of 

the COS flux calculation, provide some information on the use of a simplified approach based on mean LRU 

values. 300 

Table 1: Table of LRU per PFT. First column: median and optimal LRU values calculated from the simulated 

mechanistic COS and GPP fluxes. Middle columns: calculated from Seibt et al. (2010) for the ORCHIDEE PFT 

classification. Last column: from Whelan et al. (2018) 

PFT ORCHIDEE 

Seibt Whelan 
Long name Abbreviation Median Optimal 

1 – Bare soil Bare 0.00 0.00  0.00  0.00 

2 – Tropical Broad-leaved Evergreen Forest TroBroEver 1.56 1.72  3.09  1.68 

3 – Tropical Broad-leaved Raingreen Forest TroBroRain 1.48 1.62  3.38  1.68 

4 – Temperate Needleleaf Evergreen Forest TempNeedleEver 1.17 1.39  1.89  1.68 

5 – Temperate Broad-leaved Evergreen Forest TempBroEver 0.86 1.06  3.60  1.68 

6 – Temperate Broad-leaved Summergreen Forest TempBroSum 1.06 1.31  3.60  1.68 

7 – Boreal Needleleaf Evergreen Forest BorNeedleEver 0.82 0.95  1.89  1.68 

8 – Boreal Broad-leaved Summergreen Forest BorBroSum 0.84 1.03  1.94  1.68 

9 – Boreal Needleleaf Summergreen Forest BorNeedleSum 0.76 0.92  1.89  1.68 

10 – Temperate C3 Grass TempC3grass 1.01 1.18  2.53  1.68 

11 – C4 Grass C4grass 1.38 1.45  2.00  1.21 

12 – C3 Agriculture C3crops 1.21 1.37  2.26  1.68 

13 – C4 Agriculture C4crops 1.75 1.72  2.00  1.21 

14- Tropical C3 grass TropC3grass 1.40 1.52  2.39  1.68 

15- Boreal C3 grass BorC3grass 0.87 0.97  2.02  1.68 

 

2.4 Simulations of COS concentrations and Evaluation at NOAA air sampling sites 305 

The vegetation COS fluxes, as well as all other sources and sinks of the global COS budget, based on their latest 

estimates, are transported with an atmospheric transport model, so that we are able to simulate 3D COS 

atmospheric concentrations and compare them to the NOAA surface measurements. 

2.4.1 The atmospheric transport model LMDz 

In order to simulate COS and CO2 concentrations in the atmosphere, we used the version of the atmospheric 310 

component LMDz of the Institut Pierre- Simon Laplace Coupled Model (IPSL-CM) (Dufresne et al., 2013) which 
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has been contributing to the CMIP6 exercise. To reduce the computation time, we used its off-line mode: 

precomputed air mass fluxes provided by the full version of LMDz are used to transport the different tracers 

(Hourdin et al., 2006). This version is further called LMDz6 and is described in Remaud et al. (2018) and 

references therein for the transport of CO2. The horizontal winds are nudged towards ECMWF meteorological 315 

analyses (ERA-5, https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5) to 

realistically account for large scale advection. The tropospheric OH oxidation of COS is calculated from OH 

monthly data that are produced from a first simulation done with the INCA tropospheric photochemistry scheme 

(Folberth et al., 2006; Hauglustaine et al., 2004, 2014). The photolysis reaction of COS in the stratosphere is not 

considered: the lifetime of COS in the stratosphere is 64 years (Barkley et al., 2008). The model is set up at a 320 

horizontal resolution of 3.8° x 1.9° (96 grid cells in longitude and latitude) with 39 hybrid sigma-pressure levels 

reaching an altitude up to about 75 km, corresponding to a vertical resolution of about 200-300 m in the planetary 

boundary layer. The model timestep is 30 minutes and the output concentrations are 3-hourly averaged.  

2.4.2 Atmospheric simulations: sampling methods and data processing 

We ran the LMDz6 version of the atmospheric transport model described above for the years 2000 to 2009. The 325 

prescribed COS and CO2 fluxes used as model inputs are presented in Table 2 and Table 3. The GPP estimated by 

ORCHIDEE (148.1 Gt C yr-1) is on the high range among the model estimates (Anav et al., 2015), with a 

corresponding high respiration (145.7 Gt C yr-1) to ensure a realistic net ecosystem exchange (Friedlingstein et al., 

2019). However, other high GPP estimates can be found in the literature such as Welp et al. (2011) that suggest a 

range of 150 to 175 based on 𝛿 𝑂18  data. Likewise, Joiner et al. (2018) have proposed a new GPP product, based 330 

on satellite data and calibrated on FLUXNET sites, with an estimate around 140 Gt C yr-1 for 2007. 

The fluxes are given as a lower boundary condition of the atmospheric transport model (LMDz), which then 

simulates the transport of COS and CO2 by the atmospheric flow. The atmospheric COS seasonal variations are 

likely to be dominated by the seasonal exchange with the terrestrial vegetation, while the mean mole fractions 

result from all sources and sinks of COS, some of which are still largely unknown (e.g. ocean fluxes, Whelan et 335 

al., 2018). In this study, we only focus on the seasonal cycle and do not attempt to simulate the annual mean value, 

we thus started from a null initial state. The atmospheric transport is almost linear with respect to the fluxes: the 

linearity is a property of the atmospheric transport, though it is violated in LMDz because of the presence of slope 

limiters in the advection scheme. Overall, since all the other LMDz components are linear, LMDz transport is 

generally considered linear with fluxes (Hourdin and Talagrand, 2006). Relying on this relationship, we first 340 

transported each flux separately, and then added all the simulated concentrations in the end, for each species.  

For all COS and CO2 observations, the model output was sampled at the nearest grid point and vertical level to 

each station, and was extracted at the exact hour when each flask sample had been taken. For each station, the 

curve-fitting procedure developed by the NOAA Climate Monitoring and Diagnostic Laboratory (NOAA/CMDL) 

(Thoning, 1989) was applied to modelled and observed COS and CO2 time series to extract a smooth detrended 345 

seasonal cycle. We first fitted a function including a second-order polynomial term and 4 harmonic terms, and 

then applied to the residuals a low pass filter with either 80 or 667 days as short-term and long-term cut-off values, 

respectively. The detrended seasonal cycle is defined as the smooth curve (full function plus short-term residuals) 

minus the trend curve (polynomial plus long-term residuals).  

 350 

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5
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Table 2: Prescribed COS surface fluxes used as model input. Mean magnitudes of different types of fluxes are given for 

the period 2000-2009  

*A bug has been discovered in the parameterization of direct COS emissions in the NEMO PISCES ocean model: the hydrolysis 

rate was three times too low, resulting in an artificial build-up of COS in seawaters. As a correction, we divided by three the 

total amount of oceanic COS fluxes within a year, assuming that the bug does not affect the spatial pattern of direct emissions 355 
of COS. 

Type of COS flux Temporal resolution Total (Gg S yr-1) Data Source 

Anthropogenic Monthly, interannual 337.3 Zumkehr et al. (2018) 

Biomass burning Monthly, interannual 56.3 Stinecipher et al. (2019) 

Soil Monthly, climatological -409.0 Launois et al. (2015b) 

Ocean Monthly, climatological 444.7 Kettle (2002) for indirect 

oceanic emissions (via CS2 

and DMS oxydation), and 

Launois et al. (2015a) for 

direct oceanic emissions. The 

direct emissions are rescaled 

to be equal to 200 Gg S yr-1 

(*). 

Vegetation uptake Monthly, interannual 

See Table 1. 

This work, including 

mechanistic and LRU 

approaches (Seibt et al., 

2010; Whelan et al., 2018).  

 

Table 3: Prescribed CO2 surface fluxes used as model input. Mean magnitudes of different types of fluxes are given for 

the period 2000-2009 

Type of CO2 flux Temporal resolution Total (Gt C yr-1) Data Source 

Fossil fuel Monthly, interannual 7.7 ECJRC/PBL EDGAR 

version 4.2 

Biomass burning Monthly, interannual 1.9 GFED 4.1s  

Respiration (including the 

land use emissions and 

wood harvest) 

Monthly, interannual 145.7 ORCHIDEE  

Ocean Monthly, climatological -1.3 Landschützer et al. (2015) 

GPP Monthly, interannual -148.1 ORCHIDEE 

2.4.3 COS and CO2 concentrations at the NOAA/Global Monitoring Laboratory (GML) surface sites 360 

We used the NOAA/GML measurements of both CO2 and COS at 10 sites located on both hemispheres, listed in 

Table 4.   

