

Ideas and Perspectives: When ocean acidification experiments are not the same, reproducibility is not tested

5 Phillip Williamson¹, Hans-Otto Pörtner², Steve Widdicombe³, Jean-Pierre Gattuso^{4,5}

¹School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK

²Alfred Wegener Institute for Polar and Marine Research, 27515 Bremerhaven, Germany

³Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK

⁴Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France

10 ⁵Institute for Sustainable Development and International Relations, 75006 Paris, France

Correspondence to: Phillip Williamson (p.williamson@uea.ac.uk)

Abstract

Can experimental studies on the behavioural impacts of ocean acidification be trusted? That question was raised in early 2020 when a high-profile paper failed to corroborate previously-observed impacts on the responses of coral reef fish to high CO₂. New information on the methodologies used in the “replicated” studies now provides a plausible explanation: the experimental conditions were substantially different. High sensitivity to test conditions is characteristic of ocean acidification research; such response variability shows that effects are complex, interacting with many other factors. Open-minded assessment of all research results, both negative and positive, remains the best way to develop process-based understanding. As in other fields, replication studies in ocean acidification are most likely to contribute to scientific advancement when carried out in a spirit of collaboration rather than confrontation.

1. Introduction

Ocean acidification refers to a reduction in seawater pH (increased hydrogen ion concentration) over an extended period, typically decades or longer, caused primarily by increased uptake of carbon dioxide (CO₂) from the atmosphere. Associated chemical changes include increased concentration of bicarbonate ions and dissolved inorganic carbon, and reduction in the concentration of carbonate ions in the ocean and, unless compensated for, the body fluids of marine organisms. Although the chemistry of the carbonate system has been well understood for decades, research on the biological and ecological implications of anthropogenic ocean acidification only began in earnest about 20 years ago (Gattuso and Hansson, 2011). A wide range of potential consequences have since been identified, with an early appreciation of the variable vulnerability of plant and animal species (Kroeker et al., 2013; Wittmann and Pörtner, 2013). Effects on the production of shells and

skeletons have been a major research focus, but reduced calcification is not the only impact; there is also strong evidence for low pH affecting many other physiological processes (Pörtner et al., 2014; Baumann, 2019; Hurd et al., 2020), including vertebrate and invertebrate behaviour (Clements and Hunt, 2015; Cattano et al., 2018; Zlatkin and Heuer, 2019). Laboratory experiments have investigated the biological impacts of ocean acidification through a reductionist approach; i.e. conditions 35 are deliberately simplified. This approach has the advantage of enabling statistical testing of cause and effect for single factors, yet necessarily omits many of the complexities of natural conditions, **that may involve temporal as well as biotic and abiotic environmental factors.**

2. The challenge of contradictory results

40 A two-step experiment has been used by many research groups to investigate the possible effects of ocean acidification on fish behaviour. Initially, individual fish are given a binary choice of water conditions in a flume tank, with one choice including an odour (e.g. from predators or a conspecific alarm cue) known to elicit an avoidance response. Those observations of discriminatory ability then provide the “control” strength of preference, for comparison with treatment results using the same choice under raised CO₂ (lowered pH) conditions throughout the test tank. Several versions of such 45 experimental conditions and treatments have been developed, with differences between protocols known to affect the strength of the response change (Jutfelt et al., 2017).

Based on that binary-choice approach ~~and an intended replication~~ of previous work, Clark et al. (2020a) reported their findings in an ~~unambiguously~~-titled paper: “Ocean acidification does not impair the behaviour of coral reef fishes”. To 50 exclude the possibility of inadvertent observer bias, they deployed video recording and automatic tracking software in their study, making that digital information openly available. They also used data simulations to conclude that previously reported results were “highly improbable”, with an estimated likelihood of 0 out of 10,000 – assuming identical experimental conditions and that their own data were valid. Since Clark et al. (2020a) went to “great lengths” (in their own words) to replicate earlier work yet failed to observe the same effects, there was the implication that other researchers’ work was 55 flawed or even fraudulent. ~~The~~ latter interpretation is consistent with earlier concerns expressed by Clark et al. (2016) and Clark (2017).

