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Abstract. Tree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet, tree phenology has rarely 

been monitored in a consistent way throughout the life of a flux tower site. Here, we used seasonal time-series of ground-based 10 

NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, 

LAI (Leaf Area Index), fAPAR (fraction of Absorbed Photosynthetic Active Radiation), CC (Canopy Closure), fRvis (fraction 

of Reflected Radiation) and GPP (Gross Primary Productivity) to predict six phenological markers detecting the start, middle 

and end of budburst and of leaf senescence in a temperate deciduous forest using an asymmetric double sigmoid 

function (ADS) fitted to time-series. We compared them to observations of budburst and leaf senescence achieved by field 15 

phenologists over a 13-year period. GCC, NDVI and CC captured the interannual variability of spring phenology very well 

(R² > 0.80) and provided the best estimates of the observed budburst dates, with a mean absolute deviation (MAD) less than 4 

days. For the CC and GCC methods, mid-amplitude (50%) threshold dates during spring phenological transition agreed well 

with the observed phenological dates. For the NDVI-based method, on average, the mean observed date coincides with the 

date when NDVI reaches 25% of its amplitude of annual variation. For the other methods, MAD ranges from 6 to 17 days. 20 

ADS method used to derive the phenological markers provides the most biased estimates for the GPP and GCC. During the 

leaf senescence stage, NDVI- and CC-derived dates correlated significantly with observed dates (R² =0.63 and 0.80 for NDVI 

and CC, respectively), with MAD less than 7 days. Our results show that proximal sensing methods can be used to derive 

robust phenological metrics. They can be used to retrieve long-term phenological series at EC flux measurement sites and help 

interpret the interannual variability and trends of mass and energy exchanges. 25 

1 Introduction 

In the temperate and boreal climate zone, the timing of phenological events is strongly controlled by temperature and 

is thus responsive to the ongoing climate change (Menzel et al. 2006; Badeck et al. 2004; Piao et al. 2019). The opening of 

buds (“budburst”) in spring and the coloration and fall of leaves (“leaf senescence”) in autumn are the key steps in the 

phenological cycle of forest trees. These stages mark the start and end of the photosynthetically active period and as such 30 
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strongly influence the carbon and water exchanges between the ecosystem and the atmosphere (Goulden et al. 1996; Delpierre 

et al. 2009a; Richardson et al. 2010; Dragoni et al. 2011). Historically, the timing of these events has been monitored through 

direct and periodic human-eye observations of the state of buds and leaves in the field (Sparks and Carey, 1995). However, 

this method is time-consuming, laborious, and subject to an observer effect (Roetzer et al. 2000; Schaber and Badeck, 2002; 

Klosterman et al. 2014). Alternative, ground-based indirect methods have been tested for monitoring the phenology of different 35 

ecosystems. Proximal sensing methods based on measuring the radiation reflected, transmitted or absorbed by the canopy 

(henceforth ‘radiation-based methods’) are increasingly being used. Broad-band NDVI calculated from measurements of the 

fraction of reflected radiation in the Photosynthetically Active Radiation (PAR) spectral domain and shortwave bands, 

proposed by Huemmrich et al. (1999) has been successfully used in order to monitor vegetation phenology in many studies 

(Huemmrich et al. 1999; Richardson et al. 2007; Liu et al. 2019). Forest phenology was also described from measurements of 40 

the fraction of transmitted PAR through the canopy (Toda and Richardson, 2018; Perot et al. 2019) and Leaf Area Index (LAI) 

(Keenan et al. 2014). Spectral vegetation indices derived from tower-mounted hyperspectral spectroradiometers (Kobayashi 

et al. 2018; Lu et al. 2018), RGB/IR cameras (Richardson et al. 2007; Klosterman et al. 2014; Richardson et al. 2018; 

Richardson, 2019; Milliman et al. 2019) or from two bands red and near infrared proximal sensors (Ruy et al. 2010; Eklundh 

et al. 2011; Soudani et al. 2012; Hmimina et al. 2013) have also been assessed. More recently, passive sun-induced fluorescence 45 

has been used (Lu et al. 2018). In vegetation sites where continuous measurements of carbon flux are available, phenology has 

also been estimated from the dynamics of GPP (gross primary productivity) and net ecosystem exchange (NEE) (Gonsamo et 

al. 2013; Wu et al. 2017; Garrity et al. 2011).  

 

Over the past two decades, hundreds of experimental sites measuring CO2, water and energy exchanges between 50 

ecosystems and the atmosphere have been set up worldwide. These sites are organized in networks (Fluxnet, ICOS, etc.) and 

aim to record long-term data according to standardized protocols (Baldocchi et al. 2001; Franz et al. 2018). These sites acquire 

high temporal resolution time-series combining both mass (CO2 and water) flux data with ancillary data which include incident, 

reflected and transmitted radiation measurements in different spectral ranges, and also LAI, NDVI, and RGB images of the 

canopy. Yet, the phenology of the vegetation cover is not routinely monitored over all sites, precluding the assessment of its 55 

influence on carbon and water exchanges. These sites provide data which allow the comparison of various radiation-based 

methods for monitoring forest phenology. However, the comparative studies cited above and those carried out at some of the 

carbon flux measurement sites did not cover all the methods on the same site and were also limited to a few and for short 

periods of time. Also, most of these studies suffered from a lack of direct and independent phenological observations. As 

underlined in Klosterman et al. (2014), this is a key challenge in interpreting estimates from the various approaches. Indeed, 60 

most of the radiation-based methods use optical signals at different wavelengths and at different spectral resolutions. 

Depending on species and sensor specifications (spectral, radiometric and geometric responses), this could lead to possible 

mismatches between observed and estimated phenology due to the well-known selective absorption properties of plant 

components (Sims and Gamon, 2002). The measurement conditions (sun-view geometry, field of view) may also differ 
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(Sonnentag et al. 2012). Also, some mainly observe the top of the canopy (down-looking sensors mounted above the canopy) 65 

while others are more integrative of the whole canopy (indirect methods that use transmitted or absorbed radiation). Therefore, 

there is a need to conduct comparative studies to establish rigorously the correspondence between phenological dates recorded 

by field phenologists and phenological metrics predicted by indirect proximal methods. 

 

In this study, we present an exhaustive comparative survey of various proximal methods to estimate both spring and 70 

autumn phenology in a mature deciduous forest ecosystem surrounding the Fontainebleau-Barbeau carbon flux tower. The 

main objective is to evaluate the performance of each of the methods in reproducing inter-annual variation of spring and 

autumn phenology directly observed by field phenologists, over a 13-year period. 

2. Materials and Methods  

2.1. Site description 75 

Data were mainly acquired in the eddy-covariance (EC) flux measurement site at the Fontainebleau-Barbeau forest 

(48°28'26"N., 2° 46'57" E.), 53 km southeast of Paris, France. Fontainebleau-Barbeau is a deciduous forest mainly composed 

of mature sessile oak (Quercus petraea (Matt.) Liebl), and an understory of hornbeam (Carpinus betulus L.). The average 

stand LAI, based on measurements using litter collection method over 2012-2018 period, is 5.8 m²/m², ranging from 4.6 to 6.8 

m²/m² (unpublished data). Hornbeam contribution to stand LAI accounts for 30%, ranging from 24% to 39% from year to year.  80 

 

In Fontainebleau-Barbeau EC flux measurement site, which belongs to the European ICOS-RI Ecosystem network 

(Integrated Carbon Observation System - Research Infrastructure, FR-Fon code), a 35-m high tower was installed in 2005 in 

order to measure energy and CO2 exchanges between the forest and the atmosphere with the eddy-covariance technique. More 

details about the study site and flux calculation are given in Delpierre et al. (2016). The tower has been equipped with various 85 

proximal sensors that we used here to estimate the timings of phenological events (Table 1). More details about the 

instrumentation and measurements achieved in this site are available in www.barbeau.universite-paris-saclay.fr.  

