

1 **Title**

2 Reviews and Syntheses: Impacts of plant silica - herbivore interactions on terrestrial biogeochemical
3 cycling

4 **Authors**

5 Bernice C. Hwang¹ and Daniel B. Metcalfe^{1,2}

6 **Affiliations**

7 ¹Lund University, Department of Physical Geography and Ecosystem Science, Sölvegatan 12, Lund, 223 62,
8 Sweden.

9 ²Umeå University, Department of Ecology and Environmental Science, Linnaeus väg 6, Umeå, 901 87,
10 Sweden.

11 **Correspondence**

12 Bernice C. Hwang
13 E-mail: bernice.hwang@nateko.lu.se

14 **Funding Information**

15 European Research Council (ECOHERB, grant no. 682707)

16 **Keywords**

17 Carbon, herbivory, nutrient cycling, plant defense, plant-soil processes, silica, stoichiometry

18 **Abstract**

19 Researchers have known for decades that silicon plays a major role in biogeochemical and plant-soil
20 processes in terrestrial systems. Meanwhile, plant biologists continue to uncover a growing list of benefits
21 derived from silicon to combat abiotic and biotic stresses, such as defense against herbivory. Yet despite
22 growing recognition of herbivores as important ecosystem engineers, many major gaps remain in our
23 understanding of how silicon and herbivory interact to shape biogeochemical processes, particularly in
24 natural systems. We review and synthesize 119 available studies directly investigating silicon and herbivory
25 to summarize key trends and highlight research gaps and opportunities. Categorizing studies by multiple
26 ecosystem, plant, and herbivore characteristics, we find substantial evidence for a wide variety of
27 important interactions between plant silicon and herbivory, but highlight the need for more research
28 particularly in non-graminoid dominated vegetation outside of the temperate biome as well as on the
29 potential effects of herbivory on silicon cycling. Continuing to overlook silicon-herbivory dynamics in
30 natural ecosystems limits our understanding of potentially critical animal-plant-soil feedbacks necessary
31 to inform land management decisions and to refine global models of environmental change.

32 **1 Introduction**

33 For centuries researchers have intensively studied cycles of key nutrients influencing plant growth and
34 diversity such as nitrogen (N) and phosphorus (P) across a diverse range of ecosystems (e.g., Elser et al.,
35 2007). Meanwhile, studies have often overlooked other nutrients such as silicon (Si), which is important
36 for plant function and protection (Cooke et al., 2016) as well as for biogeochemical cycling (Street-Parrott
37 and Barker, 2008). For instance, Si can reduce the impact of many abiotic and biotic pressures, including
38 water, temperature and salinity stress, as well as nutrient deficiency, heavy metal toxicity, disease, and
39 herbivory (Debona et al., 2017). Plants can likewise affect terrestrial silica fluxes by controlling weathering
40 rates and activity of dissolved Si in soils and streams (Derry et al., 2005). Plants and their associated
41 microbiota can accelerate the weathering of silicate minerals by altering the physical properties and
42 reactivity of the soil environment (e.g., pH, moisture, exposed surface area of minerals), and by taking up
43 essential nutrients which destabilizes silicate minerals (Drever, 1994; Street-Parrott and Barker, 2008 and
44 references therein). Since the silicate weathering process consumes carbon dioxide (CO₂) through
45 chemical weathering of calcium- and magnesium-silicate minerals in continental rocks, the effects of
46 plants on the Si cycle may influence the global carbon (C) cycle (Street-Perrott and Barker, 2008).

47 Plants take up dissolved Si from direct weathering of mineral silicates and biogenic Si released from leaf
48 litter to soil (Cornelis and Delvaux, 2016), and Si in plants exceeds the concentrations of many plant macro-
49 nutrients (Epstein, 1999). Si accumulation varies among species, with some plants containing only trace
50 amounts, whereas Si can constitute up to 10% plant dry mass in “high Si accumulators” such as many
51 grasses (Hodson et al., 2005). In the last decade, many studies have focused on agricultural systems
52 (Guntzer et al., 2012; see also Fig. 1), in particular looking at grass species (e.g., McNaughton et al., 1985;
53 Hartley and DeGabriel, 2016), with fewer studies examining the role or importance of plant Si in natural
54 (i.e., non-agricultural and in the field) environments even though the degree of dissolved Si passed through
55 ecosystems as filters can vary dramatically by biome (Cooke and Leishman, 2011; Schoelynck et al., 2014;

56 Cornelis et al., 2016; see also Fig 1). In natural systems, studies have focused on graminoid-dominated
57 vegetation types in the temperate biome, with relatively little research in tropical and boreal/subarctic
58 forest and herbaceous vegetation types, even though plant Si uptake and storage in these systems may be
59 significant (Cornelis et al., 2010; Katz, 2014).

60 Herbivory also creates a number of important feedbacks between plants and soils (Bardgett and Wardle,
61 2003). For example, invertebrate herbivores can supply a remarkably large amount of nutrients to tropical
62 and subarctic systems compared to other major sources, bringing likely labile nutrients to the forest floor
63 in the form of frass and bodies (Hartley and Jones, 2004; Metcalfe et al., 2011⁴³; Kristensen et al., 2018).
64 Selective herbivory may also result in the dominance of plants that are nutrient poor and/or better
65 defended, which ultimately produces more recalcitrant litter that decomposes more slowly (Bardgett and
66 Wardle, 2003). Since plant Si is involved in plant defense (Debona et al., 2017), interactions between
67 herbivory and plant Si (Quigley and Anderson, 2016) may have the potential to exert a powerful influence
68 over ecosystem biogeochemistry and function.

69 There are multiple detailed reviews covering [Silicon](#) terrestrial biogeochemistry (e.g., Conley, 2002;
70 Struyf and Conley, 2012) as well as Si-derived benefits to plants such as herbivore defense (e.g., Frew et
71 al., 2018; Katz, 2019). However, given the likely importance of Si in multiple terrestrial biomes and the
72 strong evidence for a tight coupling between plant Si and herbivory, remarkably few studies have
73 investigated Si-herbivory dynamics in the context of biogeochemical cycling. Here, we review the role of
74 plant Si-herbivore dynamics in biogeochemical cycles in order to summarize existing knowledge and
75 emerging patterns, identify gaps in knowledge, and describe future research priorities. Towards this effort,
76 we surveyed available literature between 1900-2020 in the Web of Science core collection database using
77 search terms “silic*” and “herbivor*” and not “in silico” (314 results). We then filtered the results until
78 only those publications that directly studied Si and herbivory remained (119 publications), which we
79 categorized into various ecosystem, plant, and herbivore characteristics (Fig. 1). Our purpose is to identify

80 areas where this knowledge can be currently useful, such as agricultural and land management, and assist
81 efforts to better integrate potentially important but overlooked herbivore-plant-soil interactions into
82 global biogeochemical models to more accurately predict ecosystem function shifts in the face of
83 environmental change (Van der Putten et al., 2013).