60

 In the context of a reported “crisis” in research reproducibility for many disciplines (Baker, 2016; Nature, 2018), Clark et al. (2020a) attracted media coverage and scientific responses, including praise for its thoroughness by several independent commentators (Enserink, 2020; Science Media Centre, 2020). However, those initial reactions also identified three potential weaknesses. First, Clark et al. (2020a) *did* find several significant ocean acidification effects, contrary to the paper’s title, although less dramatic than those previously reported. Second, their analysis gave scant attention to the extensive literature on factors causing variability in ocean acidification research. The third, more fundamental, concern related to how closely 2

the original experiments had been repeated, and whether that issue had been thoroughly checked before the paper was published.

3. Experimental differences

75 Any deficiencies in the peer review of Clark et al. (2020a) were remedied nine months after its publication, with a detailed (online) critique by Munday et al. (2020a) that challenged the effectiveness of the claimed replication: “Clark et al. did not closely repeat previous studies, as they did not replicate key species, used different life stages and ecological histories, and changed methods in important ways that reduce the likelihood of detecting the effects of ocean acidification”.

80 Experimental differences identified by Munday et al (2020a) between the original and repeated results included the following:

- Clark et al. (2020a) did not use clownfish, one of the original test species
- Adult and sub-adult fish were mostly used, rather than larvae and small juveniles (with older fish known to be less responsive to risk cues)
- For one species, the juveniles were from an inbred aquarium population (likely to be pre-adapted to high CO₂, and hence less sensitive)
- 85 • Many experiments were carried out during a marine heatwave (with high temperatures known to reduce or reverse responses in the studied species)
- Dissolved CO₂ levels were unstable, with average daily pCO₂ range of 581 μatm in 2016 treatments. Such variability can reduce behavioural impacts (Jarrold et al., 2017) and did not match the stable conditions of directly-compared studies.

90 There were also crucial changes to the design of testing apparatus; the dilution and nature of odour cues; and the duration of tests. Such changes weakened the control response, hence reducing the likelihood of significant CO₂ treatment effects. In total, 16 differences between the original studies and the re-runs were described by Munday et al. (2020a), any one of which could potentially invalidate the comparisons.

95 The counter-argument, made at the time of the original publication (Enserink, 2020) and subsequently re-iterated by Clark et al. (2020b), is that minor experimental differences are inevitable, and can be considered as reflecting natural environmental variability. They should not matter if the original findings are widely applicable and robust. The question of what does or does not constitute a valid replication is therefore critical, yet inherently problematic. Since it is widely accepted that a fully-exact repeat of a biological study is impossible, due to the dynamic nature of both animate and inanimate factors (“No man ever steps in the same river twice; it is not the same man, nor is it the same river”; Heraclitus), it is important to distinguish “reproducibility” from “replicability”. The test for reproducibility is conventionally limited to conditions where very tight

105 control is achievable, e.g. in data treatments, or when re-using the original experimental set-up. In contrast, greater flexibility is allowed for testing replicability, reflected in a definition of replication as “a study for which any outcome would be considered diagnostic evidence about a claim from prior research” (Nosek & Errington, 2020a). This broad definition has merit, although consistency is needed across all disciplines (e.g. Stevens, 2017; Junk and Lyons, 2021), to avoid contributing to terminological confusion in a contested topic area.

