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Dear Meg Krawchuk,

Thank you for your positive and constructive review, which we feel will greatly improve
the paper. Below we have outlined the changes we will make to address the points
raised.

Referee comments are cited in italics and author’s responses in normal font. Re-
sponses are separated by horizontal lines.
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The manuscript “Quantifying the importance of antecedent fuel-related vegetation
properties for burnt area using random forests” quantifies biophysical drivers of burned
area across the globe with a particular focus on understanding how characterization of
fuel build-up (and likely curing of fine fuels) in the months leading up to fire contribute to
prediction in variability of area burned. The study is important and timely in that it aims
to improve models of fire activity at a global scale, relevant to global fire-vegetation-
climate system. The results of the study improve our knowledge of fire-fuel-climate
relationships and the geography of them. In general, this is a robust study that appears
to focus mostly on the novelty of the modelling aspects rather than novelty in what is
learned ecologically. Along the lines of the latter, ecological learning and context, I feel
the authors could improve the introduction and discussion substantially for the mod-
eller and non-modeller audience by delving in more depth to the wide range of existing
fire studies that have asked this same question about antecedent conditions and fire
activity, and placed the work and findings within that context.

Also, many of the figure captions are very hard to digest. Please consider providing
the take home message to the reader to help them work through the often dense load
of abbreviations and description. In other words, hold the reader by the hand. E.g., for
most readers, Figure 6 caption is close to cryptic?

In the updated manuscript, previous studies investigating antecedent conditions will be
mentioned more in the introduction and discussion (see further responses below).

Regarding figure captions, additional information has been added in order to point out
the most significant features more clearly. Furthermore, the introduction of ALE plots
has been modified to remove the discrepancy between e.g. “1D” and “first-order” ALE
plots, which are both referring to the same thing, thereby introducing the differences
between first- and second-order plots in the Methods section. For example, we have
updated the caption for Fig. 6 (in the manuscript): “Second-order ALE plot showing the
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combined zeroth order (mean), first order, and second order modelled effects of FAPAR
and FAPAR 1M on BA from the 15VEG_FAPAR model, taking into account all other
variables. Grey boxes indicate missing data. See Fig. S7 for the sample count matrix
which demonstrates the correlation between the variables and thus shows that samples
are unlikely to fall into the top-left or bottom-right bins. Evenly spaced quantiles are
used in the construction and labelling of the plots. It can be seen that the combined
effect of FAPAR and FAPAR 1M on BA is positive if FAPAR is low while FAPAR 1M is
high.”

Line comments:

Title. I wonder if a title that describes the key findings might be more interesting than
the current, methods-related title?

The title has been changed to “The Importance of Antecedent Vegetation and Drought
Conditions as Global Drivers of Burnt Area” to reflect the key findings more closely.

l. 21. The sentence on human impacts seems out of place with flow of ideas.

This sentence was originally included to highlight the multiplicity of factors involved
in controlling wildfires. This paragraph has been rewritten to further pronounce the
climatic and ecological factors that are the dominant topics of our discussion, while
mentioning these differential human impacts below.

l. 27. This jump between fire events and fire regimes would benefit from more detail.
Perhaps avoid the fire regime terminology here, and focus on events only?
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In this instance, we will replace “fire regimes” → "fire activity" to avoid confusion. The
following sentence refers to a decrease in global mean burnt area and therefore should
clarify that we are interested in large-scale patterns.

l.29. not clear what is meant here by climate becoming increasingly important. It is im-
portant. Do you mean more-so that climate change will increase fire activity/severity?

Considering the relative importance of several wildfire drivers (e.g. climate, vegetation
structure, or ignitions), we meant to indicate that the relative importance of climatic
influence on wildfires is predicted to increase in certain regions. We have now removed
this sentence to increase the clarity of the introduction and focus more on wildfires
drivers and their interactions.

ll.19-32. This paragraph has a lot of material packed in that would benefit from clearer
organization and focus.

This paragraph has been reorganised. The sentence about human impacts on line 21
has been moved to a new paragraph, which discusses the impact of climate change on
fire. Thus, the biophysical drivers of fire (and their coupling) are discussed separately.

ll. 53-62. Seems like connecting the ideas to the global work on a similar topic e.g., by
Krawchuk and Moritz (2011) https://doi.org/10.1890/09-1843.1, and references therein,
would be helpful and warranted. I know this might seem self-centred, but it’s actually
pointedly relevant.