84 **2 Silicon in terrestrial systems**

85 The biogeochemical Si cycle impacts global CO₂ concentrations through weathering silicate minerals and
86 transferring CO₂ from the atmosphere to the lithosphere (Conley, 2002). In terrestrial systems, soil is the
87 primary source of plant Si, with global variability of soil-forming factors (e.g., parent rock, climate,
88 topography, age, biota) explaining the large variability in Si cycling rates (Cornelis et al., 2016). Many plant
89 species accumulate Si predominantly in leaves and needles as amorphous, biogenic silica, in large discrete
90 bodies known as phytoliths. Si then returns to the soil when plant material decomposes either as dissolved
91 Si, a quickly-available source of Si for terrestrial plants, or remain as as phytoliths, where C incorporated
92 by phytoliths. Carbon incorporated by phytoliths may accumulate in soils and sediments for hundreds to
93 thousands of years. For this reason, phytolith accumulation is considered as a key mechanism of
94 biogeochemical C sequestration (Parr and Sullivan, 2005). Plant-accumulated Si has been shown to reduce
95 the magnitude of Si released from terrestrial to aquatic ecosystems, thereby having direct implications on
96 Si availability in rivers and coastal waters, which could influence diatom blooms and C uptake rates
97 (Coney et al., 2008; Carey and Fulweiler, 2012; see also Fig. 3b). Ultimately, terrestrial systems supply
98 approximately 78% of annual silica inputs to oceans (Trégouer and De La Rocha, 2013) and Si-accumulating
99 vegetation accounts for 55% of terrestrial net primary productivity (33 GtC per year), on par with the rate
100 that marine diatoms sequester C (Conley, 2002; Carey and Fulweiler, 2012).

101 Plants may preferentially use Si for certain functions such as structure and defense instead of C (Cooke
102 and Leishman, 2012) as Si can provide plants with structural support at a lower metabolic cost than C
103 (Raven, 1983). In some cases, Si is negatively correlated with lignin and cellulose content, possibly

104 contributing to plant structural support, and phenol content (Schoelynck et al., 2010; Cooke and Leishman,
105 2012). Intermediate Si fertilization additions, for example, have enhanced aboveground growth for crops
106 and reeds, possibly due to a partial substitution of organic C compounds by Si in plant tissue (Schaller et
107 al., 2012; Neu et al., 2017).

108 Soil Si may also facilitate the acquisition and release of other essential plant nutrients. For example, a
109 laboratory experiment demonstrated that silicon addition significantly increased P mobilization in a variety
110 of arctic soils (Schaller et al., 2019). Researchers have found that Si can also increase plant N use efficiency
111 while decreasing C and increasing P in grasslands (Neu et al., 2017) and affect the calcium (Ca) content of
112 grasses (Brackhage et al., 2013). The abundance of certain plant functional groups (e.g., Si-rich grasses) in
113 plant communities can affect Si and Ca biogeochemistry as a result of differences in elemental
114 concentrations among plant species and related effects on nutrient cycling via processes such as
115 decomposition (Schaller et al., 2016). The potential of Si to affect plant growth and elemental
116 stoichiometry in grasslands can, by extension, then affect biogeochemical cycles (Schaller et al., 2017).
117 Changes in plant nutrient stoichiometry due to Si may have broad implications for other natural systems,
118 where the (un)availability of essential nutrients can shape the productivity, composition, diversity,
119 dynamics and interactions of plant, animal, and microbial populations (Vitousek, 2010). For example, P can
120 be limiting in weathered tropical forest soils (Vitousek, 2010), so changes in P availability due to Si (Neu et
121 al., 2017) can have concomitant effects on productivity. Furthermore, the recycling of Si within forests
122 impacts continental Si cycling, especially in tropical forests which take up Si at a faster rate in terms of
123 mass per unit ground area than other biomes, particularly in highly weathered soils (Alexandre et al., 1997;
124 Cornelis et al., 2016; Schaller et al., 2018). Notably, unlike major plant nutrients for which foliar
125 concentrations significantly decreased with increasing soil age, foliar Si concentrations continually
126 increased with increasing soil age in two Australian soil chronosequences (de Tombeur et al., 2020).

127 Returning phytoliths to topsoil can result in the slow-release of Si that sustains the terrestrial cycle during
128 ecosystem retrogression.

129 A summary of literature shows that studies of Si-herbivore dynamics have focused on the ecology and
130 physiology of Si in the grass family (Fig. 1), *Poaceae*, which includes many species that accumulate large
131 amounts of Si in their tissues. Species richness can increase plant Si stocks via its positive relationship with
132 biomass production but can have a negative effect on Si concentration in the aboveground biomass, which
133 may influence processes such as decomposition, nutrient cycling and herbivory (Schaller et al., 2016).
134 Some studies indicate Si content of plant litter may be positively correlated to decomposition rate (e.g.,
135 Schaller et al., 2013). Because plant-stored Si releases Si into soils and sediments relatively rapidly, high Si-
136 accumulating plants like grasses can influence Si turnover rates in ecosystems by uptake, storage, and
137 release of Si during plant decomposition (Schaller et al., 2016 and references therein).

138 However, several non-monocot angiosperms also store significant foliar Si (Hodson et al., 2005), and
139 variation in foliar Si can play important roles such as in plant defense and metal toxicity reduction even for
140 low-accumulators (Katz, 2014 and references therein). Si contents vary by as much as 2-3 orders of
141 magnitude among plant families, orders and phyla (Hodson et al., 2005), and grass-rich systems tend to
142 be richer in Si and more productive than systems without grasses (Carey and Fulweiler, 2012). However,
143 nutrient use strategies can vary intra-specifically across environmental gradients at least within controlled
144 settings (Harley and DeGabriel, 2016 and references therein). Therefore, we need more field based
145 information about how Si content varies along large scale environmental gradients to improve global
146 biogeochemistry models.

147 Anthropogenic perturbations, such as agriculture, deforestation, urbanization, and climate warming, can
148 also have profound effects on terrestrial silica biogeochemistry (Conley et al., 2008; Struyf and Conley,
149 2012; Carey and Fulweiler, 2016; Gewirtzman et al., 2019). Deforested areas can increase soil erosion,
150 resulting in the loss of high biogenic Si concentrations found in surface soils (Saccone et al., 2007). Urban

Formatted: Font color: Red

151 areas have limited ability to take up dissolved Si into vegetation and agricultural lands retain less biogenic
152 Si as it is frequently removed through harvesting and may not be replenished by vegetation-stimulated
153 silicate weathering (Struyf and Conley, 2012; Vandevenne et al., 2012). Global agricultural Si export from
154 harvesting is estimated to be 223 kg Si yr⁻¹ (Matichenkov and Bocharnikova, 2001) compared to the 142
155 kg Si yr⁻¹ total quantity of dissolved Si transferred from continents to oceans by rivers (Tréguer et al., 1995).
156 In addition, soil warming due to climate change can increase the extent of internal Si recycling in temperate
157 forests (Gewirtzman et al., 2019) and changes in precipitation intensity, as expected with climate change,
158 can increase surface run-off and top-soil erosion reducing biogenic Si in surface soils (Conley et al., 2008;
159 Struyf et al., 2010). Thus, researchers should take into account the potential impact of land-use and climate
160 changes on terrestrial Si fluxes when modeling terrestrial Si mobilization.

