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Abstract. Land surface modelers need measurable proxies to constrain the quantity of carbon dioxide (CO2) 

assimilated by continental plants through photosynthesis, known as Gross Primary Production (GPP). Carbonyl 

sulfide (COS), which is taken up by leaves through their stomates and then hydrolysed by photosynthetic enzymes, 

is a candidate GPP proxy. A former study with the ORCHIDEE land surface model used a fixed ratio of COS 

uptake to CO2 uptake normalized to respective ambient concentrations for each vegetation type (Leaf Relative 30 

Uptake, LRU). COS leaf fluxes were then computed from GPP, and the resulting concentrations were transported 

with an atmospheric model which included all other known COS fluxes as inputs. Modelled COS concentrations 

could then be compared to COS measurements from the NOAA air sampling tower network. The LRU approach 

is known to have limited accuracy since the LRU ratio changes with variables such as Photosynthetically Active 

Radiation (PAR): while CO2 uptake slows under low light, COS uptake is not light limited. However, the LRU 35 

approach has been popular for COS-GPP proxy studies because of its ease of application and apparent low 

contribution to uncertainty for regional scale applications. In this study we refined the COS-GPP relationship and 

implemented in ORCHIDEE a mechanistic model that describes COS uptake by continental vegetation. We 

compared the simulated COS fluxes against measured hourly COS fluxes at two sites, and studied the model 

behaviour and links with environmental drivers. We performed simulations at global scale, and estimated the 40 

global COS uptake by vegetation to be -756 Gg S yr-1, in the middle range of former studies (-490 to -1335 Gg S 

yr-1). Based on the mechanistic approach in ORCHIDEE, we derived new LRU values for the different vegetation 

types, ranging between 0.92 and 1.72, close to recently published averages for observed values of 1.21 for C4 and 

1.68 for C3 plants. We transported the COS using the monthly vegetation COS fluxes derived from both the 

mechanistic and the LRU approaches, and evaluated the simulated COS concentrations at NOAA sites. Although 45 

the mechanistic approach was more appropriate when comparing to high-temporal-resolution COS flux 
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measurements, both approaches gave similar results when transporting with monthly COS fluxes and evaluating 

COS concentrations at stations. In our study, uncertainties between these two approaches are of second importance 

as compared to the uncertainties in the COS global budget, which are currently a limiting factor to the potential of 

COS concentrations to constrain GPP simulated by land surface models on the global scale.  50 

1 Introduction 

Humanity has to face the urgency of climate change if it hopes to limit adverse future impacts (Allen et al., 2018; 

IPCC, 2019a, 2019b). In order to make reliable predictions of future climate, scientists have built powerful 

numerical Earth System Models (ESMs), where they continuously integrate gained knowledge on a multitude of 

climate-related and climate-interacting processes. The carbon cycle is at the heart of the present global warming, 55 

caused by anthropogenic CO2 emissions (Ciais et al., 2013). In the global carbon budget, the land component 

shows the largest uncertainty (Le Quéré et al., 2018; Bloom et al., 2016). Land Surface Models (LSMs) struggle 

to correctly represent the large spatial and temporal variability of the CO2 gross and net fluxes (Anav et al., 2015). 

CO2 is first assimilated through plant photosynthesis, before being respired by the ecosystem. The quantity of 

assimilated carbon is called Gross Primary Productivity (GPP). All other carbon fluxes and stocks derive from this 60 

first gross assimilation flux. To help reduce uncertainties in the estimated GPP, LSMs can benefit from knowledge 

obtained through local eddy covariance measurements of the net ecosystem-atmosphere CO2 exchange (Friend et 

al., 2007; Kuppel et al., 2014).  

GPP proxies are also used, such as Solar-Induced Fluorescence (Norton et al., 2019; Bacour et al., 2019), isotopic 

composition of atmospheric CO2 (𝛿 𝑂18 : Farquhar et al., 1993; Welp et al., 2011; 𝛿 𝐶13 : Peters et al., 2018) and 65 

Carbonyl Sulfide (COS) atmospheric concentrations (Hilton et al., 2015). Using atmospheric COS measurements 

as a tracer for terrestrial photosynthesis was first suggested by Sandoval-Soto et al. (2005) and Montzka et al. 

(2007), and Campbell et al. (2008) provided quantitative evidence using airborne observations of COS and CO2 

concentrations and an atmospheric transport model. COS is an atmospheric trace gas that has a molecular structure 

very similar to CO2 and is likewise taken up by plants through stomata. COS is then hydrolysed within the leaf, 70 

this reaction being catalysed by the enzyme Carbonic Anhydrase (CA). This reaction is light-independent 

(Protoschill-Krebs et al., 1996; Goldan et al., 1998) and, because of the high catalytic efficiency of this enzyme 

(Ogawa et al., 2013; Ogée et al., 2016; Protoschill-Krebs et al., 1996), COS hydrolysis inside the leaf seems 

therefore to be limited by COS supply driven by changes in stomatal conductance (Goldan et al., 1988; Sandoval-

Soto et al., 2005; Seibt et al., 2010; Stimler et al., 2010). Leaves’ uptake of COS and CO2 are thus very similar, 75 

but leaves do not produce COS (Protoschill-Krebs et al., 1996; Notni et al., 2007), whereas they emit CO2 through 

respiration. That is why vegetation COS fluxes could be used as a proxy for GPP.  

The approach generally adopted to constrain GPP with COS relies on the determination of a Leaf Relative Uptake 

(LRU), which is the ratio of COS to CO2 uptake normalized by their atmospheric concentrations (Sandoval-Soto 

et al., 2005):  80 

𝐿𝑅𝑈 =
𝐹𝐶𝑂𝑆

𝐺𝑃𝑃

[𝐶𝑂2]𝑎

[𝐶𝑂𝑆]𝑎

 (1) 

where 𝐹𝐶𝑂𝑆 is the flux of COS uptake (μmol COS m-2 s-1), 𝐺𝑃𝑃 is the gross flux of CO2 assimilation  (μmol CO2 

m-2 s-1), [𝐶𝑂𝑆]𝑎  is the atmospheric COS mixing ratio (µmol COS mol-1), and [𝐶𝑂2]𝑎  is the atmospheric CO2 

mixing ratio (µmol CO2 mol-1). 
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LRU can be measured experimentally, for instance in branch chambers (Kooijmans et al., 2019), and then used as 

a scaling factor for estimating GPP. However, LRU does not appear constant under some environmental 85 

conditions. For example, the fixation of carbon from CO2 relies on light-dependent reactions, unlike the uptake of 

COS by the CA enzyme, which is light-independent (Stimler et al., 2011). Because of these different responses of 

COS and CO2 uptake in leaves, LRU varies with light conditions (Stimler et al., 2010, 2011; Maseyk et al., 2014; 

Commane et al., 2015; Wehr et al., 2017; Yang et al., 2018). Consequently, LRU values are smaller at midday or 

in summer (Kooijmans et al., 2019). Moreover, COS assimilation continues at night as stomatal conductance to 90 

gas transfer does not drop to zero, whereas CO2 uptake by plants stops, leading to an infinite value of LRU. Note 

however that stomata mostly close at night, so the COS uptake at night is smaller than the COS uptake during the 

day. It has also been shown that LRU varies between plant species (Stimler et al. 2011), which is why different 

LRU values were estimated for different vegetation types (Seibt et al., 2010; Whelan et al., 2018). The variability 

of LRU with plant type, light, and time should therefore be carefully accounted for when COS concentrations or 95 

flux measurements are used to estimate GPP at the ecosystem and larger scales. 

The goal of this study is thus to evaluate the advantages of using a mechanistic approach to simulate the uptake of 

atmospheric COS by continental vegetation within a Land Surface Model (LSM), as compared to the former LRU 

approach developed in Launois et al. (2015b), where the authors simply defined the COS uptake by vegetation as 

that of CO2 scaled with a constant LRU value for each large vegetation class. To this end:  100 

i) We used the state-of-the art ORCHIDEE LSM (Krinner et al., 2015), and implemented in it the vegetation 

COS uptake model of Berry et al. (2013) to simulate the COS fluxes absorbed at the leaf and canopy levels 

by the continental vegetation. 

ii) We evaluated the simulated COS fluxes against measurements at two forest sites, namely the Harvard 

Forest, United States (Wehr et al., 2017), and Hyytiälä, Finland (Kooijmans et al., 2019; Kohonen et al., 105 

2020; Sun et al., 2018a). 

iii) We compared the simulated mechanistic COS fluxes at global scale to former estimates and also compared 

different estimates of LRU values. 

iv) The mechanistic and LRU simulated COS fluxes were used with the atmospheric transport model LMDz 

(Hourdin et al. 2006), to provide atmospheric COS concentrations that were evaluated against 110 

measurements at sites of the NOAA network. 

We present the model, data, and methodologies related to these four steps in section 2, detail the obtained results 

in section 3, and discuss them in section 4. We conclude and list paths for future research in section 5.  

2 Models, Data, and Methodology 

2.1 Implementation of plant COS uptake in the ORCHIDEE LSM to simulate COS vegetation fluxes 115 

2.1.1 The ORCHIDEE LSM 

ORCHIDEE is an LSM developed mainly at Institut Pierre Simon Laplace (IPSL), that computes the water, carbon 

and energy balances at the interface between land surfaces and atmosphere. Fast processes including hydrology, 

photosynthesis and energy balance are run at a half-hourly timestep, while other slower processes such as carbon 

allocation and mortality are simulated at a daily timestep. Photosynthesis follows the Yin and Struik (2009) 120 
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approach, bringing improvements to the standard Farquhar et al. (1980) model for C3 plants, the Collatz et al. 

(1992) model for C4 plants, and the Ball et al. (1987) model for the stomatal conductance. The temperature-

dependence of the photosynthetic capacity follows the Kattge and Knorr (2007) model. A water stress function 

varying between 0 and 1 depending on soil moisture and root profile (de Rosnay and Polcher, 1998) is applied on 

photosynthetic capacity and conductances. The sub-grid variability for vegetation is represented using fractions of 125 

Plant Functional Types (PFTs), grouping plants with similar morphologies and behaviours growing under similar 

climatic conditions. Phenology is fully prognostic with PFT-specific phenological models as described in Botta et 

al. (2000) and MacBean et al. (2015). ORCHIDEE can be run from the site scale to the global scale, coupled with 

an atmospheric general circulation model, or in off-line mode forced by meteorological fields. In this study, we 

prescribed the vegetation distribution for site simulations and used yearly PFT maps derived from the ESA Climate 130 

Change Initiative (CCI) land cover products for global simulations (Poulter et al., 2015). The soil type is derived 

from the Zobler map (Zobler, 1986). We used the recent ORCHIDEE version fine-tuned for the Climate Model 

Intercomparison Project (CMIP) 6 exercise (Peylin et al., in prep.), forced by micro-meteorology fields at 

FLUXNET sites or by CRUNCEP reanalyses at global scale (https://rda.ucar.edu/datasets/ds314.3/). 

