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Abstract. We present new estimates of the regional North Atlantic (15˚N–80˚N) CO2 flux for the 2000–2017 period using 

atmospheric CO2 measurements from the NOAA long term surface site network in combination with an atmospheric data 

assimilation system (GEOSChem–LETKF). We also assess the sensitivity of flux estimates to the representation of the prior 

ocean flux distribution and to the associated specification of prior flux uncertainty, including a specification that is 

dependent on the agreement among the multiple representations of the prior ocean flux. Long term average flux estimates for 15 

the 2000–2017 period are -0.26±0.04 PgC y-1 for the subtropical basin (15˚N–50˚N), and -0.25±0.04 PgC y-1 for the subpolar 

region (50˚N–80˚N, west of 20˚E),. Our basin–scale estimates of the standard deviation of interannual variability (IAV) are 

0.037±0.006 PgC y-1 and 0.025±0.009 PgC y-1 for subtropical and subpolar regions respectively. We find a statistically 

significant trend in carbon uptake for the subtropical North Atlantic of -0.062±0.009 PgC y-1 decade-1 over this period.  

1 Introduction 20 

The ocean plays a key role in the global carbon budget, accounting for 2.5±0.6 PgC y-1 (approximately 26%) of the uptake of 

global fossil emissions during the last decade (period 2009-2018) (Friedlingstein et al., 2019). The North Atlantic ocean has 

been identified a region of significant net oceanic CO2 uptake in a range of recent analyses (Schuster et al., 2013, Landschützer 

et al., 2013, Lebehot et al., 2019), and also the location of the largest Northern Hemisphere uptake of anthropogenic CO2 in 

recent decades (Gruber et al., 2019, Khatiwala et al., 2013, Sabine et al., 2004). Recent estimates of net air-sea CO2 fluxes 25 

derived from sea surface partial pressure CO2 measurements (pCO2) indicate net annual uptake for the North Atlantic of -0.47 

±0.08 PgC y-1 for the 1990–2009 period (Schuster et al., 2013, equivalent to about 20% of global ocean CO2 uptake).  

Regionally aggregated air-sea CO2 fluxes over the North Atlantic basin also display significant variability on interannual 

(Watson et al., 2009) and decadal timescales (Landschützer et al., 2016, 2019). Based on analyses of surface pCO2 

measurements, variations in regional pCO2 trends were observed in the subtropical and subpolar regions, potentially associated 30 

with large–scale climate oscillations such as the North Atlantic Oscillation and the Atlantic Multi–decadal Variation 

(McKinley et al., 2011, Landschützer et al., 2019, Macovei et al., 2020). Devries et al. (2019) estimated a negative trend in 
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North Atlantic CO2 uptake based on analysis of pCO2-based estimates and ocean models for the 2000–2009 period. In addition, 

Lebehot et al. (2019) found distinct differences between trends in surface ocean CO2 fugacity (fCO2) derived from observation-

based surface mapping methods and those from the CMIP5 Earth System models.  35 

These recent analyses of North Atlantic air-sea CO2 fluxes have primarily been based on ‘bottom–up’ methods of varying 

complexity which use interpolated surface ocean pCO2 distributions (derived from  in-situ pCO2 measurements) in combination 

with parameterizations of air–sea gas exchange (e.g., Landschützer et al., 2013; Rödenbeck et al., 2015; Takahashi et al., 2002; 

Takahashi et al., 2009). Estimates of air–sea CO2 fluxes have also been derived by alternative methods such as global ocean 

biogeochemical models (e.g., Buitenhuis et al.,2013; Law et al., 2017), and ‘top–down’ methods which involve the application 40 

of inverse analyses or data assimilation methods to atmospheric and oceanic CO2 measurements (e.g., Gruber et al., 2009, 

Mikaloff–Fletcher et al., 2006, Gurney et al., 2003, Peylin et al., 2013).  

Atmospheric CO2 inversions estimate surface CO2 fluxes by using information on observed gradients in atmospheric CO2 

together with atmospheric transport constraints (typically from 3 D atmospheric models) and prior information on surface CO2 

flux distributions (Rödenbeck et al., 2003; van der Laan–Luijkx et al., 2017; Peters et al., 2005; Peylin et al., 2013; Chevallier 45 

et al., 2014; Gaubert et al., 2019). Previous studies have noted some discrepancies between estimates of regional ocean fluxes 

from the different methods. For example, Peylin et al. (2013) noted the  limited constraints provided by atmospheric CO2 

measurements on land–ocean carbon flux partitioning for some regions, and noted the potential for “flux leakage” between 

land and ocean flux estimates (e.g., the northern ocean fluxes). Previous studies also found that estimates of carbon fluxes 

from the atmospheric inverse method are sensitive to the specification of the prior flux distribution and its associated  50 

uncertainty distribution (Carouge et al., 2010; Chatterjee et al., 2013; Peylin et al., 2013); While there have been recent studies 

evaluating the sensitivity of land–based carbon flux estimates to specification of the prior flux and its uncertainty, the variation 

of regional ocean fluxes has been far less examined by previous inverse studies. 

Previous inverse estimates of ocean CO2 fluxes have predominantly relied on the climatological ocean to atmosphere CO2 flux 

distribution of Takahashi et al. (2009) for use as the a priori flux estimate (e.g., Nassar et al., 2011; Feng et al., 2009, 2016; 55 

Deng et al., 2016). These analyses often use different methods to specify the level of flux uncertainty assigned to the ocean 

prior fluxes. For example, the inverse analyses of Feng et al. (2016) and Deng et al. (2016) use prior flux uncertainty levels of 

0.6 PgC y-1 (equivalent to 44% of the ocean flux total) , i.e., a level of uncertainty twice as large as the uncertainty in Nassar 

et al. (2011). 

