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Zhaohui Chen et al. 

Author responses to comments of the 2 referees.   

Reviewer comments are listed in italics.  

We thank both the reviewers for their detailed comments and suggestions on improvements to 
the manuscript. Below we list our responses to both sets of reviewer comments.  

REVIEWER 1 
The authors present an improved atmospheric inversion data assimilation model (GCL) and 
apply it to the investigation of mean, variability, and trends of North Atlantic air-sea carbon 
fluxes. Specifically, the advancements made to the inverse model within involve multiple 
representations of prior ocean fluxes as well as sensitivity experiments assessing the different 
priors and related flux uncertainties from three different schemes. Additionally, comparisons 
are made to previous estimates of North Atlantic carbon fluxes as well as estimates from 
observation-based pCO2 products and global ocean models. Overall, I found this manuscript 
well organized, concise, and novel. I would support its publication but have a few suggestions 
that I believe that would improve the overall strength of the paper. 
 
Reviewer 1: Main comments 
I highly suggest including additional observation-based products in your analysis (Figure 
3 specifically).  You use Takahashi et al 2009 in the uncertainty analysis section but can’t 
utilize it for long term mean/variability because it is of course only a climatology. You include 
2 products (one by Landschützer and one by Rödenbeck) but there are more available and I 
highly suggest including them in the comparison to improve your message. Given that your 
ensemble of inverse models and of GOBMs are much larger than 2, it is worth making the effort 
to include more pCO2 products as well. See Denvil-Sommer et al. 2019, Gregor et al. 2019, 
Iida et al. 2015, and Zeng et al. 2015 for starters. 
 
Response: We agree with the reviewer’s suggestion, that inclusion of additional observation-
based products would strengthen our analysis. Accordingly we have sourced the following 
additional global pCO2-based air-sea CO2 flux products, and include them in our analyses. The 
specific data product names, or model versions are appended within parentheses following each 
published source.  
(1)  Denvil-Sommer et al. 2019 (product LSCE-FFNN-v1); (2)  Iida et al. 2015 (JMA);  (3)  
Zeng et al. 2015 (NIES); (4) Gregor et al. 2019 (CSIR-ML6); (5) Chau et al. 2020 (CMEMS);  
and (6) Watson et al. 2020.  

The above six data products all account for inter-annually varying air-sea CO2 fluxes (as do 
our previously included data products from Landschützer et al. (2016) and Rödenbeck et al. 
(2013)). Updates of our results, accounting for the inclusion of these six additional flux 
products, are presented in the revised manuscript, and in relevant sections of our Response to 
Reviewers.  Updated results included in this Response to Reviewers include Figure 1, Figure 
3 and revised sections of Tables 2, 3, and 4, that now include the additional pCO2-based flux 
products.  

 



Updated results for Figure 1 of our study: We present below the original version of Figure 1 
(three flux products), along with a revised version (eight flux products).  

 Figure 1A: Original version of Figure 1 for the three flux products from Landschützer 
et al. 2016, Rödenbeck et al. 2014, and Takahashi et al. 2009.   

 Figure 1B : Spread-based prior ocean flux uncertainty for an extended set of eight flux 
products that only include the data products that represent inter-annually varying fluxes 
(i.e., the climatological product of Takahashi et al. 2009, is not included in the 
calculations for Figure 1B). 

We note that the main features and magnitudes of the spread-based prior flux uncertainty are 
consistent across the two figures, for example, highest levels of flux uncertainty are associated 
with the sub-polar North Atlantic region for the winter (DJF) and spring (MAM) months. This 
similarity is not unexpected given the common underlying pCO2 database (i.e., SOCAT; 
Bakker et al., 2016, 2020) used for many of the products. Additional details on these flux 
products can be found in their related publications and in Friedlingstein et al. (2020). 

 

 

Figure 1A: Original version of Figure 1 from manuscript, derived from three flux products (Landschützer et al. 
2016, Rödenbeck et al. 2013, and Takahashi et al. 2009).  

Original caption:  “Distribution of the spread-based prior ocean flux uncertainty (U3) (annual average for the year 
2003). It is represented here as a percentage of the prior ocean flux.  The percentage shown for each grid-cell is 
derived from the ratio of spread-based prior ocean uncertainty divided by the prior ocean flux value at that grid 
cell. DJF represents the monthly average for December, January, February; MAM for March, April, May; JJA for 
June, July, August; SON for September, October, November. “ 

 

 



 
Figure 1B: Revised version of Figure 1. 

Distribution of the spread-based prior ocean flux uncertainty (year 2003)  calculated from  the following 8 flux 
air-sea CO2 flux products: (1)  Denvil-Sommer et al. 2019 (product LSCE-FFNN-v1);  (2)  Iida et al. 2015 (JMA);  
(3)  Zeng et al. 2015 (NIES); (4) Gregor et al. 2019 (CSIR-ML6); (5) Chau et al. 2020 (CMEMS);   (6) Watson 
et al. 2020;  (7) Landschützer et al. 2016; (8) Rödenbeck et al. 2013. 