2.2. Extraction of phenological markers  

Data and methods used in the calculation of phenology metrics are summarized in Table 1. The general principle of 

the phenological metrics extraction method consists in building time-series at daily resolution that describe the canopy foliage 90 

dynamics during the whole seasonal cycle of vegetation (Figure 1). This method applies to all the variables (“Vegetation 

variable”, Vv) listed in (Table 1). Then, to compare the different vegetation proxies without possible methodological biases, 

we opted for the same method using an asymmetric double sigmoid (ADS) similar to Zhang et al. (2003); Soudani et al. (2008); 

Klosterman et al. (2014).  

 95 
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Briefly, an asymmetric double sigmoidal function was fitted on Vv time-series according to the following equation: 

𝑉𝑣(𝑡) = (𝑤1 + 𝑤2) +
1

2
(𝑤1 − 𝑤2)[tanh(𝑤3(𝑡 − 𝑢)) − tanh(𝑤4(𝑡 − 𝑣))]     Eq.1 

 100 

Vv (t) is the considered vegetation variable (% of open buds and % of non-senescent leaves, NDVI, NDVIbr, fRvis, fAPAR, 

CC, LAI, GCC or GPP). t is the time (day of year). tanh is the hyperbolic tangent and w1, w2, w3, w4, u, v are the fitting 

parameters. (w1+w2) is the Vv minimum in unleafy season. (w1-w2) is the total amplitude of variation of Vv over the year. The 

two phenological markers u and v are the dates of the two inflection points when Vv increases during the spring (u) and 

decreases during the autumn (v). For these two dates u and v, Vv(t) is very close to 50% of its total amplitude of variation, in 105 

spring and autumn respectively. Four other phenological markers are determined numerically from the extrema of the third 

derivative of the ADS function according to Zhang et al. (2003) (Figure 1). The six phenological markers are named according 

to Klosterman et al. (2014) as follows: SOS, MOS and EOS for the start, middle, and end of leaf onset (budburst) in spring 

and SOF, MOF and EOF for the start, middle and end of leaf senescence in autumn, corresponding approximately to 10%, 

50% and 90% of total amplitude during the increase and the decline in canopy greenness in spring and autumn, respectively.  110 

Fitting was done by minimizing the sum of squares of differences between fitted (Eq.1) and measured Vv. In order to 

better constrain the fitting at the end of the leafy season, each year of data was extended to the end of January of the following 

year. Thus, potentially, each time-series is composed of 396 days instead of 365 days.  

2.3. Data  

 2.3.1. Field phenological observations (OBS) 115 

We collected spring and autumn phenological field observations at the Fontainebleau-Barbeau forest over 13 years 

(2006-2018; see Delpierre et al. 2020, Denéchère et al. 2019) through complementary sampling schemes. Over the 2006-2018 

period, we implemented an ‘extensive’ survey in which we monitored bi-weekly over March-April the bud development of 

>100 randomly chosen dominant sessile oak trees, and recorded the date at which 50% of the individuals displayed at least 

50% buds open in their crowns (corresponding to stage 7 of the BBCH scale). Observations were done with binoculars by 120 

three inter-calibrated observers. This date is referred to as BB-OBS (BB for budburst) in the following. In years 2015-2017 

we complemented this protocol with an ‘intensive’ survey. Twenty-seven to 66 individual trees (depending on years) were 

tagged and monitored for bud burst from 0% budburst to 100% budburst in each tree crown. This survey yielded the progress 

of budburst for each tree crown, that we averaged to get the progress of budburst for the tree population (Figure 2a). We further 

monitored the progress of leaf senescence (% of colored or fallen leaves) in each individual tree crown weekly in autumn, and 125 



5 

 

averaged the individual values to get the progress of leaf senescence at the tree population scale (Figure 2a). We fitted the 

ADS (eq. 1) function to these continuous data and retrieved the MOS-OBS (in spring) and MOF-OBS (in autumn) metrics. 

The MOS-OBS (obtained from the intensive survey) and BB-OBS (obtained from the extensive survey) dates compare very 

well, their maximum absolute difference being 1-day (Delpierre et al. 2020). Hence in the following we will use the BB-OBS 

as the observed date of budburst over the whole (2006-2018) study period. All spring phenological observations were 130 

conducted on a bi-weekly basis. Hence the uncertainty of BB-OBS is 3.5 days. 

We completed the MOF-OBS (autumn) metrics obtained at Fontainebleau-Barbeau through the intensive survey over 

2015-2017 with leaf senescence data obtained over 2011-2014 from a phenological survey site 50-km away from 

Fontainebleau-Barbeau (Orsay site). At this site, we deployed an intensive-monitoring protocol of leaf senescence (30 to 60 

tagged sessile oaks monitored weekly for the percentage of colored or fallen leaves during autumn) from which we obtained 135 

the LS-OBS metrics, that is the date at which 50% trees had 50% leaves colored or fallen. In 2015, autumn phenological 

observations were conducted simultaneously in Fontainebleau-Barbeau and Orsay: the MOF-OBS (Fontainebleau-Barbeau, 

DoY 300) and LS-OBS (Orsay, DoY 295) dates compared well. Considering that leaf senescence dates are comparable at a 

scale of tens of kilometres (Delpierre et al. 2009b), we used the 2011-2014 Orsay LS-OBS data to complement the 2015-2017 

Fontainebleau-Barbeau MOF-OBS data. All spring phenological observations were conducted on a weekly basis. Hence the 140 

uncertainty of MOF-OBS and LS-OBS is 7 days. 

2.3.2. Narrow-band NDVI  

The NDVI is calculated as follows: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅)     Eq.2 

R and NIR are radiances in the red (640-660 nm) and the near infrared (780-920 nm) bands, respectively. Radiances are 145 

measured using a laboratory made NDVI sensor (Pontailler et al. 2003). A description of this sensor and its use for estimating 

phenological metrics in various biomes is given in Soudani et al. (2012) and Hmimina et al. (2013). Briefly, the sensor is 

positioned at the top of the EC flux tower in Fontainebleau-Barbeau forest, about 7 m above the canopy, directed downwards 

and inclined about 20-30° to the vertical and facing south to avoid the hot-spot effects in canopy reflectance when the viewing 

direction is collinear with the solar direction. The field of view of the sensor was 100° and the area observed is a few tens of 150 

m². Measurements are acquired continuously every half-hour. Noisy data, mainly due to rainfall and very low radiation 

conditions, were removed according the procedure described in Soudani et al. (2012). This procedure consists in keeping 

only NDVI measurements recorded when the ratio between global radiation (RGin) measured above the canopy and the exo-

atmospheric radiation (Rex) at the top of atmosphere exceeds the threshold of 0.6, considered to be the threshold for 

distinguishing between clear and overcast sky conditions (Soudani et al. 2012). Then, daily average of filtered NDVI data 155 
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acquired between 10h and 14h (UT) is considered to minimize the effects of daily variations in solar angle. Finally, filtered 

and daily averaged NDVI data were used in Eq.1. 