2.1.2 The Berry model for plant COS uptake 135 

We implemented in the ORCHIDEE LSM the mechanistic model of plant COS uptake based on Berry et al. (2013). 

In this model, COS follows a diffusive law from the atmosphere to the leaf interior, where it is consumed by CA 

in the chloroplasts. The uptake from the atmosphere is assumed unidirectional, reflecting the fact that COS is not 

produced by plants. The model distinguishes three conductances along the COS path between the atmosphere and 

the leaf interior: (1) the boundary layer conductance (𝑔𝐵_𝐶𝑂𝑆) to heat and gas transfer between the leaf surface and 140 

the atmosphere, (2) the stomatal conductance (𝑔𝑆_𝐶𝑂𝑆 ), and (3) the internal conductance (𝑔𝐼_𝐶𝑂𝑆 ). Internal 

conductance combines the mesophyll conductance and the CA activity into a single equivalent conductance.  

The stomatal and boundary layer conductances are associated with factors describing diffusion of COS relative to 

that of water vapor (1.94 and 1.56, respectively, Stimler et al., 2010). In the chloroplast, the COS hydrolysis is 

catalysed by the enzyme CA, following first order kinetics. COS uptake depends on the amount of CA and its 145 

relative location to intercellular air spaces, which brings in the mesophyll conductance. These two factors have 

been shown to scale with the maximum reaction rate of the Rubisco enzyme, 𝑉𝑚𝑎𝑥 (μmol m-2 s-1) (Badger and 

Price, 1994; Evans et al., 1994). The mesophyll conductance and the first-rate constant are then regrouped into a 

single equivalent internal conductance, proportional to 𝑉𝑚𝑎𝑥: 

𝑔𝐼_𝐶𝑂𝑆 = 𝛼 ∗ 𝑉𝑚𝑎𝑥  (2) 

The parameter 𝛼 takes two values depending on the plant photosynthetic pathway (C3 or C4). These values were 150 

determined experimentally by Berry et al. (2013), who estimated an 𝛼 = 0.0012 for C3 and an 𝛼 = 0.013 for C4 

species. We thus have the final equation: 

𝐹𝐶𝑂𝑆 =  [𝐶𝑂𝑆]𝑎 ∗ [
1.0

𝑔𝑆_𝐶𝑂𝑆

+
1.0

𝑔𝐵_𝐶𝑂𝑆

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

= [𝐶𝑂𝑆]𝑎 ∗ [
1.94

𝑔𝑆_𝑊

+
1.56

𝑔𝐵_𝑊

+
1.0

𝑔𝐼_𝐶𝑂𝑆

]

−1

  (3) 

where 𝐹𝐶𝑂𝑆 is the flux of COS uptake (μmol COS m-2 s-1), [𝐶𝑂𝑆]𝑎 is the background atmospheric COS mixing 

ratio considered here as a constant (0.0005 µmol COS mol-1), 𝑔𝑆_𝐶𝑂𝑆 , 𝑔𝐵_𝐶𝑂𝑆  and 𝑔𝐼_𝐶𝑂𝑆  are respectively the 

stomatal, boundary layer, and internal conductances to COS (mol COS m-2 s-1), and 𝑔𝑆_𝑊  and 𝑔𝐵_𝑊  are 155 

respectively the stomatal and boundary layer conductances to water vapor (mol H2O m-2 s-1). Note that in this work 
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[𝐶𝑂𝑆]𝑎 is held constant when computing the COS fluxes, contrary to Berry et al. (2013) and Campbell et al. 

(2017), where [𝐶𝑂𝑆]𝑎  is dynamic and taken from the previous time step's PCTM (Parameterized Chemical 

Transport Model) value. The uncertainty introduced by this simplification is evaluated in the Discussion section. 

2.1.3 Minimal conductances 160 

As plant CO2 uptake only occurs under certain conditions such as with sufficient light, temperature, and water, 

CO2 assimilation is not calculated in ORCHIDEE when these conditions are not fulfilled. Therefore, the stomatal 

conductance to CO2 that is needed to obtain the stomatal conductance to COS is not always computed in 

ORCHIDEE. However, some studies have shown incomplete stomatal closure at night (Lombardozzi et al., 2017; 

Kooijmans et al., 2019), leading to nighttime COS plant uptake (Berry et al., 2013; Kooijmans et al., 2017). 165 

Therefore, we had to define a minimal stomatal conductance to COS under these particular conditions when there 

is no CO2 assimilation. The minimal conductance to CO2 used in ORCHIDEE is based on the residual stomatal 

conductance if the irradiance approaches zero, represented as the 𝑔0 offset in the stomatal conductance models 

(see equations (15) for C3 and (25) for C4 plants in Yin and and Struik, 2009). In the absence of water stress, 𝑔0 

takes a constant value for C3 (0.00625 mol CO2 m−2 s−1) and C4 (0.01875 mol CO2 m−2 s−1) plants. This constant 170 

is multiplied by a water-stress function to compute the minimal conductance. This minimal conductance to CO2 

was then applied under conditions when there is no CO2 assimilation, multiplied by the ratio to convert the 

conductance to CO2 into a conductance to COS. We thus model COS assimilation even at night, for all PFTs, and 

in winter for evergreen species, depending on water stress conditions.  

2.1.4 Simulations protocol 175 

All simulations were preceded by a “spin-up” phase to get to an equilibrium state where the considered carbon 

pools and fluxes are stable with no residual trends in the absence of any disturbances (climate, land use change, 

CO2 atmospheric concentrations) (e.g. Wei et al., 2014). A few decades are enough to equilibrate above-ground 

biomass and GPP. As we will transport not only COS, but also CO2 (see Sect. 2.4 below), we need a longer spin-

up where all carbon pools including those in the soil are stable and the net CO2 fluxes oscillate around zero. 180 

Equilibrating the ecosystem photosynthesis with its respiration takes a long time as the slowest soil carbon pool 

has a residence time on the order of one thousand years. The ORCHIDEE model has a built-in spin-up procedure 

to accelerate the convergence towards this equilibrium state, using a pseudo-analytical iterative estimation of the 

targeted carbon pools, based on Lardy et al. (2011). For global simulations, we first performed a 340-year spin-up 

phase with non-varying pre-industrial atmospheric CO2 concentration and vegetation map, cycling over the same 185 

10 years of meteorological forcing files, where the final relative variation of the global slowest soil carbon pool 

was less than 5%. Starting from this equilibrium state, a transient state simulation was then run applying climate 

change, land use change and increasing CO2 atmospheric concentrations, and COS and GPP fluxes were calculated 

from 1860 to 2017. We performed site simulations at the Harvard Forest (United States) and Hyytiälä (Finland) 

FLUXNET sites (see below). For the two sites, we first performed a spin-up simulation cycling over the available 190 

years of the FLUXNET forcing files, for around 340 years, using a constant atmospheric CO2 concentration 

corresponding to the first year of the FLUXNET forcing file. We then performed the transient simulations over 

the available FLUXNET years, for each site, with a varying CO2 atmospheric concentration.  
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2.2 Evaluation of vegetation COS fluxes at two FLUXNET sites 

Vegetation COS flux direct or derived measurements were available at the Hyytiälä (Finland) and Harvard Forest 195 

(United States) FLUXNET sites. The Hyytiälä site (61.85°N, 24.29°E) is a boreal evergreen needleleaf forest 

dominated by Scots pine. Branch measurements of COS fluxes were made in a Scots pine tree from March to July 

2017 using gas-exchange chambers (Kooijmans et al., 2019); fluxes were derived from mole fraction changes 

when the chambers were closed once every hour. Measurements were made with an Aerodyne Quantum Cascade 

Laser Spectrometer (QCLS) and were calibrated against reference standards (Kooijmans et al., 2016). Fluxes from 200 

empty chambers were regularly measured to be able to correct for gas exchange by the chamber and tubing material 

(Kooijmans et al., 2019). We also used the Hyytiälä COS ecosystem fluxes (Kohonen et al., 2020); eddy covariance 

fluxes were measured during years 2013-2017 at 23 m height, approximately 6 m above the canopy height. Flux 

data were processed, quality screened and gap-filled according to recommendations by Kohonen et al. (2020).  

Soil fluxes were also available for year 2015 (Sun et al., 2018a), we thus derived the COS vegetation fluxes at 205 

canopy scale for that year from the difference between ecosystem and soil fluxes. Soil fluxes were generally low 

compared to plant uptake. 

The Harvard Forest site (42.54°N, 72.17°W) is a temperate deciduous broadleaf forest with mainly red oak, red 

maple and hemlock. Ecosystem COS eddy flux measurements were carried out from a tower from May to October, 

in 2012 and 2013, using an Aerodyne QCLS and calibrated using gas cylinders. They were further split into 210 

vegetation and soil components, using soil chamber CO2 measurements and a sub-canopy flux-gradient approach 

(Wehr et al., 2017).  

The simulated COS fluxes were evaluated against measurements using the Root Mean Square Deviation: 

𝑅𝑀𝑆𝐷 =
√∑ (𝐹𝐶𝑂𝑆

𝑂𝑏𝑠(𝑛) − 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛))

2
𝑁
𝑛=1

𝑁
 

(4) 

where 𝑁 is the number of considered observations, 𝐹𝐶𝑂𝑆
𝑂𝑏𝑠(𝑛) is the nth observed COS flux and 𝐹𝐶𝑂𝑆

𝑀𝑜𝑑(𝑛) is the nth 

modelled COS flux, and the relative RMSD: 215 

𝑟𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆𝐷

∑ 𝐹𝐶𝑂𝑆
𝑂𝑏𝑠(𝑛)𝑁

𝑛=1

𝑁

 (5) 

which is the RMSD divided by the mean value of observations. 