110 Two further generic issues are also relevant here. First, it is important that the design of a replication study adequately addresses all key components of existing hypotheses; for example, the strong life-stage dependence of the response to high CO₂ conditions. Second, any single study does not disprove the consensus, since broadening the concept of replication has the clear corollary that novel outcomes need to be interpreted using all available lines of evidence, with awareness of both similarities and differences in relation to previous work. Munday et al. (2020a; Supplementary Table 1) identified 110 research papers published between 2009-2019 that investigated how ocean acidification might, or might not, affect the behaviour and sensory physiology of fish. Out of 44 that involved coral reef fish, 41 of those studies (carried out by 68

115 researchers at 35 institutions in 15 countries), reporting significant effects, including several that used video recording, blind-testing, and raw-data publication. The remaining 66 papers (for other tropical, temperate and polar fish; marine and freshwater) provided additional support: 44 of those reported significant behavioural effects of ocean acidification. We are aware of five more recent publications on this topic, in addition to Clark et al. 2020a (Steckbauer et al., 2020; Rong et al., 2020; Jarrold et al., 2020; McIntosh, 2020; Roche et al., 2020); four of those reported significant effects.

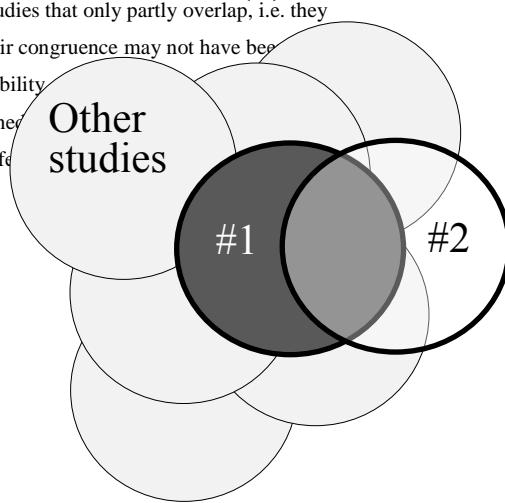
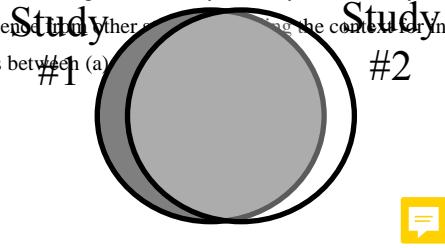
120 A closely similar result was found in a meta-analysis of 95 marine and freshwater studies by Clements et al. (2020), with T.D. Clark included in the authorship team: they found that 64 of those papers reported either strong or weak behavioural effects. Whilst the proportion showing a strong effect declined over the period 2009 -2019, that decrease is unsurprising, since the early strong-effect studies were all on the most sensitive (marine) species. Additional independent evidence is provided by molecular studies, showing direct effects of high CO₂ on neurotransmission in fish (e.g. Schunter et al., 2019) and other taxa (e.g. Moya et al., 2016; Zlatkin and Heuer, 2019); further biochemical and pharmacological examples are

125 given by Munday et al. (2020a). An objective summary of the global evidence is that ocean acidification can adversely affect fish behaviour under experimental conditions, whilst also recognising that the occurrence and scale of such impacts vary with circumstances and the species tested.

4. Taking account of response variability

A recent IPCC assessment (Bindoff et al., 2019) confirmed the pervasive and complex effects of high CO₂ and warming, not only on marine organisms and ecosystems but also on ecosystem services and society. Improved knowledge of all these response levels is crucial for effective mitigation and adaptation. This increasing appreciation of the interactions between ⁴ ocean acidification and other biochemical, physiological, behavioural, ecological and physical processes is both scientifically

exciting and sobering, showing the difficulty in developing a comprehensive understanding of this important component of
 140 ocean climate change. The complexity of these interactions should, however, not be surprising, since marine species will have experienced natural variability in pH and CO₂ levels throughout their evolution. Species will have found different ways of responding, and response differences can therefore be expected to occur in experimental studies.



Recognition of widespread response variability in ocean acidification experiments is not novel. It was noted for studies on survival, calcification, growth and reproduction in early meta-analyses (Kroeker et al., 2013), and subsequently provided the
 145 focus for much national and international research. It is therefore now well-established that closely-related marine species can respond very differently to experimental pH treatments, and that the magnitude of single species responses can be affected by many factors. These influences include length of exposure; population-level genetic differences due to local adaptation; food availability; interactions with other stressors; seasonality; energy partitioning; and the sex of the organisms used in experiments (e.g. Thomsen et al., 2012; Suckling et al., 2014; Sunday et al., 2014; Breitburg et al., 2015; Vargas et al., 2017; Ellis et al., 2017); as well as physico-chemical conditions (Riebesell et al., 2011).