2.3.3. RGB camera 

Digital pictures (resolution of 2590 x 1920 pixels) of the forest canopy are acquired continuously every hour between 

8h – 17h (UT) with an Axis P1347 camera installed next to and according to the same geometric configuration of the NDVI 160 

sensor. In order to minimize effects of changing illumination conditions, a white PVC panel is installed in the camera field of 

view (FOV) and used as a reference. Pictures (10/day) were processed automatically under MATLAB. At first, three regions 

of interest (ROI) were delineated on a spring picture. Two ROI, having an area of 3000 pixels and 1140 pixels, respectively, 

are located on the reference panel. The third ROI is located over the vegetation area that covers the central region of the picture 

(2 M pixels). To convert RGB data measured by the camera to pseudo-reflectance (ρR, ρG, ρB), digital counts in Red, Green 165 

and Blue bands of the vegetation ROI were averaged and divided by the averages of R, G and B measured on the two white 

ROI on the reference PVC panel. These pseudo-reflectances were averaged on daily basis (10 values per day, corresponding 

to the hourly sampling) and used to determine daily Greenness Chromatic Coordinate (GCC) as follows:  

𝐺𝐶𝐶 = 𝜌𝐺/(𝜌𝑅 + 𝜌𝐺 + 𝜌𝐵)     Eq.3 

Phenological markers are then extracted from GCC time-series according Eq.1.  170 

2.3.4. Broad-band NDVIbr and fraction of reflected radiation fRvis 

Broad-band NDVI (NDVIbr), named according to Huemmrich et al. (1999), was calculated from incoming and 

reflected radiation in the visible spectral region (400-700 nm) corresponding to the spectral range of PAR measured using PAR 

sensors (PQS1, Kipp and Zonen, Finland) and in the shortwave spectral regions (200 to 3600 nm) using a CMP22 pyranometer 

(Kipp and Zonen, Finland). A conversion factor of 4.57 µmol J-1 (McCree, 1972 in Wang et al. 2006) was used to convert 175 

PAR unit (µmol m-2 s-1) to energy unit (J m-2 s-1). As in Wohlfart et al. (2010), NDVIbr is calculated as below:  

 

𝑁𝐷𝑉𝐼𝑏𝑟 =
(
𝑁𝐼𝑅out

𝑁𝐼𝑅in
)−(

𝑃𝐴𝑅out

𝑃𝐴𝑅in
)

(
𝑁𝐼𝑅out

𝑁𝐼𝑅in
)+(

𝑃𝐴𝑅out

𝑃𝐴𝑅in
)
   Eq.4 

 

NIRin=RGin-PARin  180 

NIRout =RGout – PARout 

RGin, RGout, PARin, PARout are incoming and outgoing reflected radiation in shortwave and PAR spectral regions. 

The fraction of reflected radiation fRvis was calculated as:  
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𝑓𝑅vis = (
𝑃𝐴𝑅out

𝑃𝐴𝑅in
)       Eq.5 185 

NDVIbr and fRvis were filtered by applying the same ratio of 0.6 between RGin and Rex and limiting the period of acquisition 

between 10h to 14h TU. Finally, filtered and daily averaged fRvis and NDVIbr data were used to in Eq.1 to extract the six 

phenological markers. Because fRvis was lower during the leafy season than in winter (unleafy season), Eq.1 was applied to (1- 

fRvis) allowing to have the same temporal pattern as the other variables. For simplicity, fRvis term will be used hereafter when 

referring to the method.  190 

2.3.5. Fraction of absorbed PAR fAPAR, Canopy Closure CC and Leaf Area Index LAI 

 Fifteen quantum PAR sensors (PQS1, Kipp and Zonen, Finland), directed towards the sky, are installed below 

canopy on the ground-area surrounding the EC flux tower to ensure a robust spatial sampling of the radiation transmitted 

through the canopy. Measurements are achieved at a half-hour time step, simultaneously with measurements of incoming and 

reflected PAR radiation above the canopy. The filtering of transmitted, reflected and incoming radiation measurements is 195 

carried out according to the same procedure used for NDVI, NDVIbr and fRvis. Consequently, only measurements taken 

between 10h and 14h TU after filtering are used in the calculation of fAPAR, CC and LAI.  

fAPAR is calculated according the following expression:  

 

𝑓𝐴𝑃𝐴𝑅 =
𝑃𝐴𝑅in−𝑃𝐴𝑅out−𝑃𝐴𝑅t

𝑃𝐴𝑅in
   Eq.6 200 

 

 Canopy closure CC is calculated using a new formulation as follows: 

𝐶𝐶 = 1 − (
𝑃𝐴𝑅t

𝑐𝑜𝑠(𝜃)
)/𝑃𝐴𝑅in   Eq.7 

 Where PARin and PARout are defined above in Eq.3. PARt is the averaged over 15 sensors of transmitted radiation 

measured beneath the canopy. 𝜃 is the sun zenith angle calculated using the standard astronomical formula. Unlike Eq. 6 and 205 

the previous studies (Richardson et al. 2007; Garrity et al. 2011; Toda and Richardson, 2018), the division of PARt by the 

cosine of the sun zenith angle (Eq. 7) allows to consider variation of PARt due solely to the variation of the path length of 

incident radiation passing through the forest canopy before reaching the ground according to the seasonal variation of the solar 

angle. In order to assess the performance of this new formulation proposed in this study, we also calculated CC without cosine 

correction.  210 

Another possible alternative to this correction/normalization in order to take into account sun angle effects on 

transmitted PAR (Eq.7) is to estimate Leaf Area Index from the canopy gap fractions since the estimation of LAI using Beer-

Lambert law corrects for the effects of solar angle and considers leaf angle distribution through the extinction coefficient K. 

The LAI was calculated as follows:  

𝐿𝐴𝐼 = −𝑙𝑜𝑔(𝑃𝐴𝑅t/𝑃𝐴𝑅in)/𝐾  Eq.8 215 
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log is the natural logarithm. K is the coefficient of extinction, calculated following the expression given in Campbell and Norman 

(1998):  

 

𝐾(𝜃) =
√𝑥2+𝑡𝑎𝑛(𝜃)2

𝑥+1.774(𝑥+1.182)−0.733
   Eq.9 220 

 

The parameter x describes an ellipsoidal leaf angle distribution function (x=1 for spherical distribution, x > 1 for 

planophile and x < 1 for erectophile leaves). In this study and in order to let K vary according to the seasonal variations of the 

solar angle, we only fixed the parameter x in Eq.9. In order to estimate an average value of x parameter in the Fontainebleau-

Barbeau forest, Eq.8 was inverted, based on direct LAI measurements around the EC flux tower using litter collection technique 225 

according to the ICOS protocol (Gielen et al. 2018) and the radiation measurements over 2012-2018 period. x was about 1.4 

which corresponds to an average value of K of about 0.67 during the leafy season (DOY 150-240). This value agrees with 

previous studies (Baldocchi et al. 1984; Holst et al. 2004). Thus, we note that K is calibrated from the “true” average green 

LAI measured by the litter collection method, and thus it corrects for clumping effects and woody components. The term LAI 

is used in the present study instead of the term PAI (Plant Area Index, including lead and woody components) usually used 230 

when it is estimated from canopy transmittance and using assumptions about leaf angle distribution in order to estimate the 

extinction coefficient (Campbell, 1986).  