 

 
Reviewer 1:  Additionally, if Landschützer’s product is used as the prior for the GCL inverse 
method, is it fair to use it as an independent comparison? If the data assimilation method is 
trying to “fit” or “correct” the GCL inverse model to the pCO2 from that product then I would 
not consider it an independent comparison. 
Response: In the GEOSChem-LETKF formulation employed in this study, the data assimilated  
(that the flux estimates are “corrected” by) are the atmospheric observations of CO2 (described 
in section 2.4 of our manuscript, and represented by y in the LETKF model equations of the 
Appendix). The posterior estimates of surface CO2 fluxes (specified via the analysis state 
equations A6  and A12) are dependent on the differences between the atmospheric observations  
(y) and the transport model derived atmospheric concentrations (Hxb), and the atmospheric 
observations. The posterior flux estimates also do depend on the prior flux estimates (here 
Landschutzer et al. 2016), which are represented via the specification of the background state 
xb, however we do not consider the Landschutzer et al. (2016) product as an independent 
product for comparison. One aim of the comparison of the GEOSChem-LETKF posterior 
fluxes to the Landschutzer product is to assess how much the posterior flux estimates vary from 
the prior specification following assimilation of the atmospheric CO2 measurements. For 
example, in section 3.1, Table 1, we compare the representation of prior and posterior fluxes  
for three separate representations of the prior ocean flux (namely Landschützer et al. 2016,  
Rödenbeck et al. 2013, and Takahashi et al. 2009). In our discussion of the multi-year analyses 



(2000-2017) of section 3.2, we have noted in the caption of Figure 2 that the prior flux used is 
that of Landschutzer et al. (2016). We will clarify this in more detail in the discussion of section 
3.2 as well.  
 
 
Reviewer 1:  Section 2.5 could use more discussion/explanation. To my understanding, while 
the inverse model itself is not new, this method of specifying prior CO2 fluxes and using them 
to create more robust flux uncertainties seems to be a major improvement described in this 
manuscript. I’d be keen to see more explanation and discussion on that in this section. 
Response:  
To address this reviewer comment we have expanded the discussion of the spread-based 
uncertainty scheme in Section 2.4, as listed below. This discussion also includes the extended 
list of pCO2-based flux products used in our updated analyses. 
 
“Many previous atmospheric inverse estimates of air–sea carbon fluxes have employed relatively simple 
characterizations of the prior ocean flux uncertainty, for example, based on a fixed proportion of the grid–scale 
or regional prior flux (Nassar et al., 2011, Liu et al., 2016, Feng et al., 2016). In Section 3.1, we employ both fixed 
flux uncertainties, and also present an alternative scheme derived from the ensemble spread of ocean CO2 flux 
products, as described below. 
The prior ocean flux distributions employed in atmospheric inversions are frequently derived from interpolations 
of the surface ocean pCO2 database (e.g., SOCAT, Bakker et al., 2016) in combination with ocean–atmosphere 
gas exchange parameterizations. Uncertainties in the derived products stem from uncertainties in the input data 
(e.g., density of measurements), interpolation methods, and gas–transfer parameterizations (Landschutzer et al., 
2013). However, some ocean regions, the North Atlantic in particular, have a higher density of pCO2 
measurements and more consistent flux estimates from pCO2–based products (Schuster et al., 2013, Landschutzer 
et al., 2013). Here we exploit the recent expansion of pCO2–based ocean flux products to outline a new 
specification of ocean prior flux uncertainty based on the ensemble-spread of the different flux products (the 
“spread–based” uncertainty scheme). Towards the development of the spread-based scheme, we have compiled a 
set of eight global gridded interannually varying ocean-atmosphere CO2 flux products. These are Landschutzer et 
al., 2016, Rodenbeck et al., 2014, Denvil–Sommer et al., 2019, Iida et al., 2015, Zeng et al., 2015, Gregor et al., 
2019, Chau et al., 2020, and Watson et al., 2020. 
The spread–based prior flux uncertainty scheme uses a diagnostic derived from the variation among the set of 
ocean atmosphere carbon flux products (see Eq. (1)). This scheme specifies lower uncertainty levels where 
alternative prior flux representations are in accord (e.g., when well–constrained by availability of surface pCO2 
measurements), and higher uncertainty levels where the prior flux distributions differ significantly (typically in 
under–sampled regions or those of significant flux variability). This specification follows previously used methods 
to characterize uncertainties in ocean flux distributions (e.g., Bopp et al., 2013).” 
 
 
Reviewer 1: Lastly, I think the title could be more descriptive of the actual work you are 
presenting. Specifically mentioning inverse models or uncertainty or a comparison between 
approaches. 
Response: We propose to change the title of the study to “Variability of North Atlantic CO2 
fluxes for the 2000–2017 period estimated from atmospheric inverse analyses” 
 
 
Reviewer 1: Minor comments 
 
Reviewer 1: The end of the introduction could improve from a motivation statement. Why do 
this work? Who will use this? How will it impact the community and what are the broader 
impacts? Clearly your improvements on the uncertainty estimates would be beneficial 
to the community as a whole so make that case more clearly. 
Response: To address this comment we have expanded the discussion of the spread-based 
uncertainty scheme in the Introduction as follows (section following line 55): 