 

Table 4: List of air sampling sites selected for evaluation of COS and CO2 concentrations 

Site Short Coordinates Elevation (m Comment 
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name above sea level) 

South Pole, Antarctica, United 

States 

SPO 90.0°S, 24.8° W 2810  

Cape Grim, Australia CGO 40.4°S, 144.6°W 164 inlet is 70 m aboveground 

Tutuila, American Samoa SMO 14.2°S, 170.6°W 77  

Cape Kumukahi, United States KUM 19.5°N, 154.8°W 3  

Mauna Loa, United States MLO 19.5°N, 155.6°W 3397   

Niwot Ridge, United States NWR 40.0°N, 105.54°W 3475  

Wisconsin, United States LEF 45.9°N, 90.3°W 868 inlet is 396 m aboveground 

on a tall tower 

Mace Head, Ireland MHD 53.3°N, 9.9°W 18  

Barrow, United States BRW 71.3°N, 155.6°W 8   

Alert, Canada ALT 82.5°N, 62.3°W 195  

 365 

The samples are collected as pair flasks one to five times a month since 2000 and are then analysed in the 

NOAA/GML’s Boulder laboratories with gas chromatography and mass spectrometry detection. The 

measurements are retained only if the difference between the pair flasks is less than 6.3 ppt for COS. These 

measurements can be downloaded from the ftp sites ftp://ftp.cmdl.noaa.gov/hats/carbonsulfide/ and, for CO2, at 

ftp://ftp.cmdl.noaa.gov/ccg/co2.  370 

2.4.4 Evaluation metrics 

To evaluate and compare the performances of the mechanistic and LRU approaches at different NOAA surface 

sites, we used the normalised standard deviation (NSD) and the Pearson correlation coefficient (R). NSD is 

calculated as the ratio between the standard deviation of the simulated concentrations and the observed 

concentrations at the NOAA surface sites. NSD and R values closer to 1 indicate a better accuracy of the model. 375 

3 Results 

3.1 Site scale COS fluxes, conductances and COS fluxesLRU  

3.1.1 Modelled conductances 

To investigate the importance of each conductance in vegetation COS uptake we compared the three simulated 

conductances: leaf boundary layer, stomatal and internal, studying their variability and their environmental drivers 380 

at the diel and seasonal scales. The boundary layer conductance to COS is higher than the two other conductances 

by a factor on the order of 50 (see Table A1 for more detailed statistics). As a high conductance value is equivalent 

to a low resistance to COS transfer, we focused only on the stomatal (𝑔𝑆_𝐶𝑂𝑆) and internal (𝑔𝐼_𝐶𝑂𝑆) conductances, 

which are the two most limiting factors to plant COS uptake. 
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 385 

Figure 1: Mean diel cycles of simulated conductances for each month for Harvard Forest in 2012 (a) and Hyytiälä in 

2017 (b)  

Figure 1 presents the mean diel (i.e. 24-hourly) cycles of the internal and stomatal conductances for each month, 

computed over 2012 at Harvard Forest and 2017 at Hyytiälä. The two conductances follow the same seasonal 

variations. Both increase during the growing season when vegetation becomes active and reach a maximum in 390 

July. Then, the conductances start to decline to a minimum value in winter. Harvard Forest is predominantly a 

deciduous forest and winter values of the two conductances are zero at this site as there are no leaves in that season. 

Hyytiälä on the other hand is an evergreen pine forest, such that daytime stomatal conductance in winter does not 

become zero. Diel variations at both sites are represented by a rise in both conductances in the morning with a 
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maximum around midday. The conductances drop in the afternoon to reach minimum values at night. However, 395 

between May and September, there is an inversion of the limiting conductance depending on the time of the day. 

The internal conductance is lower than the stomatal conductance in the morning and until early afternoon, while 

the stomatal conductance is the lowest at night. Moreover, in summer, the amplitude of diel variations of the 

internal conductance is lower than the amplitude of diel variations for the stomatal conductance. Also, the 

nighttime minimum value of the internal conductance displays larger seasonal variations than that of the stomatal 400 

conductance.  

 

To understand the shift of dominance between the two conductances during nighttime and daytime, we looked at 

the strength of covariation between the simulated conductances and environmental variables directly or indirectly 

involved in their modelling: air surface temperature (𝑇𝑎𝑖𝑟), photosynthetically active radiation (𝑃𝐴𝑅), vapor 405 

pressure deficit (𝑉𝑃𝐷) and soil moisture (𝑆𝑀). The results are presented for the Hyytiälä site as an example. 
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Figure 2: Mean diel cycle of simulated conductances and their environmental drivers for each month at Hyytiälä (2017). 

a) PAR and stomatal conductance, b) air temperature and internal conductance, c) VPD and stomatal conductance, d) 410 
soil moisture and internal conductance. 

The simulated stomatal conductance, 𝑔
𝑆_𝐶𝑂𝑆

, is linearly related to the CO2 assimilation, which depends mainly on 

𝑃𝐴𝑅, and 𝑔
𝑆_𝐶𝑂𝑆

 also depends on 𝑉𝑃𝐷 (Yin and Struik, 2009). 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑃𝐴𝑅 show the same variations for 

diel and seasonal cycles, and the daily maximum values occur at the same time (Figure 2a). Computing coefficients 

of determination, we found that 64% of the 𝑔
𝑆_𝐶𝑂𝑆

 variance is explained by PAR, while 32% of the simulated 415 

internal conductance variance is explained by PAR. The mean diel cycle of 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑉𝑃𝐷 (Figure 2c) also show 

similar diel variations but we notice that diel cycles of the 𝑔
𝑆_𝐶𝑂𝑆

 are ahead of 𝑉𝑃𝐷 diel cycles, except in winter 

where diel cycles differ between 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑉𝑃𝐷. 𝑉𝑃𝐷 explains 47% of the stomatal conductance variance and 

67% of the internal conductance.  

The simulated internal conductance, 𝑔
𝐼_𝐶𝑂𝑆

, is proportional to 𝑉𝑚𝑎𝑥, which represents the Rubisco activity for 420 

CO2. 𝑉𝑚𝑎𝑥 is assumed to be a measure for the CA activity for COS, and depends on 𝑇𝑎𝑖𝑟 and 𝑆𝑀 in the model. 

The mean diel cycles of the simulated 𝑔
𝐼_𝐶𝑂𝑆

 and of 𝑇𝑎𝑖𝑟 follow the same variations and show the same amplitude 

(Figure 2b). 90% of the 𝑔
𝐼_𝐶𝑂𝑆

 variance is explained by 𝑇𝑎𝑖𝑟, while 50% of the 𝑔
𝑆_𝐶𝑂𝑆

 variance is explained by 

𝑇𝑎𝑖𝑟. 𝑔
𝐼_𝐶𝑂𝑆

 and 𝑆𝑀 show similar diel variations in spring and summer (Figure 2d). 𝑆𝑀 and the conductances are 

anti-correlated as water loss by transpiration will rise with increasing conductances (as well as soil evaporation 425 

with increasing temperatures). 𝑆𝑀 explains 44% of the 𝑔
𝐼_𝐶𝑂𝑆

 variance while it explains only 22% of the 𝑔
𝑆_𝐶𝑂𝑆

 

variance.  

Partial correlations presented in Table 4 also confirm the dominance of 𝑃𝐴𝑅 (0.61) and 𝑇𝑎𝑖𝑟 (0.54) on 𝑔
𝑆_𝐶𝑂𝑆

 

response, while 𝑇𝑎𝑖𝑟 (0.84) and 𝑉𝑃𝐷 (0.55) are the main environmental factors for 𝑔
𝐼_𝐶𝑂𝑆

. This explains why 

𝑔
𝐼_𝐶𝑂𝑆

 is more limiting in winter because 𝑇𝑎𝑖𝑟, is low with thus lower enzyme activities, considering here 𝑇𝑎𝑖𝑟 as 430 

a proxy of the leaf temperature, and as soon as 𝑇𝑎𝑖𝑟 rises in spring the 𝑔
𝐼_𝐶𝑂𝑆

 becomes less limiting. 

Table 4: Partial correlations between conductances and environmental drivers 

 𝑃𝐴𝑅 𝑇𝑎𝑖𝑟  𝑉𝑃𝐷 𝑆𝑀 

𝑔𝑆_𝐶𝑂𝑆 0.61 0.54 -0.30 0.04 

𝑔𝐼_𝐶𝑂𝑆 -0.11 0.84 0.55 0.25 
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3.1.23.1.1 COS fluxes  

3.1.2.13.1.1.1 Daily cycle 435 
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Figure 1: a. Mean diel cycle of observed vegetation COS flux (Wehr et al., 2017) and modelled COS vegetation flux in 

June and July 2012 and 2013 (, at Harvard Forest), using an atmospheric convention where an uptake of COS by the 

ecosystem is negative. The shaded areas above and below each curve represent one standard-deviation of the considered 440 
hourly values over the June-July period. b. Mean seasonal cycle of simulated and observed weekly average vegetation 

COS flux in 2012 and 2013, at Harvard Forest. The shaded areas above and below each curve represent one standard-

deviation of the daily means within the considered week. We imposed to have at least observations on two different days 

to compute the corresponding weekly mean. 

COS assimilation is minimum at night (between 8 PM and 4 AM) for observed and simulated fluxes (Figure 1).a). 445 

During night, uptake of modelled COS flux is around -8 pmol m−2 s−1 while field observations vary between -5 

pmol m−2 s−1 and 0 pmol m−2 s−1. In the morning, both simulated and observed uptakes increase. However, while 

the simulation shows a maximum assimilation of -38 pmol m−2 s−1 at noon, the maximum assimilation for 

observations is reached at 10 AM with a flux of -49 pmol m−2 s−1. Observed fluxes have thus a greater daily 

amplitude than simulated fluxes, and are a little ahead of the simulation, but this shift does not seem significant 450 

given the large variability of observations, as represented by the one standard-deviation in Figure 1. We notice 

that the simulated diel cycle of COS flux is similar to the ones of the stomatal and internal conductances, with a 
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stronger limitation by the internal conductance in the morning.. RMSD for this mean diel cycle is 8.0 pmol m−2 

s−1, and relative RMSD is 35%. The bias is -1.7 pmol m−2 s−1, the standard deviations are 17.5 pmol m−2 s−1 for the 

observations and 12.8 pmol m−2 s−1 for the simulated fluxes, and the correlation coefficient is 0.91. A similar study 455 

at the Hyytiälä site over May-NovemberJuly-September in year 2015 (Figure B1a) yields a similar underestimation 

of the amplitude of the mean diel cycle, with an RMSD of 4.0 pmol m−2·s−1 and a relative RMSD of 36%.%; the 

bias is 2.4 pmol m−2·s−1, the standard-deviations are 5.5 pmol m−2·s−1 for the observations and 2.7 pmol m−2·s−1 

for the simulated fluxes, and the correlation coefficient is 0.93. 

3.1.2.23.1.1.2 Seasonal cycle 460 

 

Figure 4: Mean seasonal cycle of simulated and observed weekly average vegetation COS flux in 2012 and 2013 

(Harvard Forest). The shaded areas above and below each curve represent one standard-deviation of the daily means 

within the considered week. 