150 Given this known variability, the results from any single ocean acidification study cannot provide the final word, over-riding other findings. Whilst many important uncertainties remain (Busch et al., 2016; Baumann, 2019; Hurd et al., 2020), we consider that scientific progress can be hindered by the sequence of polarising criticisms (Clark 2017, Clark et al 2020a), rebuttal (Munday et al 2020a), reply (Clarke et al. 2020b) and a further point-by-point response (Munday et al. 2020b). A more constructive approach would involve experimental co-design in a collaborative, comparative framework (Boyd et al., 2018), with appropriate rigour (Cornwall and Hurd, 2016) – that can still be consistent with scientific scepticism, replication
 155 tests and the reporting of negative results (Brownman, 2016). Future ocean acidification experiments would also benefit from an updating of Riebesell et al. (2011), to provide improved best practice guidance on the key parameters that can affect laboratory results. Since a very wide range of factors are potentially important, pragmatism will be needed with regard to associated issues of resource deployment and measurement accuracy, recognizing that chemists and biologists may have different priorities on such matters.

160 5. Wider implications

The concept of generalizability (Nosek and Errington, 2020a) would seem crucial to the broader debate on replication. Under what conditions should conclusions derived from one study be considered applicable (generalizable) to another, therefore enabling the underlying hypothesis to be tested, and potentially disproved, by the latter? The scientific benefits of that framing are greatest when the outcome of a replicability test is accepted by two research groups that initially favour different hypotheses – thereby requiring a more nuanced, non-confrontational framework for experimental planning, analysis and interpretation (Fanelli, 2018; Nosek and Errington, 2020a,b).

Figure 1 provides a diagrammatic summary of these issues, with situation (a) showing close congruence between two experimental studies, carried out by two research groups. If ~~that~~ very close match is recognised by both groups when Study #2 is planned (following the arrangements proposed by Nosek and Errington, 2020b), the replication provides a valid test of any hypotheses arising from Study #1. In contrast, situation (b) shows a pair of studies that only partly overlap, i.e. they differ in many regards, and where prior agreement between research groups on their congruence may not have been achieved. If results from both studies in situation (b) are consistent, the generalizability is constrained by evidence from other studies. For interpretation of the different situations between (a)

175 Figure 1: Visual summary of contrasting situations relating to (a) very close matching and (b) part-matching of pairs of studies where Study #2 is intended to provide a test of repeatability (and generalizability) of Study #1. See text for more detailed explanation and discussion, including the importance of experimental co-design between research groups with contradictory hypotheses.

180 The above proposals for clearer “rules of engagement” for future replication studies could be greatly encouraged if research funders not only recognized that major insights can arise from closely similar or repeated work, but also required liaison between competing research teams as a condition of award in such circumstances. Our final recommendation is that high-profile publishers should give additional attention to the quality-control of potentially controversial papers, whilst also providing the opportunity for rapid, and preferably simultaneous, publication of responses by other researchers who may consider that their work has been unfairly criticized.

190 **Author contributions:** PW prepared the original draft with subsequent input and editing by all co-authors.

195 **Competing interests:** The authors declare that they have no conflicts of interest.

200 **Acknowledgements:** We are grateful for the constructive comments by Christian Duarte, Sam Dupont, Sophie McCoy, Martin Solan and two anonymous referees that have significantly improved this paper.

205 **References**
Baumann, H.: Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? *Can. J. Zool.*, 97, 399–408, <https://doi.org/10.1139/cjz-2018-0198>, 2019.

210 Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue A., and Williamson, P.: Chapter 5. Changing ocean, marine ecosystems, and dependent communities, in: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate*, edited by Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Intergovernmental Panel on Climate Change, <https://www.ipcc.ch/srocc/chapter/chapter-5>, 2019.