Formatted: Font color: Red

161 **3 Effects of silicon on herbivory**

162 Si is known to defend plants against a wide range of biotic stresses, including pathogen infection and
163 herbivory (Reynolds et al., 2009; Gunzter et al., 2012; Frew et al., 2018 and references therein). Si-
164 mediated defenses against herbivores involve both direct and indirect physical or mechanical barriers, as
165 well as indirect biochemical or molecular mechanisms (Fig. 2). In addition, plant communities with high Si
166 can affect herbivore communities. Plant groups with high leaf toughness, high Si concentrations, and low
167 leaf nitrogen concentrations, for example, can also be associated with decreased grassland herbivore
168 species richness (Schuldt et al., 2019). Furthermore, studies have reported how grass Si content can drive
169 herbivore populations, which may be synchronized with plant Si content cycles (Massey et al., 2008;
170 Hartley, 2015).

171 Si-derived mechanical barriers are often thought to effectively shorten the duration of attack, both directly
172 or indirectly, by making tissues more difficult to chew, penetrate, and digest (Hunt et al., 2008; Massey
173 and Hartley, 2009), and increasing exposure time to predators (Massey and Hartley, 2009). For example,
174 discrete silica bodies in and on the surface of leaves can reduce herbivory (Hartley et al., 2015). Si

175 structures may wear down herbivore mouthparts (Massey and Hartley, 2009), affecting herbivore
176 ingestion and nutrition (Frew et al., 2018; Hunt et al., 2008). These abrasive phytoliths can also lacerate
177 herbivore body parts or facilitate pathogen transmission into herbivores (Lev-Yadun and Halpern, 2019).
178 Si may also alter nutritional quality indirectly via changes to foliar C : N ratio and P concentrations (Frew
179 et al., 2018) while plant nutrient status may influence the overall efficacy of Si-based defenses against
180 herbivory (Mosie et al., 2019). As a consequence, some herbivores demonstrate low preference for Si-rich
181 plants and slower growth rates when feeding on Si-rich diets (Massey and Hartley, 2006, 2009).

182 Several studies have documented effects of soil Si addition on plant chemical defenses (e.g., Reynolds et
183 al., 2009), anti-herbivore phytohormonal signaling (e.g., Hall et al., 2019), and changes in plant nutritional
184 quality (e.g., Frew et al., 2018; Moise et al., 2019). For example, Si may induce indirect defense
185 mechanisms by altering the composition of herbivore-induced plant volatiles that attract herbivore
186 parasitoids and predators (Liu et al., 2017). Some studies also point to effects of Si on plant secondary
187 metabolism and gene expression in plant development and defense (Markovich et al., 2017; Frew et al.,
188 2018 and references therein). But because Si has relatively limited chemical reactivity, its role on plant
189 chemical changes may be indirect rather than direct (Coskun et al., 2019). For example, effectors released
190 by insects could be trapped within the extracellular Si matrix, precluding them from deregulating the plant
191 defense response, or from recognizing the plant as a suitable host (Coskun et al., 2019).

192 While researchers continue to debate the biological roles of Si and uncover the mechanisms behind them
193 (Frew et al., 2018; Coskun et al., 2019), we conclude that, at a minimum, Si mitigates the negative impacts
194 of various stressors, such as herbivory, which then enable plants to improve growth potential (Johnson et
195 al., 2019).

196 **4 Effects of herbivory on plant silicon**

197 Of the 119 reviewed studies, the majority of Si-herbivory publications have focused on insects that damage
198 shoots (68), while other animals including mammals (35), and insects from other feeding guilds (14), are
199 less frequently represented (Fig. 1). While many studies in the literature review investigate the effects of
200 Si on herbivory (114), few studies focus on the effects of herbivory on Si (5). Though few, these studies
201 show that herbivores can also induce Si uptake and accumulation by plants in response to herbivore attack
202 (Massey et al., 2007; Hartley and Gabriel, 2016). Although how much Si uptake is induced may depend on
203 plant species, herbivore type, and environmental conditions, the degree of induction can be positively
204 correlated with herbivory duration or frequency (Soininen et al., 2013). In one study, the Si content of two
205 species of grasses that experienced repeated damage by voles and locusts was 2-4 times more than
206 individuals of the same species that experienced only one damage event (Massey et al., 2007). Some grass
207 species have been shown to have as much as twice the Si contents in more heavily grazed localities
208 (Brizuela et al., 1986). However, one study investigating grazing effects on Si yielded different results. In a
209 saltmarsh, Si export rates at sheep-grazed sites were actually lower than at ungrazed sites (Müller et al.,
210 2013). Variable responses between different grasslands underscore the need for wider sampling to study
211 Si-herbivory dynamics in different ecosystems with their unique characteristics.

212 **4.1 Potential effects of herbivory on terrestrial silicon cycling**

213 While multiple reviews synthesize terrestrial Si biogeochemical cycling (e.g., Conley, 2002; Struyf and
214 Conley, 2012) and effects of Si on herbivory (e.g., Debona et al., 2017; Frew et al., 2018), few studies have
215 explored the potential effects of herbivory on Si cycling. Variation in Si accumulation and deposition
216 associated with herbivory, Si availability, and environmental variables could have important implications
217 for Si cycling (Cooke and DeGabriel, 2016 and references therein). Herbivores can distribute large
218 quantities of resources across the landscape, having important effects on nutrient cycling and ecosystem
219 productivity (Metcalfe et al., 2014; Bakker et al., 2016). Schoelynck et al. (2019), for example, found that
220 hippos contribute 32% to the biogenic Si flux and more than 76% to the total Si flux in a savannah-river

221 system. We estimate that Si fluxes via the herbivory pathway can meet or exceed other major sources of
222 Si, although flux information on some major habitat types is missing Bringing together published Si flux
223 data with estimates of herbivory for the first time, we estimate that Si fluxes via the herbivory pathway
224 could meet or exceed other major sources of Si (Table 1), although flux information on some major habitat
225 types is missing. Herbivores may also influence Si pathways by making more labile forms of Si available.
226 For example, Vandevenne et al. (2013), found that grazing by cattle can increase reactivity and
227 dissolvability of biogenic Si after digestion, leading to higher Si turnover rates and mobilization potential
228 (2 versus 20 kg Si ha⁻¹ y⁻¹). Greater Si mobilization terrestrially due to herbivory can potentially affect the
229 uptake of Si by plants as well as the movement of other linked nutrients indirectly (Fig. 3). It is, however,
230 currently unclear whether the more mobilized Si is then absorbed by vegetation, taken up by microbes, or
231 exported from the system (Fig. 3). Future research could follow the fate of more mobilized Si derived from
232 herbivores, which may depend on local biotic and abiotic conditions such as soil properties or
233 plant/microbial composition. In a wetland study, litter decomposition by heterotrophic microbes was
234 significantly influenced by the Si availability during plant growth, whereby litter decomposition rates were
235 positively correlated with higher Si content (Schaller et al., 2013). In other words, potentially greater
236 export and plant uptake of biogenic Si due to herbivory may impact decomposition and nutrient cycling in
237 some systems. Grasslands demonstrate a high capacity to store biogenic Si as well as transport Si from
238 relatively inert mineral silicate soil layers to biologically active soil layers (Blecker et al., 2006). If grazing
239 can change the distribution and reactivity of Si in grasslands, herbivory may alter Si turnover and export
240 at rates important to estimate for Si cycling in other agricultural and natural systems as well.
241 Understanding the role of herbivores in mobilizing Si may have important implications for land
242 management.
243 Researchers have found that even small shifts in terrestrial biogenic Si reactivity could alter the balance
244 between Si storage and export from ecosystems (Struyf and Conley, 2012). Herbivory may increase