The simulated weekly seasonal vegetation COS uptake roughly follows the same trend as the observed one (Figure 465 

4).(𝑟=0.53, Figure 1b). COS uptake increases in spring when the vegetation growing season starts and decreases 

in autumn at the end of the forest activity period. Simulated and observed fluxes also take similar values over the 

two years. There are however differences: in 2013 the start of the season is simulated about two weeks too late in 

May instead of late April, and measured fluxes peak in May-June and August-September, while the modelled 

fluxes peak in July. We notice that the amplitude of observed COS flux variations is larger than the one of modelled 470 

fluxes. The useKohonen et al. (2020) have quantified the relative uncertainty of the eddy covariance method for 

field measurements can create noise,weekly-averaged ecosystem COS fluxes at 40%, which could explainis 

coherent with the larger fluctuationslarge standard-deviation computed for field data. (Figure 1b). RMSD for the 

seasonal cycle is 7.50 pmol m−2 s−1, and the relative RMSD is 44%.41%. The bias is low (-0.3 pmol m−2 s−1), the 

standard deviations are similar: 6.6 pmol m−2 s−1 for the observations and 7.7 pmol m−2 s−1 for the simulated fluxes. 475 

At the Hyytiälä site over May-November in year 2015, (Figure B1b), the RMSD for the seasonal cycle is 2.4 pmol 

m−2 s−1, and the relative RMSD is 25%.%; the bias is low too (0.2 pmol m−2 s−1) and the standard deviations are 
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also close: 3.6 pmol m−2 s−1 for the observations and 3.5 pmol m−2 s−1 for the simulated fluxes, the correlation 

coefficient is 0.78.  

3.1.2.33.1.1.3 Nighttime fluxes 480 
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Figure 2: a. Seasonal cycle of diurnal: a. daytime (dotted curve) and nocturnalnighttime (dashed curve) for observed 

(black) and modelled (red) vegetation COS fluxes, with theb. percentage of the diurnaldaytime to the total flux (solid 

curve)), at Harvard Forest in 2012-2013  485 

Figure 2 compares mean diurnaldaytime and nocturnalnighttime observed and modelled vegetation COS fluxes 

and the percentage of the diurnaldaytime to the total flux, computed for each month over 2012 and 2013 at the 

Harvard Forest site. We selected an arbitrary PAR threshold of 50 μmol m−2 s−1 to split between diurnaldaytime 

and nocturnalnighttime fluxes. We see that the modelled nocturnalnighttime flux varies across the growing season, 

with a maximum uptake of -810 pmol m−2 s−1 reached in July and August and a lower assimilationabsorption in 490 

the enclosing colder months. This seasonal variation can be explained by the seasonal change in leaf area index 

(LAI) and the conductances dependency on 𝑇𝑎𝑖𝑟, which increases in summer. The observed nighttime fluxes are 

of the same magnitude but present an opposite seasonal cycle with lower uptake at the summer peak, albeit 

variations are within the one-standard deviation represented in Figure 1.a. The modelled nighttime fluxes account 

for 20 to 30from 22 % of the total COS uptake. at the peak of the growing season to 45% in April at the very 495 

beginning. The observed ones exhibit a larger rangeslightly lower values, between 514 and 40%. Kooijmans et al. 

(2017) found a ratio of 21% at the 37%. At Hyytiälä site., the modelled nighttime ratio is also slightly higher 

(between 30 and 34%) than the observed one (between 20 and 25%, Figure B2). These ratios are in line with other 

studies: MaysekMaseyk et al. (2014) reported a ratio of 29 ± 5% over a wheat field in Oklahoma, and Sun et al. 
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(2018b) one of 23% for the San Joaquin Freshwater Marsh site in California. The results may vary given the 500 

definitions adopted for nighttime and daytime periods. 

3.1.3 LRU as a function of PAR 

3.1.2 Modelled conductances 

To investigate the importance of each conductance in vegetation COS uptake we compared the three simulated 

conductances: leaf boundary layer, stomatal and internal, studying their variability and their drivers at the diel and 505 

seasonal scales. The boundary layer conductance to COS is higher than the two other conductances by a median 

factor larger than 25 (see Table A1 for more detailed statistics). As a high conductance value is equivalent to a 

low resistance to COS transfer, we focused only on the stomatal (𝑔𝑆_𝐶𝑂𝑆) and internal (𝑔𝐼_𝐶𝑂𝑆) conductances, which 

are the two most limiting factors to plant COS uptake.  

 510 
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Figure 3: Mean diel cycles of simulated conductances for each season at Harvard Forest in 2012 (a) and Hyytiälä in 

2017 (b). The area reference for the units is m2 ground area. 

Figure 3 presents the mean diel cycles of the simulated total, stomatal and internal conductances for each season, 

computed over 2012 at Harvard Forest and 2017 at Hyytiälä. For practicality, we shifted the month of December 

before the month of January of the same year to compute the winter mean. The seasonal variations are similar at 515 

both sites. The conductances, as well as the amplitude of their diurnal cycle, increase from winter to summer and 

decline in autumn. Harvard Forest is predominantly a deciduous forest and winter values of the conductances are 

zero at this site as there are no leaves in that season. Hyytiälä on the other hand is an evergreen pine forest, such 

that daytime stomatal conductance in winter does not become zero. The stomatal conductance is peaking between 

9am and 1pm, depending on site and season, while the internal conductance is peaking later in the afternoon. The 520 

total conductance is in general limited by the internal conductance. The stomatal conductance is limiting roughly 

between 6pm and 6am from spring to autumn at Harvard, and only in June-July-August roughly between 9pm and 

9 am at Hyytiälä.  

These results are consistent with the results obtained at branch level by Kooijmans et al. (2019), who found that 

the COS flux was limited by the internal conductance in the early season, and later during daytime, while the effect 525 

of the stomatal conductance was larger at night. For the Harvard Forest site, Wehr et al. (2017) computed the 

stomatal conductance using both a water flux method and a COS flux method, and obtained a close agreement 

between two different methods; the mesophyll conductance is modelled using an experimental temperature 

response, and the biochemical conductance, representing CA activity, is modelled using a simple parameter (0.055 

mol m-2 s-1), both scale with LAI to get canopy estimates. Wehr et al. (2017) found similar maximum values around 530 

0.27 mol m-2 s-1 during daytime, from May to October, for the stomatal conductance and for the biochemical 

conductance (their Figure 4); adding the slightly larger mesophyll conductance (peaking around 1.0 mol m-2 s-1) 

to the biochemical conductance would thus also lead to a more limiting role of the internal conductance (peaking 

around 0.21 mol m-2 s-1) during daytime, albeit not as strong as for the modelled one (peaking around 0.13 mol 

m-2 s-1); the simulated stomatal conductance exhibits minimum and maximum values similar to the observation-535 

based ones, but peaks more sharply in the morning. 

To better understand the conductances behaviour, we studied the relative importance of their drivers. These include 

environmental variables directly or indirectly involved in their modelling: air surface temperature ( 𝑇𝑎𝑖𝑟 ), 

photosynthetically active radiation (𝑃𝐴𝑅), vapour pressure deficit (𝑉𝑃𝐷) and soil moisture (𝑆𝑀), as well as LAI, 

as leaf-level conductances are summed over LAI layers to provide canopy-level conductances.  Partial correlations 540 

are computed for all half-hourly values of the variables associated to LRU values between 0 and 8, and are provided 

in Table A2. We also used half-hourly ORCHIDEE outputs associated to LRU values between 0 and 8 to train 

Random Forests models for conductances at the two sites, taking into account the same five predictors. A random 

predictor was also added to check that the variable importance was correctly estimated. All RF models have an 

accuracy of at least 96%. Figures B3 and B4 present the relative ranking of the five predictors for the two 545 

conductances and the two sites. The ranking is different between the two methods (partial correlation versus RF), 

but they agree that at both sites the main driver for the internal conductance is air temperature and the main driver 

for the stomatal conductance is 𝑃𝐴𝑅. 

As expected, 𝑔𝐼_𝐶𝑂𝑆  mainly depends on 𝑇𝑎𝑖𝑟 . This is explained by the fact that 𝑔𝐼_𝐶𝑂𝑆  is proportional to 𝑉𝑚𝑎𝑥 , 

which represents the Rubisco activity for CO2; 𝑉𝑚𝑎𝑥  is assumed to be a measure for the mesophyll diffusion and 550 
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for the CA activity for COS, which are the components of the internal conductance (Berry et al., 2013). 𝑉𝑚𝑎𝑥  

depends on 𝑇𝑎𝑖𝑟 , considered here as a proxy of the leaf temperature (Yin and Struik, 2009). This strong link 

explains why 𝑔𝐼_𝐶𝑂𝑆 is more limiting in winter, as 𝑇𝑎𝑖𝑟  is low with thus lower enzyme activities, and, as soon as 

𝑇𝑎𝑖𝑟  rises in spring, 𝑔𝐼_𝐶𝑂𝑆 becomes less limiting, especially at night. 𝑃𝐴𝑅 is the most important variable for the 

stomatal conductance at the two sites. Due to the way of how 𝑔𝑆_𝐶𝑂𝑆 is simulated according to Yin and Struik 555 

(2009), there is a linear relationship with the CO2 assimilation, which depends mainly on 𝑃𝐴𝑅.  

3.1.3 LRU variability 

LRU decreases as a function of PAR, as initially observed by Stimler et al. (2010). Kooijmans et al. (2019) made 

measurements in two branch chambers installed at the top of the canopy in two Scots pine trees in Hyytiälä. They 

plotted the response of LRU to light, as quantified by the photosynthetically active radiation (PAR).PAR. To 560 

compare the ORCHIDEE model behaviour to these field data, we determined an LRU using our modelled COS 

and GPP fluxes, considering a constant atmospheric concentration of 500 ppt for COS and global yearly values 

for CO2. 