2.3 Global scale flux estimates and Comparisons with the LRU approach 

We compared our estimate for plant COS uptake at global scale to former studies, with a focus on the LRU 

approach, evidencing some uncertainties when possible. We also applied the LRU approach to derive new 

estimates of global plant COS uptake for comparison, using a monthly climatology of our modelled GPP fluxes 220 

over the 2000-2009 period, a constant atmospheric concentration of 500 ppt for COS and global yearly values for 

CO2 (from 368 ppm for year 2000 to 386 ppm for year 2009). We considered two sets of constant PFT-dependent 

LRU values. The first set (LRU_Seibt) was taken from Seibt et al. (2010), based on the observed LRU values 

displayed in their Table 3 (intermediate column). The second set (LRU_Whelan) used constant values for C3 

(1.68) and C4 (1.21) plants where the values are an average over different field and laboratory measurements as 225 

assembled by Whelan et al. (2018). Both sets are listed in Table 6. 

Reciprocally, we derived LRU values using the monthly climatology of our modelled COS and GPP fluxes over 

the 2000-2009 period. LRU values were computed for all strictly positive GPP values. For each PFT, we studied 
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the spatio-temporal distribution of LRU values among grid cells where the PFT was present. Considering that the 

objective of the LRU approach was to estimate COS fluxes from GPP using a constant value per PFT, the optimal 230 

LRU value for each PFT was obtained by linearly regressing COS fluxes against GPP multiplied by the ratio of 

the mean COS to CO2 concentrations, with no offset, thus: 

𝐿𝑅𝑈_𝑂𝑝𝑡 =

∑ 𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛)𝐺𝑃𝑃𝑀𝑜𝑑(𝑛)

[𝐶𝑂𝑆(𝑛)]𝑎

[𝐶𝑂2(𝑛)]𝑎

𝑁
𝑛=1

∑ (𝐹𝐶𝑂𝑆
𝑀𝑜𝑑(𝑛))

2
𝑁
𝑛=1

 (6) 

with N the number of grid cell-month simulated fluxes where the PFT is present in the monthly climatology. 

We compared this new set of optimal PFT-dependent LRU values against LRU_Seibt and LRU_Whelan. 

We finally used the 𝐿𝑅𝑈_𝑂𝑝𝑡 values to re-compute the monthly mean COS fluxes from our modelled monthly 235 

mean GPP, and compared with the mechanistic COS flux calculation. The differences, due to the non-linearity of 

the COS flux calculation, provide some information on the use of a simplified approach based on mean LRU 

values. 

2.4 Simulations of COS concentrations and Evaluation at NOAA air sampling sites 

The vegetation COS fluxes, as well as all other sources and sinks of the global COS budget, based on their latest 240 

estimates, are transported with an atmospheric transport model, so that we are able to simulate 3D COS 

atmospheric concentrations and compare them to the NOAA surface measurements. 

2.4.1 The atmospheric transport model LMDz 

In order to simulate COS and CO2 concentrations in the atmosphere, we used the version of the atmospheric 

component LMDz of the Institut Pierre-Simon Laplace Coupled Model (IPSL-CM) (Dufresne et al., 2013) which 245 

has been contributing to the CMIP6 exercise. To reduce the computation time, we used its off-line mode: 

precomputed air mass fluxes provided by the full version of LMDz are used to transport the different tracers 

(Hourdin et al., 2006). This version is further called LMDz6 and is described in Remaud et al. (2018) and 

references therein for the transport of CO2. The horizontal winds are nudged towards ECMWF meteorological 

analyses (ERA-5, https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5) to 250 

realistically account for large scale advection. The tropospheric OH oxidation of COS is calculated from OH 

monthly data that are produced from a first simulation done with the INCA tropospheric photochemistry scheme 

(Folberth et al., 2006; Hauglustaine et al., 2004, 2014). The photolysis reaction of COS in the stratosphere is not 

considered: the lifetime of COS in the stratosphere is 64 years (Barkley et al., 2008). The model is set up at a 

horizontal resolution of 3.8° x 1.9° (96 grid cells in longitude and latitude) with 39 hybrid sigma-pressure levels 255 

reaching an altitude up to about 75 km, corresponding to a vertical resolution of about 200-300 m in the planetary 

boundary layer. The model timestep is 30 minutes and the output concentrations are 3-hourly averaged.  

2.4.2 Atmospheric simulations: sampling methods and data processing 

We ran the LMDz6 version of the atmospheric transport model described above for the years 2000 to 2009. The 

prescribed COS and CO2 fluxes used as model inputs are presented in Table 1 and Table 2. The GPP estimated by 260 

ORCHIDEE (148.1 Gt C yr-1) is on the high range among the model estimates (Anav et al., 2015), with a 

corresponding high respiration (145.7 Gt C yr-1) to ensure a realistic net ecosystem exchange (Friedlingstein et al., 

2019). However, other high GPP estimates can be found in the literature such as Welp et al. (2011) that suggest a 

https://doi.org/10.5194/bg-2020-381
Preprint. Discussion started: 5 November 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

range of 150 to 175 based on 𝛿 𝑂18  data. Likewise, Joiner et al. (2018) have proposed a new GPP product, based 

on satellite data and calibrated on FLUXNET sites, with an estimate around 140 Gt C yr-1 for 2007. 265 

The fluxes are given as a lower boundary condition of the atmospheric transport model (LMDz), which then 

simulates the transport of COS and CO2 by the atmospheric flow. The atmospheric COS seasonal variations are 

likely to be dominated by the seasonal exchange with the terrestrial vegetation, while the mean mole fractions 

result from all sources and sinks of COS, some of which are still largely unknown (e.g. ocean fluxes, Whelan et 

al., 2018). In this study, we only focus on the seasonal cycle and do not attempt to simulate the annual mean value, 270 

we thus started from a null initial state. The atmospheric transport is almost linear with respect to the fluxes: the 

linearity is a property of the atmospheric transport, though it is violated in LMDz because of the presence of slope 

limiters in the advection scheme. Overall, since all the other LMDz components are linear, LMDz transport is 

generally considered linear with fluxes (Hourdin and Talagrand, 2006). Relying on this relationship, we first 

transported each flux separately, and then added all the simulated concentrations in the end, for each species.  275 

For all COS and CO2 observations, the model output was sampled at the nearest grid point and vertical level to 

each station, and was extracted at the exact hour when each flask sample had been taken. For each station, the 

curve-fitting procedure developed by the NOAA Climate Monitoring and Diagnostic Laboratory (NOAA/CMDL) 

(Thoning, 1989) was applied to modelled and observed COS and CO2 time series to extract a smooth detrended 

seasonal cycle. We first fitted a function including a second-order polynomial term and 4 harmonic terms, and 280 

then applied to the residuals a low pass filter with either 80 or 667 days as short-term and long-term cut-off values, 

respectively. The detrended seasonal cycle is defined as the smooth curve (full function plus short-term residuals) 

minus the trend curve (polynomial plus long-term residuals).  

 

Table 1: Prescribed COS surface fluxes used as model input. Mean magnitudes of different types of fluxes are given for 285 
the period 2000-2009  

*A bug has been discovered in the parameterization of direct COS emissions in the NEMO PISCES ocean model: the hydrolysis 

rate was three times too low, resulting in an artificial build-up of COS in seawaters. As a correction, we divided by three the 

total amount of oceanic COS fluxes within a year, assuming that the bug does not affect the spatial pattern of direct emissions 

of COS. 290 

Type of COS flux Temporal resolution Total (Gg S yr-1) Data Source 

Anthropogenic Monthly, interannual 337.3 Zumkehr et al. (2018) 

Biomass burning Monthly, interannual 56.3 Stinecipher et al. (2019) 

Soil Monthly, climatological -409.0 Launois et al. (2015b) 

Ocean Monthly, climatological 444.7 Kettle (2002) for indirect 

oceanic emissions (via CS2 

and DMS oxydation), and 

Launois et al. (2015a) for 

direct oceanic emissions. The 

direct emissions are rescaled 

to be equal to 200 Gg S yr-1 

(*). 

Vegetation uptake Monthly, interannual 
See Table 6. 

This work, including 

mechanistic and LRU 

https://doi.org/10.5194/bg-2020-381
Preprint. Discussion started: 5 November 2020
c© Author(s) 2020. CC BY 4.0 License.



9 

 

approaches (Seibt et al., 

2010; Whelan et al., 2018).  

 

Table 2: Prescribed CO2 surface fluxes used as model input. Mean magnitudes of different types of fluxes are given for 

the period 2000-2009 

Type of CO2 flux Temporal resolution Total (Gt C yr-1) Data Source 

Fossil fuel Monthly, interannual 7.7 ECJRC/PBL EDGAR 

version 4.2 

Biomass burning Monthly, interannual 1.9 GFED 4.1s  

Respiration (including the 

land use emissions and 

wood harvest) 

Monthly, interannual 145.7 ORCHIDEE  

Ocean Monthly, climatological -1.3 Landschützer et al. (2015) 

GPP Monthly, interannual -148.1 ORCHIDEE 

2.4.3 COS and CO2 concentrations at the NOAA/Global Monitoring Laboratory surface sites 

We used the NOAA/GML measurements of both CO2 and COS at 10 sites located on both hemispheres, listed in 295 

Table 3.   

 

Table 3: List of air sampling sites selected for evaluation of COS and CO2 concentrations 

Site Short 

name 

Coordinates Elevation (m 

above sea level) 

Comment 

South Pole, Antarctica, United 

States 

SPO 90.0°S, 24.8° W 2810  

Cape Grim, Australia CGO 40.4°S, 144.6°W 164 inlet is 70 m aboveground 

Tutuila, American Samoa SMO 14.2°S, 170.6°W 77  

Cape Kumukahi, United States KUM 19.5°N, 154.8°W 3  

Mauna Loa, United States MLO 19.5°N, 155.6°W 3397   

Niwot Ridge, United States NWR 40.0°N, 105.54°W 3475  

Wisconsin, United States LEF 45.9°N, 90.3°W 868 inlet is 396 m aboveground 

on a tall tower 

Mace Head, Ireland MHD 53.3°N, 9.9°W 18  

Barrow, United States BRW 71.3°N, 155.6°W 8   

Alert, Canada ALT 82.5°N, 62.3°W 195  

 

The samples are collected as pair flasks one to five times a month since 2000 and are then analysed in the 300 

NOAA/GML’s Boulder laboratories with gas chromatography and mass spectrometry detection. The 

measurements are retained only if the difference between the pair flasks is less than 6.3 ppt for COS. These 

measurements can be downloaded from the ftp sites ftp://ftp.cmdl.noaa.gov/hats/carbonsulfide/ and, for CO2, at 

ftp://ftp.cmdl.noaa.gov/ccg/co2.  
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2.4.4 Evaluation metrics 305 

To evaluate and compare the performances of the mechanistic and LRU approaches at different NOAA surface 

sites, we used the normalised standard deviation (NSD) and the Pearson correlation coefficient (R). NSD is 

calculated as the ratio between the standard deviation of the simulated concentrations and the observed 

concentrations at the NOAA surface sites. NSD and R values closer to 1 indicate a better accuracy of the model. 