 
“Previous studies also note that estimates of carbon fluxes from the atmospheric inverse method are sensitive to 
the specification of the prior flux distribution and its associated  uncertainty distribution (Carouge et al., 2010; 
Chatterjee et al., 2013; Peylin et al., 2013). While there have been recent studies evaluating the sensitivity of land–
based carbon flux estimates to specification of the prior flux and its uncertainty, there has been far less examination 
of ocean flux estimates from inverse methods. Several global inverse model assessments of the past decade have 
relied on the climatological ocean–atmosphere CO2 flux database of Takahashi et al. (2009) to specify prior ocean 
fluxes. In view of the limited information available on the temporal and spatial variability of ocean carbon fluxes 
from this climatological ocean database, these inverse analyses have adopted different approaches to the 
specification of prior uncertainty for ocean fluxes, ranging from uncertainties derived from a separate ocean model 
inversion (in the case of Nassar et al., 2011), to a specified percentage of the prior flux magnitude (Feng et al., 
2016, Liu et al. 2016). 
In this study we present a new long term estimate of North Atlantic air–sea CO2 fluxes for recent decades (period 
2000–2017) using atmospheric inverse methods. We focus in particular on the specification of prior ocean fluxes 
(including sensitivity of flux estimates to alternative prior flux distributions) and on their associated flux 
uncertainties. To our knowledge these influences on inverse estimates of North Atlantic CO2 flux have not been 
assessed previously. We use the carbon cycle data assimilation system GEOSChem–LETKF (GCL, described 
further in Section 2) which combines the global atmospheric CO2 transport model GEOS–Chem (Nassar et al., 
2010) with the Localized Ensemble Transform Kalman Filter (LETKF) data assimilation system (Hunt et al., 2007; 
Miyoshi et al., 2007; Liu et al., 2019). In recent years several new global air-sea CO2 flux products have been 
developed based on mappings of ocean surface pCO2 measurements (e.g., Landschutzer et al., 2016, Rodenbeck 
et al., 2014, Watson et al. 2020, and products reported in the intercomparison of Roedenbeck et al. 2015). These 
ocean flux distributions are frequently derived from interpolations of surface ocean pCO2 measurements from the 
SOCAT database (Bakker et al., 2016) together with parameterizations of air–sea gas exchange. Following recent 
updates, the surface ocean pCO2 database SOCATv2020 (https://www.socat.info/index.php/data-access/), now 
includes over 28 million surface ocean carbon measurements. The SOCAT database provides a valuable resource 
towards the development of bottom–up estimates of ocean–atmosphere CO2 fluxes, and a compilation of these 
flux products is reported in the recent Global Carbon Budget (Friedlingstein et al., 2020). The increased range of 
global air-sea CO2 flux products available (beyond the Takahashi et al. 2009 climatology) provides a valuable 
opportunity to develop an improved representation of  air-sea CO2 flux variability and a more robust 
characterization of the uncertainties associated with ocean carbon fluxes. In this study we employ some of the 
recently developed ocean CO2 flux products to provide a new method of characterizing the prior ocean flux 
uncertainty used for atmospheric inverse analyses. The methodology is based on the ensemble spread of the 
multiple ocean flux products, and reflects underlying uncertainties in these products, such as those associated with 
sampling density of the surface measurements and interpolation method employed. It provides a spatially and 
temporally variable specification of prior flux uncertainty that will be of value to the inverse modeling community. 
“ 
 
 
 
Reviewer 1: Why is year 2003 selected for sensitivity tests on the prior flux uncertainty? Is 
three years of spin up sufficient? Is 2003 an anomalous year at all? With the dynamics at 
play in the North Atlantic basin it is important to consider how the selection of one year 
of focus can influence your analysis.  
Response: We have added more information about the selection of year 2003 in section 3.1, 
as follows: 
 
“Sensitivity analyses are conducted for the year 2003, following a 3 year GEOSChem model spin-up, starting 
from January 1st, 2000; the length of spin-up was determined by recommendations on the duration required for 
stabilization of tropospheric CO2 gradients (e.g., Gurney et al. 2002), and following methods used for previous 
GEOSChem CO2 analyses (e.g., Nassar et al. 2010). The year 2003 was selected for sensitivity tests as the first 
viable year following spin-up. Analyses of inter-annual variability in Atlantic CO2 (e.g., Landschutzer et al. 2013; 
Schuster et al. 2013) do not find 2003 to be an anomalous year for regional ocean fluxes.” 

 
Reviewer 1: It could be clarified that when you move on from Section 3.1 you will only be using 
the U3 approach to specify uncertainty. Additionally, the same for your selection of 



Landschützer et al. 2017 as the prior for the GCL model as you transition to analysis in Section 
3.2. 
Response: We have added this clarification to Section 3.1, and have provided further 
justification for the selection of the U3 scheme using assessment metrics derived from model-
observation differences at the NOAA network sites. This section now reads as follows: 
 
“The U3 flux uncertainty specification is derived from the variation among a set of ocean–atmosphere carbon flux 
products (Eq. (1)). This scheme specifies lower uncertainty levels where alternative prior flux representations are 
in accord (e.g., when well constrained by availability of surface pCO2 measurements, as in the subtropical North 
Atlantic), and higher uncertainty levels where the prior flux distributions differ significantly (typically in under-
sampled regions or those of significant flux variability, such as the subpolar North Atlantic). We further assess 
the value of the U3 scheme using a metric of GCL modeled atmospheric CO2 concentration; specifically, estimates 
of the model–observation mismatch for the year 2003 at the NOAA network station sites in the North Atlantic 
using the a posteriori fluxes associated with the sensitivity analyses of this section (Appendix Table A2). The 
results summarized in Table A2 indicates that scheme U3 provides the smallest magnitude model-observation 
mismatch for the individual North Atlantic sites and for the global network average.  For the long term analyses 
of the remainder of this study, therefore, we use the U3 spread–based flux uncertainty scheme in preference to the 
fixed level flux uncertainty schemes used in many previous inverse analyses.” 
 