Here we present a new long term estimate of North Atlantic air–sea CO2 fluxes for recent decades (period 2000–2017) using 60 

atmospheric inverse methods. We use the  carbon cycle data assimilation system GEOSChem–LETKF (GCL) which combines 

the global atmospheric CO2 transport model GEOS–Chem (Nassar et al., 2010) with the Localized Ensemble Transform 

Kalman Filter (LETKF) data assimilation system (Hunt et al., 2007; Miyoshi et al., 2007; Liu et al., 2019). An additional focus 

of our analysis is to evaluate the sensitivity of flux estimates to alternative a priori flux distributions and uncertainty 

specifications for oceanic CO2 fluxes. To our knowledge these influences on North Atlantic flux estimates have not been 65 

assessed previously.  
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We investigate the sensitivity of the derived posterior flux estimates to three different representations of the ocean prior flux 

distribution and investigate an alternative method to characterize prior ocean flux uncertainty based on the ensemble spread of 

the multiple prior ocean fluxes. We derive North Atlantic CO2 flux estimates for the 2000–2017 period and compare their 

characteristics with previous relevant studies. 70 

2 Materials and Methods 

2.1 Overview 

Our analysis employs the Localised Ensemble Kalman Filter (section 2.2) together with the global GEOS-Chem atmospheric 

chemistry transport model (section 2.3) and atmospheric CO2 observations from the NOAA–ESRL network of surface sites 

(section 2.4). Section 2.5 describes the specification of flux uncertainty based on multiple representations of prior ocean fluxes 75 

(spread–based uncertainty). Section 2.6 presents sensitivity analyses assessing different prior flux representations and flux 

uncertainties defined from three different schemes (i.e., percentage–based uncertainty specifications (60%, 120%), and the 

spread–based uncertainty scheme). Further details on the methods, model, observations and uncertainty calculations are 

presented in the sections below and in the Appendix. 

2.2 Localized Ensemble Transform Kalman Filter (LETKF) 80 

The LETKF is a data assimilation system which provides an estimate given a prior (or “background”) estimate of the current 

state based on past and current data (in this case, the atmospheric CO2 mole fraction observations). The general framework of 

the LETKF is described in Hunt et al. (2007); it has been  adapted by Miyoshi et al. (2007) to provide gridscale localized 

analysis of flux estimates. The LETKF system has been used to estimate CO2 fluxes in a range of previous studies (e.g, Kang 

et al., 2012; Liu et al., 2016, 2019).  85 

The LETKF provides iterative estimates of the time evolution of the system state, x, (here representing the gridscale surface 

carbon fluxes). Each step involves a forecast stage (based on a physical model of the system evolution) and a state estimation 

stage (the ‘analysis’ step), which combines system observations,  y, together with the background forecast, 𝑥௕ , to derive the 

improved state estimate. The observation operator H provides the mapping from the state space to the observation space; in 

this study H is provided by the GEOS–Chem atmospheric model (section 2.3). Further details on the LETKF and the governing 90 

equations for flux estimation are provided in the Appendix A1. 

In this analysis, the LETKF is used to derive gridscale fluxes for the period 2000–2017. The gridded fluxes are updated 

sequentially on weekly timescale by assimilation of the atmospheric CO2 observations from a network of surface sites (section 
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2.4).  We report a posteriori fluxes on monthly timescales for the 2000–2017 period; the optimized monthly fluxes are derived 

from four sequential weeks of assimilation cycles. 95 

2.3 The GEOS–Chem atmospheric transport model 

The GEOS–Chem atmospheric chemistry transport model has been used in a range of previous investigations into atmospheric 

CO2 and applied in conjunction with inverse analyses to estimate surface carbon fluxes (Nassar et al., 2010, 2011; 

Suntharalingam et al., 2005; Liu et al., 2016). In this analysis we employ GEOSChem v11–01 at a horizontal resolution of 2° 

latitude by 2.5° longitude, with 47 levels in the vertical. Model transport fields are provided by GEOS-5 assimilated 100 

meteorological data from the NASA Global Modeling and Assimilation Office (GMAO, Rienecker et al., 2008). A detailed 

information of prior fluxes and uncertainties used in this study is given in Section 2.5.  

2.4 Atmospheric CO2 Observations  

Atmospheric CO2 observations used for this study are taken from the NOAA–ESRL GLOBALVIEWplus Observation 

Package v4.2 (Obspack, Cooperative Global Atmospheric Data Integration Project, 2018). CO2 measurement records for the 105 

period 2000–2017 from 86 surface sites were used in this analysis. Further details on the measurement sites and the site–

specific observation uncertainty characteristics are presented in Table A1 of the Appendix. The specification of observational 

uncertainty associated with incorporation of the  atmospheric CO2 measurements into the LETKF is derived using the methods 

of Chevallier et al. (2010); we  use the standard deviation of measurement variability from detrended and deseasonalized CO2 

time series at each measurement site. The resulting specification of observational uncertainty varies between 0.16 ppm (for 110 

stations in and around the Southern Ocean) to over 5 ppm (for stations in continental interiors) (see Appendix Table A1 for 

more details).  

2.5 Specification of Prior CO2 Fluxes and Associated Flux Uncertainties 

A priori CO2 flux distributions implemented in the GEOS–Chem model for this analysis include fossil fuel emissions taken 

from Chevallier et al. (2019) (Global Atmospheric Research version 4.3.2, Crippa et al., 2016, scaled globally and annually 115 

from Le Quéré et al., 2018), and land biosphere fluxes from the Joint UK Land Environment Simulator (JULES, Clark et al., 

2011). We evaluate three separate representations for ocean CO2 fluxes, namely, Takahashi et al. (2009) (hereinafter Ta), 

Landschützer et al. (2016) (hereinafter La), and Rödenbeck et al. (2013) (hereinafter Ro).  

Since the primary focus of our investigation is to estimate North Atlantic Ocean CO2 fluxes, we have evaluated in more detail, 

the impact of different specifications of prior flux uncertainty for ocean fluxes. Specifications of prior flux uncertainty for 120 

ocean fluxes include (a) a percentage-based level (U1:60% of prior flux, and U2:120% of prior flux), and (b) gridded flux 

uncertainties representing the variation or ‘spread’ of the different ocean flux data products at each location, and based on the 

standard deviation of the variation among the prior fluxes (U3: spread-based uncertainty; see  equation 1). This specification 

follows previously used methods to characterize uncertainties in ocean flux distributions (e.g., Bopp et al., 2013). For this 
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latter specification (U3), the gridded prior flux uncertainty, U(i,j) (for a gridcell with coordinates (i,j)) is specified as the 125 

standard deviation of the spread of the  different prior flux products. Thus, the uncertainty U(i,j) is calculated as: 

 
𝑈(𝑖, 𝑗) = 𝑠𝑞𝑟𝑡(෍൫𝑓௞(𝑖, 𝑗) − 𝑓(𝚤, 𝚥തതതതതത൯

ଶ
)/(𝐾 − 1)

௄

௞

 
(1) 

Here K is the total number of the prior ocean flux products considered, and subscript k refers to an individual flux product. 