215 Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P., Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M., Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H., McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., and Pörtner, H.-O.: Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change – A review, *Glob. Change Biol.*, 24, 2239–2261, <https://doi.org/10.1111/gcb.14102>, 2018.

Breitburg, D. L., Salisbury, J., Bernhard, J. M., Cai, W. J., Dupont, S., Doney, S. C., Kroeker, K. J., Levin, L. A., Long, W. C., Milke, L. M., and Miller, S. H.: And on top of all that... coping with ocean acidification in the midst of many stressors. *Oceanogr.*, 28, 48–61, <https://doi.org/10.5670/oceanog.2015.31>, 2015.

220 Brown, H. I.: Applying organized scepticism to ocean acidification research, *ICES J. Mar. Sci.*, **73**, 529–536, <https://doi.org/10.1093/icesjms/fsw010>, 2016.

225 Busch, D. S., O'Donnell, M. J., Hauri, C., Mach, K. J., Poach, M., Doney, S. C., and Signorini, S. R.: Understanding, characterising, and communicating responses to ocean acidification: challenges and uncertainties, *Oceanogr.*, 28, 30–39, <http://dx.doi.org/10.5670/oceanog.2016.29>, 2016.

230 Cattano, C. J., Claudet, J., Domenici, P., and Milazzo, M.: Living in a high CO₂ world: A global meta-analysis shows multiple trait-mediated fish responses to ocean acidification, *Ecol. Monogr.*, 88, 320–335, <https://doi.org/10.1002/ecm.1297>, 2018.

235 Clark, T. D.: Science, lies and video-taped experiments, *Nature*, 542, 139, <https://doi.org/10.1038/542139a>, 2017.

Clark, T.D., Binning, S.A., Raby, G.D., Speers-Roesch, B., Sundin, J., Jutfelt, F., and Roche, D.G.: Scientific misconduct: the elephant in the lab. A response to Parker et al., *Trends. Ecol. Evol.*, 31, 899-900, <https://doi.org/10.1016/j.tree.2016.09.006>, 2016.

Clark, T. D., Raby, G. D., Roche, D. G., Binning, S. A., Speers-Roesch, B., Jutfelt, F., and Sundin, J.: Ocean acidification 230 does not impair the behaviour of coral reef fishes, *Nature*, 577, 370-375, <https://doi.org/10.1038/s41586-019-1903-y>, 2020a.

Clark, T.D., Raby, G.D., Roche, D. G., Binning, S. A., Speers-Roesch, B., Jutfelt, F., and Sundin, J.: Reply to: Methods matter in repeating ocean acidification studies, *Nature* (online), <https://doi.org/10.1038/s41586-020-2803-x>, 2020b.

Clements, J. C. and Hunt, H. L.: Marine animal behaviour in a high CO₂ ocean, *Mar. Ecol. Progr. Ser.*, 536, 259-279, <https://doi.org/10.3354/meps11426>, 2015.

235 Clements, J. C., Sundin, J., Clark, T. D., and Jutfelt, F. : An extreme decline effect in ocean acidification fish ecology, *EcoEvoRxiv* [preprint], <https://doi.org/10.32942/osf.io/k9dby>, 17 September 2020.

Ellis, R. P., Davison, W., Queirós, A. M., Kroeker, K. J., Calosi, P., Dupont, S., Spicer, J. I., Wilson, R. W., Widdicombe, S., and Urbina, M. A.: Does sex really matter? Explaining intraspecies variation in ocean acidification responses, *Biol. Lett.*, 13, 20160761, <https://doi.org/10.1098/rsbl.2016.0761>, 2017.

Enserink, M.: Study disputes carbon dioxide-fish behavior link, *Science*, 367, 128-129, <https://doi.org/10.1126/science.367.6474.128>, 2020.

240 Fanelli, D.: Is science really facing a reproducibility crisis, and do we need it to? *Proc. Natl. Acad. Sci. USA*, 115, 2628-2631, <https://doi.org/10.1073/pnas.1708272114>, 2018.