 
Reviewer 1: Figure 2: I find it very interesting that the CTE is so anomalous in the NA 
subtropics but the CT model is more anomalous in the subpolar regions. It jumps out at you 
from this figure and you barely notice anything else. Would be worth further discussion as to 
why those are so different in their mean, IAV, and decadal variability. What do these other 
inverse methods use as prior flux inputs? 
 
Response:  

Since our previous submission of this manuscript, the model results reported for the CTE model 
for this period (2000-2017) have been updated by the model investigators. Updates include a 
change in the ocean prior fluxes used for this model (to Roedenbeck et al. 2003), and the 
updated CTE model configuration is reported Global Carbon Budget database (Friedlingstein 
et al. 2020). In our revised analysis for this manuscript revision we use the updated CTE model 
results, and the behaviour of the CTE in the NA subtropics is now less anomalous.  
 
We explained the anomalous from CT in L307: 
A potential reason for the anomalous behaviour of the CT estimate in the North Atlantic is the underlying prior 
flux uncertainties used in the analysis which give a loose constraint on the prior ocean fluxes and allow the 
ocean fluxes deviate far from the prior because of the impaction from atmospheric CO2 signals.  

In addition, Peylin et al. (2013) have noted that significant variability in atmospheric inverse 
IAV estimates is a potential indicator of ‘flux leakage’, where significant variability of 
terrestrial carbon fluxes in combination with sparse atmospheric sampling can result in 
misattribution of carbon flux estimates between land and ocean. See additional discussion of 
this in our Response to Reviewer 2.  
 
 
Reviewer 1: Figure 3: could be cleaned up and simplified by reducing the y-label axis ticks 
and tick labels. Additionally, on this figure, if the trends in subplots e and f are not significant, 
consider making the filling color gray or something else to distinguish. They should be noted 
on the figure as well as in the table. Currently you only note that one of the GCL trends is 
significant and one is not but need to do this for all inverse models, pCO2 products, and GOBMs 
as well. 



Response: We have addressed the reviewer comments on Figure 3. Changes made include: (i) 
changes to y-axis labels and ticks; (ii) inclusion of the 6 additional pCO2-based flux products 
introduced in this revision and discussed above; (iii) changes to plot symbols in panels (e) and 
(f) to highlight the cases where the derived trends are significant. A revised version of Figure 
3 is shown below. 
In addition, we have also augmented the tables corresponding to Figure 3, to account for the 
additional pCO2 based products. The revised sections of Tables 2, 3, and 4 concerning the 
additional pCO2-based flux products are also listed below. 
 

 
Figure 3. Comparison of CO2 ocean flux metrics for the 2000–2017 period for North Atlantic subtropics (left panels) and 
subpolar regions (right panels). Metrics shown are the long term mean (panels (a) and (b)); interannual variability (IAV) 
(panels (c) and (d)); and long term trend (panels (e) and (f)).  The GCL estimates (red stars) are shown in comparison to other 
atmospheric inverse analyses (red symbols), surface ocean pCO2 products (blue) and global ocean biogeochemistry models 
(GOBMs, purple). Also shown are the estimated mean values from each sub–group of analyses (filled cross symbols) with 
their minimum–maximum range. Circled symbols in panel (e) and (f) indicate a statistically significant trend. 

Table 2 revised subsection : Revised section on pCO2-based flux products to include the six additional 
interannually varying flux data products. 

Long term mean (PgC y-1) 
NA Subtropics 

(15oN–50oN) 

NA Subpolar 

(50oN–80oN; 

eastern boundary at 

20°E) 

 

Surface ocean pCO2-based flux products 

-0.263 -0.23 pCO2La (Landschutzer et al. 2016) 

-0.284 -0.252 pCO2Ro (Rodenbeck et al. 2013) 

-0.264 -0.208 CMEMS (Chau et al. 2020) 

-0.302 -0.248 CSIR (Gregor et al. 2019) 

-0.295 -0.241 JMA (Iida et al. 2015) 

-0.309 -0.192 LSCEFFNN (Denvil-Sommer et al. 2019) 



-0.193 -0.171 NIES (Zeng et al. 2015) 

-0.305 -0.259 Watson et al. (2020) 

[-0.309, -0.193] [-0.259, -0.171] Range of all pCO2–based representations 

 
 
Table 3 revised subsection: Revised section on pCO2-based flux products to include the six additional 
interannually varying flux data products.  
 

Interannual Variability (IAV) (PgC y-1) 
 NA Subtropics 

(15oN–50oN) 

NA Subpolar 

(50oN–80oN; 

eastern boundary at 

20°E) 

 

Surface ocean pCO2–based flux products 

0.038 0.036 pCO2La (Landschutzer et al. 2016) 

0.050 0.035 pCO2Ro (Rodenbeck et al. 2013) 

0.031 0.018 CMEMS (Chau et al. 2020) 

0.035 0.020 CSIR (Gregor et al. 2019) 

0.028 0.010 JMA (Iida et al. 2015) 

0.037 0.017 LSCEFFNN (Denvil-Sommer et al. 2019) 

0.029 0.020 NIES (Zeng et al. 2015) 

0.037 0.040 Watson et al. (2020) 

[0.029, 0.050] [0.009, 0.037] Range of all pCO2–based representations (minimum 

to maximum) 

 
Table 4 revised subsection: Revised section on pCO2-based flux products to include the six additional 
interannually varying flux data products.  
 