3 Results 310 

3.1 Site scale conductances and COS fluxes 

3.1.1 Modelled conductances 

To investigate the importance of each conductance in vegetation COS uptake we compared the three simulated 

conductances: leaf boundary layer, stomatal and internal, studying their variability and their environmental drivers 

at the diel and seasonal scales. The boundary layer conductance to COS is higher than the two other conductances 315 

by a factor on the order of 50 (see Table A1 for more detailed statistics). As a high conductance value is equivalent 

to a low resistance to COS transfer, we focused only on the stomatal (𝑔
𝑆_𝐶𝑂𝑆

) and internal (𝑔
𝐼_𝐶𝑂𝑆

) conductances, 

which are the two most limiting factors to plant COS uptake. 
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Figure 1: Mean diel cycles of simulated conductances for each month for Harvard Forest in 2012 (a) and Hyytiälä in 320 
2017 (b)  

Figure 1 presents the mean diel (i.e. 24-hourly) cycles of the internal and stomatal conductances for each month, 

computed over 2012 at Harvard Forest and 2017 at Hyytiälä. The two conductances follow the same seasonal 

variations. Both increase during the growing season when vegetation becomes active and reach a maximum in 

July. Then, the conductances start to decline to a minimum value in winter. Harvard Forest is predominantly a 325 

deciduous forest and winter values of the two conductances are zero at this site as there are no leaves in that season. 

Hyytiälä on the other hand is an evergreen pine forest, such that daytime stomatal conductance in winter does not 

become zero. Diel variations at both sites are represented by a rise in both conductances in the morning with a 
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maximum around midday. The conductances drop in the afternoon to reach minimum values at night. However, 

between May and September, there is an inversion of the limiting conductance depending on the time of the day. 330 

The internal conductance is lower than the stomatal conductance in the morning and until early afternoon, while 

the stomatal conductance is the lowest at night. Moreover, in summer, the amplitude of diel variations of the 

internal conductance is lower than the amplitude of diel variations for the stomatal conductance. Also, the 

nighttime minimum value of the internal conductance displays larger seasonal variations than that of the stomatal 

conductance.  335 

 

To understand the shift of dominance between the two conductances during nighttime and daytime, we looked at 

the strength of covariation between the simulated conductances and environmental variables directly or indirectly 

involved in their modelling: air surface temperature (𝑇𝑎𝑖𝑟), photosynthetically active radiation (𝑃𝐴𝑅), vapor 

pressure deficit (𝑉𝑃𝐷) and soil moisture (𝑆𝑀). The results are presented for the Hyytiälä site as an example. 340 
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Figure 2: Mean diel cycle of simulated conductances and their environmental drivers for each month at Hyytiälä (2017). 

a) PAR and stomatal conductance, b) air temperature and internal conductance, c) VPD and stomatal conductance, d) 

soil moisture and internal conductance. 345 

The simulated stomatal conductance, 𝑔
𝑆_𝐶𝑂𝑆

, is linearly related to the CO2 assimilation, which depends mainly on 

𝑃𝐴𝑅, and 𝑔
𝑆_𝐶𝑂𝑆

 also depends on 𝑉𝑃𝐷 (Yin and Struik, 2009). 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑃𝐴𝑅 show the same variations for 

diel and seasonal cycles, and the daily maximum values occur at the same time (Figure 2a). Computing coefficients 

of determination, we found that 64% of the 𝑔
𝑆_𝐶𝑂𝑆

 variance is explained by PAR, while 32% of the simulated 

internal conductance variance is explained by PAR. The mean diel cycle of 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑉𝑃𝐷 (Figure 2c) also show 350 

similar diel variations but we notice that diel cycles of the 𝑔
𝑆_𝐶𝑂𝑆

 are ahead of 𝑉𝑃𝐷 diel cycles, except in winter 

where diel cycles differ between 𝑔
𝑆_𝐶𝑂𝑆

 and 𝑉𝑃𝐷. 𝑉𝑃𝐷 explains 47% of the stomatal conductance variance and 

67% of the internal conductance.  

The simulated internal conductance, 𝑔
𝐼_𝐶𝑂𝑆

, is proportional to 𝑉𝑚𝑎𝑥, which represents the Rubisco activity for 

CO2. 𝑉𝑚𝑎𝑥 is assumed to be a measure for the CA activity for COS, and depends on 𝑇𝑎𝑖𝑟 and 𝑆𝑀 in the model. 355 

The mean diel cycles of the simulated 𝑔
𝐼_𝐶𝑂𝑆

 and of 𝑇𝑎𝑖𝑟 follow the same variations and show the same amplitude 

(Figure 2b). 90% of the 𝑔
𝐼_𝐶𝑂𝑆

 variance is explained by 𝑇𝑎𝑖𝑟, while 50% of the 𝑔
𝑆_𝐶𝑂𝑆

 variance is explained by 

𝑇𝑎𝑖𝑟. 𝑔
𝐼_𝐶𝑂𝑆

 and 𝑆𝑀 show similar diel variations in spring and summer (Figure 2d). 𝑆𝑀 and the conductances are 

anti-correlated as water loss by transpiration will rise with increasing conductances (as well as soil evaporation 

with increasing temperatures). 𝑆𝑀 explains 44% of the 𝑔
𝐼_𝐶𝑂𝑆

 variance while it explains only 22% of the 𝑔
𝑆_𝐶𝑂𝑆

 360 

variance.  

Partial correlations presented in Table 4 also confirm the dominance of 𝑃𝐴𝑅 (0.61) and 𝑇𝑎𝑖𝑟 (0.54) on 𝑔
𝑆_𝐶𝑂𝑆

 

response, while 𝑇𝑎𝑖𝑟 (0.84) and 𝑉𝑃𝐷 (0.55) are the main environmental factors for 𝑔
𝐼_𝐶𝑂𝑆

. This explains why 

𝑔
𝐼_𝐶𝑂𝑆

 is more limiting in winter because 𝑇𝑎𝑖𝑟, is low with thus lower enzyme activities, considering here 𝑇𝑎𝑖𝑟 as 

a proxy of the leaf temperature, and as soon as 𝑇𝑎𝑖𝑟 rises in spring the 𝑔
𝐼_𝐶𝑂𝑆

 becomes less limiting. 365 

Table 4: Partial correlations between conductances and environmental drivers 

 𝑃𝐴𝑅 𝑇𝑎𝑖𝑟  𝑉𝑃𝐷 𝑆𝑀 

𝑔𝑆_𝐶𝑂𝑆 0.61 0.54 -0.30 0.04 

𝑔𝐼_𝐶𝑂𝑆 -0.11 0.84 0.55 0.25 
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3.1.2 COS fluxes  

3.1.2.1 Daily cycle 

 370 

Figure 3: Mean diel cycle of observed vegetation COS flux (Wehr et al., 2017) and modelled COS vegetation flux in 

June and July 2012 and 2013 (Harvard Forest) using an atmospheric convention where an uptake of COS by the 

ecosystem is negative. The shaded areas above and below each curve represent one standard-deviation of the considered 

hourly values over the June-July period. 

COS assimilation is minimum at night (between 8 PM and 4 AM) for observed and simulated fluxes (Figure 3). 375 

During night, uptake of modelled COS flux is around -8 pmol m−2 s−1 while field observations vary between -5 

pmol m−2 s−1 and 0 pmol m−2 s−1. In the morning, both simulated and observed uptakes increase. However, while 

the simulation shows a maximum assimilation of -38 pmol m−2 s−1 at noon, the maximum assimilation for 

observations is reached at 10 AM with a flux of -49 pmol m−2 s−1. Observed fluxes have thus a greater daily 

amplitude than simulated fluxes, and are a little ahead of the simulation, but this shift does not seem significant 380 

given the large variability of observations, as represented by the one standard-deviation in Figure 3. We notice 

that the simulated diel cycle of COS flux is similar to the ones of the stomatal and internal conductances, with a 

stronger limitation by the internal conductance in the morning. RMSD for this mean diel cycle is 8.0 pmol m−2 s−1, 

and relative RMSD is 35%. A similar study at the Hyytiälä site over May-November in year 2015 yields a similar 

underestimation of the amplitude of the mean diel cycle, with an RMSD of 4.0 pmol m−2·s−1 and a relative RMSD 385 

of 36%. 
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3.1.2.2 Seasonal cycle 

 

Figure 4: Mean seasonal cycle of simulated and observed weekly average vegetation COS flux in 2012 and 2013 

(Harvard Forest). The shaded areas above and below each curve represent one standard-deviation of the daily means 390 
within the considered week. 

The simulated weekly seasonal vegetation COS uptake follows the same trend as the observed one (Figure 4). 