Gattuso, J.-P., and Hansson, L. (Eds.): *Ocean Acidification*. Oxford University Press, Oxford, 326 pp, 2011.

Hurd, C.L., Beardall, J., Comeau, S., Cornwall, C.E., Havenhand, J.N., Munday, P.L., Parker, L.M., Raven, J.A., and 245 McGraw, C.M.: Ocean acidification as a multiple driver: how interactions bewteen changing seawater carbonate parameters affect marine life, *Mar. Freshwater Res.*, 71, 263-274, <https://doi.org/10.1071/MF19267>, 2020.

Jarrold, M. D., Humphrey, C., McCormick, M. I., and Munday, P. L.: Diel CO₂ cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification, *Sci. Rep.*, 7, 10153, <https://doi.org/10.1038/s41598-017-10378-y>, 2017.

Jarrold, M. D., Welch, M. J., McMahon, S. J., McArley, T., Allan, B. J. M., Watson, S.-A., Parsons, D. M., Pether, S.M.J., 250 Pope, S., Nicol, S., Smith, N., Herberet, N., and Munday, P. L.: Elevated CO₂ affects anxiety but not a range of other behaviours in juvenile yellowtail kingfish, *Mar. Env. Res.*, 157, 104863, <https://doi.org/10.1016/j.marenvres.2019.104863>, 2020.

Junk, J. R., and Lyons, L.: Reproducibility and replication of experimental particle physics results, *arXiv* [preprint], [arXiv:2009.06864\(physics.data-an\)](https://arxiv.org/abs/2009.06864), 8 January 2021.

Jutfelt, F., Sundin, J., Raby, G. D., Krång, A.- S., and Clark, T.D.: Two-current choice flumes for testing avoidance and 255 preference in aquatic animals. *Methods Ecol. Evol.*, 8, 379-390, <https://doi.org/10.1111/2041-210X.12668>, 2017.

255

260

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, *Glob. Change Biol.*, 19, 1884-1896, <https://doi.org/10.1111/gcb.12179>, 2013.

McIntosh, E. The Effect of Environmental Stressors on the Development and Behaviour of Larval *Oryzias latipes*, Honours Thesis, University of Winnipeg, Winnipeg, Canada, <http://hdl.handle.net/10680/1804>, 2020.

265 Moya, A., Howes, E.L., Lacoue-Labarthe, T., Forêt, S., Hanna, B., Medina, M., Munday, P. L., Ong, J. S., Teyssié, J. L., Torda, G., Watson, S.-A., Miller D. J., Bijma J. & Gattuso J.-P.: Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod *Heliconoides inflatus*, *Glob. Change Biol.*, 22, 3888-3900, <https://doi.org/10.1111/gcb.13350>, 2016.

Munday, P. L., Dixson, D. L., Welch, M. J., Chivers, D. P., Domenici, P., Grosell, M., Heuer, R. M., Jones, G. P., McCormick, M. I., Mark Meekan, M., Nilsson, G. E., Ravasi, T., and Watson, S.-A.: Methods matter in repeating ocean

270 acidification studies, *Nature* (online), doi: 10.1038/s41586-020-2803-x, 2020a.

Munday, P. L., Dixson, D. L., Welch, M. J., Chivers, D. P., Domenici, P., Grosell, M., Heuer, R. M., Jones, G. P.,

McCormick M I Mark Meekan M Nilsson G E Ravasi T and Watson S -A · Additional response (online)
Nosek, B. A., and Errington, T. M.: Argue about what a replication means before you do it, *Nature*, 583, 518-520,

N_o <https://doi.org/10.1038/d41586-020-02142-6>, 2020b.

Pörtner, H.-O., Karl, D. M., Boyd, P. W., Cheung, W. W. L., Lluch-Cota, S. E., Nojiri, Y., Schmidt, D. N., and Zavialov, P.
275 N_o O.: Ocean systems, in: *Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, edited by Field, C. B., Barros, V. R., Dokken, D. J. Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S. Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK, 411-484, 2014.