Trend (PgC y-1 decade-1) 
 NA Subtropics 

(15oN–50oN) 

 

NA Subpolar 

(50oN–80oN; 

eastern boundary at 

20°E) 

 

Surface ocean pCO2-based flux products 

-0.068(S) -0.056(S) pCO2La (Landschutzer et al. 2016) 

-0.070(S) -0.029 pCO2Ro (Rodenbeck et al. 2013) 

-0.057(S) -0.027(S) CMEMS (Chau et al. 2020) 

-0.063(S) -0.034(S) CSIR (Gregor et al. 2019) 

-0.048(S) -0.001 JMA (Iida et al. 2015) 

-0.070(S) -0.021 LSCEFFNN (Denvil-Sommer et al. 2019) 

-0.057(S) -0.037(S) NIES (Zeng et al. 2015) 

-0.069(S) -0.064(S) Watson et al. (2020) 



[-0.048, -0.070] [-0.001,-0.064] Range of all pCO2–based representations (minimum 

to maximum) 

 
 
 
Reviewer 1: Throughout the paper, where you mention Figure 3, please add the subplot letter 
so that the reader can easily navigate to which subplot you are referencing (e.g. Line 268: 
“Fig 3e, Table 4)”. Also, in the Table 2 caption you could reference “Figure 3 a,b” rather 
than just “Fig 3”. 
Response: To address the above reviewer comments, we have made the following changes to 
the manuscript: 
Table 2 caption: changed to “The metrics listed in this table are plotted in Fig. 3 a, b” 
Table 3 caption: changed to “The metrics listed in this table are plotted in Fig.3 c, d” 
Table 4 caption: changed to “The metrics listed in this table are plotted in Fig. 3 e, f” 
Line 225 changed to “Fig. 3a” 
Line 236 changed to “Fig. 3 c, d” 
Line 269 changed to “Fig. 3 e” 
 
 
Reviewer 1: Section 3.2.2. should include further discussion and references explaining why the 
GOBMs have such low IAV as compared to the other products and inverse models. 
Response: In response to this reviewer comment have added the following discussion to 
section 3.2.2: 
 
“Recent synthesis studies of global ocean carbon fluxes have noted that GOBMs underestimate the magnitude of 
IAV in comparison to estimates from pCO2-based mappings and inverse analyses (DeVries et al.2019, Hauck et 
al.2020). An important driver of IAV is the variability in biological carbon export; the lower variability observed 
in the GOBMs could result from opposing changes in biological vs. circulation impacts on carbon export, which 
potentially reduces the sensitivity of the GOBM air-sea carbon fluxes to climate variability (Landschutzer et al. 
2013, DeVries et al. 2019).” 
 
 
Reviewer 1: Line 225: Your first comparison is to Schuster et al. 2013 but that work is looking 
at a very different time period. While it can still be referenced and mentioned, highlighting 
comparisons that focus on the same decades of analysis is more appropriate. 
Response: We have rewritten this discussion to focus on the estimates from the recent pCO2-
based products and GOBMs, as summarised in our revised versions of Figure 3a and Table 2. 
We will note that the GCL posterior flux estimate of -0.203±0.037 PgC y-1 is in agreement with 
estimates from the extended set of pCO2-based products (range of [-0.259,-0.171] PgC y-1), 
and from GOBMs (range of [-0.341,-0.197] PgC y-1).   
 
 
Reviewer 1: Your summary statement on beginning on Line 303 could be expanded on. How is 
it more “robust”? Is it just smaller uncertainties and significant trends? Perhaps tie in 
reference to Figure 1 to discuss further. 
Response: We have rewritten sections of the manuscript Summary section to reflect our 
revised analyses with the extended eight-flux ensemble of air-sea CO2 fluxes.  This section of 
the Summary discussion now includes the following: 
 
“Our GEOSChem–LETKF estimates also indicate statistically significant trends of increasing CO2 uptake for the 
North Atlantic subtropical and subpolar region (estimated trend of -0.064±0.007 and -0.063±0.008 PgC y-1 decade-



1 respectively). These trends are of comparable magnitude to those estimated from surface pCO2–based flux 
products, but much larger than those derived from global ocean biogeochemistry models for the 2000-2017 period. 
Estimates of inter-annual variability and long term trends derived from our GEOSChem–LETKF analyses are 
generally more robust for the North Atlantic subtropics than for the subpolar region, and characterized by smaller 
uncertainty bounds. Limiting factors affecting estimates for the North Atlantic subpolar region include higher 
levels of uncertainty associated with specification of prior fluxes (Figure 1), and the observational uncertainty at 
the atmospheric measurement CO2 sites in these high northern latitudes (Table A1).” 
 
 
 
 
 
  



Interactive comment on “Variability of North Atlantic CO2 fluxes for the 2000-2017 
period” by Zhaohui Chen et al. 