 

 Similarly, to the other vegetation variables, phenological metrics were extracted from time-series of fAPAR, CC 

and LAI according Eq.1. 235 

2.3.6. GPP data 

Half-hourly GPP data were estimated on the ecosystem from net-carbon flux measurements acquired by an eddy 

covariance system. Details of instrumentation and processing are provided in Delpierre et al. (2016) and on 

www.barbeau.universite-paris-saclay.fr. GPP was aggregated daily and used to create continuous time-series from 2006 to 

2018. Extraction of phenological markers was done according the same procedure (using Eq.1). 240 

2.4. Statistical Analysis  

The performance of each of the indirect methods presented above was evaluated with respect to the field phenological 

observations using three criteria which are (1) the coefficient of determination (R²) calculated from a simple linear regression 

between estimated (Pi) and observed dates (Oi) for the different years (N), (2) the mean bias error (MBE) and (3) the mean 

absolute deviation (MAD) calculated as follows:  245 
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𝑀𝐵𝐸 =
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)

𝑁

𝑖=1

 

𝑀𝐴𝐷 =
1

𝑁
∑|(𝑃𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 

3. Results  

An illustration of time-series of vegetation variables used (OBS, NDVI, NDVIbr, GCC, (1-fRvis), fAPAR, CC, LAI 

and GPP) is provided in Figure 2. Time-series of all years (2006-2018) are given in the suppl. Fig. S1.  250 

Time-series in Fig. 2 for the year 2015 and in Fig. S1 for all years show that the general patterns of phenological transitions 

corresponding to the onset of leaves in the spring and to leaf senescence in the autumn are reproduced by all indirect methods 

but with a variable bias in comparison with the field observation. However, in the autumn, GPP time-series show a decline 

that appears very early in the year, practically from the beginning of summer. GCC time-series may also show atypical 

interannual patterns with some years during which a GCC decline, although slower than the one observed on GPP, is also 255 

observed very early in the year (2014, 2016-2018 in Fig. S1).  

Average phenological dates observed (BB-OBS and LS-OBS) and estimated from the different methods using MOS 

and MOF markers are given in Figure 3. All phenological dates, using the six phenological markers (SOS, MOS, EOS, SOF, 

MOF, EOF), are given Table S2. 

In spring, field phenological observations (BB-OBS) are earlier than the estimates provided by the majority of the 260 

indirect methods (Fig. 3a). However, whatever the method used, the inter-annual phenological variations are well reproduced. 

During the autumn, phenological observations (LS-OBS) are later than the indirect methods, except for CC and fAPAR (Fig. 

3b), and the performance of the different methods seems more limited compared to spring phenology. Figure 4 shows R², MBE 

and MAD between observed and estimated phenological dates using MOS (Fig. 4a) and MOF (Fig. 4b) markers during spring 

and autumnal phenological transitions, respectively.  265 

In the spring, R² values between observed (BB-OBS) and estimated phenological dates (Fig. 4a) based on MOS 

marker are all statistically significant (at significance level of 0.05) and range from about 0.99 to 0.34. All indirect methods 

are also consistent with each other as shown by the high correlation coefficients in Fig. S3, which confirms the good 

reproducibility of interannual phenological variability by the different indirect methods. In comparison to BB-OBS, the best 

correlation is found with GCC over the period 2012-2018 during which RGB images are available (R² = 0.99). NDVI and CC 270 

are also highly correlated with BB-OBS (R² ~ 0.89 and 0.80, respectively). Lower but significant correlations are found 

between BB-OBS and fAPAR, LAI, NDVIbr and 1-fRvis (R² between 0.6 and 0.7) and the lowest correlation is found between 

BB-OBS and GPP (R² ~ 0.34).  
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Between the different indirect methods and during the spring, R² between MOS estimates ranges from 0.26 to 0.96 275 

(see correlation matrix in Fig. S3). Best correlations are found between fAPAR and NDVI, NDVIbr, LAI, and fRvis (R² >0.89). 

Good correlations are also found between GCC, NDVI and CC (R² =0.8). Finally, we can also note good consistency between 

derived dates from GPP- and radiation-based methods (NDVIbr, fAPAR, LAI and fRvis; R² > 0.64). The lowest correlation is 

found between GCC and GPP.  

 280 

For budburst phenological timings, Mean Bias Error (MBE) between BB-OBS and MOS (Fig. 4c) is negative for 

GCC and CC (estimated date is earlier than observed date). MBE is about -1 day with GCC (MAD ~1 day) over 2012-2018 

and is also about -1 day with CC over 2006-2018 (MAD ~ 2 days). We note that MBE or MAD (Figs. 4c and 4e) for these two 

methods are slightly less than the observation uncertainty of 3.5 days. For the other methods (NDVI, NDVIbr, LAI, fRvis, 

fAPAR and GPP) MBE and MAD are equal, meaning that MOS estimates from these methods always overestimate the 285 

observed phenological dates BB-OBS. MBE (or MAD) is 3.5 days with NDVI, 6 days with fAPAR and 8 days with NDVIbr. 

MBE is high with LAI (10 days), fRvis (14 days) and GPP (17 days). Note that for CC, MBE of about -1 day was obtained after 

cosine correction of the transmitted PAR according to Eq. 7. Without this correction, MBE increases from -1 day (MAD ~ 2 

days) to 6 days (MAD ~ 6 days) and R² decreases from 0.80 to 0.71. Comparison of the phenological patterns of CC time-

series obtained with and without cosine correction shows that the cosine correction has the effect of causing an earlier spring 290 

phenological start, thus advancing the date of the inflection point (Fig. S4).  

 

During the autumn (Fig. 4b), interannual variation of LS-OBS is well reproduced by CC and NDVI time-series which 

provide estimates that are significantly correlated with the observations (R² =0.80 and 0.63 for CC and NDVI, respectively). 

Between the indirect methods (Fig. S3), best correlations are found between NDVIbr, fAPAR, NDVI and fRvis (R² ~ 0.7), LAI 295 

and fRvis (R² =0.58), NDVI and fAPAR (R²=0.56), NDVI and CC (R²=0.55), fRvis and fAPAR (R²=0.55) and CC and fAPAR 

(R²=0.42). Surprisingly, correlations between estimated dates from LAI and from CC during the autumn (R² = 0.1), both using 

the fraction of the transmitted radiation as the unique input, are low compared to what might be expected. Note that it only 

concerns the senescence stage since the correlation between estimates from LAI and CC during the spring is high (R² ≃ 0.74).  