280

Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P.: Guide to Best Practices for Ocean Acidification Research and Data Reporting, European Commission, Brussels, <http://dx.doi.org/10.2777/66906>, 2011.

Roche, D. G., Amcoff, M., Morgan, R., Sundin, J., Andreassen, A. H., Finnøen, M. H., Lawrence, M. J., Henderson, E.,
285 Norin, T., Speers-Roesch, B., Brown, C., Clark, T.D., Bshary, R., Leung, B., Jutfelt, F., and Binning S.A.: Behavioural lateralization in a detour test is not repeatable in fishes, *Anim. Behav.* 167, 55-64, <https://doi.org/10.1016/j.anbehav.2020.06.025>, 2020

Rong, J., Tang, Y., Zha, S., Han, Y., Shi, W., and Liu, G.: Ocean acidification impedes gustation-mediated feeding
 295 behaviour by disrupting gustatory signal transduction in the black sea bream, *Acanthopagrus schlegelii*, Mar. Env. Res. 162, 195182, <https://doi.org/10.1016/j.marenvres.2020.105182>, 2020.

Schunter, C., Ravasi, T., Munday, P. L., and Nilsson, G. E.: Neural effects of elevated CO₂ in fish may be amplified by a vicious cycle, *Cons. Physiol.*, 7, coz100, <https://doi.org/10.1093/conphys/coz100>, 2019.

Science Media Centre: Expert reaction to study looking at ocean acidification and coral reef fish behaviour,
www.sciencemediacentre.org/expert-reaction-to-study-looking-at-ocean-acidification-and-fish-behaviour, last access 20
 300 October 2020.

Steckbauer, A., Diaz-Gil, C., Alós, J., Catalán, I. A. and Duarte, C. M.: Predator avoidance in the European seabass after recovery from short-term hypoxia and different CO₂ conditions, *Front. Mar. Sci.* 5, 350,
<https://doi.org/10.3389/fmars.2018.00350>, 2018.

Stevens, J. R.: Replicability and reproducibility in comparative psychology. *Front. Psychol.*, 8, 862,
<https://doi.org/10.3389/fpsyg.2017.00862>, 2017.

Suckling, C. C., Clark, M. S., Richard, J., Morley, S. A., Thorne, M. A., Harper, E. M., and Peck, L. S.: Adult acclimation to
 305 ambient temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposure, *J. Anim. Ecol.*, 84, 773-784, <https://doi.org/10.1111/1365-2656.12316>, 2014.

Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., and Reusch, T. B.: Evolution in an acidifying ocean.
Trends Ecol. Evol., 29, 117-125, <https://doi.org/10.1016/j.tree.2013.11.001>, 2014.

Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., and Melzner, F.: Food availability outweighs ocean acidification in
 310 juvenile *Mytilus edulis*: laboratory and field experiments. *Glob. Change Biol.*, 19, 1017-1027,
<https://doi.org/10.1111/gcb.12109>, 2012.

Vargas, C. A., Lagos, N. A., Lardies, M. A., Duarte, C., Manríquez, P. H., Aguilera, V. M., Broitman, B., Widdicombe, S.,
 and Dupont, S.: Species-specific responses to ocean acidification should account for local adaptation and adaptive
 plasticity, *Nature Ecol. Evol.*, 1, 1-7, <https://doi.org/10.1038/s41559-017-0084>, 2017.

Wittmann, A. C., and Pörtner, H. O.: Sensitivities of extant animal taxa to ocean acidification, *Nature Clim. Change*, 3, 995-
 1001, <https://doi.org/10.1038/nclimate1982>, 2013.

Zlatkin, R. L., and Heuer R. M.: Ocean acidification affects acid-base physiology and behaviour in a model invertebrate, the
 315 California sea hare (*Aplysia californica*), *Roy. Soc. Open Sci.*, 6, 191041. <http://dx.doi.org/10.1098/rsos.191041>, 2019.