𝑓௞(𝑖, 𝑗) represents the gridded monthly flux for each prior ocean flux and 𝑓(𝚤, 𝚥)തതതതതതതത is the gridded monthly mean across all prior 

ocean flux products. These prior flux uncertainties are estimated on monthly timescales and also account for interannual 

variations. The representation of ocean prior flux uncertainty is further discussed in section 3.1.  130 

3 Results and Discussion 

Section 3.1 and Table 1 present sensitivity tests conducted for different prior ocean flux distributions and prior ocean flux 

uncertainty schemes. Section 3.2 presents the estimates of North Atlantic CO2 ocean fluxes for the 2000–2017 period. We 

focus on the long term mean values, interannual variability and trends of the GCL estimates of CO2 ocean fluxes. In section 

3.2 we also compare the results from this study with previous estimates of North Atlantic (NA) fluxes. 135 

3.1 Sensitivity tests on specification of prior flux uncertainty 

We first assess the sensitivity of derived flux estimates to the specification of prior flux uncertainty; this analysis is conducted 

for the year 2003. An initial three year model spin–up, starting from January 1st, 2000 was conducted following the CO2 

simulation and methods of Nassar et al. (2010). We evaluate the sensitivity of posterior ocean flux estimates with three different 

prior ocean uncertainty schemes U1, U2, and U3, described in section 2.5; these are applied in turn for each of the three prior 140 

ocean flux distributions (Ta, La and Ro). Figure 1 presents an example distribution of the spread–based prior ocean flux 

uncertainty U3 (shown as a quarterly average for an example year of 2003). Figure 1 demonstrates that the spread-based 

uncertainty scheme (U3) provides a looser constraint on prior fluxes (i.e., levels of prior flux uncertainty > 120%) than the U1 

and U2 schemes in the subpolar region, and a tighter constraint in the subtropical region (levels < 60%).  
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 145 

Figure 1. Distribution of the spread-based prior ocean flux uncertainty (U3) (annual average for the year 2003). It is represented here as a 
percentage of the prior ocean flux for ease of comparison with U1 and U2.  The percentage shown for each grid-cell is derived from the ratio 
of spread–based prior ocean uncertainty divided by the prior ocean flux value at that grid cell. DJF represents the monthly average for 
December, January, February; MAM for March, April, May; JJA for June, July, August; SON for September, October, November.  

 150 

Table 1 summarizes the prior and posterior ocean flux estimates for the global and North Atlantic region (sub-divided into 

subpolar and subtropical regions) from the respective sensitivity tests. The distribution of prior flux for the subtropical North 

Atlantic shows closer agreement among the three source representations (Ta, La and Ro), with regional variation of 0.05 PgC 

y-1, in comparison to a regional variation of ~0.1 PgC y-1 for the subpolar region. 

Under the constraints provided by the atmospheric CO2 observations all posterior flux estimates for the North Atlantic show 155 

increased uptake (Table 1), indicating that all three representations of ocean prior flux underestimate the regional net 

atmosphere-ocean flux for the 2003 period. Our estimates indicate a larger increase in CO2 uptake  in the subpolar basin (~0.05 

PgC y-1, changing from a prior flux range of -0.13 to -0.23 PgC y-1 to posterior flux range of -0.19 to -0.28 PgC y-1), in 

comparison to the smaller magnitude change for the subtropical North Atlantic basin (of ~ 0.02 PgC y-1 from -0.17 to -0.22 

PgC y-1 to -0.2 to -0.25 PgC y-1) 160 
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Table 1. Global and North Atlantic CO2 flux estimates from the GEOSChem–LETKF(GCL) system for year 2003 (PgC y-1) summarizing 
sensitivity analyses on the prior ocean flux distribution. Prior flux references are Ta: Takahashi et al. 2009; La: Landschutzer et al. 2017; 
Ro: Rodenbeck et al. 2013.  Prior flux uncertainty specifications are:  U1 60%; U2: 120%: U3:  spread–based (following methods of section 
2.5). 

Global Ocean CO2 Flux (PgC y-1) 

Ta -1.37 La -1.25 Ro -2.09 

TaU1 -1.63±0.13 LaU1 -1.52±0.13 RoU1 -2.31±0.16 

TaU2 -2.05±0.26 LaU2 -1.96±0.26 RoU2 -2.68±0.31 

TaU3 -2.24±0.28 LaU3 -2.21±0.28 RoU3 -2.73±0.28 

North Atlantic subtropics [15°N-50°N] 

Ta -0.22 La -0.18 Ro -0.17 

TaU1 -0.23±0.02 LaU1 -0.19±0.02 RoU1 -0.18±0.02 

TaU2 -0.25±0.05 LaU2 -0.21±0.04 RoU2 -0.20±0.04 

TaU3 -0.24±0.05 LaU3 -0.20±0.05 RoU3 -0.19±0.05 

North Atlantic subpolar [50°N-80°N], west of 20°E 

Ta -0.23 La -0.13 Ro -0.21 

TaU1 -0.23±0.05 LaU1 -0.13±0.02 RoU1 -0.22±0.04 

TaU2 -0.25±0.1 LaU2 -0.14±0.05 RoU2 -0.23±0.09 

TaU3 -0.28±0.11 LaU3 -0.19±0.11 RoU3 -0.26±0.11 

 165 

We note that the increases in estimated uptake for the North Atlantic basins are relatively smaller (on average in the range 10–

20%) than the increased uptake estimated on the global scale (~30–70% changes, see Table 1), indicating that prior flux 

representations of the North Atlantic are more consistent with the constraints from atmospheric measurements than those for 

other regions of the global ocean.  

Use of the spread–based uncertainty scheme (U3) enables flexibility in specification of the regional magnitude of the prior 170 

flux uncertainty, as it allows tighter constraints in regions where alternative prior flux representations are in accord, and looser 

constraints in regions where prior flux representations differ significantly. For the long term analyses of the remainder of this 

study we therefore use the U3 flux uncertainty scheme. We will also employ the flux distribution of Landschützer et al. (2016) 

as the prior flux distribution as it provides interannually varying fluxes over the entire estimation period (2000–2017).   