During the senescence phase, for NDVI and CC methods for which the R² between estimates and observations are 300 

significant, MBE is of about -2 days with NDVI (MAD ~ 5 days) and about 14 days with CC (MAD ~ 14 days) (Fig. 4d and 

f). For CC, MBE decreases from about 37 days without cosine correction to 14 days after correction. The cosine correction 

yields a faster decrease in CC during the senescence stage (Fig. S4). For CC, LS-OBS are better predicted using thresholds at 

SOF instead of MOF with an MBE of about -1 day (and MAD of 7 days). MOF from LAI, fRvis, GCC and GPP provide early 

estimates compared to LS-OBS. MBE is of about -14 days with LAI, -23 days with fRvis, -36 days with GCC and -50 days 305 

with GPP. fAPAR leads to estimates that are on average about 30 days later than LS-OBS. Note that for GCC, biases are highly 

variables between years. For years (2012/2013/2015) for which ADS function does not show the early decline in the autumn, 

estimated dates are very close to OBS (MBE ~ - 7 days). 
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For the phenological markers estimated at the beginning and end of budburst (SOS and EOS) or autumn (SOF and 310 

EOF) (Table S2), and considering the period 2015-2017 for which the six phenological markers are available from the intensive 

sampling, it can be noted that SOS dates are close to observed date (DOY 97) for all methods (between DOY 94-101) except 

for CC. CC starts to increase earlier, at DOY 82, i.e. 15 days before SOS from OBS. Phenological field observations achieved 

for understory hornbeam trees over the period 2006-2016 (data not shown), show that, on average, the hornbeam budburst date 

(i.e. BB-OBS for hornbeam) is around DoY 96 [range 85-107]. MBE between BB-OBS of hornbeam and SOS estimates is 315 

about -1 days (MAD ~ 5 days) for GPP, -5 days (MAD ~ 5 days) for NDVI, - 8 days (MAD 8 days) for CC and between 6-8 

days for LAI, fAPAR, NDVIbr and fRvis. For GCC and over 2012-2016, MBE is of 2 days. Significant correlations were also 

obtained between observed hornbeam budburst dates and SOS estimates derived from NDVI, LAI, NDVIbr, CC and fAPAR. 

R² ranges between 0.73 and 0.49 and the best correlation is obtained with NDVI-based SOS estimates. Note also that there is 

a significant correlation between the observed budburst dates of oak and hornbeam (R² ~ 0.6) but on average hornbeam trees 320 

break buds about 10 days earlier than oaks. 

For the end of spring, EOS based on GCC are quite close to EOS determined from field phenological observations (3 

days earlier for GCC). For the other methods, estimated EOS are later than observed EOS dates. MBE are 3 days for NDVI, 8 

days for fAPAR, 10 days for CC, 14 days for NDVIbr, 20 days for LAI, 28 days for fRvis and 41 days for GPP. During the 

senescence phase, SOF from NDVI and CC gives the best agreement with observed SOF date (3 days on average over 2015-325 

2017), followed by fAPAR (6 days). Observed EOF is better predicted using fRvis, CC, NDVI and GPP. MBE is about 3 days 

for fRvis, 6 days for CC and NDVI and 9 days for GPP. 

   

As an illustration of the above, Fig. 5 shows average phenological patterns of vegetation variables derived from 

average parameters of modelled time-series through ADS function fitted to data over the period 2012-2017, common to all 330 

vegetation variables, for the spring (Fig. 5a) and the autumn (Fig. 5b) phenological stages, respectively. The correspondence 

between field observed dates and phenological metrics derived from indirect methods is also shown. 

Figure 5 illustrates what is described above by showing average temporal patterns during budburst and senescence 

over the period 2012-2017, common to all eight methods and for which field phenological observations are available in both 

spring and autumn. Figure 5a shows the good correspondence between the observed dates and the estimates derived from CC 335 

and GCC using the mid-amplitude (50%) MOS threshold. For CC and GCC, MOS clearly marks the budburst date as 

characterized in the field using the observation protocol used in our study (50% of trees with at least 50% open buds per tree 

crown, BB-OBS). For the NDVI-based method, on average, the mean observed BB-OBS date coincides with the date when 

NDVI reaches 25% of its amplitude of variation between NDVI minimum in winter and NDVI maximum at the end of spring. 

For the other methods including fAPAR, NDVIbr, LAI, fRvis and GPP, estimated dates at mid-amplitude threshold are later 340 

than BB-OBS with a MAD ranging from 6 to 17 days. A threshold at 20% of the spring amplitude for GPP, fRvis, NDVIbr and 

at 10% for LAI and fAPAR provide estimates with a bias < 2 days. During the leaf senescence phase (Fig. 5b), NDVI at mi-
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amplitude and CC time-series, just at the start of its decline (~ 95% of its amplitude) provide estimates consistent with the 

observations. For the other methods, the thresholds shown in Figure 5b are only valid on average over the period 2012-2017 

since the relationships between observations and estimates are not statistically significant as shown in Fig. 4b. 345 

Figures 5a and 5b also show that the different methods perform relatively well in the spring but deviate from each 

other in the autumn. Fig. S5 shows that the relationships between the different variables are dependent on the considered 

phenological stage. This is clearly the case in the relationships between fAPAR and NDVI, GCC, GPP, 1-fRvis. It can be noted 

that a same NDVI value corresponds to a lower fAPAR in spring than in autumn. In other words, NDVI and fAPAR responses 

to changes in canopy properties follow two different trajectories depending on the season. This “hysteresis” phenomenon may 350 

explain the shift between NDVI and fAPAR-based estimates during the senescence phase (overestimation of the senescence 

date by the fAPAR) while both predict very close dates during the spring. This phenomenon of “hysteresis” is also observed 

in the same way between fAPAR and GCC or fAPAR and GPP. A given GPP or GCC value corresponds to a lower fAPAR in 

spring than in autumn. We can also note that the relationships between NDVI and GCC are different depending on the season, 

but for the same NDVI corresponds a higher GCC in spring than in autumn. 355 

4. Discussion 

4.1. Ability of GCC to detect phenological transitions 

Using RGB-based GCC (Greenness Chromatic Coordinate index) time-series, the mean absolute deviation (MAD) 

with BB-OBS is about 1 day over the 7 years of comparison (2012-2018). This result is in line with previous studies, 

particularly the study of Richardson et al. (2018) who compared RGB-camera based estimates to independent human-eye 360 

observations achieved over four deciduous forests. They observed average biases ranging from 1.5 to 6.5 days depending on 

the site and the best agreement was obtained using GCC at 25% of its amplitude as threshold. Many other studies comparing 

GCC and indirect visual phenological estimates from same photographs (Klosterman et al. 2014, Wingate et al. 2015) have 

also concluded that GCC method yields estimations of the spring phenological date with an average bias around 7-8 days. In 

our study, we show that over the 7-year period (Fig. 5a), GCC at the inflection point (MOS) in spring which corresponds to 365 

about 50% of its annual amplitude derived from modelled time-series is the best predictor of the human-eye observed BB-

OBS dates which correspond to 50% of sampled oak trees having at least 50% open buds (in fact corresponding to about 50% 

open buds at the population scale, N. Delpierre unpublished results). This result supports the fact that the camera accurately 

reports what is observed by human-eye in the field during the spring and that GCC index is a very good indicator of the timing 

of budburst. It can also be noted that the phenological field observations have been carried out by the same (three) 370 

intercalibrated observers over the study period and according to a constant protocol. This may also participate in explaining 

the good agreement between field observations and estimated dates from RGB-based GCC index time-series. Indeed, several 

studies have highlighted the importance of uncertainties associated with observations due to various sources, especially 
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observer effect (Schaber, 2002) and the availability of good quality data is a prerequisite for a rigorous evaluation of the various 

indirect methods.  375 

On the other hand, the ability of GCC to estimate the senescence date is variable. For some years, the decline in GCC 

may start earlier than expected, and therefore estimated dates are strongly biased. When the senescence phase causes 

pronounced contrasts on RGB images between the summer growth and senescence phases, estimated dates agree with field 

observations, as for the years 2012, 2013 and 2015. For these years, estimated dates are very close to OBS with MAD of about 

7 days, of the same order of magnitude as the field observation uncertainty. Therefore, during autumn, data quality and data 380 

processing appear crucial to obtain reliable estimates, and extracting of senescence dates based on ADS model may not be the 

right approach. Other approaches, particularly the spline-based method used for PhenoCam data that has shown good 

performance (Richardson et al. 2018) deserve to be employed.  Other RGB-based spectral indices using the red band, designed 

specifically to monitor the autumn phenological transition, such as RCC (red chromatic coordinate) (Klosterman et al., 2014; 

Liu et al. 2020) or GRVI (Green-Red Vegetation Index) (Motohka et al. 2010; Nagai et al. 2012) should also be evaluated. 385 

This is beyond the scope of this study and further methodological development is therefore needed to rigorously assess the 

real potential of this technique for estimating phenological dates during the senescence stage.  