 

 565 

Figure 4: LRU against PAR (Hyytiälä) for ORCHIDEE outputs and measurements (hourly data measured between 18 

May and 13 July, Kooijmans et al., 2019). The light green circles represent average LRU values for chambers 1 and 2, 

light orange circles represent modelled LRU values. A moving average with a window of 50 points leads to the orange 

smooth curve for the model. The green line represents the function LRU=607.26/PAR + 0.57 from Figure S6 of the 

Kooijmans et al. (2019) supplement. To focus on LRU behaviour when PAR decreases, we plotted LRU response to 570 
PAR for PAR < 1500 μmol m−2 s−1. 

LRU increases with low PAR values for both branch chambers and for the model, and converge towards a constant 

value for high PAR values (Figure 4). This demonstrates that assuming a constant value for LRU, and not 

considering an increase in LRU under low light conditions, will result in erroneous estimation of COS fluxes. The 
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increasing LRU can be explained by the light-dependence of the photosynthesis reaction contrary to the CA 575 

activity that is light-independent. Consequently, CO2 fluxes tend to zero when PAR decreases while COS is still 

taken up in the dark, leading in theory to infinite values of LRU. It is to be noted that the drop of LRU when PAR 

increases is much sharper in the model that in the observationsThe drop of LRU when PAR increases is however 

much sharper in the model that in the observations. It is to be noted that we compare here LRU values estimated 

from measurements at branch level to modelled LRU estimated at canopy level. We conducted a similar modelling 580 

study considering only the top of canopy level and the associated COS and GPP fluxes, yielding similar results 

(not shown). This can be linked to the fact that the version of ORCHIDEE we use considers all the incoming light 

to be diffuse, and does not distinguish between sun and shaded leaves. We thus have similar LRU values at all 

canopy levels. 

Following the model developed in Seibt et al. (2010, their equation (8)), the LRU explicitly depends on only two 585 

variables: the 𝑔𝑆_𝐶𝑂𝑆 to 𝑔𝐼_𝐶𝑂𝑆 ratio, and the ratio of the CO2 intracellular concentration, 𝐶𝑖, to [𝐶𝑂2]𝑎 (equally 

named 𝐶𝑎) ratio. The modelled daily mean values for the 𝐶𝑖/𝐶𝑎 ratio computed at the two sites vary between 0.68 

and 1.00 (Figure B5). These variations are in agreement with Prentice et al. (2014) who state that the 𝐶𝑖/𝐶𝑎 ratio 

is pretty stable with only  30% variations. These values are on the upper part of the range reported in Seibt et al. 

(2010, their Table 2); following their Figure 3, for a given 𝐶𝑖/𝐶𝑎 ratio a larger 𝑔𝑆_𝐶𝑂𝑆 to 𝑔𝐼_𝐶𝑂𝑆 ratio implies a 590 

lower LRU, in consistence with our results. 

We also performed a predictor ranking for LRU, as was done previously with conductances. The predictors rank 

similarly for the two sites, as shown in Figure B6, the main factors explaining the variability of the simulated LRU 

at a half-hourly time step are 𝑃𝐴𝑅, 𝑇𝑎𝑖𝑟  and LAI. 

 595 

3.2 Global scale plant COS fluxes and Study of LRU values 

3.2.1 Comparison of plant COS uptake sink estimates 
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Figure 5: Map of average vegetation COS fluxes over the 2000-2009 period, from the mechanistic model as implemented 600 
in ORCHIDEE  

The mechanistic approach simulated in the ORCHIDEE model gives a plant COS uptake of -756 Gg S yr-1 over 

the 2000-2009 period. COS fluxes are the strongest in South America, Central Africa and Southeast Asia (Figure 

5), as expected as these regions are also the most productive ones for GPP. 

 605 

Table 5: Overview of COS plant uptake per year (Gg S yr-1) 

 

 

Kettle et al.  

(2002) 

Montzka et al.  

(2007) 

Suntharalingam 

et al. (2008) 

Berry et al. 

(2013) 

Launois et al. (2015b) 

This study 
ORC. LPJ CLM4 

Period 

study 

circa 1990-

2000 
2000-2005 2001-2005 2002-2005 2006-2009 2000-2009 

Uptake by 

plants 
-238 (30) -730 to -1500 

-490 

(-460 to -530) 
-738 -1335 -1069 -930 -756 

 

The more recent studies (Montzka et al., 2007; Suntharalingam et al., 2008; Berry et al., 2013; Launois et al., 

2015b) show a higher global plant sink than the one initially found by Kettle et al. (2002) (Table 5). Kettle et al. 

(2002) used an LRU-like approach, based on NPP and on the NDVI temporal evolution, and already acknowledged 610 

their estimate was assumed to be a lower bound one. Estimates from plant chambers and atmospheric 

measurements (Sandoval et al., 2005; Montzka et al., 2007; Campbell et al., 2008) confirmed that the COS plant 

sink should be twofold to fivefold larger than estimated in Kettle et al. (2002). SutharalinghamSuntharalingam et 

al. (2008) also found a low estimate of -490 Gg S yr-1, using 3D modelling of COS atmospheric concentrations, 

constrained by surface site observations. We note that our estimate is similar to the -738 Gg S yr-1 found by Berry 615 

et al. (2013), which was implemented in the Simple Biosphere (SiB) 3 LSM. The reason for this similarity can be 

that, on top of using the same mechanistic model for vegetation COS uptake, the leaf photosynthesis and stomatal 

conductance in both LSMs are derived from the same classical models from Farquhar et al. (1980), Collatz et al. 

(1992) and Ball et al. (1987).  
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Launois et al. (2015b) adopted an LRU approach, using constant LRU values for large MODIS vegetation classes, 620 

adapted from Seibt et al. (2010). Based on these values and a set of global GPP estimates from three LSMs 

(ORCHIDEE, LPJ, CLM4), the authors derived the corresponding global vegetation COS uptakes reported in 

Table 5. The selection of the LSM itself thus introduces an uncertainty on the global vegetation COS uptake of 

around 40% in this case. 

Applying the LRU values derived from Seibt et al. (2010) (Table 1) to the global GPP simulated in this study leads 625 

to the highest plant COS uptake with -1343.3 Gg S yr-1. Seibt et al. (2010) report LRU values for different internal 

conductance limitations. The LRU values that we used here represent a small limitation of internal conductance 

to the total COS uptake (the ratio of stomatal to internal conductances is 0.1). A smaller global COS uptake can 

be expected when the LRU values with a more limiting effect of the internal conductance are used. Applying the 

LRU values derived from Whelan et al. (2018) (Table 1) leads to an intermediate estimate of -808.3 Gg S yr-1, 630 

which is closer to the global uptake obtained with the mechanistic model. This analysis shows that the choice for 

certain LRU values introduces an uncertainty on the global vegetation COS uptake (around 70% in this case), and 

highlights the importance of deriving accurate PFT-dependent LRU values. 

3.2.2 Dynamics of simulated LRU values 

The PFT distributions of the LRU values, both those computed using aequation (1) applied to the monthly 635 

climatology of mechanistic COS and GPP fluxes over the 2000-2009 period, (LRU_MonthlyFluxes), and the 

climatological monthly means computed directly from the original half-hourly values (Monthly_LRU), do not 

support the idea of a constant PFT-dependent LRU value (Figure 6). 
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 640 

Figure 6: Distributions of the LRU values computed from the mechanistic approach, using a monthly climatology of 

simulated COS and GPP fluxes over the 2000-2009 period. Each subplot represents one of the 14 vegetated PFTs used 

in ORCHIDEE, considering all grid cells where the PFT is present. The x-axis represents the LRU value between 0 and 

3, with 0.1 bins. The y-axis represents the occurrences. For each PFT, the black distribution is computed using a 

monthly climatology of simulated COS and GPP fluxes (LRU_MonthlyFluxes), the blue distribution is computed using 645 
the monthly climatology of LRU values estimated at the original half-hourly time step (Monthly_LRU),  the red vertical 

bar represents the median LRU value for LRU_MonthlyFluxes, the green vertical bar represents the LRU optimal 

value that minimizes the error between plant COS uptakes estimated at a monthly time step by the mechanistic 

approach and the LRU approach, for all pixels of the considered PFT (see names and abbreviations in Table 1). 

The distributions are usually not gaussian; nor are they all unimodal, as is the case for PFT 12 C3 Agriculture. The 650 

distributions for C4 PFTs (PFT 11 C4 Grass and PFT 13 C4 Agriculture) exhibit a large spread. The median values 

are represented by vertical red bars in Figure 6 and listed in Table 1. The optimal values (𝐿𝑅𝑈_𝑂𝑝𝑡) obtained by 

linearly regressing monthly COS fluxes against monthly GPP fluxes multiplied by the ratio of the mean COS to 

CO2 concentrations (see Figure B1C1) are represented by vertical green bars and also listed in Table 1. They are 

usually higher than the median values, with a mean difference of 12.1%. Using either monthly means or yearly 655 

means of fluxes gives very similar optimal LRU values, the mean difference being only -0.2%. 

 

Table 6: Table of LRU per PFT.The LRU values from monthly fluxes (LRU_MonthlyFluxes) tend to be lower 

than the monthly means of the LRU computed at a half-hourly time step (Monthly_LRU). This is visible in Figure 
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6 where the blue distributions yield larger LRU values, and in the bi-dimensional histogram of 660 

LRU_MonthlyFluxes against Monthly_LRU (Figure C2). The bias is -0.2 and the correlation is 0.67. This shows 

that LRU is scale dependent. The values to be considered should be coherent with their usage. For example, the 

optimal values we computed are lower than values estimated from measurements, but they are adapted to make 

the link with atmospheric COS studies. 

 665 

 First column: median and optimal LRU values calculated from the simulated mechanistic COS and GPP fluxes. Middle 

columns: calculated from Seibt et al. (2010) for the ORCHIDEE PFT classification. Last column: from Whelan et al. 