COS uptake increases in spring when the vegetation growing season starts and decreases in autumn at the end of 

the forest activity period. Simulated and observed fluxes also take similar values over the two years. We notice 

that the amplitude of observed COS flux variations is larger than the one of modelled fluxes. The use of the eddy 395 

covariance method for field measurements can create noise, which could explain the larger fluctuations for field 

data. RMSD for the seasonal cycle is 7.5 pmol m−2 s−1, and the relative RMSD is 44%. At the Hyytiälä site over 

May-November in year 2015, the RMSD for the seasonal cycle is 2.4 pmol m−2 s−1, and the relative RMSD is 25%. 
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3.1.2.3 Nighttime fluxes 

 400 
Figure 5: Seasonal cycle of diurnal (dotted curve) and nocturnal (dashed curve) for observed (black) and modelled (red) 

vegetation COS fluxes, with the percentage of the diurnal to the total flux (solid curve) at Harvard Forest in 2012-2013 

Figure 5 compares mean diurnal and nocturnal observed and modelled vegetation COS fluxes and the percentage 

of the diurnal to the total flux, computed for each month over 2012 and 2013 at the Harvard Forest site. We selected 

an arbitrary PAR threshold of 50 μmol m−2 s−1 to split between diurnal and nocturnal fluxes. We see that the 405 

modelled nocturnal flux varies across the growing season, with a maximum uptake of -8 pmol m−2 s−1 reached in 

July and August and a lower assimilation in the enclosing colder months. This seasonal variation can be explained 

by the seasonal change in leaf area index (LAI) and the conductances dependency on 𝑇𝑎𝑖𝑟, which increases in 

summer. The observed nighttime fluxes are of the same magnitude but present an opposite seasonal cycle with 

lower uptake at the summer peak, albeit variations are within the one-standard deviation represented in Figure 3. 410 

The modelled nighttime fluxes account for 20 to 30% of the total COS uptake. The observed ones exhibit a larger 

range, between 5 and 40%. Kooijmans et al. (2017) found a ratio of 21% at the Hyytiälä site. These ratios are in 

line with other studies: Maysek et al. (2014) reported a ratio of 29 ± 5% over a wheat field in Oklahoma, and Sun 

et al. (2018b) one of 23% for the San Joaquin Freshwater Marsh site in California. The results may vary given the 

definitions adopted for nighttime and daytime periods. 415 

3.1.3 LRU as a function of PAR 

LRU decreases as a function of PAR, as initially observed by Stimler et al. (2010). Kooijmans et al. (2019) made 

measurements in two branch chambers installed at the top of the canopy in two Scots pine trees in Hyytiälä. They 

plotted the response of LRU to light, as quantified by the photosynthetically active radiation (PAR). To compare 

the ORCHIDEE model behaviour to these field data, we determined an LRU using our modelled COS and GPP 420 

fluxes, considering a constant atmospheric concentration of 500 ppt for COS and global yearly values for CO2. 
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Figure 6: LRU against PAR (Hyytiälä) for ORCHIDEE outputs and measurements (hourly data measured between 18 

May and 13 July, Kooijmans et al., 2019). The light green circles represent average LRU values for chambers 1 and 2, 425 
light orange circles represent modelled LRU values. A moving average with a window of 50 points leads to the orange 

smooth curve for the model. The green line represents the function LRU=607.26/PAR + 0.57 from Figure S6 of the 

Kooijmans et al. (2019) supplement. To focus on LRU behaviour when PAR decreases, we plotted LRU response to 

PAR for PAR < 1500 μmol m−2 s−1. 

LRU increases with low PAR values for both branch chambers and for the model, and converge towards a constant 430 

value for high PAR values (Figure 6). This demonstrates that assuming a constant value for LRU, and not 

considering an increase in LRU under low light conditions, will result in erroneous estimation of COS fluxes. The 

increasing LRU can be explained by the light-dependence of the photosynthesis reaction contrary to the CA 

activity that is light-independent. Consequently, CO2 fluxes tend to zero when PAR decreases while COS is still 

taken up in the dark, leading in theory to infinite values of LRU. It is to be noted that the drop of LRU when PAR 435 

increases is much sharper in the model that in the observations. 
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3.2 Global scale plant COS fluxes and Study of LRU values 

3.2.1 Comparison of plant COS uptake sink estimates 

 440 

Figure 7: Map of average vegetation COS fluxes over the 2000-2009 period, from the mechanistic model as implemented 

in ORCHIDEE  

The mechanistic approach simulated in the ORCHIDEE model gives a plant COS uptake of -756 Gg S yr-1 over 

the 2000-2009 period. COS fluxes are the strongest in South America, Central Africa and Southeast Asia (Figure 

7), as expected as these regions are also the most productive ones for GPP. 445 

 

Table 5: Overview of COS plant uptake per year (Gg S yr-1) 

 

 

Kettle et al.  

(2002) 

Montzka et al.  

(2007) 

Suntharalingam 

et al. (2008) 

Berry et al. 

(2013) 

Launois et al. (2015b) 

This study 
ORC. LPJ CLM4 

Uptake by 

plants 
-238 (30) -730 to -1500 

-490 

(-460 to -530) 
-738 -1335 -1069 -930 -756 

 

The more recent studies (Montzka et al., 2007; Suntharalingam et al., 2008; Berry et al., 2013; Launois et al., 

2015b) show a higher global plant sink than the one initially found by Kettle et al. (2002) (Table 5). Kettle et al. 450 

(2002) used an LRU-like approach, based on NPP and on the NDVI temporal evolution, and already acknowledged 

their estimate was assumed to be a lower bound one. Estimates from plant chambers and atmospheric 

measurements (Sandoval et al., 2005; Montzka et al., 2007; Campbell et al., 2008) confirmed that the COS plant 

sink should be twofold to fivefold larger than estimated in Kettle et al. (2002). Sutharalingham et al. (2008) also 

found a low estimate of -490 Gg S yr-1, using 3D modelling of COS atmospheric concentrations, constrained by 455 

surface site observations. We note that our estimate is similar to the -738 Gg S yr-1 found by Berry et al. (2013), 

which was implemented in the Simple Biosphere (SiB) 3 LSM. The reason for this similarity can be that the leaf 

photosynthesis and stomatal conductance in both LSMs are derived from the same classical models from Farquhar 

et al. (1980), Collatz et al. (1992) and Ball et al. (1987).  

Launois et al. (2015b) adopted an LRU approach, using constant LRU values for large MODIS vegetation classes, 460 

adapted from Seibt et al. (2010). Based on these values and a set of global GPP estimates from three LSMs 
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(ORCHIDEE, LPJ, CLM4), the authors derived the corresponding global vegetation COS uptakes reported in 

Table 5. The selection of the LSM itself thus introduces an uncertainty on the global vegetation COS uptake of 

around 40% in this case. 

Applying the LRU values derived from Seibt et al. (2010) (Table 6) to the global GPP simulated in this study leads 465 

to the highest plant COS uptake with -1343.3 Gg S yr-1. Seibt et al. (2010) report LRU values for different internal 

conductance limitations. The LRU values that we used here represent a small limitation of internal conductance 

to the total COS uptake (the ratio of stomatal to internal conductances is 0.1). A smaller global COS uptake can 

be expected when the LRU values with a more limiting effect of the internal conductance are used. Applying the 

LRU values derived from Whelan et al. (2018) (Table 6) leads to an intermediate estimate of -808.3 Gg S yr-1, 470 

which is closer to the global uptake obtained with the mechanistic model. This analysis shows that the choice for 

certain LRU values introduces an uncertainty on the global vegetation COS uptake (around 70% in this case), and 

highlights the importance of deriving accurate PFT-dependent LRU values. 

3.2.2 Dynamics of simulated LRU values 

The PFT distributions of the LRU values, computed using a monthly climatology of mechanistic COS and GPP 475 

fluxes over the 2000-2009 period, do not support the idea of a constant PFT-dependent LRU value (Figure 8). 
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Figure 8: Distributions of the LRU values computed from the mechanistic approach, using a monthly climatology of 

simulated COS and GPP fluxes over the 2000-2009 period. Each subplot represents one of the 14 vegetated PFTs used 

in ORCHIDEE, considering all grid cells where the PFT is present. The x-axis represents the LRU value between 0 and 480 
3, with 0.1 bins. The y-axis represents the occurrences. For each PFT, the red vertical bar represents the median LRU 

value, the green vertical bar represents the LRU optimal value that minimizes the error between plant COS uptakes 

estimated by the mechanistic approach and the LRU approach for all pixels of the considered PFT (see names and 

abbreviations in Table 6). 

The distributions are usually not gaussian; nor are they all unimodal, as is the case for PFT 12 C3 Agriculture. The 485 

distributions for C4 PFTs (PFT 11 C4 Grass and PFT 13 C4 Agriculture) exhibit a large spread. The median values 

are represented by vertical red bars in Figure 8 and listed in Table 6. The optimal values (𝐿𝑅𝑈_𝑂𝑝𝑡) obtained by 

linearly regressing COS fluxes against GPP multiplied by the ratio of the mean COS to CO2 concentrations (see 

Figure B1) are represented by vertical green bars and also listed in Table 6. They are usually higher than the 

median values, with a mean difference of 12.1%. Using either monthly means or yearly means of fluxes gives very 490 

similar optimal LRU values, the mean difference being only -0.2%. 

 

Table 6: Table of LRU per PFT. First column: median and optimal LRU values calculated from the simulated 

mechanistic COS and GPP fluxes. Middle columns: calculated from Seibt et al. (2010) for the ORCHIDEE PFT 

classification. Last column: from Whelan et al. (2018) 495 

PFT ORCHIDEE 

Seibt Whelan 
Long name Abbreviation Median Optimal 

1 - Bare soil Bare 0.00 0.00  0.00  0.00 

2 - Tropical Broad-leaved Evergreen Forest TroBroEver 1.56 1.72  3.09  1.68 

3 - Tropical Broad-leaved Raingreen Forest TroBroRain 1.48 1.62  3.38  1.68 

4 - Temperate Needleleaf Evergreen Forest TempNeedleEver 1.17 1.39  1.89  1.68 

5 - Temperate Broad-leaved Evergreen Forest TempBroEver 0.86 1.06  3.60  1.68 

6 - Temperate Broad-leaved Summergreen Forest TempBroSum 1.06 1.31  3.60  1.68 

7 - Boreal Needleleaf Evergreen Forest BorNeedleEver 0.82 0.95  1.89  1.68 

8 - Boreal Broad-leaved Summergreen Forest BorBroSum 0.84 1.03  1.94  1.68 

9 - Boreal Needleleaf Summergreen Forest BorNeedleSum 0.76 0.92  1.89  1.68 

10 - Temperate C3 Grass TempC3grass 1.01 1.18  2.53  1.68 

11 - C4 Grass C4grass 1.38 1.45  2.00  1.21 

12 - C3 Agriculture C3crops 1.21 1.37  2.26  1.68 

13 - C4 Agriculture C4crops 1.75 1.72  2.00  1.21 

14- Tropical C3 grass TropC3grass 1.40 1.52  2.39  1.68 

15- Boreal C3 grass BorC3grass 0.87 0.97  2.02  1.68 

 

𝐿𝑅𝑈_𝑂𝑝𝑡 values are much smaller than LRU_Seibt values for all PFTs, roughly by a factor 2. They are closer to 

the LRU_Whelan values, being smaller for all C3 PFTs except the Tropical Broad-leaved Evergreen Forests, and 

higher for C4 PFTs (Table 6). In the 𝐿𝑅𝑈_𝑂𝑝𝑡 set, the most productive PFTs (tropical forests and C4 crops) have 

the highest values around 1.7, while the less productive PFTs (boreal forests and grasses) have the lowest values 500 

https://doi.org/10.5194/bg-2020-381
Preprint. Discussion started: 5 November 2020
c© Author(s) 2020. CC BY 4.0 License.