 

Another point to note, as shown in this study (Fig. 2d) and previously pointed in several other studies (Sonnentag et 

al. 2012; Keenan et al. 2014; Klosterman et al. 2014; Petach et al. 2014) is that GCC shows annual spikes during the spring 390 

followed by a rapid decline. The annual amplitude of GCC determined from the modelled time-series is generally smaller than 

the actual amplitude. In our study, GCC spikes are reached on day 121 on average over 2012-2018. They are not well captured 

by ADS model because they are delayed by about 10 days compared to the end of spring green-up stage determined from 

GCC-based EOS (end of spring season) phenological marker. GCC spikes are also reached 10 days before LAI reaches its 

maximum. This result is consistent with Keenan et al. (2014). Based on intensive field measurements at canopy and leaf scales, 395 

they observed a time lag of about two weeks between the canopy maximum LAI measured by LAI-2000 Plant Canopy 

Analyzer and GCC spikes. They concluded that GCC depends on leaf color and saturates faster than measured canopy LAI, 

that was explained by the oblique viewing angle of the camera which leads to a higher effective LAI. In the same study, they 

showed that GCC peaks were reached while main leaf traits (maximum leaf area, chlorophyll content, leaf mass area) continue 

their development. Similar results were also reported in Yang et al. (2014) and Liu et al. (2015) who showed that GCC peaks 400 

in spring were approximately 20 days earlier than the peak of the total chlorophyll concentration. In our study, on average, 

GCC spikes almost coincide with maximum fAPAR and CC (EOS) whereas these two variables are based on incoming, 

reflected and transmitted PAR measurements using hemispherical sensors and therefore are integrative of the whole canopy. 

This result supports the hypothesis of a combined effect of canopy coloring and closure on GCC spikes. However, and contrary 

to LAI, which is estimated, in this study, only from incident and transmitted radiation, fAPAR and CC also additionally use 405 

reflected radiation. Therefore, they are also sensitive to changes of leaf color and other leaf traits during the spring. This may 

explain the good correspondence between the timings of GCC spikes and the timings of maximum of fAPAR and CC. 
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4.2. Ability of NDVI to detect phenological transitions 

Results also show that MOS and MOF of NDVI are good proxies of observed dates with MAD of about 3-4 days in 

spring over the whole period 2006-2018 and 5 days in autumn over 2011-2017 period. Estimates based on NDVI are also 410 

highly correlated with spring and autumn field phenological observations with an R² of 0.88 and of 0.62, respectively. This 

reflects the ability of ground-based NDVI time-series to reproduce the interannual variability of phenology at this site (Figs. 

3b and 4b). This potential has also been shown in previous studies, in evergreen and deciduous forest ecosystems in France, 

an evergreen tropical rain forest in French Guyana, an herbaceous savanna in Congo and a succession of three annual crops in 

Belgium (Soudani et al. 2012; Hmimina et al. 2013).  415 

 

Good agreement between RGB-camera indices and proximal NDVI-based measurements has also been shown in 

crops (Sakamoto et al. 2012) and in herbaceous species (Anderson et al. 2016). However, NDVI measurements does not show 

the spikes observed on GCC in late spring and our study shows that NDVI is more stable, less scattered, and better 

representative of LAI plateau throughout the summer growth phase observed in deciduous forests. Similar conclusions were 420 

drawn in Petach et al. (2014). In conclusion, the NDVI sensor using MOS and MOF criteria can be considered as the best 

option since it provides reliable estimates for monitoring both spring and autumn phenology. In addition, and as highlighted 

in Hmimina et al. (2013), in situ NDVI measurements using proximal sensors are done a few meters above the top of canopy, 

and because NDVI is a normalized index, the effects of the sky conditions produce little noise. Thus, measurements can be 

carried out under diffuse sky conditions, allowing for the monitoring of vegetation phenology at high temporal frequency. 425 

Nevertheless, proximal NDVI sensors have the disadvantage that measurements remain limited to a narrow field of view and 

do not allow to extract key phenological metrics at the individual tree level when it may be possible using RGB camera 

(Delpierre et al. 2020). The use of multispectral cameras with RGB+NIR bands, which are increasingly used on many sites, 

may allow to overcome this inconvenience and should therefore be encouraged. 

 4.3. Ability of CC to detect phenological transitions 430 

During the spring, good performance of CC-based method was obtained after cosine correction of the transmitted 

PAR according to Eq. 7 (Fig. 4a and Table S2). Without this correction, MAD between estimated and observed MOS dates is 

three times larger (6 days vs 2 days) and R² slightly lower (0.71 vs 0.80). It can be noted that uncorrected CC, which 

corresponds to the complement to 1 of the canopy transmittance, and fAPAR provide similar estimated MOS dates, that are 

on average about one week later that observed dates (Table S2). This result is in line with the study of Perot et al. (2020), 435 

conducted in a mature oak forest, which showed that on average estimated MOS dates from canopy transmittance time-series 

are about 7 days later than the observed budburst dates.  

Comparison of the phenological patterns of CC time-series obtained with and without cosine correction (Fig. S4) 

shows that the cosine correction has the effect of causing an earlier spring phenological start, thus advancing the date of the 
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inflection point. While the estimated date at the inflection point after cosine correction (CC-MOS) is very close to BB-OBS, 440 

the spring start date (SOS) appears earlier than the observed SOS of oak trees. This can be explained by the budburst of the 

first trees of the hornbeam understory, which on average has an earlier budburst date, about 10 days before the overstory oak 

trees. During the senescence phase, the cosine correction significantly improved the estimates, but the bias remains high (14 

days on average). Despite this bias, autumn CC-MOF dates are the most correlated with observations LS-OBS (R² =0.8) (Fig. 

4b and Table S2). We notice that CC time-series are sensitive to the intercepted radiation, which mostly depends on canopy 445 

structure, and not so much on pigmental (color) properties. Here we derived LS-OBS from the monitoring of the percent of 

senescent (i.e. colored or fallen leaves) in the canopy, which we build from independent observations of percent colored and 

percent fallen leaves in the tree crowns. For those years when we continued canopy observations until complete leaf fall, we 

observed that 50% leaf-fall is typically attained 2-3 weeks after 50%-senescence, at a date comparable to CC-MOF. 

  In summary, the cosine correction significantly improves estimated dates based on CC both in the spring and 450 

senescence seasons. The new formulation of CC calculation proposed in this study (Eq.7), that takes into account the effects 

of seasonal variations in sun angle on the transmitted PAR, merits being tested at other sites in order to assess accurately its 

performance as it is likely to be dependent on both the canopy structure and the latitude of the site. 