245 dissolved Si mobility (Vandevenne et al., 2013), and, if absorbed by plants, thereby decrease C uptake
246 (Cooke and Leishman, 2012), increase N use efficiency, and increase P uptake of plants (Neu et al., 2017;
247 also see Fig. 3). Grassland herbivores may also preferentially consume plants with less Si (Massey and
248 Hartley, 2006), potentially influencing ecosystem Si cycling and plant community dynamics (Garbuzov et
249 al., 2011). Combined with Si-mediated changes in plant nutrient stoichiometry and efficiency (Neu et al.,
250 2017), these findings highlight the need for more field research on how herbivory-Si interactions impact
251 community- and ecosystem-level processes.

252 **65 Conclusions**

253 Our analysis has shown the magnitude of impact of plant Si on herbivore populations and the potential
254 impact of herbivores on Si fluxes~~We have begun to understand the magnitude of impact of plant Si on~~
255 ~~herbivore populations and the potential impact of herbivores on Si fluxes~~, which may have important
256 agricultural and land management implications. In an effort to improve land management decisions and
257 projections of biogeochemical cycling to future climate and land-use changes, however, we need to
258 expand our understanding of Si-herbivore dynamics. Long-standing research makes it clear that Si plays an
259 important role in both biogeochemistry cycling and herbivory but major knowledge gaps remain. Based
260 upon our review we highlight the following future research priorities:

261 • Fate of more mobilized Si as a result of herbivory in agricultural settings-
262 • How Si-herbivore dynamics operate beyond crops in controlled or agricultural settings-
263 • Si-herbivore dynamics in herbivore feeding guilds other than shoot feeders-
264 • Impact of herbivory on biogeochemical cycling in natural settings, which remain understudied but
265 where evidence indicates that Si can cycle at a high rate and herbivory is an important ecosystem
266 process-

267 • Field-based studies on Si-herbivory dynamics along key environmental gradients by different
268 herbivore feeding guilds-

269 Given the demonstrated importance of Si and herbivores, and the relative paucity of information on their
270 interaction particularly in natural, non-graminoid dominated systems, we believe this information is
271 critical to generating more accurate model representations of animal-plant-soil feedbacks, and their
272 impacts upon ecosystem processes in different terrestrial systems.

273 **Data Availability**

274 The list of publications reviewed and classified for this article can be found at doi:
275 10.6084/m9.figshare.12026997.

276 **Authors' Contributions**

277 BH and DM conceived the ideas and designed methodology; BH collected and synthesized the data. With
278 input from DM, BH led the writing of the manuscript. Both authors contributed critically to the drafts and
279 gave final approval for publication.

280 **Competing Interests**

281 The authors declare that they have no conflict of interest.

282 **Acknowledgements**

283 We thank Daniel Conley for helpful comments on an early version of the manuscript. This manuscript was
284 written with financial support from the European Research Council (ECOHERB, grant no. 682707).

285 **References**

286 Alexandre, A., Meunier, J.-D., Lézine A.-M., Vincens, A., and Schwartz, D.: Phytoliths: indicators of grassland
287 dynamics during the late Holocene in intertropical Africa, *Palaeogeogr. Palaeocl.*, 136(1-4), 213–229,
288 [https://doi.org/10.1016/s0031-0182\(97\)00089-8](https://doi.org/10.1016/s0031-0182(97)00089-8), 1997.

289 Bakker, E. S., Pages, J. F., Arthur, R., and Alcoverro, T.: Assessing the role of large herbivores in the
290 structuring and functioning of freshwater and marine angiosperm ecosystems, *Ecography*, 39, 162–179,
291 <https://doi.org/10.1111/ecog.01651>, 2016.

292 Bardgett, R. D. and Wardle, D. A.: Herbivore-Mediated Linkages between Aboveground and Belowground
293 Communities, *Ecology*, 84, 2258–2268, <https://doi.org/10.1890/02-0274>, 2003.

294 Bartoli, F., The biogeochemical cycle of silicon in two temperate forest ecosystems, *Ecol. Bull.*, 469–476,
295 <https://doi.org/10.2307/20112881>, 1983.

296 Blecker, S. W., McCulley, R. L., Chadwick, O. A., and Kelly, E. F.: Biologic cycling of silica across a grassland
297 bioclimosequence, *Global Biogeochem. Cy.*, 20, GB3023, <https://doi.org/10.1029/2006gb002690>, 2006.

298 Brackhage, C., Schaller, J., Bäucker, E., and Dudel, E. G.: Silicon availability affects the stoichiometry and
299 content of calcium and micro nutrients in the leaves of Common Reed, *Silicon*, 5, 199–204, <https://doi.org/10.1007/s12633-013-9145-3>, 2013.

301 Brizuela, M. A., Detling, J. K., and Cid, M. S.: Silicon concentration of grasses growing in sites with different
302 grazing histories, *Ecology*, 67, 1098–1101, <https://doi.org/10.2307/1939834>, 1986.

303 Carey, J. C. and Fulweiler, R. W.: The Terrestrial Silica Pump, *PLoS ONE*, 7, e52932,
304 <https://doi.org/10.1371/journal.pone.0052932>, 2012.

305 Carey, J. C. and Fulweiler, R. W.: Human appropriation of biogenic silicon – the increasing role of
306 agriculture, *Funct. Ecol.*, 30, 1331–1339, <https://doi.org/10.1111/1365-2435.12544>, 2016.

307 Cebrian, J.: Role of first-order consumers in ecosystem carbon flow, *Ecol. Lett.*, 7, 232–240,
308 <https://doi.org/10.1111/j.1461-0248.2004.00574.x>, 2004.

309 Conley, D. J.: Terrestrial ecosystems and the global biogeochemical silica cycle, *Global Biogeochem. Cy.*,
310 16, 68–1–68–8, <https://doi.org/10.1029/2002gb001894>, 2002.

311 Conley, D. J., Likens, G. E., Buso, D. C., Saccone, L., Bailey, S. W., and Johnson, C. E.: Deforestation causes
312 increased dissolved silicate losses in the Hubbard Brook Experimental Forest, *Glob. Change Biol.*, 14, 2548–
313 2554, <https://doi.org/10.1111/j.1365-2486.2008.01667.x>, 2008.

314 Cooke, J. and Leishman, M. R.: Is plant ecology more siliceous than we realize?, *Trends Plant Sci.*, 16, 61–
315 68, <https://doi.org/10.1016/j.tplants.2010.10.003>, 2011.

316 Cooke, J. and Leishman, M. R.: Tradeoffs between foliar and carbon-based defences: evidence from
317 vegetation communities of contrasting soil types, *Oikos*, 121, 2052–2060, <https://doi->
318 org.ludwig.lub.lu.se/10.1111/j.1600-0706.2012.20057.x, 2012.