22 

 

around 0.9. To the contrary, in the LRU_Seibt set, temperate broad-leaved forests have the highest values (3.6) 

while needleleaf forests have the smallest value around 1.9.  

 

Another way to understand the distribution of LRU values is to look directly at the scatter plots of monthly COS 

fluxes against GPP fluxes, multiplied by the ratio of COS to CO2 concentrations (Figure B1). For most PFTs, it is 505 

in fact obvious that the relationship shows non-linear features, disagreeing with the classical linear LRU model. 

Based on these findings, we fitted a simple exponential model as: 

𝐹𝐶𝑂𝑆 = 𝑎 (𝑒
𝑏𝐺𝑃𝑃

[𝐶𝑂𝑆]𝑎
[𝐶𝑂2]𝑎 − 1) 

with two parameters a and b. However, given the large spread of the data around the model, the Akaike criteria is 

always favourable to the LRU linear model, so we won’t investigate further with this exponential model, more 510 

specific research is needed here in order to bridge this data gap. Still, it is important to note that the larger COS 

fluxes will in general be underestimated using a linear LRU approach. It also appears that in certain PFTs (4, 5, 7) 

small COS fluxes will be underestimated. 

 

We computed mean annual vegetation COS fluxes using our modelled GPP and this new 𝐿𝑅𝑈_𝑂𝑝𝑡 set of values 515 

and compared them to the mechanistic COS fluxes (Figure 9a). 
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Figure 9: a. Mean annual vegetation COS fluxes for the 2000-2009 period fluxes computed using a linear LRU approach 

with optimal values for each PFT. b. Differences between mechanistic and LRU-based fluxes. c. Relative differences 

(%) 520 

The maps of differences between the mechanistic and 𝐿𝑅𝑈_𝑂𝑝𝑡-based COS fluxes (Figure 9b), and relative 

differences (Figure 9c), provide evidence for the spatial errors introduced by considering a constant LRU value. 

The differences are always lower than 4 pmol m-2 s-1 in absolute values, and are mainly positive, with the main 

exception over the Amazon region where the mechanistic approach shows a larger uptake than the linear LRU 

approach. The difference between the global estimates of the two approaches is less than 2%; we could still 525 

improve the linear regression determining the LRU optimal value by weighting grid-cell fluxes with the 

corresponding surface of the PFT. 

We also compared the mean seasonal cycles of the COS vegetation flux over the 2000-2009 period, for the 

mechanistic approach and the 𝐿𝑅𝑈_𝑂𝑝𝑡-based approach, for each PFT (Figure 10). The seasonal cycles are very 

similar; for PFT 13 C4 Agriculture, the 𝐿𝑅𝑈_𝑂𝑝𝑡 -based cycle is slightly in advance as compared to the 530 

mechanistic cycle. 
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Figure 10: Mean seasonal cycle (monthly means) of COS for each PFT over the Northern hemisphere for the 2000-2009 

period. The solid line represents the mechanistic model, while the dashed line represents the optimal LRU approach. 

3.3 Simulating atmospheric COS concentration at surface stations  535 

We transported the global COS and CO2 fluxes (i.e. the ones obtained from the ORCHIDEE model plus the 

additional components of each cycle, listed in Table 1 and Table 2) with the LMDz6 atmospheric transport model 

as described in Sect. 2.4.2. We analysed COS concentrations derived from simulated COS fluxes obtained with 

the mechanistic and LRU approaches in regards with observed COS concentrations from the NOAA at a few 

selected sites.  540 
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Figure 11: Detrended temporal evolutions of simulated and observed CO2 and COS concentrations at two selected sites, 

for the mechanistic (ORCHIDEE Mechanist) and LRU approaches (ORCHIDEE Seibt, ORCHIDEE Whelan, 

ORCHIDEE LRU_eq), simulated with LMDz6 transport between 2007 and 2009. The ORCHIDEE LRU_eq line 

(orange) corresponds to the concentrations simulated using the optimal LRU values derived from the mechanistic 545 
model. Top: Mauna Loa station (MLO, Hawaii), bottom: Barrow station (BRW, Canada). The curves have been 

detrended beforehand and filtered to remove the synoptic variability (see Sect. 2.2.4) 

Figure 11 shows the detrended temporal evolution of CO2 and COS concentrations for the mechanistic and LRU 

approaches at Barrow (BRW, Canada) and Mauna Loa (MLO, Hawaii). The MLO site samples air masses coming 

from all over the northern hemisphere (Conway et al., 1994). CO2 seasonal amplitude at BRW reflects the 550 

contributions of surface fluxes from high latitude ecosystems (Peylin et al., 1999), but also from regions further 

south due to atmospheric transport (Parazoo et al., 2011; Graven et al., 2013). These two stations have been used 

to detect large-scale changes in ecosystem functioning (Graven et al., 2013; Commane et al., 2017). In spite of 

their importance, LMDz driven by the ORCHIDEE vegetation fluxes has difficulties in representing their seasonal 

cycles. For instance, at MLO, the simulated seasonal amplitude of CO2 is overestimated and precedes the 555 

observations by one month. 

For COS, the simulated concentrations match relatively well the observed seasonal variations and seem to be more 

in phase with the observations than for CO2. Such a feature could indicate that the phase issues with CO2 is not 

primarily driven by GPP issues but by the other CO2 flux components. The mechanistic model and its LRU optimal 

equivalent better reproduce the observed one-month lag between the COS and the CO2 simulation at MLO (i.e. 560 

the minimum COS lags the one of CO2) than the other LRU approaches (Whelan and Seibt). The simulations differ 

more in the amplitude than in the phase of their seasonal cycles. The mechanistic approach simulates an amplitude 
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lower than the LRU ones. At MLO for example, the lower amplitude of the mechanistic model is in better 

agreement with the observations. At BRW, its seasonal amplitude is also lower but is now underestimated. The 

COS concentration at this station from the mechanistic approach varies between +30 ppt and -50 ppt while it varies 565 

between +50 ppt (respectively +37) and -71 ppt (respectively -50) for the simulation based on Seibt et al. (2010) 

(respectively Whelan et al., 2018). This is a direct consequence of lower COS fluxes with the mechanistic model 

compared to the fluxes based on Seibt and Whelan LRU approaches. At both the MLO and BRW sites, the 

difference between the mechanistic model and its LRU optimal equivalent after being transported is lower than 8 

ppt, within the range of the observations uncertainty. 570 

 

Table 7: Normalized standard deviations (NSDs) of the simulated concentrations by the observed concentrations. 

Within brackets are the Pearson correlation coefficients (R) between simulated and observed COS concentrations for 

the mechanistic and LRU approaches, calculated between 2004 and 2009 at 10 NOAA stations. For each station, NSD 

and R closest to one are in bold and farthest ones are in italic. The time-series have been detrended beforehand and 575 
filtered to remove the synoptic variability (see Sect. 2.2.4).  

 SPO CGO SMO KUM MLO NWR LEF MHD BRW ALT 

ORCHIDEE 

Seibt 

1.15 

(0.96) 

0.67 

(0.5) 

0.58 

(-0.47) 

1.32 

(0.92) 

1.65 

(0.89) 

2.12 

(0.50) 

2.17 

(0.92) 

1.52 

(0.96) 

1.25 

(0.90) 

1.16 

(0.95) 

ORCHIDEE 

Whelan  

1.00 

(0.97) 

0.83 

(0.91) 

0.40 

(0.1) 

1.03 

(0.93) 

1.23 

(0.90) 

1.50 

(0.52) 

1.67 

(0.93) 

1.26 

(0.94) 

1.00 

(0.90) 

0.92 

(0.94) 

ORCHIDEE  

mechanist 

1.10 

(0.97) 

1.01 

(0.97) 

0.35 

(0.4) 

0.90 

(0.95) 

1.05 

(0.92) 

1.26 

(0.63) 

1.34 

(0.94) 

1.09 

(0.85) 

0.69 

(0.91) 

0.64 

(0.95) 

ORCHIDEE  

LRU_eq 

1.02 

(0.98) 

0.98 

(0.97) 

0.34 

(-0.5) 

0.85 

(0.94) 

0.94 

(0.92) 

1.21 

(0.50) 

1.34 

(0.94) 

1.04 

(0.88) 

0.68 

(0.91) 

0.64 

(0.95) 

 

Table 7 presents the NSDs and Pearson correlation coefficients between simulated and observed COS 

concentrations for the mechanistic and LRU approaches. We see that the simulation with Seibt et al. (2010) 

intermediate LRU values overestimates the seasonal standard deviation and has the lowest accuracy for most 580 

stations. It is difficult to tell whether the mechanistic model is better than the LRU approach based on Whelan 

values. While the mechanistic approach captures known features of the temporal dynamics of the COS to CO2 flux 

ratio, it underestimates the simulated concentrations at Alert (ALT, Canada) and Barrow (BRW, United States). It 

should be noted that, due to other sources of errors (in particular transport and oceanic emissions), the comparison 

presented here should be taken as a sensitivity study of COS seasonal cycle to the vegetation scheme rather than 585 

a complete validation of one approach.  

4 Discussion 

4.1 How can we use COS fluxes and the mechanistic COS model to improve the simulated GPP? 

The mechanistic model links vegetation COS uptake and GPP fluxes through the stomatal conductance model, 

which includes the minimal conductance as an offset, and the common use of the carboxylation rate of Rubisco, 590 

𝑉𝑚𝑎𝑥, in the internal conductance formulation for COS, and in the Rubisco-limited rate of assimilation for CO2. 