4.4. Ability of NDVIbr to detect phenological transitions 

The phenological pattern of NDVIbr is comparable to the one obtained from NDVI time-series but with greater 455 

amplitudes during the spring and autumn phenological transitions for the latter (Fig. 2 and Fig. S1). This result is also consistent 

with Liu et al. (2019) who compared broadband and narrowband NDVI in a temperate broadleaved deciduous forest. Like 

NDVI, NDVIbr is measured directly above the canopy and seems to be not very sensitive to cloud conditions as also underlined 

in Wang et al. (2004) and Wilson and Meyers (2007). On average, the deviation between estimated MOS dates from NDVI 

and NDVIbr are 5 days in spring and 1 day in autumn, respectively. However, while in spring the estimated MOS dates from 460 

NDVI and NDVIbr are highly correlated (R² = 0.87), the correlation is lower in autumn (R²=0.49) and is non-significant 

between autumn NDVIbr estimates and observed dates LS-OBS. As a result, NDVI and NDVIbr seem to be decorrelated in 

autumn and the performance of NDVIbr time-series to describe the interannual variability of phenology is only limited to 

spring.  

4.5. Ability of GPP to detect phenological transitions 465 

On average over an 11-year period (2006-2016), GPP starts increasing (GPP-SOS) on DoY 96, 10 days earlier than 

overstory oak trees (DoY 106, Fig. 3 and Table S2). The starting date of GPP coincides exactly with the date of hornbeam 

budburst (DoY 96) and of the earliest oaks (Delpierre et al. 2020). However, GPP reaches a maximum in a time interval close 

to the summer solstice (Figs. 2 and 5a) and then starts to decline immediately after. Consequently, GPP-MOS overestimates 

BB-OBS by about 17 days. This result is in line with other previous studies which have shown that GPP peaks several weeks 470 

later than the other variables. Toomey et al. (2015) showed that the start of GPP in spring coincides with the onset of GCC, 
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but GPP peaks 2-4 weeks later. They also noted an immediate decline of GPP once its peak is reached. Similar conclusions 

between GCC and GPP can also be drawn from Richardson et al. (2009).  

During the autumn phase, based on ADS function, the GPP time-series fails to produce plausible estimates of LS-

OBS, either using SOF, MOF or EOF criteria.  475 

As underlined above, among all the indirect methods evaluated in this study, estimates of budburst dates derived from 

GPP time-series using the MOS criterion based on ADS are the most biased estimates and are also the least correlated with the 

observed phenological dates of oak trees (MBE 17 days, R² = 0.34, Fig. 4a). This weak correlation can be explained both by a 

starting of the GPP simultaneously with the budburst of the hornbeam understory and the high dependency of GPP, in addition 

to the effects of the increase of the LAI and the leaf maturation, to the solar radiation level (Delpierre et al. 2009a). Figs. 2 and 480 

5a show that GPP reaches a short-lived plateau around the summer solstice in June, when both maximum LAI is reached, and 

solar irradiance is at its maximum. On the other hand, MOF dates during the autumn are earlier than LS-OBS (Figs. 2, 5 and 

Table S2). Consequently, the length of the period of budburst and leaf development in spring between GPP-derived SOS and 

EOS dates, is about 57 days over the 13 years of measurements, while it is only about 17 days from in situ NDVI. The length 

of the growing season, between estimated dates of MOS and MOF, is also greatly reduced and it is only 130 days based on 485 

GPP, whereas it is 192 days from NDVI and 199 days from field phenological observations. Similar results are shown in the 

studies of Lu et al. (2018) and Keenan et al. (2014). In conclusion, the extraction of phenology from GPP time-series using 

inflection points of transitions in the spring and autumn are therefore not representative of the canopy leaf display and other 

approaches based on absolute or relative thresholds of GPP as in Richardson et al. (2010) and in Wu et al. (2017) may be more 

representative. Nevertheless, GPP remains a composite signal driven by changes in vegetation phenology and physiological 490 

processes that are under the control of the fluctuations of abiotic factors and its use to derive the timings of phenological events 

must be carried out with great care, as strongly emphasized in Gonsamo et al. (2013). 

4.6. Hysteresis phenomena between vegetation variables according to the spring and senescence seasons 

As shown in Fig. 5, the performance of the different methods for estimating key phenological dates differs between 

spring and autumn. While the correlations between estimates and observations are all significant during spring (Fig. 4a), only 495 

NDVI and CC provide estimates consistent with autumn observations (Fig. 4b). The hysteresis phenomenon that characterizes 

some relationships between the vegetation variables used in the different methods reflects their different biophysical meanings 

(Fig. S5). This is particularly the case for the relationships between NDVI and fAPAR and between GCC and fAPAR. In 

spring, the performances of NDVI and fAPAR are similar, whereas in autumn the fPAR provides very late estimates. This can 

be explained by a high sensitivity of NDVI and GCC to pigment changes during senescence whereas fAPAR responds mainly 500 

to leaf fall and canopy opening.  
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4.7. Linking phenological dates recorded by field phenologists and phenological metrics predicted by indirect proximal 

methods 

The analysis of the link between phenological dates based on field observation and those derived from modelled time-

series (Figs. 5a and 5b) shows that, on average over 13 years, BB-OBS (corresponding approximately to 50% buds open in 505 

the canopy) are better predicted by MOS (50% of the annual amplitude of variation) for methods based on GCC and CC. For 

NDVI-based method, a threshold of 25% of its amplitude coincides with the average observed date. However, due to the rapid 

increase of NDVI during the spring, a 50% threshold also provides estimates with a bias of the same order of magnitude as the 

uncertainty in the phenological observations (3.5 days). For the other methods (GPP, fRvis, NDVIbr, fAPAR and LAI), a 

threshold at 20% of the annual amplitude appears more appropriate to estimate the average observed date of budburst. During 510 

the senescence phase, and for NDVI- and CC-based methods, for which observations and estimates are significantly correlated, 

MOF of NDVI is very close to the observed LS-OBS date (50% of trees having at least 50% of senescent or fallen leaves per 

tree crown) and SOF of CC is more in line with the observed date but less stable than MOF.  

Although they are based on data acquired over a long period covering 13 years of measurements and observations, 

these thresholds may be specific to our study site and their stability and genericity merit further study in other forest 515 

ecosystems.  

4.8. Summary remarks on deriving phenological metrics from radiation-based methods in EC flux-tower sites 

Many EC flux-tower sites that use the eddy covariance technique routinely acquire the biometeorological variables 

used in the calculation of GPP, LAI, fRvis, NDVIbr, fAPAR and CC. During the spring stage, LAI, fRvis and GPP-based 

estimates are biased by about 10 to 17 days. fRvis and GPP are the worst performing predictors, especially GPP. On the other 520 

hand, this study shows that NDVIbr, fAPAR and CC are able to reproduce interannual variation of spring budburst with a bias 

of about one week when MOS is considered (Figs. 3 and 4, Table S2). In same vein, the use of CC based-method is also 

another robust alternative for monitoring spring and autumn phenological transitions in EC flux-tower sites. However, CC and 

fAPAR require additional measurements of transmitted radiation below the canopy. Indeed, such measurements are not 

commonly achieved at EC flux measurement sites and should be deployed as, in addition to phenology, transmitted radiation 525 

data time-series can also be used to estimate Leaf Area Index and to characterize its seasonal dynamics (Keenan et al. 2014). 

These measurements must be performed using an appropriate number of below-canopy radiation sensors to take the 

heterogeneity of the canopy structure into account (Pontailler, 1990; Link et al. 2004; Garrity et al. 2011; Webster et al. 2016). 