319 Cooke, J., and DeGabriel J. L.: Editorial: Plant Silicon Interactions between Organisms and the Implications
320 for Ecosystems, *Front. Plant Sci.* 7, 1001, <https://doi.org/10.3389/fpls.2016.01001>, 2016.

321 Cooke, J., DeGabriel, J. L., and Hartley, S. E.: The functional ecology of plant silicon: geoscience to genes,
322 *Funct. Ecol.*, 30, 1270–1276, <https://doi.org/10.1111/1365-2435.12711>, 2016.

323 Cornelis, J. T. and Delvaux, B.: Soil processes drive the biological silicon feedback loop, *Funct. Ecol.*, 30,
324 1298–1310, <https://doi.org/10.1111/1365-2435.12704>, 2016.

325 Cornelis, J., Ranger, J., Iserentant, A., and Delvaux, B.: Tree species impact the terrestrial cycle of silicon
326 through various uptakes, *Biogeochemistry*, 97, 231–245, <https://doi->
327 org.ludwig.lub.lu.se/10.1007/s10533-009-9369-x, 2010.

328 Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O. L., Ma, J. F., Kronzucker, H. J., and
329 Bélanger, R. R.: The controversies of silicon's role in plant biology, *New Phytol.*, 221, 67–85,
330 <https://doi.org/10.1111/nph.15343>, 2019.

331 De Tombeur, F., Turner, B. L., Laliberte, E., Lambers, H., Mahy, G., Faucon, M.-P., Zeminuk, H., and Cornelis,
332 J. T.: Plants sustain the terrestrial silicon cycle during ecosystem retrogression, *Science*, 369, 1245-1248,
333 <https://doi.org/10.1126/science.abc0393>, 2020.

334 Debona, D., Rodrigues, F. A., and Datnoff, L. E.: Silicon's role in abiotic and biotic plant stresses, *Annu. Rev.*
335 *Phytopathol.*, 55, 85–107, <https://doi.org/10.1146/annurev-phyto-080516-035312>, 2017.

336 Derry, L. A., Kurtz, A. C., Ziegler, K., and Chadwick, O. A.: Biological control of terrestrial silica cycling and
337 export fluxes to watersheds, *Nature*, 433, 728–731, <https://doi.org/10.1038/nature03299>, 2005.

338 Drever, J. I.: The effect of land plants on weathering rates of silicate minerals, *Geochimica et Cosmochimica*
339 *Acta*, 58, 2325–2332, [https://doi.org/10.1016/0016-7037\(94\)90013-2](https://doi.org/10.1016/0016-7037(94)90013-2), 1994.

340 Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom,
341 E. W., Shurin J. B., and Smith, J. E.: Global analysis of nitrogen and phosphorus limitation of primary
342 producers in freshwater, marine and terrestrial ecosystems, *Ecol. Lett.*, 10, 1135–1142,
343 <https://doi.org/10.1111/j.1461-0248.2007.01113.x>, 2007.

344 Epstein, E.: Silicon, *Annu. Rev. Plant Phys.*, 50, 641–664,
345 <https://doi.org/10.1146/annurev.arplant.50.1.641>, 1999.

346 Frew, A., Weston, L. A., Reynolds, O. L., Gurr, G. M.: The role of silicon in plant biology: a paradigm shift in
347 research approach, *Ann. Bot.*, 121, 1265–1273, <https://doi.org/10.1093/aob/mcy009>, 2018.

348 Garbuzov, M., Reidinger, S., and Hartley, S.: Interactive effects of plant-available soil silicon and herbivory
349 on competition between two grass species, *Ann. Bot.*, 108, 1355–1363,
350 <https://doi.org/10.1093/aob/mcr230>, 2011.

351 Gewirtzman, J., Tang, J., Melillo, J. M., Werner, W. J., Kurtz, A. C., Fulweiler, R. W., and Carey, J. C.: Soil
352 Warming Accelerates Biogeochemical Silica Cycling in a Temperate Forest, *Front. Plant Sci.*, 10, 1097,
353 <https://doi.org/10.3389/fpls.2019.01097>, 2019.

354 Guntzer, F., Keller, C., and Meunier, J. D.: Benefits of plant silicon for crops: a review, *Agron. Sustain. Dev.*,
355 32, 201–213, <https://doi.org/10.1007/s13593-011-0039-8>, 2012.

356 Hall, C. R., Waterman J. M., Vandemeer, R. K., Hartley, S. E., and Johnson, S. N.: The Role of Silicon in
357 Antiherbivore Phytohormonal Signalling, *Front. Plant Sci.*, 10, 1132,
358 <https://doi.org/10.3389/fpls.2019.01132>, 2019.

359 Hartley, S. E.: Round and round in cycles? Silicon-based plant defences and vole population dynamics,
360 *Funct. Ecol.*, 29, 151–153, <https://doi.org/10.1111/1365-2435.12365>, 2015.

361 Hartley, S. E. and DeGabriel, J. L.: The ecology of herbivore-induced silicon defences in grasses, *Funct. Ecol.*,
362 30, 1311–1322, <https://doi.org/10.1111/1365-2435.12706>, 2016.

363 Hartley, S. E. and Jones, T. H.: Insect herbivores, nutrient cycling and plant productivity, In *Insects and*
364 *ecosystem function* (eds. Weisser, W.W., Siemann, E.), Springer-Verlag, Heidelberg, Germany, 27–46,
365 https://doi.org/10.1007/978-3-540-74004-9_2, 2004.

366 Hartley, S. E., Fitt, R. N., McLarnon, E. L., and Wade, R. N.: Defending the leaf surface: intra- and inter-
367 specific differences in silicon deposition in grasses in response to damage and silicon supply, *Front. Plant*
368 *Sci.*, 6, 35, <https://doi.org/10.3389/fpls.2015.00035>, 2015.

369 Hodson, M. J., White, P. J., Mead, A., and Broadley, M. R.: Phylogenetic variation in the silicon composition
370 of plants, *Ann. Bot.*, 96, 1027–1046, <https://doi.org/10.1093/aob/mci255>, 2005.

371 Johnson, S. N., Rowe R. C., and Hall C. R.: Silicon is an inducible and effective herbivore defence against
372 *Helicoverpa punctigera* (Lepidoptera: Noctuidae) in soybean, B. Entomol. Res., 1–6,
373 <https://doi.org/10.1017/s0007485319000798>, 2019.

374 Katz, O.: Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species,
375 Front. Plant Sci., 5, 376, <https://doi.org/10.3389/fpls.2014.00376>, 2014.

376 Katz, O.: Silicon content is a plant functional trait: implications in a changing world, Flora, 254, 88–94,
377 <https://doi.org/10.1016/j.flora.2018.08.007>, 2019.

378 Kristensen, J. A., Metcalfe, D. B., and Rousk, J. The biogeochemical consequences of litter transformation
379 by insect herbivory in the subarctic: a microcosm simulation experiment, Biogeochemistry, 138, 323–336,
380 <https://doi.org/10.1007/s10533-018-0448-8>, 2018.