3.2 Multi-year analyses of North Atlantic CO2 fluxes 175 

In this section we present results of a multi–year analysis (for the period 2000–2017) assessing regional estimates of North 

Atlantic CO2 fluxes on annual to decadal timescales. We assess the GCL a posteriori estimates of ocean fluxes using the prior 

flux specifications outlined in section 2; i.e., La, Ro and Ta. All other prior flux distributions (for fossil emissions, and land 

biosphere fluxes) are as described in section 2.4. To evaluate the inverse results in this study further, we compare our results 
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with the estimates from three other inverse systems including CAMS (v18r2, Chevallier et al., 2019), CT (CarbonTracker 180 

2019, Jacobson et al., 2020 ) and CTE (Carbon Tracker Europe, van der Laan–Luijkx et al., 2017). All data are regridded to 

2° latitude × 2.5° longitude to be consistent with the GCL model resolution.  

 
Figure 2. Comparison of annual air–sea CO2 fluxes for North Atlantic for the 2000–2017 period for: (a) North Atlantic Subtropics; and (b) 
North Atlantic Subpolar regions. The GCL posterior flux estimate from this study (red) is derived from the prior flux of Landschützer et al., 185 
2016 (pCO2La: black). The grey shaded area represents the uncertainty estimate on the GCL posterior flux (plotted at a 3 sigma level). Also 
shown are the flux estimates of (i) Chevallier et al., 2019 (CAMS: yellow); (ii) Jacobson et al., 2020 (CT: CarbonTracker2019: pink); and 
(iii) van der Laan–Luijkx et al., 2017 (CTE: Carbon Tracker Europe: blue). All time series shown have a 12 month running mean filter 
applied. 

 190 

Figure 2 presents the variation of air–sea CO2 flux for the NA subtropical and subpolar regions for the 2000–2017 period 

(represented as a 12 month running average), and comparison to estimates from previous studies. For the NA subtropical 

region, the GCL posterior flux magnitude is similar to that of the prior flux, with a difference of less than 0.02 PgC y-1 over 

the period. Variation among the other inverse flux estimates can reach up to 0.5 PgC y-1 (e.g., between CTE and CAMS in 

2007). These larger variations primarily result from the different prior ocean fluxes used in the respective inverse studies. This 195 
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issue has been previously noted by other studies; e.g., Nassar et al. (2011), note that that the prior ocean flux used in CTE 

(Jacobson et al., 2007; van der Laan–Luijkx et al., 2017) provides approximately 85% more carbon uptake (on a global basis) 

than the ocean flux estimates of Takahashi et al. (2009). 

For the NA subpolar region, the GCL posterior flux estimate deviates more from the prior flux estimate (e.g., showing 

differences of up to 0.09 PgC y-1), especially in the early decade of the analysis (2000–2010). The majority of flux estimates 200 

for the NA subpolar region are in closer accord (Fig. 2b) with  differences of less than 0.2 PgC y-1 (the CT estimate is an 

exception indicating variations of greater than 0.3 PgC y-1 from the other estimates). The long term mean, IAV and trends of 

these estimates are discussed in the following subsections. 

3.2.1 Long term mean 

Figure 3 provides a comparison of the following GCL flux estimates and associated characterstics for the North Atlantic 205 

subtropical and subpolar regions for the period 2000–2017: (i) the long term mean of air–sea CO2 flux estimates (The 

underlying data are tabulated in Table 2); (ii) the amplitude of estimated  interannual variability (IAV) of fluxes (Table 3); 

and (iii) the long term trends (Table 4). The IAV is calculated following methods of Rödenbeck et al. (2015) (i.e., derived 

from the standard deviation of the residuals of a 12 month running mean over the CO2 flux time series).  

 210 

Figure 3. Comparison of CO2 ocean flux metrics for the 2000–2017 period for North Atlantic subtropics (left panels) and subpolar regions 
(right panels). Metrics shown are the long term mean (panels (a) and (b)); interannual variability (IAV) (panels (c) and (d)); and long term 
trend (panels (e) and (f)).  The GCL estimates (red stars) are shown in comparison to other atmospheric inverse analyses (red symbols), 
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surface ocean pCO2 products (blue) and global ocean biogeochemistry models (GOBMs, purple). Also shown are the estimated means from 
each sub-group of analyses (circle symbols) with associated uncertainty (1 standard deviation).  215 

Table 2.  Summary metrics of GEOSChem–LETKF North Atlantic (NA) CO2 flux estimates, and comparison with independent estimates 
(from atmospheric inverse analyses, surface pCO2 mappings, and Global Ocean Biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the long term mean. The metrics listed in this table are plotted in Fig. 3. 

Long term mean (PgC y-1) 
NA Subtropics NA Subpolar  

Atmospheric inversions 

-0.26±0.04 -0.25±0.04 This study (GCL)a 

-0.203 -0.208 CAMS (Chevallier et al. 2019) 

-0.457 -0.270 CTE (van der Laan–Luijkx et al. 2017) 

-0.307 -0.34 CT (Jacobson et al. 2020) 

-0.30±0.11 -0.26±0.05 Mean of all atmospheric inverse studiesb 

Surface ocean pCO2-based flux products 

-0.263 -0.23 pCO2La (Landschutzer et al. 2016) 

-0.284 -0.252 pCO2Ro (Rodenbeck et al. 2013) 

-0.27±0.01 -0.24±0.01 Mean of all pCO2-based representationsb 

Global ocean biogeochemistry models 

-0.150 -0.197 NEMO-PlankTOM5 (Buitenhuis et al. 2010) 

-0.238 -0.217 CCSM-BEC (Doney et al. 2009) 

-0.342 -0.341 NEMO-PISCES (CNRM) (Séférian et al. 2013) 

-0.188 -0.321 MPIOM-HAMOCC (Ilyina et al. 2013) 

-0.351 -0.316 NorESM-OC (Schwinger et al. 2016) 

-0.205 -0.256 MITgcm-REcoM2 (Hauck et al. 2016) 

-0.24±0.07 -0.27±0.05 Mean of GOBM studiesb 

 

We also present in Fig. 3 the equivalent estimates from other independent assessments, including (i) other atmospheric 220 

inverse analyses, (ii) surface ocean pCO2–based analyses, and (iii) analyses from global ocean biogeochemistry models 

(GOBMs, Buitenhuis et al., 2010; Doney et al., 2009; Séférian et al., 2013; Ilyina et al., 2013; Schwinger et al., 2016; Hauck 

et al., 2016).   