RESPONSE TO REVIEWER 2 
 
 Reviewer 2: “The authors have studied the CO2 annual fluxes in the North Atlantic during an 
18-yr period with an atmospheric inverse modelling approach. They show some agreement 
with other estimates and present a sensitivity study with respect to the prior ocean flux 
constraint. The topic is obviously of great interest but the actual paper is rather deceiving, with 
little scientific depth. I am listing here important questions that are fully in the paper scope but 
that seem to be left open. How significant are the presented sensitivity tests for the inversion 
community? Despite a subsection and an appendix devoted to it, the description of the data 
assimilation system is unclear on what matters in practice. My interpretation of l. 95 is that the 
elementary assimilation window of the LETKF is of four weeks, a period which is too short 
(given mixing time scales in the atmosphere) to allow a clear distinction between the 
uncertainty in the prior initial state of atmospheric CO2 and the uncertainty in the prior surface 
fluxes, when assimilating atmospheric measurements. The authors should therefore not 
separate the two. However, Incidentally, in the legend of Eq. A1 in the appendix, we understand 
that the uncertainty in the initial state of atmospheric CO2 has been neglected. This rough 
simplification makes it hard to interpret B, officially the flux covariance matrix, in these terms. 
 
Response: We thank the reviewer for their comments on our manuscript. To respond to the 
reviewer comments above, we have added additional detail on the LETKF data assimilation 
system to section 2.2 and to the Appendix, to clarify our description of the system. Here we 
provide a summary of the model description and further information on the assimilation 
window in response to the reviewer’s specific questions. This information is also presented in 
Section 2.2 of the revised manuscript. Additional detail on the specification of prior flux 
uncertainties is provided in our responses to Reviewer 1 above, and in further responses to 
Reviewer 2 (below).  
 
The GEOS–Chem atmospheric chemistry transport model has been used in a range of previous investigations into 
atmospheric CO2 and applied in conjunction with inverse analyses to estimate surface carbon fluxes (Nassar et al., 
2010, 2011; Suntharalingam et al., 2005; Liu et al., 2016). In this analysis we employ GEOSChem v11–01 at a 
horizontal resolution of 2° latitude by 2.5° longitude, with 47 levels in the vertical. Model transport fields are 
provided by GEOS–5 assimilated meteorological data from the NASA Global Modeling and Assimilation Office 
(GMAO, Rienecker et al., 2008). The GEOSChem configuration employed here primarily follows that of Nassar 
et al. (2011), but with updated representation of prior fluxes;  more detail on the  prior CO2 fluxes and uncertainties 
implemented in this study is given in Section 2.4.  
The Localized Ensemble Transform Kalman Filter (LETKF) is a data assimilation system which provides an 
estimate given a prior (or “background”) estimate of the current state based on past and current data (in this case, 
the atmospheric CO2 mole fraction observations). The general framework of the LETKF is described in Hunt et 
al. (2007); it has been adapted by Miyoshi et al. (2007) to provide gridscale localized analysis of flux estimates. 
The LETKF system has been used to estimate CO2 fluxes in a range of previous studies (e.g, Kang et al., 2012; 
Liu et al., 2016, 2019). More details on the LETKF equation system are provided in Appendix A. The LETKF 
provides iterative estimates of the time evolution of the system state, x, (here representing the grid-scale surface 
carbon fluxes). Each step involves a forecast stage (based on a physical model of the system evolution) and a state 
estimation stage (the ‘analysis’ step), which combines system observations, y, together with the background 
forecast, 𝑥 , to derive the improved state estimate. The observation operator H provides the mapping from the 
state space to the observation space; in this study H is provided by the GEOS–Chem atmospheric model. 
In this analysis we employ the complete GEOSChem–LETKF (GCL) data assimilation system to conduct 
sensitivity analyses on the ocean prior fluxes, and to provide a long term flux estimate of surface CO2 fluxes for 
the North Atlantic for the period 2000–2017. We report a posteriori fluxes on monthly timescales for the 2000–
2017 period; the optimized monthly fluxes are derived from four sequential weeks of assimilation cycles, as 
further described below. Our methods follow the implementation of the LETKF system by Liu et al. (2019), who 



have extended the previous carbon data assimilation system of Kang et al. (2011, 2012). The study of Kang et al. 
(2011) assimilated meteorological data and atmospheric CO2 concentrations to provide estimated atmospheric 
CO2 concentrations as part of the state estimate. Kang et al. (2012) extended this method to also provide estimates 
of surface carbon fluxes. Both these LETKF studies assimilated meteorological data and atmospheric CO2 
concentrations and employed a short assimilation window of 6 hours in order to maintain linear behaviour of the 
ensemble perturbations (Kang et al., 2011, 2012). In addition, Kang et al. (2012) also tested longer assimilation 
windows (up to 3 weeks) for LETKF formulations that assimilated atmospheric CO2 concentrations alone 
(eliminating the assimilation of the meteorological data). The LETKF system of Liu et al. (2019) extended the 
Kang et al. (2011, 2012) analyses by incorporating the GEOSChem atmospheric model as the forecast model, 
along with its representation of surface CO2 fluxes which provide the prior flux specification for the forecast step. 
However, Liu et al. (2019) assimilate only atmospheric CO2 measurements (i.e., no assimilation of meteorological 
measurements), and use an assimilation window of 7 days; the duration of the assimilation window was selected 
to maximize the correlation between observations and surface fluxes. The GEOSChem–LETKF system employed 
in our study follows the Liu et al. (2019) formulation; atmospheric CO2 measurements are assimilated at 7 day 
timescales, with the LETKF analysis step providing updates of the surface fluxes and associated uncertainties 
required as initial conditions for the next weekly forecast step. We report monthly flux estimates following four 
assimilation cycles. Further details on the LETKF and the governing equations for flux estimation are provided 
in Appendix A. 
 