The downside is the introduction of the somewhat uncertain 𝛼 parameter that relates the COS internal conductance 

to 𝑉𝑚𝑎𝑥 . Using COS flux measurements to optimize the parameters of the stomatal and internal conductances 
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would thus in principle benefit the simulated GPP. This optimization may be done based on appropriate data 

assimilation techniques; for example, Kuppel et al. (2012) optimized key parameters of the ORCHIDEE model 595 

related to several processes including photosynthesis (see their Table 2), by assimilating eddy-covariance flux data 

over multiple sites. The approach relies on a Bayesian framework where a cost function including uncertainties on 

observations, model and parameters is minimized (Tarantola, 1987). The results obtained in this study pave the 

way for a similar approach using COS fluxes to optimise key parameters controlling GPP; they can be used to 

define an optimal set up for the a priori errors and the error correlations in a Bayesian framework. 600 

4.1.1 First step: Improving the mechanistic modelling of vegetation COS fluxes 

The chosen mechanistic model was able to reproduce observed vegetation COS fluxes at the Harvard Forest and 

Hyytiälä sites with RMSDs on the order of 40% without any calibration. However, at the Harvard Forest site, the 

diel cycles differ from the ones obtained in Wehr et al. (2017), derived from flux measurements (their Figure 4), 

and somewhat validated by the close agreement between two different methods (one from COS flux and one from 605 

water flux). The stomatal conductance in the ORCHIDEE model peaks more sharply in the morning, and the 

modelled internal conductance is lower and more variable than in Wehr et al. (2017). Diel variations in atmospheric 

[𝐶𝑂𝑆]𝑎, not accounted for in our model, cannot explain these differences, as they would only affect 𝐹𝐶𝑂𝑆 but not 

the conductances. These discrepancies indeed advocate for the assimilation of COS fluxes to optimize the 

parameters related to the internal and stomatal conductances. In our modelling framework, the internal 610 

conductance is assumed to be the product of 𝑉𝑚𝑎𝑥  by the 𝛼 parameter. This parameter has been calibrated by Berry 

et al. (2013) using gas exchange measurements of COS and CO2 uptake (Stimler et al., 2010; Stimler et al., 2012). 

They estimated two values of 𝛼, one for C3 and one for C4 plants, by performing a Type II regression between 

modelled COS fluxes and observations. As this 𝛼 parameter seems much more uncertain as compared to the 

relatively well known 𝑉𝑚𝑎𝑥 , and as it appears only as multiplied by 𝑉𝑚𝑎𝑥  in the COS internal conductance 615 

formulation, we should first try to optimize 𝛼 keeping 𝑉𝑚𝑎𝑥  fixed.  

4.1.2 Exploiting the alternative dominant role between stomatal and internal conductances 

Without being perfect, the mechanistic model could reproduce some expected behaviours. Thus, the mean diel 

cycles of simulated conductances for each month at Hyytiälä in 2017 (Figure 1b) show that the internal 

conductance is the limiting factor from January to April. This result is consistent with Kooijmans et al. (2019) who 620 

found that in the early season the COS flux was limited by the internal conductance. This is explained by low 

temperatures that inhibit CA activity and reduce mesophyll diffusion, which are the components of the internal 

conductance. Our finding of an inversion of the limiting conductance to COS flux between daytime and nighttime 

also agrees with Kooijmans et al. (2019) results, describing a larger effect of the stomatal conductance at night 

and a limitation of the COS flux by the internal conductance during daytime. Determining the limiting 625 

conductances to COS uptake depending on the time of day provides useful information, as it can be used to better 

target which model parameters to optimize, using data assimilation approaches. Thus, observations made in the 

morning and early afternoon could be used to better constrain the 𝛼 parameter when the internal conductance is 

limiting COS fluxes, at least as modelled on the C3 species of the two sites, and we could investigate whether the 

𝛼 parameter should be further quantified per PFT rather than simply per photosynthetic pathway. It is to be noted 630 

that for C4 species, the internal conductance is larger than for C3 species by a factor ten, so that stomatal 
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conductance is limiting, and it could be difficult and useless to try optimizing internal conductance using the 𝛼 

parameter. In addition to optimizing the parameters of the internal conductance, an improvement could be to 

replace it by the two factors it represents, i.e. the mesophyll conductance and CA activity. 

4.1.3 Exploiting nighttime conductances 635 

Recent studies have shown that nighttime field measurements of stomatal conductances often exhibit larger values 

than the ones used in models (Caird et al., 2007; Phillips et al., 2010). In the ORCHIDEE model, minimum 

conductances to CO2 take two different values: 6.25 mmol m-2 s-1 for C3 species and 18.75 mmol m-2 s-1 for C4 

species. However, Lombardozzi et al. (2017), using data from literature, found that observed nighttime 

conductances to CO2 range from 0 mmol m-2 s-1 to 450 mmol m-2 s-1 with an overall mean value of 78 mmol m-2 640 

s-1. Moreover, they defined a mean value for each PFT (see Table A2) while the ORCHIDEE model uses one value 

for all C3 species and another one for all C4 species. Using higher nighttime stomatal conductances in models has 

the impact of increasing plant transpiration and reducing available soil moisture, which alters water and carbon 

budgets, especially in semi-arid regions (Lombardozzi et al., 2017). Lower 𝑉𝑃𝐷 values at night, that could limit 

the impact of higher nitghttime stomatal conductances, follow however an increasing trend (Sadok and Jagadish, 645 

2020). A better representation of these minimal conductances in the model could then improve the constraint of 

gas exchange between the atmosphere and the terrestrial biosphere. During nighttime, the stomatal conductance 

limits COS uptake. In the model, the nocturnal stomatal conductance to COS is calculated from the above-

mentioned minimum stomatal conductance values. Therefore, nighttime observations of COS fluxes could be used 

to optimize the minimum stomatal conductance values for each PFT. These minimum values could then be 650 

compared to the ones estimated in Lombardozzi et al. (2017).  

 

We thus see that COS fluxes could be used, through standard data assimilation techniques, to optimize the model 

parameters related to conductances, thus contributing to the improvement of the GPP. However, many more COS 

flux measurements are needed over a large variety of biomes, first to assert the validity of the mechanistic COS  655 

model at global scale, and second to be assimilated in order to improve simulated conductances and GPP estimates.  

  

4.2 The mechanistic versus LRU approach 

The mechanistic model is able to reproduce the high temporal frequency LRU variations observed at sites. It is 

thus legitimate to consider this approach as more accurate than the classical linear LRU approach that uses a time-660 

constant LRU value per PFT to estimate COS fluxes from GPP. Taking the mechanistic approach as a reference, 

Figure 9 to 11 illustrate the uncertainty introduced by the constant-LRU approximation. For each PFT, we have 

taken the constant value as the regression slope of simulated COS fluxes against simulated GPP fluxes multiplied 

by the ratio of COS to CO2 atmospheric concentrations. The LRU values we have thus estimated show generally 

lower values than the ones derived from measurements, although these cover a large range (Seibt et al., 2010; 665 

Whelan et al., 2018). It is difficult to say whether in situ and laboratory measurements are too sparse and not 

representative enough of the variability of plants and environmental conditions across the globe to have a 

reasonable confidence in their derived mean or median LRU values, or if we can use these LRU values to falsify 

the modelled COS and/or GPP fluxes. 
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Without any calibration, the mechanistic approach performs similarly to LRU approaches, when COS is 670 

transported using all known COS fluxes as inputs, and COS concentrations are evaluated at stations of the NOAA 

network. We have now a much finer representation of the COS fluxes as, at every timestep, the model integrates 

the plant’s response to environmental conditions in the calculation of the internal and stomatal conductances, 

unlike in the LRU approach which uses constant values for each PFT.  

In order to quantify the first order uncertainty on 𝐹𝐶𝑂𝑆 related to the fact that we have used a constant [𝐶𝑂𝑆]𝑎 in 675 

our implementation of the Berry model, we computed an alternative 𝐹𝐶𝑂𝑆
′ , using the LRU approach based on a 

climatology of hemispheric monthly means of COS atmospheric concentrations (Montzka et al., 2007), the optimal 

LRU we derived in this study (given in Table 6), average yearly values for CO2 atmospheric concentrations, and 

a climatological seasonal cycle of simulated monthly GPP per PFT. Over the 2000-2009 period, the mean 

difference between the mean seasonal COS fluxes computed with this method (𝐹𝐶𝑂𝑆
′ ) and the ones simulated with 680 

the mechanistic model (𝐹𝐶𝑂𝑆 ) amounts to -7.9% over the Northern hemisphere. As expected, the seasonal 

amplitude of COS fluxes is dampened as [𝐶𝑂𝑆]𝑎 decreases with vegetation growth. We thus have to improve our 

methodology to consider a varying [𝐶𝑂𝑆]𝑎 as was done in Berry et al. (2013), either inside the ORCHIDEE model, 

or as a post-processing. This requires devising some trade-off between the high frequency timestep of ORCHIDEE 

and the cost of running the transport model. However, it is to be noted that there is no impact on the derived LRU 685 

values as the LRU does not depend on the considered [𝐶𝑂𝑆]𝑎, as long as the same one is considered for the 

computation of the COS fluxes in the mechanistic model (Eq. (3)) and for the computation of the LRU (Eq. (1)) 

(i.e. whether fixed or varying monthly). 

However, there is currently a larger uncertainty on other COS fluxes in the global COS budget, which have an 

important impact on simulated COS concentrations (Ma et al., 2020) and their relative seasonal changes. For 690 

example, if we use another estimation of the direct oceanic fluxes (Lennartz et al., 2017), that shows a seasonal 

cycle whose amplitude is comparable to the one from the vegetation in high latitudes, this results in an 

overestimated seasonal cycle at all sites, with the mechanistic approach having the most realistic seasonal 

amplitude (see Appendix C and Figure C1). An additional sensitivity test was performed to assess the impact of 

indirect oceanic emissions via DMS oxidation on simulated seasonal cycles as the importance of these fluxes in 695 

the global COS budget is still debated (Whelan et al., 2018). Whereas the impact on northern sites is negligible, 

the removal of indirect oceanic emissions via the DMS of Kettle et al. (2002) decreases the seasonal amplitude of 

southern sites (CGO and SPO) in the same proportion in all experiments (see Appendix C and Table C2). Transport 

errors also add uncertainties on the simulated concentrations, especially at continental elevated sites (Remaud et 

al., 2018). Plus, given the present discrepancies between the GPP estimates of different land surface models, it can 700 

be argued that using a mechanistic model instead of an LRU approach when comparing COS concentrations seems 

to be of a second order importance (Campbell et al., 2017; Hilton et al., 2017). We nevertheless note in this study 

that we found an uncertainty on the global vegetation COS uptake of 40% when considering three different LSMs 

(Launois et al., 205b), to be compared to an uncertainty of 70% when considering three LRU datasets. 