For the North Atlantic subtropical region, the long term mean of the GCL posterior flux estimate is -0.26±0.04 PgC y-1. This 

is consistent with the observationally based “best” estimate of Schuster et al. (2013) for the period 1990-2009. Figure 3 (and 225 

Table 2) also indicate generally good agreement between the GCL estimate for North Atlantic subtropical region fluxes and 
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estimates from surface pCO2–based methods and GOBMs. The GCL inverse estimate is also consistent with 2 of the other 3 

inverse flux estimates considered, with only the flux estimate from CTE (van der Laan–Luijkx et al., 2017) significantly 

different with an uptake level greater than 0.4 PgC y-1. For the North Atlantic subpolar region, the GCL estimate of the long 

term mean uptake is -0.25±0.04 PgC y-1 (Table 2), which is slightly larger than that of the prior flux (-0.23 PgC y-1) and the 230 

estimate of -0.21 PgC y-1 from Schuster et al. (2013). The ensemble mean from each group (atmospheric inversions, pCO2–

based and GOBMs) agree well and range from -0.24 PgC y-1 to -0.27 PgC y-1.  

 

3.2.2 Interannual variability 

The standard deviation of IAV derived from the GCL is 0.037±0.006 PgC y-1 for the NA subtropics and 0.025±0.009 PgC y-1 235 

for the NA subpolar region (Fig. 3, Table 3). The IAV estimates for the NA subtropics from the different analyses display a 

large range of values (0.019 to 0.059 PgC y-1). The standard deviation of IAV derived from the GCL (~0.037 PgC y-1) is 

similar to that of the prior and of the surface ocean pCO2–based estimates but larger than those of the GOBMs (~0.019 PgC 

y-1). The largest IAV estimates (mean value of 0.059±0.024 PgC y-1) are associated with the  atmospheric inversions, and 

influenced by the CarbonTracker analyses (e.g., CTE and CT indicate larger IAV magnitudes for this period of ~0.08 PgC y-240 

1). Potential causes of the differences between the GCL and CAMS IAV estimates and those of the CarbonTracker estimates 

are the different prior ocean fluxes employed by the different inverse analyses, and the relative weighting assigned to the 

influence of atmospheric CO2 observations (Jacobson et al., 2019). The GCL and CAMS estimates use the prior flux of 

Landschützer et al. (2016) and the CarbonTracker inversions use the prior flux of Jacobson et al. (2007).  

The GCL estimate of IAV for the North Atlantic subpolar region (~0.025 PgC y-1) is closer in magnitude to the majority of 245 

other analyses, which range between 0.015 and 0.036 PgC y-1 (the exception being the CT inverse estimate with the largest 

IAV of 0.114 PgC y-1). For this region the IAV estimates from atmospheric inverse analyses display the greatest variation, 

influenced by the high estimate from the CT analysis. 

 

 250 
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Table 3.  Summary metrics of GEOSChem–LETKF North Atlantic (NA) CO2 flux estimates, and comparison with independent estimates 260 
(from atmospheric inverse analyses, surface pCO2 mappings, and Global Ocean Biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the trend of the regional fluxes over the period. The metrics listed in this table are plotted in Fig. 3. 

Interannual Variability (IAV) (PgC y-1) 
 NA Subtropics NA Subpolar  

Atmospheric inversions 

0.037±0.006 0.025±0.009 This study (GCL)c 

0.032 0.023 CAMS (Chevallier et al. 2019) 

0.082 0.033 CTE (van der Laan–Luijkx et al. 2017) 

0.084 0.114 CT (Jacobson et al. 2020) 

0.059±0.024 0.049±0.038 Mean of all Atmospheric inverse studiesb 

Surface ocean pCO2–based flux products 

0.038 0.036 pCO2La (Landschutzer et al. 2016) 

0.050 0.035 pCO2Ro (Rodenbeck et al. 2013) 

0.044±0.006 0.036±0.001 Mean of all pCO2-based representationsb 

Global ocean biogeochemistry models 

0.018 0.018 NEMO–PlankTOM5 (Buitenhuis et al. 2010) 

0.014 0.015 CCSM-BEC (Doney et al. 2009) 

0.027 0.024  NEMO-PISCES (CNRM) (Séférian et al. 2013) 

0.016 0.019 MPIOM-HAMOCC (Ilyina et al. 2013) 

0.021 0.016 NorESM-OC (Schwinger et al. 2016) 

0.017 0.016 MITgcm-REcoM2 (Hauck et al. 2016) 

0.019±0.004 0.018±0.003 Mean of GOBM studiesb 

 

3.2.3 Estimated Trends of North Atlantic CO2 Fluxes 

Our GCL analyses indicate a statistically significant trend of -0.062±0.009 PgC y-1 decade-1. i.e., increasing CO2 uptake in the 265 

North Atlantic subtropical basin for the 2000–2017 period (significant at the 95% level with Ordinary Least Squares (OLS, 

Montgomery et al., 2012) method). This estimated trend is of larger magnitude than those estimated from the GOBMs air-sea 

fluxes (Fig. 3, Table 4), and of similar magnitude to the trends derived for the surface ocean pCO2–based estimates. 
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In the North Atlantic subpolar region, GCL estimate of the trend in regional CO2 uptake of -0.026±0.015 PgC y-1 decade-1 is 

larger than the mean estimate from GOBM analyses, and similar to the majority of other atmospheric inverse analyses (apart 270 

from the CT inversion which displays a large estimated trend of -0.1 PgC y-1 decade-1). However, we also note that our derived 

estimate of trend for this region is not significant at the 95% confidence level. 

Table 4.  Summary metrics of GEOSChem-LETKF North Atlantic (NA) CO2 flux estimates, and comparison with independent estimates 
(from atmospheric inverse analyses, surface pCO2 mappings, and Global Ocean Biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the trend of the regional fluxes over the period. The metrics listed in this table are plotted in Fig. 3 of the main 275 
study. 