When such data are available, derived phenological metrics can be used to conduct retrospective studies in order to interpret 

the interannual variability of carbon fluxes and are preferable to those derived from the fluxes themselves such GPP or NEP, 530 

as already pointed in Gonsamo et al. (2013). 
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5. Conclusion 

We used various methods to characterize the temporal dynamics of forest canopy in a temperate deciduous forest. 

Field phenological observations provided exhaustive multi-year samples allowing to accurately assess the potential of each 

method. However, we emphasize that this potential remains relative because it was evaluated using ADS method applied to 535 

all vegetation proxies considered in this study as the only method of extracting phenological dates in order not to bias their 

comparison. Using ADS-based phenology extraction method, results show that this potential is different depending on the 

method and the season. During the spring phase, GCC, NDVI and CC, using the inflection point MOS criterion, provide 

estimates closest to observed dates with an absolute bias less than 4 days, of the same order as the temporal resolution of 

phenological observations (3.5 days). For CC, this is obtained only after a cosine correction of the transmitted PAR, correction 540 

that takes the variation of the optical path in the canopy due to the seasonal variation of the solar angle into account. Without 

this correction, the prediction bias increases from about 2 days to 6 days. Using MOS criterion, NDVIbr and fAPAR give also 

satisfactory estimates with a bias around one week that corresponds to the temporal resolution generally used in phenological 

observations. However, for these variables as well as for fRvis, LAI and GPP, a threshold of 20% of their transition amplitude 

in spring allows to obtain more precise estimates in agreement with observed dates. During the senescence phase, only MOF 545 

of NDVI and CC can reproduce the interannual variability of leaf senescence. However, these findings are specific to the ADS-

based method used to derive phenological markers from time-series data. More appropriate methods, especially for GPP and 

GCC time series, could have provided better estimates of senescence date. 

 

This study validated the estimates provided by the different methods by comparing them with phenological 550 

observations carried out according to the same protocol by intercalibrated observers and over 13 years of field observations 

for budburst and 7 years for leaf senescence. But more particularly, this study demonstrated the good performance of methods 

based on broad band NDVI (NDVIbr), the fraction of absorbed PAR (fAPAR) and canopy closure (CC) that use solar radiation 

data routinely recorded at several EC flux tower sites. This opens real perspectives to conduct retrospective studies for a better 

interpretation of the interannual variation of carbon fluxes. fAPAR and CC use transmitted radiation measurements below the 555 

canopy which are less common but merit being largely deployed at EC flux measurement sites.  
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Figure 1: Illustration of phenological markers extracted from ADS (Asymmetric double sigmoid) functions fitted to NDVI 

data acquired in 2015 (empty circle and red curve). Vertical lines in blue: SOS, MOS and EOS are dates of start, middle and 

end of leaf onset in spring. SOF, MOF and EOF are dates of start, middle and end of leaf senescence (colored and fallen leaves) 

in autumn. The third derivative of the ADS function showing peaks and holes corresponding to the six phenological dates 760 

(black dotted line). 
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Figure 2: Illustration of one-year (2015) time-series of OBS (a), NDVI (b), NDVIbr (c), GCC (d), 1-fRvis (e),  fAPAR (f), CC 

(g), LAI (h) and GPP (i) in Fontainebleau-Barbeau forest. Data are shown in empty circle. The red bold continuous curve is 770 

the ADS function (Eq. 1) fitted to time-series. For visual observations, data shown are in % of open buds in spring and in % 

of non-senescent leaves (100% – observed percentage of senescent leaves) in autumn. % of open buds is forced to 100% for 

the summer growing season ant to 0% during the winter dormancy season. Vertical lines: spring and autumn phenology 

estimates using MOS and MOF (black) and observed dates (BB-OBS and LS-OBS) (blue).  
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Figure 3: Average phenological dates in spring (a) and autumn (b) using MOS and MOF phenological markers, respectively, 

and for the different years. 
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Figure 4: Coefficient of determination (R²) (a and b), mean bias error (MBE) (c and d) and mean absolute deviation (MAD) 

(e and f) in days between observed and estimated phenological dates using MOS and MOF markers during spring (a, c and e) 

and autumnal (b, d and f) phenological stages. The significance levels of R² are given by stars: * P <0.05, ** P < 0.01, *** P 790 

< 0.001 and **** P < 0.0001. The height of grey boxes marks the average of the statistics across study years (individual years 

are represented by the black dots). Red horizontal lines represent temporal-resolution related uncertainties associated with field 

phenological observations of 3.5 days during the spring and of 7 days during the autumn.  
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Figure 5: Average phenological patterns during budburst (a) and senescence (b) during the period 2012-2017 using modelled 

time-series through ADS function fitted on the measured time-series of NDVI (Normalized Difference Vegetation Index), 

GCC (Greenness Chromatic Coordinate), broad-band NDVI (NDVIbr), LAI (Leaf Area Index), fAPAR, CC (Canopy Closure), 800 

fRvis (fraction of reflected radiation) and GPP (Gross Primary Production). Amplitudes of variations are normalized to 1. 

Horizontal dotted lines: for each variable, proportion of the average amplitude that equals the average of the BB-OBS (Fig. 

5a) and LS-OBS (Fig. 5b) dates. Horizontal bold red line (y-axis = 0.5): mid-amplitude (50%) corresponding to mid-onset of 

spring (MOS) and mid-onset of senescence (MOF). Vertical black line: averages of observed phenological dates during 2012-

2017 for budburst (BB-OBS) and for senescence (LS-OBS). 805 
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Table 1. Methods and variables used in the calculation of phenology metrics in the Fontainebleau-Barbeau Forest. NDVI: 

narrow-band normalized difference vegetation index; NDVIbr: broad-band NDVI; fRvis: fraction of reflected radiation by the 

canopy in PAR spectral domain; GCC: greenness chromatic coordinate from RGB camera images; fAPAR: fraction of 810 

absorbed radiation in PAR spectral domain; CC: canopy closure; LAI: leaf area index; GPP: Gross Primary Productivity. These 

vegetation variables are named Vv hereafter. 

 

Method (Vv) 
Data used to calculate Vv 

Period 
Time 

resolution 

Human-eye phenological 

observations (OBS) 

% open buds (spring) 

% senescent (colored or fallen) 

leaves (autumn) 

2006-2018 (spring) 

2011-2015; 2015-2017 

(autumn)* 

 

Twice a week 

(spring)  

Once a week 

(autumn)   

GCC index 
AXIS-Camera RGB images 

2012-2018 
Hourly (8-17 h 

UT) 

Narrow-band NDVI 
Radiances in red and near infrared 

bands 
2006-2018 Half hourly 

Broad-band NDVIbr 

Incoming and reflected radiation in 

PAR and shortwave spectral 

regions 

2006-2018 Half hourly 

fRvis 
Fraction of reflected radiation in 

PAR spectral region 
2006-2018 Half hourly 

Fraction of absorbed PAR 

(fAPAR) 

Incoming, reflected and below-

canopy transmitted radiation in 

PAR spectral region 

2006-2018 Half hourly 

Canopy closure (CC) 

Incoming and below-canopy 

transmitted radiation in PAR 

spectral region 

2006-2018 Half hourly 

Leaf Area index (LAI) 

Incoming and below-canopy 

transmitted radiation in PAR 

spectral region 

2006-2018 Half hourly 

Gross Primary Productivity 

(GPP) 

Gross CO2 assimilation by the 

ecosystem, calculated from eddy 

covariance data 

2006-2018 Half hourly 

* see text for details 