 

Reviewer 2: Similarly, the authors do not discuss spatial correlations in the prior errors, 
leaving the impression that they have neglected them as well. How credible is this 
hypothesis, e.g., among the prior ocean flux products tested here? 
Response: An overview of the prior ocean CO2 fluxes and uncertainties is presented in section 
2.5 of the manuscript. We have extended this section to include clarification on the spatial 
correlations in prior flux uncertainties, to include the following discussion: 
 
“In this study we account for spatial correlations in the prior ocean fluxes, by inclusion of off-diagonal elements 
in the background error covariance matrix Pb (Equation A3).  We follow the recommendations of Jones et al. 
(2012) on autocorrelation length scales in the surface ocean.  That study derived spatial autocorrelation functions 
for air-sea fluxes from an analysis of the surface ocean pCO2 database reported in Takahashi et al. (2009), 
combined with a gas-exchange parameterization. We currently do not account for spatial correlation in land-fluxes, 
but will investigate this in future analyses.” 
 
 
Reviewer 2: How are the ocean flux results presented here affected by the leakage from the 
land fluxes noted in l. 48? The statement in l. 156 suggests there is none of significance, but 
without any justification.   
Response:  To address this reviewer question we have added further discussion on flux leakage 
to Section 3.2 of the revised manuscript, as follows: 
“We also note that Peylin et al. (2013) have suggested that significant inter–annual variability in atmospheric 
inverse estimates is a potential indicator of ‘flux leakage’, where significant variability of terrestrial carbon fluxes 
in combination with sparse atmospheric sampling can result in misattribution of carbon flux estimates between 
land and ocean. To assess the significance of flux leakage in our GCL analyses, we have calculated estimates of 
the diagnostic recommended by Peylin et al. (2013) (i.e., the correlation between the annual total land and total 
ocean fluxes) for the Northern Hemisphere as a whole (Equator to 90oN), and also by latitudinal region. Estimates 
of this diagnostic are relatively low for our GCL analyses (values of 0.2 and 0.5 for the sub-polar and sub-tropical 
regions) indicating low potential for flux leakage. As a point of comparison, Peylin et al. (2013) note that six out 
of eleven atmospheric inverse analyses in their model inter-comparison reported correlation coefficients of greater 
than 0.5. “ 
 
 
Reviewer 2: Additionally, a number of points of various important need clarification: 
• L. 27: the 20% value is rather artificial given the fact that the global ocean uptake 
is made of both sources and sinks. 



Response: In our original manuscript the 20% value for North Atlantic carbon uptake was 
reported as it represented a percentage of global net carbon uptake by the ocean, as calculated 
for example, by such synthesis projects as the Global Carbon Budget (Friedlingstein et al. 
2020). In our revised manuscript we have updated this section to include more recent findings, 
and also to include updated calculations of North Atlantic carbon uptake derived from our 
synthesis of the 8 pCO2-based flux products (see comments in Response to Reviewer 1, and 
the updated section of Table 2 included in the Response). 
Our updated version of this section in the Introduction includes the following information: 
 
“Recent estimates of net air–sea CO2 fluxes derived from sea surface partial pressure CO2 measurements (pCO2) 
indicate net annual uptake for the North Atlantic over the past decade (2009–2018) with a range of 0.35–0.55 PgC 
y-1 (Landschutzer et al., 2016; Rodenbeck et al., 2013; Zeng et al., 2015; Watson et al., 2020), and equivalent to 
about 14%–22% of the global net ocean carbon ocean sink reported for this period (Friedlingstein et al. 2020).” 
 
 
Reviewer 2: L. 57-8: bad example; the studies mentioned here are not for the same year and 
therefore should not use the same uncertainty budget for a frozen prior flux distribution anyway, 
given existing trends in the real fluxes. 
Response: Our aim in using these examples was to illustrate the relatively simple 
characterizations of prior flux uncertainty in previous inverse assessments of ocean carbon 
fluxes, due to the limited information available at the time on variability of ocean-atmosphere 
carbon fluxes.   We have rewritten this section to clarify this message.  Our revised version of 
this section includes the following discussion: 
 
“Previous studies also note that estimates of carbon fluxes from the atmospheric inverse method are sensitive to 
the specification of the prior flux distribution and its associated  uncertainty distribution (Carouge et al., 2010; 
Chatterjee et al., 2013; Peylin et al., 2013). While there have been recent studies evaluating the sensitivity of land–
based carbon flux estimates to specification of the prior flux and its uncertainty, there has been far less examination 
of ocean flux estimates from inverse methods. Several global inverse model assessments of the past decade have 
relied on the climatological ocean–atmosphere CO2 flux database of Takahashi et al. (2009) to specify prior ocean 
fluxes. In view of the limited information available on the temporal and spatial variability of ocean carbon fluxes 
from this climatological ocean database, these inverse analyses have adopted different approaches to the 
specification of prior uncertainty for ocean fluxes, ranging from uncertainties derived from a separate ocean model 
inversion (in the case of Nassar et al., 2011), to a specified percentage of the prior flux magnitude (Feng et al., 
2016, Liu et al. 2016).” 
 
 
Reviewer 2: L. 91: this is Appendix A, not A1. 
Response: We have corrected it to Appendix A. 
 