381 Lev-Yadun, S. and Halpern, M.: Extended phenotype in action. Two possible roles for silica needles in
382 plants: not just injuring herbivores but also inserting pathogens into their tissues, Plant Signaling and
383 Behavior, 1–5, <https://doi.org/10.1080/15592324.2019.1609858>, 2019.

384 Liu, J., Zhu, J., Zhang, P., Han, L., Reynolds, O. L., and Zeng, R., Wu, J., Shao, Y., You, M., and Gurr G.
385 M.: Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances
386 Attraction of Parasitoids to Infested Rice Plants, Front. Plant Sci., 8, 1265,
387 <https://doi.org/10.3389/fpls.2017.01265>, 2017.

388 Markovich, O., Steiner, E., Kouřil, Š., Tarkowski, P., Aharoni, A., and Elbaum, R.: Silicon promotes cytokinin
389 biosynthesis and delays senescence in *Arabidopsis* and *Sorghum*, Plant Cell Environ., 40, 1189–1196,
390 <https://doi.org/10.1111/pce.12913>, 2017.

391 Massey, F. P. and Hartley, S. E.: Experimental demonstration of the antiherbivore effects of silica in grasses:
392 impacts on foliage digestibility and vole growth rates, Proc. R. Soc. Lond. B Biol. Sci., 273, 2299–2304,
393 <https://doi.org/10.2307/25223602>, 2006.

394 Massey, F. P. and Hartley, S. E.: Physical defences wear you down: progressive and irreversible impacts of
395 silica on insect herbivores, *J. Anim. Ecol.*, 78, 281–291, <https://doi.org/10.1111/j.1365-2656.2008.01472.x>,
396 2009.

397 Massey, F. P., Ennos, A. R., and Hartley, S. E.: Herbivore specific induction of silica-based plant defences,
398 *Oecologia*, 152, 677-683, <https://doi.org/10.1007/s00442-007-0703-5>, 2007.

399 Massey, F. P., Smith, M. J., Lambin, X., and Hartley, S. E.: Are silica defences in grasses driving vole
400 population cycles?, *Biol. Lett.*, 4, 419-422, <https://doi.org/10.1098/rsbl.2008.0106>, 2008.

401 Matichenkov, V. V., Bocharkova, E. A.: The relationship between silica and soil physical and chemical
402 properties, In *Silica in agriculture* (eds.: Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H.), Amsterdam,
403 Netherlands: Elsevier, [https://doi.org/10.1016/S0928-3420\(01\)80017-3](https://doi.org/10.1016/S0928-3420(01)80017-3), 2001.

404 McNaughton S. J., Tarrants, J. L., McNaughton, M. M., and Davis, R. H.: Silica as a defense against herbivory
405 and a growth promoter in African grasses, *Ecology*, 66, 528-535, <https://doi->
406 [org.ludwig.lub.lu.se/10.2307/1940401](https://doi.org/10.2307/1940401)Citations: 169, 1985.

407 Metcalfe, D. B., Asner, G. P., Martin, R. E., Silva Espejo, J. E., Huasco, W. H., Farfán Amézquita, F. F., Javier
408 E. Silva Espejo Walter Huaraca Huasco Felix F. Farfán Amézquita, Carranza-Jimenez, L., Galiano Cabrera, D.
409 F., Durand Baca, L., Sinca, F., Huaraca Quispe, L. P., Alzamora Taype, I., Eguiluz Mora, L., Rozas Dávila, A.,
410 Mamani Solórzano, M., Puma Vilca, B. L., Laupa Román, J. M., Guerra Bustios, P. C., Salinas Revilla, N.,
411 Tupayachi, R., Girardin, C. A. J., Doughty, C. E., and Yadavinder, M.: Herbivory makes major contributions to
412 ecosystem carbon and nutrient cycling in tropical forests, *Ecol. Lett.*, 17, 324–332, <https://doi->
413 [org.ludwig.lub.lu.se/10.1111/ele.12233](https://doi.org/10.1111/ele.12233), 2014⁴³.

414 Moise, E. R. D, McNeil, J. N., Hartley, S. E., Henry, H. A. L.: Plant silicon effects on insect feeding dynamics
415 are influenced by plant nitrogen availability, *Entomol. Exp. Appl.*, 167, 91-97,
416 <https://doi.org/10.1111/eea.12750>, 2019.

417 Müller, F., Struyf, E., Hartmann, J., Weiss, A., and Jensen, K. L.: Impact of grazing management on silica
418 export dynamics of Wadden Sea saltmarshes, *Estuar. Coast. Shelf Sci.*, 127, 1–11, <https://doi.org/10.1016/j.ecss.2013.03.010>, 2013.

420 Neu, S., Schaller, J., and Dudel, E. G.: Silicon availability modifies nutrient use efficiency and content, C:N:P
421 stoichiometry, and productivity of winter wheat (*Triticum aestivum L.*), *Sci. Rep.*, 7, 40829, <https://doi.org/10.1038/srep40829>, 2017.

423 Parr, J. F., Sullivan, L. A.: Soil carbon sequestration in phytoliths, *Soil Biol. Biochem.*, 37, 117–124,
424 <https://doi.org/10.1016/j.soilbio.2004.06.013>, 2005.

425 Quigley, K. M., Donati, G. L., and Anderson, T. M.: Variation in the soil “silicon landscape” explains plant
426 silica accumulation across environmental gradients in Serengeti, *Plant Soil*, 410, 217–229,
427 <https://doi.org/10.1007/s11104-016-3000-4>, 2016.

428 Raven, J. A.: The transport and function of silicon in plants, *Biol. Rev.* 58, 179–207, doi:10.1111/j.1469-
429 185x.1983.tb00385.x, 1983.

430 Reynolds, O. L., Keeping, M. G., and Meyer, J. H.: Silicon-augmented resistance of plants to herbivorous
431 insects: a review, *Ann. Appl. Biol.*, 155, 171–186, <https://doi.org/10.1111/j.1744-7348.2009.00348.x>,
432 2009.

433 Saccone, L., Conley, D. J., Koning, E., Sauer, D., Sommer, M., Kaczorek, D., Blecker, S. W., and Kelly, E. F.:
434 Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems,
435 *Eur. J. Soil Sci.* 58, 1446–1459, <https://doi.org/10.1111/j.1365-2389.2007.00949.x>, 2007.

436 Schaller, J. and Struyf, E.: Silicon controls microbial decay and nutrient release of grass litter during aquatic
437 decomposition, *Hydrobiologia*, 709, 201–212, <https://doi.org/10.1007/s10750-013-1449-1>, 2013.

438 Schaller, J., Faucherre, S., Joss, H., Obst, M., Goeckede, M., Planer-Friedrich, B., Peiffer, S., Gilfedder, B.,
439 and Elberling, B.: Silicon increases the phosphorus availability of Arctic soils, *Sci. Rep.-UK*, 9, 449,
440 <https://doi.org/10.1038/s41598-018-37104-6>, 2019.

441 Schaller, J., Hodson, M. J., Struyf, E.: Is relative Si/Ca availability crucial to the performance of grassland
442 ecosystems?, *Ecosphere*, 8, e01726, <https://doi.org/10.1002/ecs2.1726>, 2017.