We have added this paragraph about previous studies to the introduction:

“A number of regional and global studies have indicated the importance of antecedent
fuel build-up for BA. For example, links between fire activity and antecedent productivity
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have been found in South Africa (Van Wilgen et al., 2000), central Australia (Griffin et
al., 1983), grass and shrublands in the western US (Littell et al., 2009; Westerling et al.,
2003; Swetnam and Betancourt, 1998), NSW Australia (for bushfire fuel) (Jenkins et
al., 2020), and southern Africa (Archibald et al., 2009). Global studies have identified
similar relationships (a positive relationship between pre-season productivity and fire
activity in the following dry season) in some dry areas. By studying the correlation
between growing period (i.e. antecedent) soil moisture and fire activity, Krawchuk and
Moritz (2011) found fire activity in dry regions to be related to antecedent productivity.
Similarly, van der Werf et al. (2008) found a similar relationship for arid ecosystem
(e.g. N. AUS), where antecedent wet conditions coupled with instantaneous drying
were important. Other global studies have identified northern Australia as obeying this
relationship too (Randerson et al., 2005; Spessa et al., 2005). In a more recent global
analysis, O et al. (2020) found that for arid regions, wet anomalies (soil moisture) lead
to increased fire later in the year by increasing fuel loads and biomass. Thus, it is
clear that a better understanding of the timescales of fuel accumulation, the interaction
between biophysical drivers and fuel build-up, and the effects of antecedent weather
conditions on both fuel loads and fuel drying is needed in order to improve predictions
of BA.”

l. 105. Why would you fill those data gaps with the minimum value? I don’t easily follow
the rationale. If less than 50% data, should these not be excluded from the dataset, or
at least a median or mean be used?

The algorithm used to discern the location of ‘permanent’ as opposed to ‘transient’
gaps utilises the amount of missing information for a specific month at each location.
For example, if a certain grid cell was missing data for more than 50% of all Decembers
in the record, these gaps in December would be treated as a permanent gap and
therefore subject to filling by minimum values. Remaining gaps are treated as transient
and therefore filled using the regression model outlined in the text.
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Unfortunately, simple exclusion of the times lacking data is not possible for our analysis
because we rely on antecedent samples throughout. Thus, data gaps (which predomi-
nantly affect extreme latitudes in winter due to snow cover, but also occur due to cloud
cover or limitations of passive satellite sensors in winter at extreme latitudes) have to
be filled in order to allow analysis of summer months at those locations.

The algorithm we use to fill data gaps for the SWI, FAPAR, LAI, SIF, and VOD datasets
is based on an algorithm proposed by Forkel et al. (2017). If 50% or more of the
observations at a given location and month are missing, we assume that this indicates
missing data during the winter, since other causes for data gaps (e.g. cloud cover) are
assumed to be predominantly transient. Note also that locations with very little data
(regardless of whether such data gaps always occur in the same month, as above,
or at any point throughout the year) are discarded if no observations are available for
more than 52 months out of the total 88 months investigated.

The winter data gaps identified above are then filled using the minimum value observed
at that location because of the seasonality of the filled variables. For example, FAPAR
would be expected to be at its minimum during the winter. Consequently, we use the
minimum observed value to indicate a low FAPAR value during this time.

As can be seen in Fig. 1, virtually no samples are being filled with the minimum value
outside of winter, as we assume above.

ll. 122-125. I can see what you’re trying to do with these simplifying equations, but they
still need further explanation to help the reader understand the process.

We have added the sentence “For example, the 12-month antecedent X 12M was
transformed by subtracting the instantaneous (month 0) value of X, thereby yielding
the anomaly in X, X ∆12M, that may be easier to interpret.” Additionally, we have
adjusted the notation to make the distinction between the instantaneous variable (X
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0M) and the variable, X, itself clearer.

Section 2.4 There are portions of this section that I don’t understand. This is not your
fault, it’s just a bit over my head. But wanted to mention that I’ll just need to trust the
authors that the calculations are appropriate and correct.

We have rephrased parts of this section to convey the calculations more clearly.

ll. 209/210. Interesting that the model can’t capture the zeroes. I suspect this is largely
based on uncertainty with the ignition-related variables?

One of the reasons the model may struggle to predict the exact value of ‘0’ may be
because the model (random forest) consists of many smaller models (decision trees),
where the final model prediction is computed as the mean of the individual predictions
of the smaller models. Thus, all 500 individual models would have to predict ‘0’ to yield
this value overall, which does not appear to occur in our model, given the stochastic
nature of the training process.

l. 234. Interesting that there isn’t a pattern.

We agree that this figure is not very easy to interpret, but what it is showing is that
where there are improvements, the improvements are relatively large. But there is no
coherent spatial patterning in it. Nor do we necessarily expect to see a spatial pattern-
ing in the improvement, because we anticipate antecedent conditions to be relevant in
most areas.