(2018) 

PFT ORCHIDEE 

Seibt Whelan 
Long name Abbreviation Median Optimal 

1 - Bare soil Bare 0.00 0.00  0.00  0.00 

2 - Tropical Broad-leaved Evergreen Forest TroBroEver 1.56 1.72  3.09  1.68 

3 - Tropical Broad-leaved Raingreen Forest TroBroRain 1.48 1.62  3.38  1.68 

4 - Temperate Needleleaf Evergreen Forest TempNeedleEver 1.17 1.39  1.89  1.68 

5 - Temperate Broad-leaved Evergreen Forest TempBroEver 0.86 1.06  3.60  1.68 

6 - Temperate Broad-leaved Summergreen Forest TempBroSum 1.06 1.31  3.60  1.68 

7 - Boreal Needleleaf Evergreen Forest BorNeedleEver 0.82 0.95  1.89  1.68 

8 - Boreal Broad-leaved Summergreen Forest BorBroSum 0.84 1.03  1.94  1.68 

9 - Boreal Needleleaf Summergreen Forest BorNeedleSum 0.76 0.92  1.89  1.68 

10 - Temperate C3 Grass TempC3grass 1.01 1.18  2.53  1.68 

11 - C4 Grass C4grass 1.38 1.45  2.00  1.21 

12 - C3 Agriculture C3crops 1.21 1.37  2.26  1.68 

13 - C4 Agriculture C4crops 1.75 1.72  2.00  1.21 

14- Tropical C3 grass TropC3grass 1.40 1.52  2.39  1.68 

15- Boreal C3 grass BorC3grass 0.87 0.97  2.02  1.68 

 

𝐿𝑅𝑈_𝑂𝑝𝑡 values are much smaller than LRU_Seibt values for all PFTs, roughly by a factor 2. They are closer to 670 

the LRU_Whelan values, being smaller for all C3 PFTs except the Tropical Broad-leaved Evergreen Forests, and 

higher for C4 PFTs (Table 1). In the 𝐿𝑅𝑈_𝑂𝑝𝑡 set, the most productive PFTs (tropical forests and C4 crops) have 

the highest values around 1.7, while the less productive PFTs (boreal forests and grasses) have the lowest values 

around 0.9. To the contrary, in the LRU_Seibt set, temperate broad-leaved forests have the highest values (3.6) 

while needleleaf forests have the smallest value around 1.9.  675 

 

Another way to understand the distribution of LRU values is to look directly at the scatter plots of monthly COS 

fluxes against GPP fluxes, multiplied by the ratio of COS to CO2 concentrations (Figure B1C1). For most PFTs, 

it is in fact obvious that the relationship shows non-linear features, disagreeing with the classical linear LRU 

model. Based on these findings, we fitted a simple exponential model as: 680 
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𝐹𝐶𝑂𝑆 = 𝑎 (𝑒
𝑏𝐺𝑃𝑃

[𝐶𝑂𝑆]𝑎
[𝐶𝑂2]𝑎 − 1) 

with two parameters a and b. However, given the large spread of the data around the model, the Akaike 

criteriacriterion is always favourable to the LRU linear model, so we won’t investigate further with this exponential 

model, more specific research is needed here in order to bridge this data gap. Still, it is important to note that the 

larger COS fluxes will in general be underestimated using a linear LRU approach. It also appears that in certain 685 

PFTs (4, 5, 7) small COS fluxes will be underestimated. 

 

We computed mean annual vegetation COS fluxes using our modelled GPP and this new 𝐿𝑅𝑈_𝑂𝑝𝑡 set of values 

and compared them to the mechanistic COS fluxes (Figure 7a). 

 690 
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Figure 7: a. Mean annual vegetation COS fluxes for the 2000-2009 period fluxes computed using a linear LRU approach 

with optimal values for each PFT. b. Differences between mechanistic and LRU-based fluxes. c. Relative 

differencesdifference (%) 

The maps of differences between the mechanistic and 𝐿𝑅𝑈_𝑂𝑝𝑡-based COS fluxes (Figure 7b), and relative 695 

differences (Figure 7c), provide evidence for the spatial errors introduced by considering a constant LRU value. 

The differences are always lower than 4 pmol m-2 s-1 in absolute values, and are mainly positive, with the main 

exception over the Amazon region where the mechanistic approach shows a larger uptake than the linear LRU 

approach. The difference between the global estimates of the two approaches is less than 2%; we could still 

improve the linear regression determining the LRU optimal value by weighting grid-cell fluxes with the 700 

corresponding surface of the PFT. 

We also compared the mean seasonal cycles of the COS vegetation flux over the 2000-2009 period, for the 

mechanistic approach and the 𝐿𝑅𝑈_𝑂𝑝𝑡-based approach, for each PFT (Figure 10).(Figure C3). The seasonal 

cycles are very similar; for PFT 13 C4 Agriculture, the 𝐿𝑅𝑈_𝑂𝑝𝑡-based cycle is slightly in advance as compared 

to the mechanistic cycle. 705 
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Figure 10: Mean seasonal cycle (monthly means) of COS for each PFT over the Northern hemisphere for the 2000-2009 

period. The solid line represents the mechanistic model, while the dashed line represents the optimal LRU approach. 

3.3 Simulating atmospheric COS concentration at surface stations  

We transported the global COS and CO2 fluxes (i.e. the ones obtained from the ORCHIDEE model plus the 710 

additional components of each cycle, listed in Table 2 and Table 3) with the LMDz6 atmospheric transport model 

as described in Sect. 2.4.2. We analysed COS concentrations derived from simulated COS fluxes obtained with 

the mechanistic and LRU approaches in regards with observed COS concentrations from the NOAA at a few 

selected sites.  
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Figure 8: Detrended temporal evolutions of simulated and observed CO2 and COS concentrations at two selected sites, 

for the mechanistic (ORCHIDEE Mechanist) and LRU approaches (ORCHIDEE Seibt, ORCHIDEE Whelan, 

ORCHIDEE LRU_eqOpt), simulated with LMDz6 transport between 2007 and 2009. The ORCHIDEE LRU_eqOpt 

line (orange) corresponds to the concentrations simulated using the optimal LRU values derived from the mechanistic 720 
model. Top: Mauna Loa station (MLO, Hawaii), bottom: Barrow station (BRW, CanadaAlaska). The curves have been 

detrended beforehand and filtered to remove the synoptic variability (see Sect. 2.2.4) 

Figure 8 shows the detrended temporal evolution of CO2 and COS concentrations for the mechanistic and LRU 

approaches at Barrow (BRW, CanadaAlaska) and Mauna Loa (MLO, Hawaii). The MLO site samples air masses 

coming from all over the northern hemisphere (Conway et al., 1994). CO2 seasonal amplitude at BRW reflects the 725 

contributions of surface fluxes from high latitude ecosystems (Peylin et al., 1999), but also from regions further 

south due to atmospheric transport (Parazoo et al., 2011; Graven et al., 2013). These two stations have been used 

to detect large-scale changes in ecosystem functioning (Graven et al., 2013; Commane et al., 2017). In spite of 

their importance, LMDz driven by the ORCHIDEE vegetation fluxes has difficulties in representing their seasonal 

cycles. For instance, at MLO, the simulated seasonal amplitude of CO2 is overestimated and precedes the 730 

observations by one month. 

For COS, the simulated concentrations match relatively well the observed seasonal variations and seem to be more 

in phase with the observations than for CO2. Such a feature could indicate that the phase issues with CO2 is not 

primarily driven by GPP issues but by the other CO2 flux components. The mechanistic model and its LRU optimal 

equivalent better reproduce the observed one-month lag between the COS and the CO2 simulation at MLO (i.e. 735 

the minimum COS lags the one of CO2) than the other LRU approaches (with values from Whelan et al. (2018) 

and Seibt et al. (2010). The simulations differ more in the amplitude than in the phase of their seasonal cycles. The 

mechanistic approach simulates an amplitude lower than the LRU ones. At MLO for example, the lower amplitude 
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of the mechanistic model is in better agreement with the observations. At BRW, its seasonal amplitude is also 

lower but is now underestimated. The COS concentration at this station from the mechanistic approach varies 740 

between +30 ppt and -50 ppt while it varies between +50 ppt (respectively +37) and -71 ppt (respectively -50) for 

the simulation based on Seibt et al. (2010) (respectively Whelan et al., 2018). This is a direct consequence of lower 

COS fluxes with the mechanistic model compared to the fluxes based on Seibt and Whelan LRU approaches. At 

both the MLO and BRW sites, the difference between the mechanistic model and its LRU optimal equivalent after 

being transported is lower than 8 ppt, within the range of the observations uncertainty. 745 

 

Table 6: Normalized standard deviations (NSDs) of the simulated concentrations by the observed concentrations. 

Within brackets are the Pearson correlation coefficients (R) between simulated and observed COS concentrations for 

the mechanistic and LRU approaches, calculated between 2004 and 2009 at 10 NOAA stations. For each station, NSD 

and R closest to one are in bold and farthest ones are in italic. The time-series have been detrended beforehand and 750 
filtered to remove the synoptic variability (see Sect. 2.2.4).  

 SPO CGO SMO KUM MLO NWR LEF MHD BRW ALT 

ORCHIDEE 

Seibt 

1.15 

(0.96) 

0.67 

(0.5) 

0.58 

(-0.47) 

1.32 

(0.92) 

1.65 

(0.89) 

2.12 

(0.50) 

2.17 

(0.92) 

1.52 

(0.96) 

1.25 

(0.90) 

1.16 

(0.95) 

ORCHIDEE 

Whelan  

1.00 

(0.97) 

0.83 

(0.91) 

0.40 

(0.1) 

1.03 

(0.93) 

1.23 

(0.90) 

1.50 

(0.52) 

1.67 

(0.93) 

1.26 

(0.94) 

1.00 

(0.90) 

0.92 

(0.94) 

ORCHIDEE  

mechanist 

1.10 

(0.97) 

1.01 

(0.97) 

0.35 

(0.4) 

0.90 

(0.95) 

1.05 

(0.92) 

1.26 

(0.63) 

1.34 

(0.94) 

1.09 

(0.85) 

0.69 

(0.91) 

0.64 

(0.95) 

ORCHIDEE  

LRU_eqOpt 

1.02 

(0.98) 

0.98 

(0.97) 

0.34 

(-0.5) 

0.85 

(0.94) 

0.94 

(0.92) 

1.21 

(0.50) 

1.34 

(0.94) 

1.04 

(0.88) 

0.68 

(0.91) 

0.64 

(0.95) 

 

Table 6 presents the NSDs and Pearson correlation coefficients between simulated and observed COS 

concentrations for the mechanistic and LRU approaches. We see that the simulation with Seibt et al. (2010) 

intermediate LRU values overestimates the seasonal standard deviation and has the lowest accuracy for most 755 

stations. It is difficult to tell whether the mechanistic model is better than the LRU approach based on Whelan 

values. While the mechanistic approach captures known features of the temporal dynamics of the COS to CO2 flux 

ratio, it underestimates the simulated concentrations at Alert (ALT, Canada) and Barrow (BRW, United States). It 

should be noted that, due to other sources of errors (in particular transport and oceanic emissions), the comparison 

presented here should be taken as a sensitivity study of COS seasonal cycle to the vegetation scheme rather than 760 

a complete validation of one approach.  