443 Schaller J., Roscher, C., Hillebrand, H., Weigelt, A., Oelmann, Y., Wilcke, W., Ebeling, A., and Weisser, W.
444 W.: Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland
445 systems, *Oecologia*, 182, 277–286, <https://doi.org/10.1007/s00442-016-3647-9>, 2016.

446 Schaller, J., Turner, B. L., Weissflog, A., Pino, D., Bielnicka, A. W., Engelbrecht, B. M. J.: Silicon in tropical
447 forests: large variation across soils and leaves suggests ecological significance, *Biogeochemistry*, 140, 161-
448 174, <https://doi.org/10.1007/s10533-018-0483-5>, 2018.

449 Schoelynck, J., Bal, K., Backx, H., Okruszko, T., Meire, P., and Struyf, E.: Silica uptake in aquatic and wetland
450 macrophytes: a strategic choice between silica, lignin and cellulose?, *New Phytol.*, 186, 385–391,
451 <https://doi.org/10.2307/27797561>, 2010.

452 Schoelynck, J., Müller, F., Vandevenne, F., Bal, K., Barão, L., Smis, A., Opdekamp, W., Meire, P., and Struyf,
453 E.: Silicon-vegetation interaction in multiple ecosystems: a review, *J. Veg. Sci.*, 25, 301–313,
454 <https://doi.org/10.1111/jvs.12055>, 2014.

455 Schoelynck, J., Subalusky, A. L., Struyf, E., Dutton, C. L., Unzué-Belmonte, D., Van de Vijver, B., Post, D. M.,
456 Rosi, E. J., Meire, P., and Frings, P.: Hippos (*Hippopotamus amphibius*): The animal silicon pump, *Science
457 advances*, 5(5), p.eaav0395, <https://doi.org/10.1126/sciadv.aav0395>, 2019.

458 Schuldt, A., Ebeling, A., Kunz, M., Staab, M., Guimaraes-Steinicke, C., Bachmann, D., Buchmann, N., Durka,
459 W., Fichtner, A., Fornoff, F., Härdtle, W., Hertzog, L. R., Klein, A.-M., Weisser, W., Wirth, C., Zhang, J.,

460 Bruelheide, H., and Eisenhauer, N.: Multiple plant diversity components drive consumer communities
461 across ecosystems, *Nature Communications*, 10, <https://doi.org/10.1038/s41467-019-09448-8>, 2019.

462 Soininen, E. M., Bråthen, K. A., Jusdado, J. G. H., Reidinger, S., and Hartley, S. E.: More than herbivory:
463 levels of silica-based defences in grasses vary with plant species, genotype and location, *Oikos*, 122, 30-
464 41, <https://doi.org/10.1111/j.1600-0706.2012.20689.x>, 2013.

465 Street-Perrott, F. A and, Barker, P. A.: Biogenic silica: a neglected component of the coupled global
466 continental biogeochemical cycles of carbon and silicon, *Earth Surf. Proc. Land.*, 33, 1436–1457,
467 <https://doi.org.ludwig.lub.lu.se/10.1002/esp.1712>, 2008.

468 Strömberg, C. A. E., Di Stilio, V. S., and Song, Z.: Functions of phytoliths in vascular plants: an evolutionary
469 perspective, *Funct. Ecol.*, 30, 1286–1297, <https://doi.org/10.1111/1365-2435.12692>, 2016.

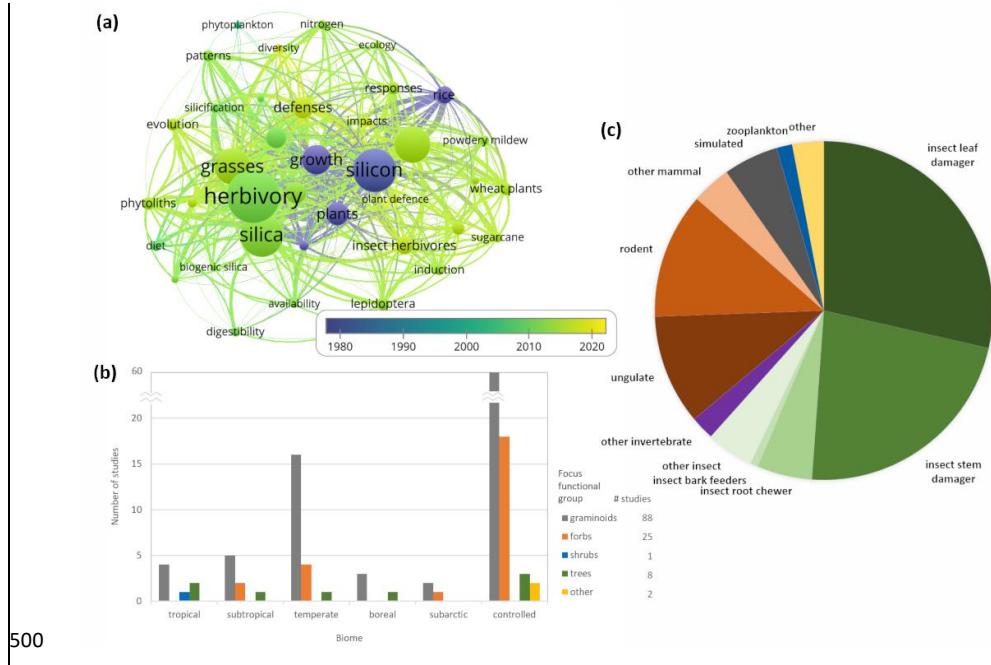
470 Struyf, E. and Conley, D.: Emerging understanding of the ecosystem silica filter, *Biogeochemistry*, 107, 9–
471 18, <https://doi.org/10.1007/s10533-011-9590-2>, 2012.

472 Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael, B., Conley, D. J., Batelaan, O.,
473 Frot, E., Clymans, W., Vandevenne, F., Lancelot, C., Goos, P., and Meire, P.: Historical land use change has
474 lowered terrestrial silica mobilization, *Nature Communications*, 1, 129, <https://doi.org/10.1038/ncomms1128>, 2010.

476 Tréguer, P. J. and De La Rocha, C. L.: The World Ocean Silica Cycle, *Annu. Rev. Mar. Sci.*, 5, 477–501,
477 <https://doi.org/10.1146/annurev-marine-121211-172346>, 2013.

478 Tréguer, P., Nelson, D. M., Bennekom, A. J. V., DeMaster, D. J., Leynaert, A., Quéguiner, B.: The silica
479 balance in the world ocean: a reestimate, *Science*, 268, 375–379,
480 <https://doi.org/10.1126/science.268.5209.375>, 1995.