We find that over half the grid cells improve ( 56%, as stated in the manuscript), and
where there are improvements, these tend to be larger than the instances of worsening
performance. This can more clearly be seen in Fig. 2, where the error comparison is vi-
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sualised as a histogram, with the error multiplied by –1 (i.e. <|Err(ALL)| - |Err(CURR)|>)
being shown in orange to more clearly visualise the skewness of the distribution. The
skewed distribution of the errors clearly demonstrates that improvements are larger,
thereby leading to the overall global improvement of R2 score.

Ll 252/253. This is very neat. And the geography is interpretable. Excellent.

We have added some additional links between these results and the SHAP value maps
(Fig. 7 in the manuscript) to clarify the link to the geography.

ll. 299/300. Could you please make it clearer what the new learning is that we gained
from this analysis. There is quite abundant literature on antecedent climate/vegetation
effects on fire. You do have a novel contribution, but please highlight what it is.

We have rewritten this to highlight the novel contributions more clearly:Âă

“We have shown that antecedent vegetation conditions that influence fuel build-up and
antecedent conditions that influence fuel drying strongly influence BA in a given month.
Many previous studies have shown that current climate and vegetation properties are
important overall determinants of BA (e.g. Aldersley et al., 2011; Bistinas et al., 2014;
Forkel et al., 2017, 2019a; Joshi and Sukumar, 2021). The influence of antecedent
climate conditions on fuel buildup and on fuel drying has also been identified as crucial
in many regions (e.g. Van Wilgen et al., 2000; Griffin et al., 1983; Westerling et al.,
2003; Swetnam and Betancourt, 1998; Jenkins et al., 2020; Archibald et al., 2009;
Krawchuk and Moritz, 2011; van der Werf et al., 2008; Randerson et al., 2005; Spessa
et al., 2005). Indeed, spatial variability in fuel loads and fuel moisture are important
determinants of the geographical patterning of BA (Archibald et al., 2009; Boer et al.,
2021). Our model-based analyses allow us to distinguish between the immediate and
antecedent impacts of fuel loads and fuel dryness on BA, while also allowing their rela-
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tive contributions to be determined. We have further shown that current and antecedent
conditions can influence BA in opposite but intuitively understandable ways: wet condi-
tions in antecedent months, for example, lead to more fuel buildup in fuel limited regions
and promote increased BA whereas wet conditions during any given month reduce fuel
dryness and thus limit BA. Furthermore, we have demonstrated that antecedent con-
ditions >1 year are not important on a global scale. A similar conclusion was reached
by Forkel et al. (2017). Furthermore, the critical timescale for fuel build-up varies with
vegetation type, with longer timescales being more important in temperate regions and
recent conditions being more important in the tropics. The effect of vegetation vari-
ables is also biome-dependent because of differing climatic constraints. The length of
the dry-day period in the current month has the largest impact on BA but antecedent
DD can also be important, particularly in temperate regions. FAPAR was shown to
be the most significant vegetation variable, and only a single vegetation variable is re-
quired for accurate BA prediction if antecedent conditions are included. There are also
significant, mostly intuitive, interactions between variables. For example, antecedent
productivity (FAPAR) coupled with instantaneous drying (Dry Days) was determined to
be important, in accordance with previous studies (e.g. van der Werf et al., 2008).”

l.307/308. These temporal scales of fuel build up are on the order of 50-100 years, so
not really a relevant comparison to your 1-2 years timescales, is it?

We have made the impact of limiting our antecedent variables to at most 2 years clearer
in the text, since this does of course prevent us from accounting for long-term fuel build-
up as would be relevant for these biomes:

“The failure to detect an influence of longer-term fuel build-up on BA probably reflects
the short time interval (1–2 yrs) considered for antecedent fuel build-up, far shorter than
the timescales of coarse fuel build-up in these ecosystems. The seasonal differences
captured by our analyses may be unimportant in regions where long fire return times

C9

(or fire suppression) allow fuel build-up over longer periods.”

l. 346. I don’t follow this statement “Moisture-limited regions were more strongly af-
fected by suppression of fire at instantaneous timescales”. From what evidence is this
statement based, how does this fit into your analyses and interpretation? What does it
mean? Might be because this is a confusing use of the term “suppression”.

We have rewritten this part to avoid using “suppression” in favour of “limitation”, which
more accurately describes our intent; instantaneous conditions reduce fuel available to
burn due to moisture. In these regions, antecedent conditions are also expected to be
less important due to lack of seasonal fuel build-up patterns. This statement is based
on Fig. 7a in the manuscript, where it can be seen that in moisture-limited regions, the
instantaneous timescales (drying in and up to the current month) are most important
for enabling fire.
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Fig. 1. The proportion of filled samples for FAPAR, with yellow indicating that all occurrences
of a given month at a given location were filled and purple indicating no filling was done.
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Fig. 2. The change in burnt area (BA) prediction error magnitude between the ALL and CURR
models. The change multiplied by -1 is shown in orange to more clearly visualise the skewness
of the distribution.
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