Setting aside the uncertainty for the moment, how could we use atmospheric COS concentrations to constrain 705 

GPP? A first optimization was performed with the ORCHIDEE model in Launois et al. (2015b), who optimized a 

single scaling parameter applied on the vegetation COS fluxes simulated with the LRU approach, thus equivalent 

to a scaling factor applied on the GPP or the LRU. They assimilated the atmospheric COS concentrations measured 

at the NOAA air sampling stations, using the LMDz transport model (Hourdin et al., 2006) and a Bayesian 
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framework as in Kuppel et al. (2012). The optimization reduced in absolute value the estimated global vegetation 710 

COS uptake from -1335 Gg S yr-1 to -708 Gg S yr-1, more in line with this work’s estimate based on a mechanistic 

modelling of vegetation COS uptake. A mid-term perspective is to go beyond a single scaling parameter, and to 

optimize a set of ORCHIDEE parameters using both atmospheric COS and CO2 data. Such an approach has been 

used in several studies with CO2 data only (e.g. Rayner et al., 2005; Peylin et al., 2016). However, compared to 

CO2, the spatial coverage of COS surface observations is still too sparse to accurately constrain the GPP and 715 

therefore ORCHIDEE parameters (Ma et al., 2020). There is some hope that new satellite retrievals of COS column 

content, such as with the IASI (Infrared Atmospheric Sounder Interferometer) instrument, could have enough 

accuracy to better constrain the surface fluxes (Serio et al., 2020).  

5 Conclusions and Outlooks 

We have implemented inside the ORCHIDEE land surface model the mechanistic model of Berry et al. (2013) for 720 

COS uptake by the continental vegetation. We further adapted the ORCHIDEEE model to compute the stomatal 

conductance in the absence of photosynthesis. Modelled COS fluxes were compared at site scale against 

measurements at the Harvard temperate deciduous broadleaf forest (USA) and at the Hyytiälä Scots pine forest 

(Finland), yielding relative RMSDs of 35 and 36% for the diel cycle respectively, and of 44 and 25% for the 

seasonal cycle. Parameters could be optimized to get a better agreement. The model notably reproduced expected 725 

observed behaviours such as the relationship between LRU and PAR depicted in Kooijmans et al. (2019), the 

proportion of COS nighttime fluxes, as well as the dominant effect of the internal conductance during low spring 

temperatures, and at daytime. 

Our global estimate of COS uptake by continental vegetation of -756 Gg S yr-1 is in the lower range of former 

studies. From our modelled COS and GPP fluxes, we derived optimal LRU values per PFT and compared them to 730 

values derived from experiments. We found lower LRU values than those observed for C3 species and intermediate 

ones for C4 species, evidencing the crucial role of the 𝛼 parameter in the Berry model, linking the COS internal 

conductance to the photosynthetic capacity, and the need for more site measurements of COS fluxes to better 

constrain its values. 

We transported the COS fluxes from the mechanistic and LRU approaches using the LMDz6 model. We evaluated 735 

the modelled COS atmospheric concentrations against observations at stations of the NOAA network and found 

comparable results for both approaches. 

As a general conclusion and for the moment, we can say that the mechanistic model is particularly valuable when 

studying small time or spatial scales using COS fluxes, while for global analyses using COS concentrations, both 

the mechanistic and LRU approaches give similar results.  740 

The fact that the global COS budget has so many components with a large uncertainty (Whelan et al., 2018) limits 

the use of COS concentrations as a constraint for GPP in land surface models on the global scale, for the present 

time. Our next step will be to refine the estimation for COS soil fluxes and to implement inside ORCHIDEE a 

mechanistic model for soil COS fluxes (Ogée et al., 2016; Sun et al., 2015). Having both the vegetation and soil 

contributions, we will also be able to assimilate ecosystem COS fluxes to optimize COS-related parameters such 745 

as 𝛼 in the internal conductance formulation from the Berry et al. (2013) model for vegetation uptake, and those 

related to the stomatal conductance (Wehr et al., 2017; Berkelhammer et al., 2020). We will also later look at the 
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complementary constraints on GPP brought by COS and Solar-Induced Fluorescence, another GPP proxy (Bacour 

et al., 2019; Whelan et al., 2020). 

Appendices 750 

Appendix A. Tables for modelled boundary conductances and minimum stomatal conductances 

Table A1: Ratios of modelled boundary conductance to stomatal conductance and internal conductance, respectively, 

at the two studied sites, computed over year 2012 at Harvard Forest and 2017 at Hyytiälä 

 Harvard Forest Hyytiälä 

Ratio Boundary to 

stomatal 

Boundary to 

internal 

Boundary to 

stomatal 

Boundary to 

internal 

Median 72 37 56 48 

Minimum 2 3 95 4 

Maximum 2239 4555 3 1801 

 

Table A2: Minimum stomatal conductance to CO2 (mmol m-2 s-1) for each PFT in Lombardozzi et al. (2017) and 755 
ORCHIDEE. No value is given for C4 crops in Lombardozzi et al. (2017). 

 Mean minimum conductance in 

Lombardozzi et al. (2017) 

Minimum conductance in 

ORCHIDEE  

1 - Bare soil 0 0 

2 - Tropical Broad-leaved Evergreen Forest 90.488 6.25 

3 - Tropical Broad-leaved Raingreen Forest 109.744 6.25 

4 - Temperate Needleleaf Evergreen Forest 16.896 6.25 

5 - Temperate Broad-leaved Evergreen Forest 34.017 6.25 

6 - Temperate Broad-leaved Summergreen 

Forest 
72.637 6.25 

7 - Boreal Needleleaf Evergreen Forest 8 6.25 

8 - Boreal Broad-leaved Summergreen Forest 50 6.25 

9 - Boreal Needleleaf Summergreen Forest 29 6.25 

10 - C3 Grass 157.988 6.25 

11 - C4 Grass 93.933 18.75 

12 - C3 Agriculture 60.629 6.25 

13 - C4 Agriculture x 18.75 

 

Appendix B. Exponential fit for LRU 
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Figure B1: Scatterplots of COS fluxes against GPP multiplied by the ratio of COS to CO2 concentrations, using a 760 
climatology of monthly fluxes over the 2000-2009 period and yearly global averages for CO2 concentrations and a fixed 

value of 500 ppt for the COS concentration. Each subplot represents one of the 14 vegetated PFTs used in ORCHIDEE. 

The LRU model in green represents the linear regression, while the exponential model (see text) is represented in red. 

The blue dashes lines show the 1:1 line. 

 765 

Appendix C. Sensitivity tests for the modelling of atmospheric COS concentrations 

C1. Simulating COS atmospheric concentration at stations: impact of the oceanic emissions 

We performed the same experiment as in Sect. 3.4, except that the oceanic fluxes (direct and indirect) are here 

from Lennartz et al. (2017). In our case, the oceanic emissions (in particular direct oceanic emissions) have more 

impact than the LRU on the seasonality at surface sites from the NOAA network.  770 
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Figure C1: Detrended temporal evolutions of simulated and observed CO2 and COS concentrations at four selected 

sites, for the mechanistic (ORCHIDEE Mechanist) and LRU approaches (ORCHIDEE Seibt, ORCHIDEE Whelan, 

ORCHIDEE LRU_eq), simulated with LMDz6 transport between 2007 and 2009. The ORCHIDEE LRU_eq line 

(orange) corresponds to the concentrations simulated using the optimal equivalent LRU derived from the mechanistic 775 
model. The curves have been detrended beforehand and filtered to remove the synoptic variability (see Sect. 2.2.4). 

Table C1: Prescribed COS surface fluxes used as model input. Mean magnitudes of different types of fluxes are given 

for the period 2000-2009  

Type of COS flux Temporal resolution Total (Gg S yr-1) Data Source 

Anthropogenic Monthly, interannual 337.3 Zumkehr et al. (2018) 

Biomass burning Monthly, interannual 56.3 Stinecipher et al. (2019) 

Soil Monthly, climatological -409.0 Launois et al. (2015b) 

Ocean Monthly, climatological 344.0 Lennartz et al.  (2017) 

Vegetation uptake Monthly, interannual 

 

This work, including 

mechanistic and LRU 

approaches (Seibt et al., 

2010; Whelan et al., 2018).  

 

C2. DMS sensitivity study 780 

We further tested the impact of the indirect COS fluxes through DMS on the simulated concentrations at NOAA 

sites. To do that, we compared the atmospheric concentrations given with and without prescribing indirect oceanic 

fluxes through DMS using the Launois et al. (2015a) oceanic fluxes. In our case, the removal of the DMS oceanic 

emissions decreases the seasonal amplitude at SPO and CGO but have very few impacts at other sites. We also 

performed the same experiment using the Sinikka et al. (2017) fluxes and reported no impact of DMS indirect 785 

fluxes on simulated concentrations at NOAA sites.  

Table C2: Normalized standard deviations (NSDs) of the simulated concentrations by the observed concentrations. 

Within brackets are the Pearson correlation coefficients (R) between simulated and observed COS concentrations for 

the mechanistic approach including the DMS or not, calculated between 2004 and 2009 at 10 NOAA stations.  

 SPO CGO SMO KUM MLO NWR LEF MHD BRW ALT 

ORCHIDEE  

Mechanist 

(DMS) 

1.10 

(0.97) 

1.01 

(0.97) 

0.35 

(0.4) 

0.90 

(0.95) 

1.05 

(0.92) 

1.26 

(0.63) 

1.34 

(0.94) 

1.09 

(0.85) 

0.69 

(0.91) 

0.64 

(0.96) 

ORCHIDEE  

Mechanist 

(Without DMS)  

0.74 

(0.91) 

0.53 

(0.94) 

0.38 

(0.20) 

0.90 

(0.95) 

1.04 

(0.91) 

1.31 

(0.64) 

1.40 

(0.94) 

0.93 

(0.94) 

0.74 

(0.90) 

0.65 

(0.96) 

Code availability 790 

The ORCHIDE model is available on request to the authors. 
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