Trend (PgC y-1 decade-1) 
 NA Subtropics NA Subpolar  

Atmospheric inversions 

-0.062±0.009 (Sd) -0.026±0.015 This study (GCL)e 

-0.016 -0.023 CAMS (Chevallier et al. 2019) 

0.010 0.015 CTE (van der Laan–Luijkx et al. 2017) 

-0.067 -0.102 CT (Jacobson et al. 2020) 

-0.034±0.032 -0.041±0.035 Mean of all Atmospheric inverse studiesb 

Surface ocean pCO2-based flux products 

-0.068 -0.056 pCO2La (Landschutzer et al. 2016) 

-0.070 -0.029 pCO2Ro (Rodenbeck et al. 2013) 

-0.069±0.001 -0.043±0.013 Mean of all pCO2-based representationsb 

Global ocean biogeochemistry models 

-0.015 -0.023 NEMO-PlankTOM5 (Buitenhuis et al. 2010) 

-0.010 0.000 CCSM-BEC (Doney et al. 2009) 

-0.021 -0.002 NEMO-PISCES (CNRM) (Séférian et al. 2013) 

-0.014 -0.011 MPIOM-HAMOCC (Ilyina et al. 2013) 

-0.036 -0.023 NorESM-OC (Schwinger et al. 2016) 

-0.013 -0.014 MITgcm-REcoM2 (Hauck et al. 2016) 

-0.018±0.009 -0.018±0.009 Mean of GOBM studiesb 

a The uncertainty of long term mean estimate from the GCL (this study) is calculated as the standard deviation of the annual 

flux estimates over the (2000–2017) period. 

b The uncertainty of atmospheric-inverse-based mean, pCO2-based mean and GOBM-based mean is calculated as the standard 

deviation of products for each method.  280 
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c The uncertainty of the estimated IAV from the GCL (this study) is calculated as the standard deviation of the ensemble 

posterior fluxes 

d The symbol (S) indicates that the calculated trend is statistically significant (at the 95% confidence interval). 
e The uncertainty of the fitted trend from the GCL estimates is reported as 1 standard deviation of the OLS fitted slope 

(Montgomery et al. 2012). 285 

4 Summary  

Our GCL estimates of CO2 uptake in the North Atlantic for the 2000–2017 period are -0.26±0.04 PgC y-1 for the NA subtropics 

and -0.25±0.04 PgC y-1 for NA subpolar region. The GCL estimates of interannual variability in air–sea CO2 fluxes are 

0.037±0.006 PgC y-1 (NA subtropics) and 0.025±0.009 PgC y-1 (NA subpolar). Our GCL estimates also indicate a statistically 

significant trend of increasing CO2 uptake for the NA subtropics (estimated trend of -0.062±0.009 PgC y-1 decade-1).  290 

Our GCL estimates of long term mean CO2 uptake for the 2000–2017 period for both NA subtropics and subpolar regions lie 

between the estimates from other inverse analyses (e.g., Chevallier et al., 2019 (lower) and the CarbonTracker derived 

analyses of Jacobson et al., 2020  (higher)); primary causes are the different prior flux representations used in the 

CarbonTracker analyses. Our GCL estimates of long term North Atlantic CO2 uptake are similar in magnitude to long term 

ensemble mean estimates from surface–ocean pCO2 methods and GOBMs (Fig. 3). The magnitude of IAV derived from the 295 

GCL is similar to that of the surface ocean pCO2-based estimates but larger than those of the GOBMs for both NA regions. 

In this study we have also evaluated a comparison of alternative specifications of the prior flux uncertainty (section 3.2), and 

present long term flux estimates derived using a spread–based flux uncertainty scheme. This scheme enables representation of 

the variability among alternative prior ocean CO2 flux representations and ascribes higher levels of uncertainty to regions with 

larger discrepancies among prior flux representations; it is therefore preferable to the fixed prior flux uncertainty levels 300 

commonly used in inverse analyses. Incorporation of additional prior flux representations of ocean CO2 (e.g., Roedenbeck et 

al., 2015) will improve the contribution of this scheme.   

Air–sea CO2 flux estimates and associated metrics derived from our GCL analyses are generally more robust for the NA 

subtropics than for the NA subpolar region. Limiting factors affecting estimates for the NA subpolar region include higher 

levels of uncertainty associated with (a) specification of prior fluxes (Fig. 1), and (b) the observational uncertainty at the 305 

atmospheric measurement CO2 sites in these high northern latitudes (Table A1). The number of regional atmospheric CO2 

measurement sites available to constrain NA subpolar fluxes are also relatively few. Improved ocean CO2 flux estimates for 

this North Atlantic region will be obtained by provision of additional high accuracy marine boundary layer CO2 measurements 

for the region from fixed surface sites and from ships and buoys (Wanninkhof et al., 2019).   

  310 
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Appendix A: The Local Ensemble Transform Kalman Filter (LETKF) system  

Here we briefly describe the LETKF system used for estimation of surface CO2 fluxes. The methodology follows that of Hunt 

et al. (2007) and Miyoshi et al. (2007), and additional detail is provided in these publications. The LETKF has been previously 

used in meteorological forecasting, and more recently in atmospheric CO2 data assimilation (e.g., Liu et al. 2019, 2016; Kang 

et al. 2012). The LETKF provides iterative estimates of the time evolution of the system state, x, (here representing the 315 

gridscale surface carbon fluxes, of dimension m). Each step involves a forecast stage (based on a physical model of the system 

evolution) and a state estimation stage (the ‘analysis’ step), which combines system observations,  y (of dimension n), together 

with the  background forecast, 𝑥௕ , to derive the improved state estimate.  The observation operator H provides the mapping 

from the state space to the observation space; in this study H is provided by the GEOSChem atmospheric model. In the analysis 

step, the surface carbon flux estimates are obtained by minimization of a cost function (Equation S1) which accounts for 320 

deviations of the system state x, from the background forecast,  𝑥௕, and for the mismatch between observations (y) and their 

modeled representations (Hx) : 

 𝐽(𝑥) = (𝑥 − 𝑥௕)்𝐵ିଵ(𝑥 − 𝑥௕) + (𝑦 − 𝐻𝑥)்𝑅ିଵ(𝑦 − 𝐻𝑥) (A1) 

B represents the background flux covariance matrix, and R represents the observation covariance matrix.  