 
Reviewer 2:  L. 121: what is the rationale behind the 60% and 120% values? The authors 
should relate them to their knowledge of the quality of their prior fluxes, while they make it 
look arbitrary (except if indeed matrix B is just an ensemble of tuning factors and not an error 
covariance matrix; see above). 
Response:  The selection of the prior uncertainty levels used in the sensitivity analyses of 
section 3.1 was based on the range of variability seen for the individual prior flux distributions 
(Takahashi et al. 2009; Landschutzer et al. 2016; and Rödenbeck et al. 2013) for the sub-regions 
of the North Atlantic. These ranged from average levels of ~60% for the sub-tropical North 
Atlantic to levels > 120% for the sub-polar North Atlantic, hence we selected a level of U1:60% 
to characterize the lower sensitivity case, and U2:120% for the higher case. We have also 
updated our discussion of Section 3.1 to include this information. 
 



 
Reviewer 2:  L. 127: what is the value of K? I get the impression that only 3 flux products are 
used here: no standard deviation can be estimated from just three members. 
Response: In our original manuscript K = 3, as we included only three prior flux distributions. 
In response to suggestions from Reviewer 1, we have now included six other inter-annually 
varying pCO2-based flux products in our analyses (see discussion and revised results in our 
Response to Reviewer 1 above). For the revised version of Figure 1 included in our response 
above, and in the revised manuscript, K=8 (we have omitted the climatological flux distribution 
of Takahashi et al. 2009, in the revised version of Figure 1).  
 
 
 
Reviewer 2: L. 140-1: why would the three prior ocean flux distributions have the same 
uncertainty statistics? 
Response:  The uncertainty statistics of the prior ocean flux distributions will be dependent on 
the uncertainties associated with the respective inputs and methods of constructing the flux 
products. Ocean-atmosphere carbon flux products derived from surface ocean pCO2 
measurements are generally subject to two main sources of uncertainty: (i) in the specification 
of the surface CO2 partial pressure difference across the air-sea interface, and (ii) in the 
specification of the gas-exchange coefficient used to derive fluxes (e.g., see discussion of 
Landschutzer et al. 2013; Watson et al. 2020). In the extended database of 8 pCO2-based flux 
products that we present above in this Response to Reviewers, the majority of the flux products 
(seven of the eight) rely on the surface ocean pCO2 data of the SOCAT database (Bakker et al. 
2016, 2020). These flux products will be subject to similar uncertainties associated with data 
coverage in different ocean regions, although the uncertainties due to differences among 
surface interpolation methods may vary. We have added discussion of these sources of 
uncertainty to section 3.1.   
 
Reviewer 2: L. 170: flexibility is not the question. The question is about well modelling the 
prior uncertainty. 
Response: We have rewritten this section to better describe the aim of using the spread-based 
uncertainty-scheme. The revised version of section 2.4 includes the following discussion: 
 
“The prior ocean flux distributions employed in atmospheric inversions are frequently derived from interpolations 
of the surface ocean pCO2 database (e.g., SOCAT, Bakker et al., 2016) in combination with ocean–atmosphere 
gas exchange parameterizations. Uncertainties in the derived products stem from uncertainties in the input data 
(e.g., density of measurements), interpolation methods, and gas–transfer parameterizations (Landschutzer et al., 
2013). However, some ocean regions, the North Atlantic in particular, have a higher density of pCO2 
measurements and more consistent flux estimates from pCO2–based products (Schuster et al., 2013, Landschutzer 
et al., 2013). Here we exploit the recent expansion of pCO2–based ocean flux products to outline a new 
specification of ocean prior flux uncertainty based on the ensemble-spread of the different flux products (the 
“spread–based” uncertainty scheme). Towards the development of the spread-based scheme, we have compiled a 
set of eight global gridded interannually varying ocean-atmosphere CO2 flux products. These are Landschutzer et 
al., 2016, Rodenbeck et al., 2014, Denvil–Sommer et al., 2019, Iida et al., 2015, Zeng et al., 2015, Gregor et al., 
2019, Chau et al., 2020, and Watson et al., 2020. 
The spread–based prior flux uncertainty scheme uses a diagnostic derived from the variation among the set of 
ocean atmosphere carbon flux products (see Eq. (1)). This scheme specifies lower uncertainty levels where 
alternative prior flux representations are in accord (e.g., when well–constrained by availability of surface pCO2 
measurements), and higher uncertainty levels where the prior flux distributions differ significantly (typically in 
under–sampled regions or those of significant flux variability). This specification follows previously used methods 
to characterize uncertainties in ocean flux distributions (e.g., Bopp et al., 2013).” 
 
 



 
Reviewer 2: Table 2: if the numbers behind plus/minus signs for the mean values across 
studies are standard deviations, how can they have been computed on 6, 3, or 
even 2 members only? 
Response: As noted above our analysis has been extended to 8 inter-annually varying ocean 
CO2 flux products. Table 2 has also been revised in the manuscript, and as described above in 
our Response to Reviewer 1. In addition, the ranges shown in Tables 2,3,4 and in Figure 3 now 
correspond to the minimum to maximum range of the individual sets of (i) atmospheric inverse 
analyses; (ii) surface pCO2-based products; (iii) global ocean biogeochemistry models. 
 
 
Reviewer 2:L. 339: what is the value of L? 
Response:  The parameter L represents the horizontal localization radius, and is set to 2000 
km for this study, following Liu et al. (2016). The localization radius is used in the LETKF in 
a latitude-dependent weighting function which characterizes the spatial scale of the region 
within which atmospheric CO2 observations are assimilated at each gridpoint (Miyoshi et al. 
2007). We have added further clarification of this to section 2.2 and to the Appendix. 
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