4 Discussion 

4.1 How can we use COS fluxes and the mechanistic COS model to improve the simulated GPP? 

The mechanistic model links vegetation COS uptake and GPP fluxes through the stomatal conductance model, 

which includes the minimal conductance as an offset, and the common use of the carboxylation rate of Rubisco, 765 

𝑉𝑚𝑎𝑥, in the internal conductance formulation for COS, and in the Rubisco-limited rate of assimilation for CO2. 

The downside is the introduction of the somewhat uncertain 𝛼 parameter that relates the COS internal conductance 

to 𝑉𝑚𝑎𝑥 . Using COS flux measurements to optimize the parameters of the stomatal and internal conductances 
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would thus in principle benefit the simulated GPP. This optimization may be done based on appropriate data 

assimilation techniques; for example, Kuppel et al. (2012) optimized key parameters of the ORCHIDEE model 770 

related to several processes including photosynthesis (see their Table 2), by assimilating eddy-covariance flux data 

over multiple sites. The approach relies on a Bayesian framework where a cost function including uncertainties on 

observations, model and parameters is minimized (Tarantola, 1987). The results obtained in this study pave the 

way for a similar approach using COS fluxes to optimise key parameters controlling GPP; they can be used to 

define an optimal set up for the a priori errors and the error correlations in a Bayesian framework. We acknowledge 775 

however the scarcity of available measurements for the time being, with no samples for most biomes, a few sites 

with less than one year of data, and only Hyytiälä allowing for interannual variability studies. 

4.1.1 First step: Improving the mechanistic modelling of vegetation COS fluxes 

TheWithout any calibration, the chosen mechanistic model was able to reproduce observed vegetation COS fluxes 

at the Harvard Forest and Hyytiälä sites with RMSDs on the order of 40% without any calibration. However, at 780 

the Harvard Forest site, the diel cycles differ from the ones obtained in Wehr et al. (2017), derived from flux 

measurements (their Figure 4), and somewhat validated by the close agreement between two different methods 

(one from COS flux and one from water flux). The stomatal conductance in the ORCHIDEE model peaks more 

sharply in the morning, and the modelled internal conductance is lower and more variable than in Wehr et al. 

(relative RMSDs on the order of 40%. Regarding conductances, differences are also seen between the diel cycles 785 

of simulated and observation-based conductances from (Wehr et al., 2017). Diel variations in atmospheric [𝐶𝑂𝑆]𝑎, 

not accounted for in our model, cannot explain these differences, as they would only affect 𝐹𝐶𝑂𝑆  but not the 

conductances. These discrepancies indeed advocate for the assimilation of COS fluxes to optimize the parameters 

related to the internal and stomatal conductances. In our modelling framework, the internal conductance is assumed 

to be the product of 𝑉𝑚𝑎𝑥 by the 𝛼 parameter. This parameter has been calibrated by Berry et al. (2013) using gas 790 

exchange measurements of COS and CO2 uptake (Stimler et al., 2010; Stimler et al., 2012). They estimated two 

values of 𝛼, one for C3 and one for C4 plants, by performing a Type II regression between modelled COS fluxes 

and observations.).. As this 𝛼 parameter seems much more uncertain as compared to the relatively well known 

𝑉𝑚𝑎𝑥, and as it appears only as multiplied by 𝑉𝑚𝑎𝑥 in the COS internal conductance formulation, we should first 

try to optimize 𝛼 keeping 𝑉𝑚𝑎𝑥 fixed.  795 

4.1.2 Exploiting the alternative dominant role between stomatal and internal conductances 

Without being perfect, the mechanistic model could reproduce some expected behaviours. Thus, the mean diel 

cycles of simulated conductances for each month at Hyytiälä in 2017 (Figure 1b) show that the internal 

conductance is the limiting factor from January to April. This result is consistent with Kooijmans et al. (2019) who 

found that in the early season the COS flux was limited by the internal conductance. This is explained by low 800 

temperatures that inhibit CA activity and reduce mesophyll diffusion, which are the components of the internal 

conductance. Our finding of an inversion of the limiting conductance to COS flux between daytime and nighttime 

also agrees with Kooijmans et al. (2019) results, describing a larger effect of the stomatal conductance at night 

and a limitation of the COS flux by the internal conductance during daytime., such as the limiting role of the 

internal conductance in winter and then during daytime in the growing season, in relation to the control of CA 805 

activity and mesophyll diffusion by temperature, as also depicted in Kooijmans et al. (2019). Determining the 
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limiting conductances to COS uptake depending on the time of day provides useful information, as it can be used 

to better target which model parameters to optimize, using data assimilation approaches. Thus, observations made 

in the morning and early afternoon could be used to better constrain the 𝛼 parameter when the internal conductance 

is limiting COS fluxes, at least as modelled on the C3 species of the two sites, and we could investigate whether 810 

the 𝛼 parameter should be further quantified per PFT rather than simply per photosynthetic pathway. It is to be 

noted that for C4 species, the internal conductance is larger than for C3 species by a factor ten, so that stomatal 

conductance is limiting, and it could be difficult and useless to try optimizing internal conductance using the 𝛼 

parameter. In addition to optimizing the parameters of the internal conductance, an improvement could be to 

replace it by the two factors it represents, i.e. the mesophyll conductance and CA activity.We have to acknowledge 815 

the large uncertainty regarding the modelling of the internal conductance. In parallel to optimizing the parameters 

of the internal conductance, an improvement could thus also be to replace it by the two factors it represents, i.e. 

the mesophyll conductance and CA activity. A model for the mesophyll conductance is already implemented in 

ORCHIDEE, with a simple parameter depending on temperature through a multiplication by a modified Arrhenius 

function following Medlyn and al. (2002) and Yin & Struik (2009). The impact of mesophyll conductance on 820 

photosynthesis and water use efficiency is now more studied (e.g. Buckley and Warren, 2014), even if its 

modelling remains challenging too: the temperature response has notably been reported as highly variable between 

plant species (von Caemmerer and Evans, 2015), which would imply having PFT-dependent parameters. 

Regarding measurements, 13C discrimination of the isotopic composition of CO2 exchanges allows for an 

estimation of the mesophyll conductance (Stangl et al., 2019). Concerning CA activity, we could test the simple 825 

model using a constant value presented in Wehr et al. (2017). Measuring CA activity can be done at a coarse 

frequency, using different techniques (Henry, 1991). 

4.1.3 Exploiting nighttime conductances 

Recent studies have shown that nighttime field measurements of stomatal conductances often exhibit larger values 

than the ones used in models (Caird et al., 2007; Phillips et al., 2010). In the ORCHIDEE model, minimum 830 

stomatal conductances to CO2, 𝑔0, take two different values: 6.25 mmol m-2 s-1 for C3 species and 18.75 mmol m-

2 s-1 for C4 species. However, Lombardozzi et al. (2017), using data from literature, found that observed nighttime 

conductances to CO2 range from 0 mmol m-2 s-1 to 450 mmol m-2 s-1 with an overall mean value of 78 mmol m-2 

s-1. Moreover, they defined a mean value for each PFT (see Table A2A3) while the ORCHIDEE model uses one 

value for all C3 species and another one for all C4 species. Using higher nighttime stomatal conductances in 835 

models has the impact of increasing plant transpiration and reducing available soil moisture, which alters water 

and carbon budgets, especially in semi-arid regions (Lombardozzi et al., 2017). Lower 𝑉𝑃𝐷 values at night, that 

could limit the impact of higher nitghttimenighttime stomatal conductances, follow however an increasing trend 

(Sadok and Jagadish, 2020). A better representation of these minimal conductances in the model could then 

improve the constraint of gas exchange between the atmosphere and the terrestrial biosphere. It is to be noted that 840 

Barnard and Bauerle (2013) found, based on sensitivity analyses, that 𝑔0 was the parameter having the largest 

influence on their modelled transpiration estimates. They also stress that 𝑔0 should maybe be seen as an asymptotic 

minimal value, rather than an offset. During nighttime, the stomatal conductance limits COS uptake. In the model, 

the nocturnal stomatal conductance to COS is calculated from the above-mentioned minimum stomatal 

conductance values. For now, the absolute vegetation COS fluxes at night are slightly overestimated as compared 845 
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to observed fluxes (updated Figure 1a for Harvard and Figure B1a for Hyytiälä), thus hinting to overestimated 

nighttime stomatal conductances. Therefore, nighttime observations of COS fluxes could be used to optimize the 

minimum stomatal conductance values for each PFT. These minimum values could then be compared to the ones 

estimated in Lombardozzi et al. (2017).  

 850 

We thus see that COS fluxes could be used, through standard data assimilation techniques, to optimize the model 

parameters related to conductances, thus contributing to the improvement of the GPP. However, many more COS 

flux measurements are needed over a large variety of biomes, first to assert the validity of the mechanistic COS  

model at global scale, and second to be assimilated in order to improve simulated conductances and GPP estimates.  