In the LETKF system, an ensemble of model simulations is used to calculate the sample mean and covariance of the system 

state; thus, the background state 𝑥௕  is given by  (𝑥௕(௜): 𝑖 = 1.2, … 𝑘) for k ensemble members. The sample mean �̅�௕  and 325 

covariance 𝑃௕of the background state vector given by : 

 
�̅�௕ = 𝑘ିଵ ෍ 𝑥௕(௜)

௞

௜ୀଵ

 
(A2) 

 
𝑃௕ = (𝑘 − 1)ିଵ ෍൫𝑥௕(௜) − �̅�௕൯൫𝑥௕(௜) − �̅�௕൯

்
௞

௜ୀଵ

 

=(𝑘 − 1)ିଵ𝑋௕(𝑋௕)் 

(A3) 

𝑋௕ is an m×k matrix whose ith column is 𝑥௕(௜) − �̅�௕. 𝑃௕  is the background state covariance matrix (m×m). 

Similarly the analysis state is represented by the ensemble (𝑥௔(௜): 𝑖 = 1,2, … 𝑘) with its sample mean and covariance given by: 

 
�̅�௔ = 𝑘ିଵ ෍ 𝑥௔(௜)

௞

௜ୀଵ

 
(A4) 

 𝑃௔ = (𝑘 − 1)ିଵ ∑ ൫𝑥௔(௜) − �̅�௔൯൫𝑥௔(௜) − �̅�௔൯
்௞

௜ୀଵ     

= (𝑘 − 1)ିଵ𝑋௔(𝑋௔)் 

(A5) 

where 𝑋௔ is the m×k matrix whose ith column is 𝑥௔(௜) − �̅�௔. 
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The analysis state and covariance �̅�௔and 𝑃௔ are updated based on the background information �̅�௕ and observations y through 330 

the following equations: 

 �̅�௔ = �̅�௕ + 𝑃௔𝐻்𝑅ିଵ(𝑦 − 𝐻𝑥௕) (A6) 

 𝑃௔ = (𝐼 + 𝑃௕𝐻்𝑅ିଵ𝐻)ିଵ𝑃௕ (A7) 

The ensemble 𝑦௕(௜) of background observation vectors is defined by: 

 𝑦௕(௜) = 𝐻(𝑥௕(௜)) (A8) 

 𝐻(�̅�௕ + 𝑋௕𝑤) ≈ 𝑦ത௕ + 𝑌௕𝑤 (A9) 

where 𝑌௕  is the n×k matrix whose ith column is (𝑦௕(௜) − 𝑦ത௕), and w is a Gaussian random vector with mean 𝑤ഥ ௕ = 0 and 

covariance 𝑃෨௕ = (𝑘 − 1)ିଵ𝐼 .Then the analogues of analysis equations (6) and (7) are:  

 𝑤ഥ ௔ = 𝑃෨௔(𝑌௕)்𝑅ିଵ(𝑦 − 𝑦ത௕) (A10) 

 𝑃෨௔ = [(𝑘 − 1)𝐼 + (𝑌௕)்𝑅ିଵ𝑌௕]ିଵ (A11) 

Following Hunt et al. (2007) and Miyoshi et al. (2007) (refer to these publications for the complete LETKF derivation) the 335 

overall analysis equation is:  

 𝑥 = �̅�௕ + 𝑋௕[𝑃෨௔(𝑌௕)்𝑅ିଵ(𝑦 − 𝑦ത௕) + [(𝑘 − 1)𝑃෤
𝑎
]

1/2
] (A12) 

The LETKF allows flexibility in the choice of observations to be assimilated at each grid point, based on the distance (r) of 

the observations from the gridpoint. The localization weighting function f(r) is given by: 

 
𝑓(𝑟) = exp (−

𝑟ଶ

2𝐿ଶ
) 

(A13) 

where L is an observation localization length which can be predefined to determine the outer boundary of the influence of the 

observations; i.e., the localization weighting function drops to zero at a value of  340 

 

𝑟 = 2. ඨ
10

3
𝐿 

(A14) 

 The observation localization is realized by multiplying the inverse of the localization function f(r) with the observational error 

covariance R.  

 

 

 345 
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Table A1. Atmospheric CO2 measurement sitesa  350 

Site code 

Longitude 

(degrees) 

Latitude 

(degrees) 

Altitude 

(m) Site name 

Ub 

(ppm) 

ABP -38.16 -12.76 6 Arembepe, Bahia 1.04 

ALT -62.51 82.45 195 Alert, Nunavut 1.34 

AMY 126.33 36.54 125 Anmyeon-do 8.88 

ASC -14.40 -7.97 90 Ascension Island 0.66 

ASK 5.63 23.26 2715 Assekrem 0.80 

AZR -27.08 38.75 24 Terceira Island, Azores 2.26 

BAL 16.67 55.50 28 Baltic Sea 5.50 

BCS -110.20 23.30 14 Baja California Sur 3.42 

BGU 3.23 41.97 13 Begur 3.93 

BHD 174.87 -41.41 90 Baring Head Station 1.12 

BKT 100.32 -0.20 875 Bukit Kototabang 3.49 

BME -64.65 32.37 17 St. Davids Head, Bermuda 2.57 

BMW -64.88 32.27 60 Tudor Hill, Bermuda 2.12 

BRW -156.60 71.32 28 Barrow Atmospheric Baseline Observatory 1.88 

BSC 28.67 44.18 5 Black Sea, Constanta 9.88 

CBA -162.72 55.20 25 Cold Bay, Alaska 2.41 

CFA 147.06 -19.28 5 Cape Ferguson, Queensland 1.04 

CGO 144.68 -40.68 164 Cape Grim, Tasmania 0.40 

CHR -157.15 1.70 5 Christmas Island 0.60 

CIB -4.93 41.81 850 Centro de Investigacion de la Baja  Atmosfera (CIBA) 3.97 

CPT 18.49 -34.35 260 Cape Point 0.74 

CRI 73.83 15.08 66 Cape Rama 3.47 

CRZ 51.85 -46.43 202 Crozet Island 0.49 

CYA 110.52 -66.28 55 Casey, Antarctica 0.29 

DRP -64.91 -55.00 10 Drake Passage 0.41 

DSI 116.73 20.70 8 Dongsha Island 3.46 

EIC -109.45 -27.15 55 Easter Island 1.80 

ELL 0.96 42.58 2005 Estany Llong 2.41 

ESP -126.53 49.38 47 Estevan Point, British Columbia 1.49 

FKL 25.67 35.34 150 Finokalia, Crete 3.34 
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GMI 144.66 13.39 6 Mariana Islands 2.22 