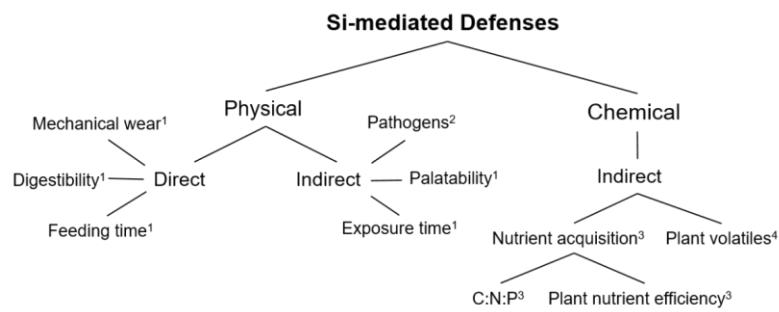
481 Van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P.,
482 Klironomos, J. N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., Van de Voorde, T. F. J., and Wardle, D. A.:
483 Plant-soil feedbacks: the past, the present and future challenges, *J. Ecol.*, 101, 265–276,
484 <https://doi.org/10.1111/1365-2745.12054>, 2013.


485 van Eck NJ, Waltman L.: VOSviewer manual. Version 1.6.8, Centre for Science and Technology Studies,
486 Leiden, NL: Leiden University.
487 https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf, 2018.

488 Vandevenne, F., Barão, A. L., Schoelynck, J., Smis, A., Ryken, N., Van Damme, S., Meire, P., and Struyf, E.:
489 Grazers: biocatalysts of terrestrial silica cycling, *Proc. Biol. Sci.*, 280, 20132083,
490 <https://doi.org/10.1098/rspb.2013.2083>, 2013.

491 Vandevenne, F., Struyf, E., Clymans, W., and Meire, P.: Agricultural silica harvest: have humans created a
492 new loop in the global silica cycle?, *Front. Ecol. Environ.*, 10, 243–248, <https://doi.org/10.1890/110046>,
493 2012.

494 Vitousek, P. M.: Nutrient Cycling and Limitation: Hawai'i as a Model System, Princeton University Press,
495 Princeton, <https://doi.org/10.1111/j.1442-9993.2005.01458.x>, 2004.


496 Vivancos, J., Labb  , C., Menzies, J. G., B  langer, R. R.: Silicon-mediated resistance of *Arabidopsis* against
497 powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway, *Mol.*
498 *Plant Pathol.*, 16, 572–582, <https://doi.org/10.1111/mpp.12213>, 2015.

499 **Tables and Figures**

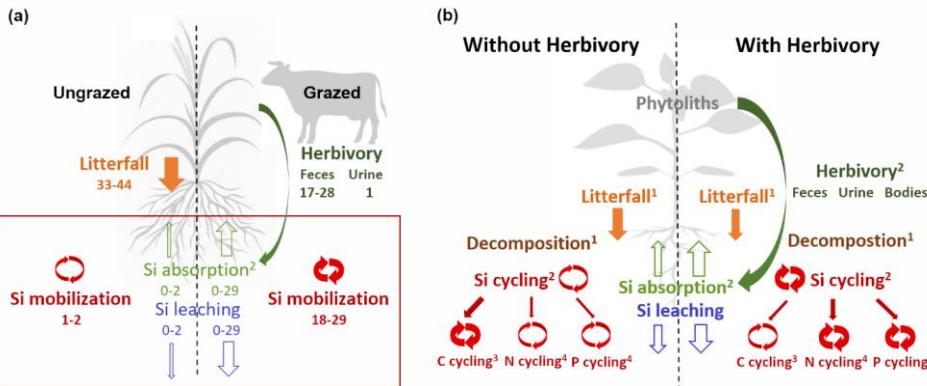
500
501 **Figure 1** Summary of literature review. **(a)** Network map of keywords from publications between 1900-
502 2020 in the Web of Science core collection database generated using search terms “silic*” and “herbivor*”
503 and not “in silico” (314 results). Bubble and word size is scaled to the total occurrence of the keywords in
504 all publications (only > 10 occurrences displayed), more proximate bubbles/keywords co-occur more often
505 in the publications surveyed. The year indicates the average publication year of the documents in which a
506 keyword occurs. The map was created with VOSviewer software (van Eck and Waltman 2018). **(b)** Number
507 of publications investigating each plant functional type and biome using the three search terms. We
508 filtered the 314 results until only those publications that directly studied Si and herbivory remained (119
509 publications). **(c)** Percentage distribution of herbivore types for all 119 studies that directly investigated

510 silicon and herbivory. The list of data sources and classifications for Fig. 1 are archived at doi:

511 [10.6084/m9.figshare.12026997](https://doi.org/10.6084/m9.figshare.12026997).

512

513 **Figure 2** Direct and indirect physical and chemical plant Si-mediated defenses to herbivory.¹Massey et al.,


514 2009 and references therein; ²Lev-Yadun and Halpern, 2019; ³Neu et al., 2017; ⁴Liu et al., 2017.

515 **Table 1** Estimated Si fluxes by atmosphere, mineral weathering and herbivory by major terrestrial habitat

516 type. ANPP is aboveground net primary productivity. ¹Cebrian, 2004; ²Hodson et al., 2005; ³as calculated
517 by Carey and Fulweiler 2012; ⁴Street-Parrott and Barker, 2008 and references therein; ⁵modeled by
518 Ribeiro et al., 2019; ⁶Ariyanto et al., 2019.

Habitat type ¹	Herbivory ¹ (% ANPP)	ANPP ¹ (g C m ⁻² y ⁻¹)	% Si by dry weight ^{2,3}	Si:C ³	Herbivory (g Si m ⁻² y ⁻¹)	Atmospheric ⁴ (g Si m ⁻² y ⁻¹)	Weathering ⁴ (g Si m ⁻² y ⁻¹)
Tundra shrublands and grasslands	1.8 ± 0.6	95.3 ± 31.0	1.07	0.02	0.04	-	-
Temperate/tropical shrublands and forests	7.9 ± 1.5	334.6 ± 24.9	0.26	0.01	0.15	0.004 - 0.2	0.3-3.2
Temperate/tropical grasslands	34.1 ± 5.3	239.4 ± 34.0	1.33	0.03	2.31	0.2	0.4-2.5
Freshwater and marine marshes	16.8 ± 5.0	958.9 ± 179.0	0.62	0.01	2.13	-	-
Mangroves	3.5 ± 0.5	500 ⁵	0.43 ⁶	0.01	1.60	-	-

519

520

521 **Figure 3 (a)** Schematic of Si fluxes ($\text{kg ha}^{-1} \text{yr}^{-1}$) in hypothetical ungrazed and grazed grassland, dominated
 522 by cows, adapted from Vandevenne et al., 2013. Annual net primary production is assumed to be the same
 523 for both systems ($11,000 \text{ kg ha}^{-1} \text{yr}^{-1}$) and all biomass is converted to litter or consumed by grazers in the
 524 grazed system. A biomass conversion ratio of 1 : 4 for grass versus feces is suggested for all herbivores.
 525 Mobilization percentages for faeces are based on ranges (minimum - maximum values) obtained in a
 526 dissolution experiment by Vandevenne et al., 2013 after 24 h in rain water; for urine, a conservative
 527 estimation of 3% mobilization was used. **(b)** Schematic of potential nutrient cycle differences in the plant-
 528 soil system with and without herbivory. Size of arrows denotes the size of the flux relative to the
 529 alternative scenario. ¹Schaller et al., 2016 ²Brizuela et al., 1986; ³Street-Perrott and Barker 2008; ⁴Neu et
 530 al., 2017; Schaller et al., 2017.