  855 

4.2 The mechanistic versus LRU approach 

The mechanistic model is able to reproduce the high temporal frequency LRU variations observed at sites. It is 

thus legitimate to consider this approach as more accurate than the classical linear LRU approach that uses a time-

constant LRU value per PFT to estimate COS fluxes from GPP. Taking the mechanistic approach as a reference, 

Figure 9 to 11 illustrate the uncertainty introduced by the constant-LRU approximation. For each PFT, we have 860 

taken the constant value as the regression slope of simulated COS fluxes against simulated GPP fluxes multiplied 

by the ratio of COS to CO2 atmospheric concentrations. The LRU values we have thus estimatedFurthermore we 

have shown that computing LRU values using equation (1) applied to from monthly mean fluxes yields values 

lower than computing monthly means of high-frequency LRU values (Figure 6). This may explain why the LRU 

values we have thus estimated from monthly mean fluxes show generally lower values than the ones derived from 865 

measurements, although these cover a large range (Seibt et al., 2010; Whelan et al., 2018).from 0.7 to 6.2 (Seibt 

et al., 2010; Whelan et al., 2018). More recently, Spielman et al. (2019) estimated LRU values from ecosystem 

and soil measurements: 0.89 for an agricultural soybean field, 1.02 for a temperate C3 grassland, 2.22 for a 

temperate beech forest and 2.27 for a Mediterranean savanna ecosystem; our corresponding PFTs respectively 

give: 1.37 (C3crops), 1.18 (TempC3grass), 1.31 (TempBroSum) and 1.06 (TempBroEver), with thus higher 870 

estimates for herbaceous plants and lower ones for trees. It is difficult to say whether in situ and laboratory 

measurements are too sparse and not representative enough of the variability of plants and environmental 

conditions across the globe to have a reasonable confidence in their derived mean or median LRU values, or if we 

can use these LRU values to falsify the modelled COS and/or GPP fluxes. We may also add that LRU values 

derived from measurements performed in leaf chamber measurements, that are well-ventilated and thus associated 875 

with large leaf boundary layer conductances, may not be representative of the real-world transfer processes, where 

the boundary layer conductances vary with wind speed, temporally and within canopy depth (Wohlfahrt et al., 

2012). 

Without any calibration, the mechanistic approach performs similarly to LRU approaches based on monthly mean 

fluxes, when COS is transported using all known COS fluxes as inputs, and COS concentrations are evaluated at 880 

stations of the NOAA network. We have now a much finer representation of the COS fluxes as, at every timestep, 

the model integrates the plant’s response to environmental conditions in the calculation of the internal and stomatal 

conductances, unlike in the LRU approach which uses constant values for each PFT.  
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In order to quantify the first order uncertainty on 𝐹𝐶𝑂𝑆 related to the fact that we have used a constant [𝐶𝑂𝑆]𝑎 in 

our implementation of the Berry model, we computed an alternative 𝐹𝐶𝑂𝑆
′ , using the LRU approach based on a 885 

climatology of hemispheric monthly means of COS atmospheric concentrations (Montzka et al., 2007), the optimal 

LRU we derived in this study (given in Table 1), average yearly values for CO2 atmospheric concentrations, and 

a climatological seasonal cycle of simulated monthly GPP per PFT. Over the 2000-2009 period, the mean 

difference between the mean seasonal COS fluxes computed with this method (𝐹𝐶𝑂𝑆
′ ) and the ones simulated with 

the mechanistic model (𝐹𝐶𝑂𝑆 ) amounts to -7.9% over the Northern hemisphere. As expected, the seasonal 890 

amplitude of COS fluxes is dampened as [𝐶𝑂𝑆]𝑎 decreases with vegetation growth. We thus have to improve our 

methodology to consider a varying [𝐶𝑂𝑆]𝑎 as was done in Berry et al. (2013), either inside the ORCHIDEE model, 

or as a post-processing. This requires devising some trade-off between the high -frequency timestep of 

ORCHIDEE and the cost of running the transport model. However, it is to be noted that there is no impact on the 

derived LRU values as the LRU does not depend on the considered [𝐶𝑂𝑆]𝑎, as long as the same one is considered 895 

for the computation of the COS fluxes in the mechanistic model (Eq. (3)) and for the computation of the LRU (Eq. 

(1)) (i.e. whether fixed or varying monthly). 

However, there is currently a larger uncertainty on other COS fluxes in the global COS budget, which have an 

important impact on simulated COS concentrations (Ma et al., 2020) and their relative seasonal changes. For 

example, if we use another estimation of the direct oceanic fluxes (Lennartz et al., 2017), that shows a seasonal 900 

cycle whose amplitude is comparable to the one from the vegetation in high latitudes, this results in an 

overestimated seasonal cycle at all sites, with the mechanistic approach having the most realistic seasonal 

amplitude (see Appendix CD1 and Figure C1D1). An additional sensitivity test was performed to assess the impact 

of indirect oceanic emissions via DMS oxidation on simulated seasonal cycles as the importance of these fluxes 

in the global COS budget is still debated (Whelan et al., 2018). Whereas the impact on northern sites is negligible, 905 

the removal of indirect oceanic emissions via the DMS of Kettle et al. (2002) decreases the seasonal amplitude of 

southern sites (CGO and SPO) in the same proportion in all experiments (see Appendix CD2 and Table C2D2). 

Transport errors also add uncertainties on the simulated concentrations, especially at continental elevated sites 

(Remaud et al., 2018). Plus, given the present discrepancies between the GPP estimates of different land surface 

models, it can be argued that using a mechanistic model instead of an LRU approach when comparing COS 910 

concentrations seems to be of a second order importance (Campbell et al., 2017; Hilton et al., 2017). We 

nevertheless note in this study that we found an uncertainty on the global vegetation COS uptake of 40% when 

considering three different LSMs (Launois et al., 205b), to be compared to an uncertainty of 70% when considering 

three LRU datasets. 

Setting aside the uncertainty for the moment, how could we use atmospheric COS concentrations to constrain 915 

GPP? A first optimization was performed with the ORCHIDEE model in Launois et al. (2015b), who optimized a 

single scaling parameter applied on the vegetation COS fluxes simulated with the LRU approach, thus equivalent 

to a scaling factor applied on the GPP or the LRU. They assimilated the atmospheric COS concentrations measured 

at the NOAA air sampling stations, using the LMDz transport model (Hourdin et al., 2006) and a Bayesian 

framework as in Kuppel et al. (2012). The optimization reduced in absolute value the estimated global vegetation 920 

COS uptake from -1335 Gg S yr-1 to -708 Gg S yr-1, more in line with this work’s estimate based on a mechanistic 

modelling of vegetation COS uptake. A mid-term perspective is to go beyond a single scaling parameter, and to 

optimize a set of ORCHIDEE parameters using both atmospheric COS and CO2 data. Such an approach has been 
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used in several studies with CO2 data only (e.g. Rayner et al., 2005; Peylin et al., 2016). However, compared to 

CO2, the spatial coverage of COS surface observations is still too sparse to accurately constrain the GPP and 925 

therefore ORCHIDEE parameters (Ma et al., 2020). There is some hope that new satellite retrievals of COS column 

content, such as with the IASI (Infrared Atmospheric Sounder Interferometer) instrument, could have enough 

accuracy to better constrain the surface fluxes (Serio et al., 2020).  

5 Conclusions and Outlooks 

We have implemented inside the ORCHIDEE land surface model the mechanistic model of Berry et al. (2013) for 930 

COS uptake by the continental vegetation. We further adapted the ORCHIDEEE model to compute the stomatal 

conductance in the absence of photosynthesis. Modelled COS fluxes were compared at site scale against 

measurements at the Harvard temperate deciduous broadleaf forest (USA) and at the Hyytiälä Scots pine forest 

(Finland), yielding relative RMSDs of 35 and 36% for thearound 40% at both diel cycle respectively, and of 44 

and 25% for the and seasonal cycle. Parameters could be optimizedscales. We found that the mechanistic model 935 

yields a lower and thus more limiting internal conductance as compared to former works (Seibt et al., 2010; Wehr 

et al., 2017). The next step is to perform a sensitivity analysis  (Morris, 1991; Sobol, 2001) and to optimize the 

most sensitive parameters related to the modelled fluxes and conductances, to get a better agreement. The model 

notably reproduced expected observed behaviours such as the relationship between LRU and PAR depicted in 

Kooijmans et al. (2019), the proportion of COS nighttime fluxes, as well as the dominant effect of the internal 940 

conductance during low spring temperatures, and at daytime. with observations.  

Our global estimate of COS uptake by continental vegetation of -756 Gg S yr-1 is in the lower range of former 

studies. From our modelled COS and GPP fluxes, we derived optimal LRU values per PFT and compared them to 

values derived from experiments. We found lower LRU values than those observed for C3 species and intermediate 

ones for C4 species, evidencing the crucial role of the 𝛼 parameter in the Berry model, linking the COS internal 945 

conductance to the photosynthetic capacity, and the need for more site measurements of COS fluxes to better 

constrain its valuesAn important finding is that the LRU computed from monthly values of the COS and GPP 

fluxes yield values lower than monthly means of high-frequency LRU values. This has consequences for 

atmospheric studies where COS concentrations integrate influences from fluxes at large spatial and temporal 

scales. 950 

WeUsing appropriate LRU values, we transported the monthly mean COS fluxes from the mechanistic and LRU 

approaches using the LMDz6 model. We evaluatedThe evaluation of the modelled COS atmospheric 

concentrations against observations at stations of the NOAA network and foundyields comparable results for both 

approaches. 

As a general conclusion and for the moment, we can say that the mechanistic model is particularly valuable when 955 

studying small time or spatial scales using COS fluxes, while for global analyses using COS concentrations, both 

the mechanistic and LRU approaches give similar results.  