GPA 131.05 -12.25 37 Gunn Point 2.02 

HBA -26.21 -75.61 35 Halley Station, Antarctica 0.16 

HPB 11.02 47.80 990 Hohenpeissenberg 6.71 

HSU -124.73 41.05 8 Humboldt State University 5.78 

HUN 16.65 46.95 344 Hegyhatsal 6.00 

ICE -20.29 63.40 127 Storhofdi, Vestmannaeyjar 2.03 

IZO -16.48 28.30 2378 Izana, Tenerife, Canary Islands 1.21 

KEY -80.20 25.67 6 Key Biscayne, Florida 4.14 

KUM -154.82 19.52 8 Cape Kumukahi, Hawaii 1.77 

KZD 75.57 44.45 412 Sary Taukum 3.19 

KZM 77.88 43.25 2524 Plateau Assy 3.00 

LJO -117.26 32.87 20 La  Jolla, California 2.72 

LLB -112.45 54.95 546 Lac La Biche, Alberta 8.91 

LLN 120.86 23.46 2867 Lulin 5.27 

LMP 12.61 35.51 50 Lampedusa 2.08 

MAA 62.87 -67.62 42 Mawson Station, Antarctica 0.32 

MEX -97.31 18.98 4469 High Altitude Global Climate Observation Center 1.33 

MHD -9.90 53.33 26 Mace Head, County Galway 3.23 

MID -177.37 28.22 8 Sand Island, Midway 1.39 

MKN 37.30 -0.06 3649 Mt. Kenya 1.98 

MLO -155.58 19.53 3402 Mauna Loa, Hawaii 0.63 

MQA 158.97 -54.48 13 Macquarie Island 0.33 

NAT -35.26 -5.52 20 Farol De Mae Luiza Lighthouse 1.44 

NMB 15.03 -23.58 461 Gobabeb 1.13 

NWR -105.58 40.05 3526 Niwot Ridge, Colorado 1.88 

OBN 36.60 55.12 484 Obninsk 6.49 

OTA 142.82 -38.52 50 Otway, Victoria 17.45 

OXK 11.81 50.03 1185 Ochsenkopf 8.18 

PAL 24.12 67.97 570 Pallas-Sammaltunturi, GAW Station 3.72 

PDM 0.14 42.94 2877 Pic Du Midi 2.71 

POC -145.13 14.97 20 Pacific Ocean 1.47 

PSA -64.00 -64.92 15 Palmer Station, Antarctica 0.23 
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PTA -123.73 38.95 22 Point Arena, California 5.50 

RK1 -177.90 -29.20 12 Kermadec Island 2.23 

RPB -59.43 13.17 20 Ragged Point 0.83 

SDZ 117.12 40.65 298 Shangdianzi 9.57 

SEY 55.53 -4.68 7 Mahe Island, Seychelles 0.98 

SGP -97.48 36.62 374 Southern Great Plains, Oklahoma 4.91 

SHM 174.10 52.72 28 Shemya Island, Alaska 2.91 

SIS -1.26 60.09 33 Shetland Islands 2.87 

SMO -170.57 -14.25 47 Tutuila, American Samoa 1.19 

STM 2.00 66.00 7 Ocean Station M  2.03 

SUM -38.42 72.60 3215 Summit 1.32 

SYO 39.58 -69.00 16 Syowa Station, Antarctica 0.23 

TAC 1.14 52.52 236 Tacolneston 6.78 

TAP 126.13 36.73 21 Tae-ahn Peninsula 6.90 

THD -124.15 41.05 112 Trinidad Head, California 4.54 

TIK 128.89 71.60 29 Hydrometeorological Observatory of Tiksi 2.64 

USH -68.31 -54.85 32 Ushuaia 1.41 

UTA -113.72 39.90 1332 Wendover, Utah 2.65 

UUM 111.10 44.45 1012 Ulaan Uul 2.78 

WIS 34.78 30.86 482 

Weizmann Institute of Science at the Arava Institute, 

Ketura 2.39 

WLG 100.92 36.27 3815 Mt. Waliguan 2.26 

WPC 167.50 -29.86 10 Western Pacific Cruise 1.70 

ZEP 11.89 78.91 479 Ny-Alesund, Svalbard 1.82 

 
a Source reference: Cooperative Global Atmospheric Data Integration Project, 2018. Version: 

obspack_co2_1_GLOBALVIEWplus_v4.2_2019-03-19  (https://doi.org/10.25925/20190319 ) 

b The specification of observational uncertainty U on atmospheric CO2 measurements (and represented in matrix R of Equation A1) is 

calculated as the standard deviation of measurement variability and using the detrended and deseasonalized CO2 time series at each 355 

measurement site (following methods of Chevallier et al. (2010)).  

Data Availability. Data sources: (i) Atmospheric CO2 measurements were taken from 
obspack_co2_1_GLOBALVIEWplus_v4.2_2019-03-19 (https://doi.org/10.25925/20190319 ); (ii) Prior ocean flux oc_v1.7 
from Rödenbeck et al . (2013) taken from http://www.bgc-jena.mpg.de/CarboScope/. Prior ocean flux Landschützer et al. 
(2016) taken from  https://www.nodc.noaa.gov/ocads/oceans/SPCO2_1982_present_ETH_SOM_FFN.html. Prior ocean flux 360 
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from Takahashi et al. (2009) taken from ftp://ftp.as.harvard.edu/gcgrid/geos-chem. (iii) CarbonTracker CT2019 results 
provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov. CTE flux estimates 
taken from ftp://ftp.wur.nl/carbontracker/data/fluxes/data_flux1x1_monthly/. The flux estimates from CAMS(v18r2) taken 
from https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/. (iv) The model CO2 fluxes for JULES (land) and GOBMs 
(ocean) taken from (Le Quéré et al., 2018). 365 
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