The fact that the global COS budget has so many components with a large uncertainty (Whelan et al., 2018) limits 

the use of COS concentrations as a constraint for GPP in land surface models on the global scale, for the present 

time. Our next step 960 
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A further development will be to refine the estimation for COS soil fluxes and to implement inside ORCHIDEE a 

mechanistic model for soil COS fluxes (Ogée et al., 2016; Sun et al., 2015). Having both the vegetation and soil 

contributions, we will also be able to assimilate ecosystem COS fluxes to optimize COS-related parameters such 

as 𝛼 in the internal conductance formulation from the Berry et al. (2013) model for vegetation uptake, and those 

related to the stomatal conductance (Wehr et al., 2017; Berkelhammer et al., 2020). We will also later look at the 965 

complementary constraints on GPP brought by COS and Solar-Induced Fluorescence, another GPP proxy (Bacour 

et al., 2019; Whelan et al., 2020). 

Appendices 

Appendix A. Tables for modelled boundary conductances and minimum stomatalAdditional tables related 

to conductances 970 

Table A1: Ratios of modelled boundary conductance to stomatal conductance and internal conductance, respectively, 

at the two studied sites, computed over year 2012 at Harvard Forest and 2017 at Hyytiälä 

 Harvard Forest Hyytiälä 

Ratio Boundary to 

stomatal 

Boundary to 

internal 

Boundary to 

stomatal 

Boundary to 

internal 

Median 7228 3769 5646 48228 

Minimum 29 320 9517 448 

Maximum 2239188 45551523 3232 18019304 

 

Table A2Table A2: Partial correlations linking stomatal and internal conductances to photosynthetically active 

radiation (𝑷𝑨𝑹), air temperature (𝑻𝒂𝒊𝒓), vapour pressure deficit (𝑽𝑷𝑫), soil moisture (𝑺𝑴) and leaf area index (LAI), 975 
computed at a half-hourly time step over year 2012 at the Harvard Forest site and 2017 at the Hyytiälä site  

Conductance Site 𝑃𝐴𝑅 𝑇𝑎𝑖𝑟  𝑉𝑃𝐷 𝑆𝑀 LAI 

𝑔𝑆_𝐶𝑂𝑆 
Harvard 0.66 0.46 -0.61 -0.04 0.33 

Hyytiälä 0.59 0.49 -0.47 -0.03 0.25 

𝑔𝐼_𝐶𝑂𝑆 
Harvard -0.06 0.68 0.30 -0.27 0.15 

Hyytiälä -0.13 0.74 0.65 0.32 0.49 

 

Table A3: Minimum stomatal conductance to CO2 (mmol m-2 s-1) for each PFT in Lombardozzi et al. (2017) and 

ORCHIDEE. No value is given for C4 crops in Lombardozzi et al. (2017). 

 Mean minimum conductance in 

Lombardozzi et al. (2017) 

Minimum conductance in 

ORCHIDEE  

1 - Bare soil 0 0 

2 - Tropical Broad-leaved Evergreen Forest 90.488 6.25 

3 - Tropical Broad-leaved Raingreen Forest 109.744 6.25 

4 - Temperate Needleleaf Evergreen Forest 16.896 6.25 

5 - Temperate Broad-leaved Evergreen Forest 34.017 6.25 

6 - Temperate Broad-leaved Summergreen 

Forest 
72.637 6.25 

7 - Boreal Needleleaf Evergreen Forest 8 6.25 

8 - Boreal Broad-leaved Summergreen Forest 50 6.25 

9 - Boreal Needleleaf Summergreen Forest 29 6.25 
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10 - C3 Grass 157.988 6.25 

11 - C4 Grass 93.933 18.75 

12 - C3 Agriculture 60.629 6.25 

13 - C4 Agriculture x 18.75 

 980 

Appendix B. Exponential fit for LRUAdditional illustrations for results at site scale  

 

Figure B1 
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Figure B9: a. Mean diel cycle of observed vegetation COS flux derived from ecosystem COS flux (Kohonen et al., 2020) 985 
and soil COS flux (Sun et al., 2018a), and modelled COS vegetation flux in July-September 2015, at Hyytälä, using an 

atmospheric convention where an uptake of COS by the ecosystem is negative. The shaded areas above and below each 

curve represent one standard-deviation of the considered half-hourly values over the July-September period. b. Mean 

seasonal cycle of simulated and observed weekly average vegetation COS flux in 2015, at Hyytälä. The shaded areas 

above and below each curve represent one standard-deviation of the daily means within the considered week.  990 
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Figure B2: a. Seasonal cycle of: a. daytime (dotted curve) and nighttime (dashed curve) for observed (black) and 

modelled (red) vegetation COS fluxes, b. percentage of the daytime to the total flux (solid curve), at the Hyytiälä site in 

2015  

 995 

Figure B3: Variables importance computed using Random Forests for the internal conductance (gi) at the Harvard 

Forest site in 2012 (left) and at the Hyytiälä site in 2017 (right). The considered predictors are air temperature (Tair), 
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leaf area index (LAI), soil moisture (SM), vapour pressure deficit (VPD) and photosynthetically active radiation (PAR). 

A random predictor is added to prevent over-fitting.  

 1000 

Figure B4: Same as B3 for the stomatal conductance (gs)  

 

Figure B5: Seasonal evolution of the simulated 𝑪𝒊 to 𝑪𝒂 ratio at the Harvard Forest site in 2012 (green curve) 

and the Hyytiälä site in 2017 (red curve)  

 1005 

Figure B6: Same as B3 for the leaf relative uptake (LRU)  
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Appendix C. Additional illustrations for results at global scale 

 

Figure C1: Scatterplots of COS fluxes against GPP multiplied by the ratio of COS to CO2 concentrations, using a 1010 
climatology of monthly fluxes over the 2000-2009 period and yearly global averages for CO2 concentrations and a fixed 

value of 500 ppt for the COS concentration. Each subplot represents one of the 14 vegetated PFTs used in ORCHIDEE. 

The LRU model in green represents the linear regression, while the exponential model (see text) is represented in red. 

The blue dashesdashed lines show the 1:1 line. 
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 1015 

Figure C2: Bi-dimensionnal histogram of LRU values computed from a climatology of monthly mean fluxes 

(LRU_MonthlyFluxes) against a climatology of monthly means of LRU computed from original half-hourly values 

(Monthly_LRU). The colorbar indicates the number of occurrence per bin of 0.1x0.1 size. The white dashed line 

represents the first bisector. 

 1020 
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Figure C3: Mean seasonal cycle (monthly means) of COS for each PFT over the Northern hemisphere for the 2000-

2009 period. The solid line represents the mechanistic model, while the dashed line represents the optimal LRU 

approach. 

 1025 

Appendix CD. Sensitivity tests for the modelling of atmospheric COS concentrations 

C1D1. Simulating COS atmospheric concentration at stations: impact of the oceanic emissions 

We performed the same experiment as in Sect. 3.4, except that the oceanic fluxes (direct and indirect) are here 

from Lennartz et al. (2017). In our case, the oceanic emissions (in particular direct oceanic emissions) have more 

impact than the LRU on the seasonality at surface sites from the NOAA network.  1030 
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Figure C1D1: Detrended temporal evolutions of simulated and observed CO2 and COS concentrations at four selected 

sites, for the mechanistic (ORCHIDEE Mechanist) and LRU approaches (ORCHIDEE Seibt, ORCHIDEE Whelan, 

ORCHIDEE LRU_eqOpt), simulated with LMDz6 transport between 2007 and 2009. The ORCHIDEE LRU_eqOpt 

line (orange) corresponds to the concentrations simulated using the optimal equivalent LRU values derived from the 1035 
mechanistic model. The curves have been detrended beforehand and filtered to remove the synoptic variability (see 

Sect. 2.2.4). 

Table C1D1: Prescribed COS surface fluxes used as model input. Mean magnitudes of different types of fluxes are given 

for the period 2000-2009  

Type of COS flux Temporal resolution Total (Gg S yr-1) Data Source 

Anthropogenic Monthly, interannual 337.3 Zumkehr et al. (2018) 

Biomass burning Monthly, interannual 56.3 Stinecipher et al. (2019) 

Soil Monthly, climatological -409.0 Launois et al. (2015b) 

Ocean Monthly, climatological 344.0 Lennartz et al.  (2017) 

Vegetation uptake Monthly, interannual 

 

This work, including 

mechanistic and LRU 

approaches (Seibt et al., 

2010; Whelan et al., 2018).  

 1040 

C2D2. DMS sensitivity study 

We further tested the impact of the indirect COS fluxes through DMS on the simulated concentrations at NOAA 

sites. To do that, we compared the atmospheric concentrations given with and without prescribing indirect oceanic 

fluxes through DMS using the Launois et al. (2015a) oceanic fluxes. In our case, the removal of the DMS oceanic 

emissions decreases the seasonal amplitude at SPO and CGO but have very few impacts at other sites. We also 1045 

performed the same experiment using the Sinikka et al. (2017) fluxes and reported no impact of DMS indirect 

fluxes on simulated concentrations at NOAA sites.  

Table C2D2: Normalized standard deviations (NSDs) of the simulated concentrations by the observed concentrations. 

Within brackets are the Pearson correlation coefficients (R) between simulated and observed COS concentrations for 

the mechanistic approach including the DMS or not, calculated between 2004 and 2009 at 10 NOAA stations.  1050 

 SPO CGO SMO KUM MLO NWR LEF MHD BRW ALT 

ORCHIDEE  

Mechanist 

(DMS) 

1.10 

(0.97) 

1.01 

(0.97) 

0.35 

(0.4) 

0.90 

(0.95) 

1.05 

(0.92) 

1.26 

(0.63) 

1.34 

(0.94) 

1.09 

(0.85) 

0.69 

(0.91) 

0.64 

(0.96) 

ORCHIDEE  

Mechanist 

(Without DMS)  

0.74 

(0.91) 

0.53 

(0.94) 

0.38 

(0.20) 

0.90 

(0.95) 

1.04 

(0.91) 

1.31 

(0.64) 

1.40 

(0.94) 

0.93 

(0.94) 

0.74 

(0.90) 

0.65 

(0.96) 
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